
Proceedings of the 2009 Workshop on Knowledge and Reasoning for Answering Questions, ACL-IJCNLP 2009, pages 11–14,
Suntec, Singapore, 6 August 2009. c©2009 ACL and AFNLP

QAST: Question Answering System for Thai Wikipedia

Wittawat Jitkrittum† Choochart Haruechaiyasak‡ Thanaruk Theeramunkong†

†School of Information, Computer and Communication Technology (ICT)
Sirindhorn International Institute of Technology (SIIT)

131 Moo 5 Tiwanont Rd., Bangkadi, Muang, Phathumthani, Thailand, 12000
wittawatj@gmail.com, thanaruk@siit.tu.ac.th

‡Human Language Technology Laboratory (HLT)
National Electronics and Computer Technology Center (NECTEC)
Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand

choochart.haruechaiyasak@nectec.or.th

Abstract

We propose an open-domain question an-
swering system using Thai Wikipedia as
the knowledge base. Two types of in-
formation are used for answering a ques-
tion: (1) structured information extracted
and stored in the form of Resource De-
scription Framework (RDF), and (2) un-
structured texts stored as a search index.
For the structured information, SPARQL
transformed query is applied to retrieve a
short answer from the RDF base. For the
unstructured information, keyword-based
query is used to retrieve the shortest text
span containing the questions’s key terms.
From the experimental results, the system
which integrates both approaches could
achieve an average MRR of 0.47 based on
215 test questions.

1 Introduction

Most keyword-based search engines available on-
line do not support the retrieval of precise infor-
mation. They only return a list of URLs, each re-
ferring to a web page, sorted by relevancy to the
user’s query. Users then have to manually scan
those documents for needed information. Due to
this limitation, many techniques for implement-
ing QA systems have been proposed in the past
decades.

From the literature reviews, previous and exist-
ing QA systems can be broadly categorized into
two types:

1. Knowledge Intensive: Knowledge intensive
systems focus on analyzing and understand-
ing the input questions. The system knows

exactly what to be answered, and also what
type the answer should be. The analysis
phase usually depends on an ontology or a
semantic lexicon like WordNet. The an-
swer is retrieved from a predefined organized
knowledge base. Natural Language Process-
ing (NLP) techniques are heavily used in a
knowledge intensive system.

2. Data Intensive: Data intensive systems,
which do not fully analyze the input ques-
tions, rely on the redundancy of huge amount
of data (Dumais et al., 2002). The idea is that
if we have a huge amount of data, a piece of
information is likely to be stated more than
once in different forms. As a result, the data-
intensive QA systems are not required to per-
form many complex NLP techniques.

In this paper, we propose an open-domain QA
system for Thai Wikipedia called QAST. The sys-
tem supports five types of close-ended questions:
person, organization, place, quantity, and date/-
time. Our system can be classified as a data in-
tensive type with an additional support of struc-
tured information. Structured information in Thai
Wikipedia is extracted and represented in the form
of RDF. We use SPARQL to retrieve specific in-
formation from the RDF base. If using SPARQL
cannot answer a given question, the system will re-
trieve answer candidates from the pre-constructed
search index using a technique based on Minimal
Span Weighting (Monz, 2003).

2 System Architecture

Figure 1 shows the system architecture of QAST
which consists of three main sub-systems: Data
Representation , Question Processor , and Answer

11

Figure 1: The system architecture of QAST

Processor .

2.1 Data Representation

The Data Representation part is a storage for all
information contained in Thai Wikipedia. Two
modules constitute this sub-system.

RDF Base: In QAST, RDF triples are generated
from Wikipedia’s infoboxes following similar ap-
proaches described in the works of Isbell and But-
ler (2007) and Auer and Lehmann (2007). To gen-
erate RDF triples from an infobox, we would have
the article title as the subject. The predicates are
the keys in the first column. The objects are the
values in the second column. Altogether, the num-
ber of generated triples corresponds to the number
of rows in the infobox.

In addition to the infoboxes, we also store syn-
onyms in the form of RDF triples. The synonyms
are extracted from redirect pages in Wikipedia.
For example, a request for the Wikipedia article
titled “Car” will result in another article titled “Au-
tomobile” to be shown up. The former page usu-
ally has no content and only acts as a pointer to
another page which contains the full content. The
relationship of these two pages implies that “Car”
and “Automobile” are synonymous. Synonyms
are useful in retrieving the same piece of informa-
tion with different texual expressions.

