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Abstract

Despite early intuitions, semantic similarity
has not proven to be robust for splitting multi-
party interactions into separate conversations.
We discuss some initial successes with using
thesaural headwords to abstract the seman-
tics of an utterance. This simple profiling
technique showed improvements over base-
line conversation threading models.

1 Introduction

Topic segmentation is the problem of dividing a
document into smaller coherent units. The seg-
ments can be hierarchical or linear; the topics can
be localized or distributed; the documents can be
newswire or chat logs. Of course, each of these
variables is best analyzed as continuous rather than
discrete. Newswire, for instance, is a more formal,
monologue-style genre while a chat log tends to-
wards the informal register with different conversa-
tions interwoven.

We present a topic segmenter which uses seman-
tics to define coherent conversations within a larger,
multi-party document. Using a word’s thesaurus en-
try as a proxy for its underlying semantics provides
a domain-neutral metric for distinguishing conver-
sations. Also, our classifier does not rely on met-
alinguistic properties that may not be robust across
genres.

∗The first author was partially funded through a fel-
lowship from the SUNY at Buffalo Department of Linguis-
tics and partially through a research assistantship at Janya,
Inc. (http://www.janyainc.com, Air Force Grant No.s
FA8750-07-C-0077 and FA8750-07-D-0019, Task Order 0004)

2 Background

Most work on lexical cohesion extends from Halli-
day and Hasan (1976). They formalize a text as any
semantic unit realized through sentences. Linguistic
features found to justify binding sentences together
into Halliday and Hasan’s notion of a text include
pronouns (Hobbs, 1979; Kehler, 2000), lexical over-
lap (Hearst, 1997; Kozima, 1993; Morris and Hirst,
1991), cue phrases (Manning, 1998), and discourse
markers (Power et al., 2003; Reynar, 1999; Beefer-
man et al., 1999), among others. Of course, most
of this earlier work assumes the sentences constitut-
ing any text are contiguous. Thus, a document is
comprised of a series of semantic units that progress
from one to the next with no returns to old topics.

Multi-party interactions1 abide by a different set
of assumptions. Namely, a multi-party interaction
can include multiple floors (Aoki et al., 2006). Much
like at a cocktail party, we can expect more than a
single conversation at every given time. These dif-
ferent conversational floors are the major semantic
units a topic segmentation algorithm must recog-
nize. Spoken chat models (Aoki et al., 2006; Aoki
et al., 2003) can make a simplifying assumption that
speakers tend to only participate in one conversation
at a time. However, in text chat models, Elsner and
Charniak (2008) show that speakers seem to partici-
pate in more conversations roughly as a function of
how talkative they are (cf. Camtepe et al., 2005).
In both modalities, speaker tendency to stay on the
same topics is a robust cue for conversational coher-

1See O’Neill and Martin (2003) for an analysis of differ-
ences between two- and multi-party interactions.
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ence (Elsner and Charniak, 2008; Acar et al., 2005).
Despite the initial intuitions of Halliday and

Hasan (1976), semantic similarity has not proven
to be a robust cue for multi-party topic segmen-
tation. For instance, Acar et al. (2005) and Gal-
ley et al. (2003) used word repetition in their defi-
nition of coherence but found that words common
to too many conversations hurt modeling perfor-
mance. Elsner and Charniak (2008) used frequency
binning based on the entire document to reduce the
noise introduced by high-frequency words. Un-
fortunately, binning requires a priori knowledge of
the relative frequencies of words.2 Additionally,
those authors used an on-topic/off-topic word list
to bifurcate technical and non-technical utterances.
Again, this technique assumes prior knowledge of
the strongest on-topic cue words.

