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Abstract

We present an empirical investigation of the
annotation cost estimation task for active
learning in a multi-annotator environment. We
present our analysis from two perspectives:
selecting examples to be presented to the user
for annotation; and evaluating selective sam-
pling strategies when actual annotation cost
is not available. We present our results on a
movie review classification task with rationale
annotations. We demonstrate that a combina-
tion of instance, annotator and annotation task
characteristics are important for developing an
accurate estimator, and argue that both corre-
lation coefficient and root mean square error
should be used for evaluating annotation cost
estimators.

1 Introduction

Active Learning is the process of selectively query-
ing the user to annotate examples with the goal
of minimizing the total annotation cost. Annota-
tion cost has been traditionally measured in terms
of the number of examples annotated, but it has
been widely acknowledged that different examples
may require different annotation effort (Settles et al.,
2008; Ringger et al., 2008).

Ideally, we would use actual human annotation
cost for evaluating selective sampling strategies, but
this will require conducting several user studies, one
per strategy on the same dataset. Alternatively, we
may be able to simulate the real user by an annota-
tion cost estimator that can then be used to evaluate
several selective sampling strategies without having
to run a new user study each time. An annotation
cost estimator models the characteristics that can

differentiate the examples in terms of their annota-
tion time. The characteristics that strongly correlate
with the annotation time can be used as a criterion
in selective sampling strategies to minimize the total
annotation cost.

In some domains, the annotation cost of an ex-
ample is known or can be calculated exactly before
querying the user. For example, in biological ex-
periments it might be calculable from the cost of
the equipment and the material used (King et al.,
2004). In NLP, sometimes a simplifying assumption
is made that the annotation cost for an example can
be measured in terms of its length (e.g. seconds of
voicemail annotated (Kapoor et al., 2007); number
of tokens annotated (Tomanek et al., 2007)). An-
other assumption is that the number of user anno-
tation actions can be used as a proxy for annota-
tion cost of an example (e.g. number of brackets
added for parsing a sentence (Hwa, 2000); number
of clicks for correcting named entities (Kristjannson
et al., 2004)). While these are important factors in
determining the annotation cost, none of them alone
can fully substitute for the actual annotation cost.
For example, a short sentence with a lot of embed-
ded clauses may be more costly to annotate than a
longer sentence with simpler grammatical structure.
Similarly, a short sentence with multiple verbs and
discontinuous arguments may take more time to an-
notate with semantic roles than a longer sentence
with a single verb and simple subject-verb-object
structure (Carreras and Márquez, 2004).

What further complicates the estimation of anno-
tation cost is that even for the same example, anno-
tation cost may vary across annotators (Settles et al.,
2008). For example, non-native speakers of English
were found to take longer time to annotate part of
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speech tags (Ringger et al., 2008). Often multiple
annotators are used for creating an annotated cor-
pus to avoid annotator bias, and we may not know
all our annotators beforehand. Annotation cost also
depends on the user interface used for annotation
(Gweon et al., 2005), and the user interface may
change during an annotation task. Thus, we need
a general annotation cost estimator that can predict
annotation cost for a given annotator and user inter-
face. A general estimator can be built by using an-
notator and user interface characteristics in addition
to the instance characteristics for learning an anno-
tation cost model, and training on data from mul-
tiple annotators and multiple user interfaces. Such
a general estimator is important for active learning
research where the goal is to compare selective sam-
pling strategies independent of the annotator and the
user interface.

In this work, we investigate the annotation cost es-
timation problem for a movie review classification
task in a multi-annotator environment with a fixed
user interface. We demonstrate that a combination
of instance, annotation task and annotator charac-
teristics is important for accurately estimating the
annotation cost. In the remainder of the paper, we
first present a survey of related work and an analysis
of the data collected. We then describe the features
used for our supervised learning approach to anno-
tation cost estimation, followed by the experimental
setup and results. Finally, we conclude with some
future directions we would like to explore.

2 Related work

There has been some recent research effort in using
supervised learning for estimating annotation cost.
The most closely related work is that by Settles et al.
(2008) and Ringger et al. (2008). Settles et al. (2008)
present a detailed analysis of annotation cost for four
NLP applications: named entity recognition, image
retrieval, speculative vs. definite distinction, and in-
formation extraction. They study the effect of do-
main, annotator, jitter, order of examples, etc., on
the annotation cost.