Search Index: QAST stores the textual content
as a search index. We used the well-known IR li-
brary, Lucene1, for our search backend. We in-
dexed 41,512 articles (as of February 5, 2009)
from a Thai Wikipedia dump with full term posi-
tions. Firstly, all template constructs and the Wiki-
Text markups are removed, leaving with only the
plain texts. A dictionary-based longest-matching
word segmentation is then performed to tokenize
the plain texts into series of terms. Finally, the
resulted list of non-stopwords are passed to the
Lucene indexing engine. The dictionary used for
word segmentation is a combination of word list
from the LEXiTRON2 and all article titles from
Thai Wikipedia. In total, there are 81,345 words
in the dictionary.

2.2 Question Processor

Question processor sub-system consists of four
modules as follows.

1. Question Normalizer – This first module is
to change the way the question is formed into
a normal form to ease the processing at lat-
ter stages. This includes correcting mistyped
words or unusual spelling such as f33t for
feet.

2. Word Segmenter – This module performs
tokenizing on the normalized question to ob-
tain a list of non-stopwords.

3. Question Analyzer – The question ana-
lyzer determines the expected type of answer
(i.e., quantity, person, organization, location,
date/time and unknown) and constructs an
appropriate query. Normally, a SPARQL
query is generated and used to retrieve a can-
didate answer from the RDF base. When the
SPARQL fails to find an answer, the system
will switch to the index search. In that case,
the module also defines a set of hint terms to
help in locating candidate answers.

4. Searcher – This module executes the query
and retrieves candidate answers from the data
representation part.

To generate a SPARQL query, the input ques-
tion is compared against a set of predefined regu-
lar expression patterns. Currently, the system has
two types of patterns: pattern for definitional ques-
tions, and pattern for questions asking for a prop-

1Apache Lucene, http://lucene.apache.org
2LEXiTRON, http://lexitron.nectec.or.th

12

erty of an entity. The pattern for definitional ques-
tion is of the form a-rai-kue-X ‘What is X ?’ or
X-kue-a-rai ‘X is what ?’. After X is determined
from a user’s question, the first paragraph of the
article titled X is retrieved and directly returned to
the user. Since the first paragraph in any article is
usually the summary, it is appropriate to use the
first paragraph to answer a definitional question.

Questions asking for a property of an entity are
of the form a-rai-kue-P-kong-X ‘What is P of X ?’
e.g., “When was SIIT established ?” which can be
answered by looking for the right information in
the RDF base. A simplified SPARQL query used
to retrieve an answer for this type of question is as
follows.�
SELECT ? o
WHERE {

? tempPage h a s I n f o b o x ? tempBox .
? tempPage r d f s : l a b e l ”X” .
? tempBox ?P ? o .

}
� �
The query matches an object of a RDF triple with
the predicate P (e.g., “date of establishment”), pro-
vided that the triple is generated from an infobox
titled X (e.g.,“SIIT”) . The object of the year 1992
is then correctly returned as the answer.

When SPARQL fails, i.e., the question does
not match any known pattern or the answer does
not exist in the RDF base, the system switches to
the index search which performs the following the
steps.

1. Word Segmenter tokenizes the question into
a list of keywords q.

2. Question analyzer analyzes q, generates a ba-
sic Lucene’ TermQuery, and defines a set of
hint terms H .

3. Retrieve the most relevant c documents using
Lucene’s default search scoring function3.
Denote D as the set of retrieved documents.

4. For each document d in D where d =
{t1, t2, . . . , t|d|} (t is a term),
(a) Find in d the start term index

mmsStart and end term index
mmsEnd of the shortest term span
containing all terms in q (Monz, 2003).

(b) spanLength ← 1 + mmsEnd −
mmsStart

(c) If spanLength > 30, skip current d.
Go to the next document.

3http://lucene.apache.org/java/2_3_0/
scoring.html

(d) Find minimal span weighting
score msw (Monz, 2003). If
|q ∩ d| = 1 then, msw =
RSVn(q, d). Otherwise, msw =
0.4 ·RSVn(q, d)+0.6 ·(|q∩d|

spanLength)1/8 ·
(|q∩d|

|q|) where RSVn(q, d) =
lucene(q, d)/maxdlucene(q, d)

(e) mmsStart← max(mmsStart−s, 1)
(f) mmsEnd← min(mmsEnd + s, |d|)
(g) Find the weighting for hint terms hw

(0 ≤ hw ≤ 1).
(h) Calculate the span score

sp = msw · (1 + hw)
(i) Add the text span to the span set P (Sort

P by sp in descending order).
5. Return the top k spans in P as answers.

In the actual implementation, we set c equal to
500 so that only the top 500 documents are con-
sidered. Although retrieving more texts from the
corpus would likely increase the chance of find-
ing the answer (Moldovan et al., 2002), our trial-
and-error showed that 500 documents seem to be
a good trade-off between speed and content cov-
erage. To look for an occurrence of hint terms,
each span is stretched backward and forward for
10 terms (i.e., s = 10). Finally, we set k equal to
5 to return only the top five spans as the answers.