Since semantic repetition is clearly useful but
simple word repetition is not a reliable measure, we
investigated other measures of semantic relatedness.
Elsner and Charniak (2008) conceded that context-
based measures like LSA (Deerwester et al., 1990)
require a clear notion of document boundary to func-
tion well. Dictionary-based models (Kozima and
Furugori, 1993) are a step in the right direction be-
cause they leverage word co-occurrence within defi-
nitions to measure relatedness. The richer set of con-
nections available in WordNet models should pro-
vide an even better measure of relatedness (Sussna,
1993; Resnik, 1995). Unfortunately, these mea-
sures have unequal distribution by part-of-speech
and uneven density of lemmas by semantic domain.3

Thesaurus-based models (Morris and Hirst, 1991)
provide many of the same advantages as dictionary-
and WordNet-based models.4 In addition to the hier-
archical relations encoded by the thesaurus, we can
treat each thesaural category as one dimension of
a topicality domain similar to the way Elsner and
Charniak leveraged their list of technical terms. In
sum, our model focuses on the abstraction of lem-
mas that is inherent to a thesaurus while limiting
the domain-specific and a priori knowledge required

2One could use frequencies from a general corpus but that
should only perform as well as a graded stop-word list.

3As one reviewer noted, some parts-of-speech may con-
tribute more to a topic profile than others. Unfortunately, this
empirical question must wait to be tested.

4Budanitsky and Hirst (2006) review the advantages.

by a classifier to divide multi-party interactions into
separate conversational floors.

3 Model

At a high level, our chat topic segmenter works like
most other classifiers: each input line is tokenized5,
passed to a feature analyzer, and clustered with re-
lated lines. Unlike traditional topic segmentation
models, each input represents a new utterance in the
chat log. These utterances can range from single
words to multiple sentences. Another aspect of our
model (although not unique to it) is the on-line clas-
sification of text. We aim to model topic segmenta-
tion as if our classifier were sitting in a chat room,
and not as a post-process.

While our feature analyzer focuses on semantic
markers, interlocutor names are also recorded. Two
intuitions were implemented with respect to individ-
uals’ names: continued affiliation with old conver-
sations and naming interlocutors to focus attention.
All else being equal, one would assume a speaker
will continue in the conversations she has already
participated in. Moreover, she will most likely con-
tinue with the last conversation she was part of. As
the total number of conversations increases, the like-
lihood of sticking to the last conversation will de-
crease.

The second intuition derives from the observa-
tion in O’Neill and Martin (2003) that speakers ac-
commodate for cocktail-style conversations by using
direct mentions of interlocutors’ names. We only
model backward referencing names. That is, if a
speaker uses the name of another user, we assume
that the speaker is overtly affiliating with a conver-
sation of the other user. Forward referencing is dis-
cussed under future work (see Section 6).

Following Budanitsky and Hirst (2006), we base
our notion of semantic topicality on thesaural rela-
tions. Broadly speaking, two utterances are highly
related if their tokenized words (hereafter, lemmas)
co-occur in more of the same thesaural categories
than not. We will defer further explanation of these
features until we have explained our reference the-
sauri in Subsection 3.1. Unfortunately, many desir-
able and robust features are missing from our classi-
fier. See Section 6 for a discussion of future work.

5We used SemantexTM (Srihari et al., 2008).

47



In the final stage of our processing pipeline, we
use a panel of experts to generate a simple weighted
classification. Each feature described above con-
tributes a roughly equal vote towards the final sort-
ing decision. Barring a single strong preference or a
cohort of weak preferences for one conversation, the
model assumes the incoming utterance introduces a
new conversational floor.

3.1 Thesauri
We chose two machine-readable and public-domain
thesauri for our model: Roget’s Thesaurus (1911)
and Moby Thesaurus II (2002). Both are avail-
able from Project Gutenberg (gutenberg.org). In the
compilation notes for Roget’s Thesaurus, the editor
mentions a supplement of 1,000+ words to the orig-
inal work. A rough count shows 1,000 headwords
(the basic grouping level) and 55,000 synonyms (any
word listed under a headword). The second edi-
tion of Moby Thesaurus contains some 30,000 head-
words and 2.5 million synonyms. Moby Thesaurus
includes many newer terms than Roget’s Thesaurus.
Structurally, Roget’s Thesaurus has a distinct advan-
tage over Moby Thesaurus. The former includes a
six-tiered category structure with cross-indexing be-
tween headwords. The latter is only organized into
headword lists.

3.2 Metrics
As we mentioned above, our model uses three pri-
mary metrics in classifying a new utterance: con-
versation affiliations of the current speaker, conver-
sation affiliations of any explicitly mentioned inter-
locutors, and semantic similarity. In the end, all the
conversation affiliation votes are summed with the
one conversation preferred by each of the three the-
saural measures.6 The input line is then merged with
the conversation that received the most votes. De-
tails for deriving the votes follow.