Results from Settles et al. (2008) are promising
but leave much room for improvement. They used
only instance level features such as number of en-
tities, length, number of characters, percentage of

non-alpha numeric characters, etc. for annotation
cost estimation. For three of their tasks, the corre-
lation between the estimated and actual annotation
times was in the range (R = 0.587 to 0.852). Note
that the percentage of variance accounted for by a
model is obtained by squaring the R value from the
correlation coefficient. Thus, an R value of 0.587
indicates that only about 34% (R2) of the variance
is accounted for, so the model will make incorrect
predictions about ranking in the majority of cases.
Nevertheless, we acknowledge that our results are
not substantially better, although we argue that this
work contributes to the pool of knowledge that will
hopefully lead to better performance in the future.

Settles et al. (2008) train and test their estimator
on data from the same annotator. Thus, in order
to use their model for a new annotator, we would
need to first collect data for that annotator and train
a model. In our work, a group of annotators anno-
tate the same text, and we train and test on different
annotators. We also show that using characteristics
of the annotators and annotation task in addition to
the instance characteristics improves performance.

Ringger et al. (2008) use linear regression for an-
notation cost estimation for Part-Of-Speech (POS)
tagging. About 30 annotators annotated 36 different
instances each. The authors present about 13 de-
scriptive statistics of the data, annotator and annota-
tion task, but in their model they only used number
of tokens in the sentence and the number of correc-
tions needed as features. They report that the other
variables didn’t have a significant effect when eval-
uated using a Bayesian Information Criterion (from
the R package).

Ringger et al. (2008) noticed that nativeness of
the annotator did have an effect on the annotation
time, but they chose not to include that feature
in their model as they expected to have a similar
mix of skills and background in their target anno-
tators. However, if annotation times differ substan-
tially across annotators, then not accounting for this
difference will reduce the performance of the model.
Also, the low adjusted correlation value for their
model (R = 0.181) indicates that there is only a
weak correlation between the annotation time and a
linear combination of the length of the example and
the number of corrections.
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3 Analysis and Experiments

In this section, we present our annotation methodol-
ogy and analysis of the data we collected, followed
by a description of the features we used.We then
present our experimental setup followed by a dis-
cussion of our results.

3.1 Annotation Methodology and Data
Analysis

In this work, we estimate the annotation cost for a
movie review classification task. The data we used
were collected as part of a graduate course. Twenty
annotators (students and instructors) were grouped
into five groups of four each. The groups were cre-
ated such that each group had similar variance in
annotator characteristics such as department, educa-
tional experience, programming experience, etc. We
used the first 200 movie reviews from the dataset
provided by Zaidan et al. (2007), with an equal dis-
tribution of positive and negative examples. Each
group annotated 25 movie reviews randomly se-
lected from the 200 reviews and all annotators in
each group annotated all 25 reviews. In addition
to voting positive or negative for a review, annota-
tors also annotated rationales (Zaidan et al., 2007),
spans of text in the review that support their vote.
Rationales can be used to guide the model by identi-
fying the most discriminant features. In related work
(Arora and Nyberg, 2009), we ascertain that with ra-
tionales the same performance can be achieved with
less annotated data. The annotation task with ra-
tionales involved a variety of user actions: voting
positive or negative, highlighting spans of text and
adding rationale annotations. We used the same an-
notation guidelines as Zaidan et al. (2007). The data
has been made available for research purposes1. Fig-
ure 1 shows a screenshot of the GUI used. We per-
formed an analysis of our data similar to that con-
ducted by Settles et al. (2008). We address the fol-
lowing main questions.

Are the annotation times variable enough? If all
examples take a similar time to annotate, then the
number of examples can be used as an approxima-
tion for the annotation cost. Figure 2 shows the his-
togram of averaged annotation times (averaged over

1www.cs.cmu.edu/˜shilpaa/datasets/ial/
ial-uee-mr-v0.1.zip

Figure 1: The GUI used for the annotation task. The user
selects the review (segment) to annotate from the list in the
right panel. The review text is displayed in the left panel. The
user votes positive or negative using the radio buttons. Ratio-
nales are added by selecting a span of text and right clicking
to select the rationale tag. The start/stop button can be used to
pause the current task.

Figure 2: Distribution of averaged annotation times

4 annotators in a group). As can be seen from the
mean (µ = 165 sec.) and the standard deviation
(σ = 68.85), there is a meaningful variance in the
annotation times.