2.3 Answer Processor
This sub-system contains two modules: Answer
Ranker and Answer Generator.

Answer Ranker concerns with how to rank the
retrieved answer candidates. In the case where
SPARQL query is used, this module is not re-
quired since most of the time there will be only
one result returned.

In the case when the search index is used, all
candidate answers are sorted by the heuristic span
score (i.e., sp = msw · (1 + hw)). The func-
tion mostly relies on regular expressions defining
expected answer patterns. If a span has an occur-
rence of one of the defined patterns (i.e., hw > 0),
it is directly proportional to the suitability of the
occurrence with respect to the question, length and
rareness of the pattern occurrence. For example,
the hint terms of questions asking for a person
would be personal titles such as Ms. and Dr.

As for the final step, the Answer Generator
module formats the top five candidate answers into
an HTML table and returns the results to the user.

13

Question Type Index & RDF Index
Person 0.47 0.37

Organization 0.56 0.46
Place/Location 0.43 0.36

Quantity 0.51 0.44
Date/Time 0.39 0.34

Average MRR 0.47 0.39

Table 1: QAST’s performance comparison be-
tween (1) using both index and RDF and (2) using
only the index.

3 Evaluation Metric

To evaluate the system, 215 test questions (43
questions for each question type) and their cor-
rect answers were constructed based on the con-
tents of random articles in Thai Wikipedia. Mean
Reciprocal Rank (MRR), the official measurement
used for QA systems in TREC (Voorhees and Tice,
2000), is used as the performance measurement.
To evaluate the system, a question is said to be
correctly answered only when at least one of the
produced five ranked candidates contained the true
answer with the right context. Out-of-context can-
didate phrases which happen to contain the true
answers are not counted. If there is no correct an-
swer in any candidate, the score for that question
is equal to zero.

4 Experimental Results and Discussion

Table 1 shows a comparison of the MRR values
when using both index and RDF, and using only
the index. The approach of using only the index,
the overall MRR is equal to 0.39 which is fairly
high with respect to the answer retrieval method-
ology. The index search approach simply relies on
the fact that if the question keywords in a ranked
candidate document occur close together and at
least one occurrence of expected answer pattern
exists, then there is a high chance that the term
span contains an answer.

The MRR significantly increases to 0.47 (20.5%
improvement) when RDF (structured information)
is used together with the index. A thorough analy-
sis showed that out of 215 questions, 21 questions
triggered the RDF base. Among these, 18 ques-
tions were correctly answered. Therefore, using
the additional structured information helps answer
the definitional and factoid questions. We expect a
higher improvement when more structured infor-

mation is incorporated into the system.

5 Conclusions and Future Works

We proposed an open-domain QA system called
QAST. The system uses Thai Wikipedia as the cor-
pus and does not rely on any complex NLP tech-
nique in retrieving an answer.

As for future works, some possiblities for im-
proving the current QAST are as follows.

• An information extraction module may be
added to extract and generate RDF triples
from unstructured text.
• Infoboxes, wikipedia categories and internal

article links may be further explored to con-
struct an ontology which will allow an auto-
matic type inference of entities.
• More question patterns and the correspond-

ing SPARQL queries can be added so that
SPARQL is used more often.

Acknowledgement
The financial support from Young Scientist and
Technologist Programme, NSTDA (YSTP : SP-
51-NT-15) is gratefully acknowledged.

References
Soren Auer and Jens Lehmann. 2007. What Have

Innsbruck and Leipzig in Common? Extracting Se-
mantics from Wiki Content. In Proc. of the 4th Eu-
ropean conference on The Semantic Web: Research
and Applications, pp. 503-517.

Susan Dumais, Michele Banko, Eric Brill, Jimmy Lin,
and Andrew Ng. 2002. Web Question Answering:
Is More Always Better?. In Proc. of the 25th ACM
SIGIR, pp. 291-298.

Jonathan Isbell and Mark H. Butler. 2007. Extracting
and Re-using Structured Data from Wikis. Technical
Report HPL-2007-182, Hewlett-Packard.

Dan Moldovan, Marius Pasca, Sanda Harabagiu, and
Mihai Surdeanu . 2002. Performance Issues and Er-
ror Analysis in an Open-Domain Question Answer-
ing System. Proc. of the 40th ACL, pp. 33-40.

Christof Monz. 2003. From Document Retrieval to
Question Answering. Ph.D. Thesis. University of
Amsterdam.

Ellen M. Voorhees and Dawn Tice. 2000. Building a
Question Answering Test Collection. In 23rd ACM
SIGIR, pp. 200-207.

14