Every conversation a speaker has participated in
receives a vote. Moreover, his last conversation gets
additional votes as a function of his total number
of conversations (see Equation 1). Likewise, every
conversation a named interlocutor has participated
in receives a vote with extra votes given to her last
conversation as a function of how gregarious she is.

6In the long run, a list of conversations ranked by similarity
score would be better than a winner-takes-all return value.

Headword Type Weight Change
Direct Match 1
Co-hyponymous Headword 0.25
Cross-indexed Headword 0.75

Table 1: Spreading Activation Weights.

V ote =
3

ln(|Conversationsspeaker|) + 1
(1)

Each utterance is then profiled in terms of the-
saural headwords. Every lemma in an utterance
matching to some headword increments the activa-
tion of that headword by one.7 A conversation’s se-
mantic profile is a summation of the profiles of its
constituent sentences. In order to simulate the drift
of topic in a conversation, the conversation’s seman-
tic profile decays with every utterance. Thus, more
recent headwords will be more activated than head-
words activated near the beginning of a conversa-
tion. Decay is modeled by halving the activation of
a headword in every cycle that it was not topical.

Moreover, a third profile was kept to simulate
spreading activation within the thesaurus. For this
profile, each topical headword is activated. Every
cross-indexed headword listed within this category
is also augmented by a fixed degree. Finally, every
headword that occupies the same thesaurus section
is augmented. An overview of the weight changes
is listed in Table 1. The specific weights fit the au-
thors’ intuitions as good baselines. These weights
can easily be trained to generate a better model.

The similarity between a new line (the test) and
a conversation (the base) is computed as the sum of
match bonuses and mismatch penalties in Table 2.8

Table 3 scores an input line (TEST) against two con-
versations (BASE1 and BASE2) with respect to four
headwords (A, B, C, and D). In order to control for
text size, we also computed the average headword

7Most other models include an explicit stop-word list to re-
duce the effect of function words. Our model implicitly relies
on the thesaurus look-up to filter out function words. One ad-
vantage to our approach is the ability to preferentially weight
different headwords or lemma to headword relations.

8Like with Table 1, these numbers reflect the authors’ intu-
itions and can be improved through standard machine learning
methods.
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Headword Test
Present Yes

No
Avg? Above Below

B
as

e Yes
Above +1 +0.5 -0.1
Below +0.5 +1 -0.05

No -1 -0.5 +0.0001

Table 2: Similarity Score Calculations.

A B C D Score
TEST high high low 0 –

BASE1
high low low high
+1 +.5 +1 -.1 2.4

BASE2
0 high 0 0
-1 +1 -.5 +.0001 -.4999

Table 3: A Example Similarity Scoring for Two Conver-
sations. ‘High’ and ‘low’ refers to headword activation.

activation in a conversation. Intuitively, we consider
it best when a headword is activated for both the
base and test condition. Moreover, a headword with
equally above average or equally below average acti-
vation is better than a headword with above average
activation in the base but below average activation
in the test. In the second best case, neither condition
shows any activation in a headword. The penulti-
mately bad condition occurs when the base contains
a headword that the test does not. We do not want
to penalize the test (which is usually smaller) for not
containing everything that the base does. Finally, if
the test condition contains a headword but the base
does not, we want to penalize the conversation most.

4 Dataset

Our primary dataset was distributed by Elsner and
Charniak (2008). They collected conversations from
the IRC (Internet Relay Chat) channel ##LINUX,
a very popular room on freenode.net with widely
ranging topics. University students then annotated
these chat logs into conversations. We take the col-
lection of these annotations to be our gold standard
for topic segmentation with respect to the chat logs.

4.1 Metrics

Elsner and Charniak (2008) use three major mea-
sures to compare annotations: a 1-to-1 comparison,

E&C Annotators Our Model
Mean Max Min

Conversations 81.33 128 50 153
Avg. Length 10.6 16.0 6.2 5.2

Table 4: General statistics for our model as compared
with Elsner and Charniak’s human annotators. Some
numbers are taken from Table 1 (Elsner and Charniak,
2008).