How do the annotation times vary across annota-
tors? A strong correlation between annotation times
from different annotators on a set of instances sug-
gests that there are certain characteristics of these in-
stances, independent of the annotator characteristics,
that can determine their ranking based on the time it
takes to annotate them. We evaluated the pairwise
correlation for all pairs of annotators in each group
(Table 1). As can be seen, there is significant pair-
wise correlation in more than half of the pairs of an-
notators that differ in nativeness (10/16). However,
not all such pairs of annotators are associated with
significant correlation. This suggests that it is im-
portant to consider both instance and annotator char-
acteristics for estimating annotation time.
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group Avg-Na(Std) Avg-CR(Std) #sign-pairs
0 2.25(0.96) 0.54(0.27) 4/6 (4/5)
1 1.75(0.5) 0.45(0.08) 5/6 (2/3)
2 1(0) 0.13(0.17) 0/6 (0/0)
3 1.75(0.96) 0.36(0.12) 2/6 (1/5)
4 2.75(0.5) 0.47(0.04) 6/6 (3/3)

Avg. 1.9(0.58) 0.39(0.21) 17/30 (10/16)

Table 1: The Table shows the average nativeness and average
pairwise correlation between annotation times for the mem-
bers of each group (and their standard deviation). #sign-pairs
shows the fraction of pairwise correlations within the groups
that were significant (p < 0.05). In brackets, is the fraction
of correlations between annotators with different nativeness
within the groups that were significant.

The box plot in Figure 3 shows the distribution
of annotation times across annotators. As can be
seen, some annotators take in general much longer
than others, and the distribution of times is very dif-
ferent across annotators. For some, the annotation
times vary a lot, but not so much for others. This
suggests that using annotator characteristics as fea-
tures in addition to the instance characteristics may
be important for learning a better estimator.

Figure 3: Box plot shows the annotation time (in sec) dis-
tribution (y-axis) for an annotator (x-axis) for a set of 25 doc-
uments. g0-a1 represents annotator 1 of group 0 and g0-avg
represents the average annotation time. A box represents the
middle 50% of annotation times, with the line representing the
median. Whiskers on either side span the 1st and 4th quartiles
and asterisks indicate the outliers.

3.2 Feature Design

We group the features in the following three cat-
egories: Instance, Annotation Task and Annotator

characteristics.

3.2.1 Instance characteristics
Instance characteristics capture the properties of

the example the user annotates. Table 2 describes
the instance based features we used and the intu-
ition supporting their use for annotation cost esti-
mation. Table 3 shows the mean and standard de-
viation of each of these characteristics, and as can
be seen, these characteristics do vary across exam-
ples and hence these features can be beneficial for
distinguishing examples.

3.2.2 Annotation Task characteristics
Annotation task characteristics are those that can

be captured only during or after the annotation task.
We used the number of rationales as a feature from
this category. In addition to voting for movie re-
views as positive or negative, the user also adds ra-
tionales that support their vote. More rationales im-
ply more work since the user must look for the rele-
vant span of text and perform the physical action of
selecting the span and adding an annotation for each
rationale. Table 3 shows the distribution of the aver-
age Number of Rationales (NR) per example (aver-
aged over the four annotators for a given set).

3.2.3 Annotator characteristics
The annotation cost of an example may vary

across annotators. As reported in Table 1, the aver-
age correlation for annotators on the same document
is low (R = 0.39) with 17 out of 30 pairwise correla-
tions being significant. Thus, it is important to con-
sider annotator characteristics, such as whether the
annotator is a native speaker of English, their educa-
tion level, reading ability, etc. In this work, we only
use nativeness of the annotator as a feature and plan
to explore other characteristics in the future. We as-
signed each annotator a nativeness value. A value
of 3 was given to an annotator whose first language
is English. A value of 2 was given to an annotator
who has a different first language but has either been
educated in English or has been in the United States
for a long time. A value of 1 was assigned to the re-
maining annotators. Among the 20 annotators in the
study, there were 8 annotators with nativeness value
of 1, and 6 each for nativeness values of 2 and 3.
Table 1 shows the average and standard deviation of
the nativeness score in each group.
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Feature Definition Intuition
Character
Length (CL)

Length of review in
terms of number of
characters

Longer documents
take longer to anno-
tate

Polar word
Count (PC)

Number of words
that are polar (strong
subjective words
from the lexicon
(Wilson et al., 2005))

More subjectivity
implies user would
need more time to
judge positive vs.
negative

Stop word
Percent (SC)

Percentage of words
that are stop words

A high percentage
of stop words im-
plies that the text is
not very complex and
hence easier to read.

Avg. Sen-
tence Length
(SL)

Average of the char-
acter length of sen-
tences in the review

Long sentences in a
review may make it
harder to read.

Table 2: Instance characteristics

Feature Mean Standard Deviation
CL 2.25 0.92
PC 41.50 20.39
SP 0.45 0.03
SL 121.90 28.72
NR 4.80 2.30

Table 3: Mean and the standard deviation for the feature oc-
currences in the data.

3.3 Evaluation Metric

We use both Root Mean Square (RMS) error and
Correlation Coefficient (CRCoef) to evaluate our
model, since the two metrics evaluate different as-
pects of an estimate. RMS is a way to quantify the
amount by which an estimator differs from the true
value of the quantity being estimated. It tells us how
‘off’ our estimate is from the truth. CRCoef on the
other hand measures the strength and direction of a
linear relationship between two random variables. It
tells us how well correlated our estimate is with the
actual annotation time. Thus, for evaluating how ac-
curate our model is in predicting annotation times,
RMS is a more appropriate metric. For evaluating
the utility of the estimated annotation cost as a cri-
terion for ranking and selecting examples for user’s
annotation, CRCoef is a better metric.

3.4 Experiments & Results

We learn an annotation cost estimator using the Lin-
ear Regression and SMO Regression (Smola and
Scholkopf, 1998) learners from the Weka machine
learning toolkit (Witten and Frank, 2005). As men-

tioned earlier, we have 5 sets of 25 documents each,
and each set was annotated by four annotators. The
results reported are averaged over five folds, where
each set is one fold, and two algorithms (Linear Re-
gression and SMO Regression). Varying the algo-
rithm helps us find the most predictive feature com-
binations across different algorithms. Since each set
was annotated by different annotators, we never train
and test on the data from same annotators. We used
the JMP2 and Minitab3 statistical tools for our analy-
sis. We used an ANOVA model with Standard Least
Squares fitting to compare the different experimen-
tal conditions. We make all comparisons in terms
of both the CRCoef and the RMS metrics. For sig-
nificance results reported, we used 2-tailed paired
T-test, considering (p < 0.05) as significant.

We present our results and analysis in three parts.
We first compare the four instance characteristics,
annotator and annotation task characteristics; and
their combination. We then present an analysis
of the interaction between features and annotation
time. Finally, we compare the ranking of features
based on the two evaluation metrics we used.

3.4.1 Comparing characteristics for annotation
cost estimation

Instance Characteristics: We compare the four
instance characteristics described in Section 3.2.1
and select the most predictive characteristic for fur-
ther analysis with annotator and annotation task
characteristics. As can be seen in Table 4, character
length performs the best, and it is significantly better
than stop word percent and average sentence length.
Character length also outperforms polar word count,
but this difference is not significant. Because of the
large significant difference between the performance
of stop word percent and average sentence length,
compared to character length, we do not consider
them for further analysis.

Feature Combinations: In Table 5, we compare
the feature combinations of instance, annotator and
annotation task characteristics. The table also shows
the weights for the features used and the constant for
the linear regression model trained on all the data. A
missing weight for a feature indicates that it wasn’t
used in that feature combination.

2http://www.jmp.com/software/
3http://www.minitab.com/
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Feature CR-Coef RMS
CL 0.358 104.51
PC 0.337 105.92
SP -0.041* 114.34*
SL 0.042* 114.50*

Table 4: CR-Coef and RMS results for Character Length
(CL), Polar word Count (PC), Stop word Percent (SP) and av-
erage Sentence Length (SL). Best performance is highlighted
in bold. ∗ marks the results significantly worse than the best.

We use only the best performing instance charac-
teristic, the character length. The length of an ex-
ample has often been substituted for the annotation
cost (Kapoor et al., 2007; Tomanek et al., 2007).
We show in Table 5 that certain feature combina-
tions significantly outperform character length. The
combination of all three features (last row) performs
the best for both CRCoef and RMS, and this result
is significantly better than the character length (third
row). The combination of number of rationales and
nativeness (fourth row) also outperforms character
length significantly in CRCoef. This suggests that
the number of rationales we expect or require in a re-
view and the annotator characteristics are important
factors for annotation cost estimation and should be
considered in addition to the character length.

CL NR AN Const. CR-Coef RMS
-29.33 220.77 0.135∗ 123.93∗

17.59 82.81 0.486 95.29
0.027 61.53 0.357∗ 104.51∗

19.11 -40.78 153.21 0.55+ 96.04
0.028 32.79 120.18 0.397∗ 109.85∗

0.02 15.15 17.57 0.553+ 90.27+

0.021 16.64 -41.84 88.09 0.626+ 88.44+

Table 5: CR-Coef and RMS results for seven feature com-
binations of Character Length (CL), Number of Rationales
(NR) and Annotator Nativeness (AN). The values in feature
and ‘Const.’ columns are weights and constant for the linear
regression model trained on all the data. The numbers in bold
are the results for the best feature combination. ∗ marks the
results significantly worse than the best. + marks the results
significantly better than CL.