Mean Max Min
Inter-annotator 86.70 94.13 75.50
Our Model 65.17 74.50 53.38

Table 5: Comparative many-to-1 measures for evaluating
differences in annotation granularity. Some numbers are
taken from Table 1 (Elsner and Charniak, 2008).

a loc3 comparison, and a many-to-1 comparison.
The 1-to-1 metric tries to maximize the global con-
versation overlap in two annotations. The loc3 scale
is better at measuring local agreement. This score
calculates accuracy between two annotations for
each window of three utterances. Slight differences
in a conversation’s start and end are minimized. Fi-
nally, the many-to-1 score measures the entropy dif-
ference between annotations. In other words, sim-
plifying a fine-grained analysis to a coarse-grained
analysis will yield good results because of shared
major boundaries. Disagreeing about the major con-
versation boundaries will yield a low score.

5 Analysis

Compared with the gold standard, our model has a
strong preference to split conversations into smaller
units. As is evident from Table 4, our model has
more conversations than the maximally splitting hu-
man annotator. These results are unsurprising given
that our classifier posits a new conversation in the
absence of contrary evidence. Despite a low 1-to-1
score, our many-to-1 score is relatively high (see Ta-
ble 5). We can interpret these results to mean that
our model is splitting gold standard conversations
into smaller sets rather than creating conversations
across gold standard boundaries.

A similar interaction of annotation granularity
shows up in Table 6. Our 1-to-1 measures are just
barely above the baseline, on average. On the other
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As % of . . . Misclassified All
Error Type Mean Max Min Mean
Mismatch 25.84 23.78 28.13 11.93
Split Error 62.96 63.11 63.89 29.08
Lump Error 11.20 13.11 7.99 5.17

Table 7: Source of misclassified utterances as a percent-
age of misclassified utterances and all utterances.

hand, our loc3 measure jumps much closer to the
human annotators. In other words, the maximum an-
notation overlap of our model and any given human
is poor9 while the local coherence of our annotation
with respect to any human annotation is high. This
pattern is symptomatic of over-splitting, which is ex-
cessively penalized by the 1-to-1 metric.10

We also analyzed the types of errors our model
made while holding the conversation history con-
stant. We simulated a consistent conversation his-
tory by treating the gold standard’s choice as an un-
beatable vote and tabulating the number of times our
model voted with and against the winning conversa-
tion. There were five numbers tabulated: matching
new conversation votes, matching old conversation
votes, mismatching old conversation votes, incorrect
split vote, and incorrect lump vote. The mismatch-
ing old conversation votes occurred when our model
voted for an old conversation but guessed the wrong
conversation. The incorrect split vote occurred when
our model wanted to create a new conversation but
the gold standard voted with an old conversation.
Finally, the incorrect lump vote occurred when our
model matched the utterance with a old conversation
when the gold standard created a new conversation.

Across all six gold standard annotations, nearly
two-thirds of the errors arose from incorrect splitting
votes (see Table 7). In fact, nearly one-third of all
utterances fell into this category.

6 Future Work

The high granularity for what our model considers a
conversation had a huge impact on our performance

9Elsner and Charniak (2008) found their annotators also
tended to disagree on the exact point when a new conversation
begins.

10Aoki et al. (2006) present a thorough analysis of conver-
sational features associated with schisming, the splitting off of
new conversations from old conversations.

scores. The high many-to-1 scores imply that more
human-like chunks will improve performance. The
granularity may be very task dependent and so we
will need to be careful not to overfit our model to this
data set and these annotators. New features should
be tested with several chat corpora to better under-
stand the cue trading effects of genre.

At present, our model uses only a minimal set of
features. Discourse cues and temporal cues are two
simple measures that can be added. Our current fea-
tures can also use refinement. For instance, even par-
tially disambiguating the particular sense of the lem-
mas should reduce the noise in our similarity mea-
sures. Ranking the semantic similarity, in contrast
with the current winner-takes-all approach, should
improve our results. Accounting for forward refer-
encing, when a speaker invokes another’s name to
draw them into a conversation, is also important.

Finally, understanding the different voting pat-
terns of each feature system will help us to better
understand the reliability of the different cues. To-
wards this end, we need to monitor and act upon the
strength and type of disagreement among voters.
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