The impact of the nativeness feature is somewhat
mixed. Adding the nativeness feature always im-
proves the correlation and for RMS, it helps when
added to the combined feature (CL+NR) but not oth-
erwise. Although this improvement with addition
of the nativeness feature is not significant, it does
suggest that annotator characteristics might be im-
portant to consider. To investigate this further, we

evaluated our assumption that native speakers take
less time to annotate. For each set, we compared the
average annotation times (averaged over examples)
against the nativeness values. For all sets, annotators
with nativeness value of 3 always took less time on
average than those with nativeness value of 2 or 1.
Between 2 and 1, there were no reliable differences.
Sometimes annotators with value of 1 took less time
than annotators with value of 2. Also, for group 2
which had all annotators with nativeness value of 1,
we observed a poor correlation between annotators
(Table 1). This suggest two things: 1) our assign-
ment of nativeness value may not be accurate and
we need other ways of quantifying nativeness, 2)
there are other annotator characteristics we should
take into consideration.

PC CL NR AN Const. CR RMS
0.027 61.53 0.358ab 104.5x

2.2 74.20 0.337a 105.9x
0.7 0.019 60.89 0.355b 104.9x

0.028 -32.8 120.2 0.397ab 109.8x
2.3 -35.5 135.1 0.382a 111.1x
1.1 0.016 -34.3 121.8 0.395b 109.9x

0.02 15.1 17.57 0.553a 90.27x
1.5 15.1 32.02 0.542a 91.65x
0.0 0.02 15.1 17.57 0.554a 90.40x

0.021 16.6 -41.8 88.09 0.626a 88.44x
1.6 16.5 -43.5 102.8 0.614a 90.42y
0.0 0.021 16.6 -41.8 88.09 0.626a 88.78x

Table 6: Each block of 3 rows in this table compares the
performance of Character Length (CL) and Polar word Count
(PC) in combination with Number of Rationales (NR) and An-
notator Nativeness (AN) features. The values in feature and
‘Const.’ columns are weights and constant for the linear re-
gression model trained on all the data. Best performance is
highlighted in bold. Results in a block not connected by same
letter are significantly different.

Polar word Count and Character Length: As we
saw in Table 4, the difference between character
length and polar word count is not significant. We
further compare these two instance characteristics
in the presence of the annotator and annotation task
characteristics. Our goal is to ascertain whether
character length performs better than polar word
count, or vice versa, and whether this difference is
significant. We also evaluate whether using both
performs better than using any one of them alone.
The results presented in Table 6 help us answer these
questions. For all feature combinations character
length, with and without polar word count, performs
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better than polar word count, but this difference is
not significant except in three cases. These results
suggests that polar word count can be used as an al-
ternative to character length in annotation cost esti-
mation.

3.4.2 Interaction between Features and
Annotation Time

As a post-experiment analysis, we studied the
interaction between the features we used and an-
notation time, and the interaction among features
themselves. Table 7 reports the pairwise correlation
(Pearson, 1895) for these variables, calculated over
all 125 reviews. As can be seen, all features have
significant correlation with annotation time except
stop words percentage and average sentence length.

Note that number of rationales has higher correla-
tion with annotation time (R = 0.529) than charac-
ter length (R = 0.417). This suggests that number
of rationales may have more influence than charac-
ter length on annotation time, and a low correlation
between number of rationales and character length
(R = 0.238) indicates that it might not be the case
that longer documents necessarily contain more ra-
tionales. Annotating rationales requires cognitive
effort of identifying the right span and manual ef-
fort to highlight and add an annotation, and hence
more rationales implies more annotation time. We
also found some examples in our data where docu-
ments with substantially different lengths but same
number of rationales took a similar time to anno-
tate. One possible explanation for this observation is
user’s annotation strategy. If the annotator chooses
to skim through the remaining text when enough ra-
tionales are found, two examples with same number
of rationales but different lengths might take similar
time. We plan to investigate the effect of annotator’s
strategy on annotation time in the future.

A negative correlation of nativeness with annota-
tion time (R = −0.219) is expected, since native
speakers (AN = 3) are expected to take less anno-
tation time than non-native speakers (AN = {2, 1}),
although this correlation is low. A low correla-
tion between number of rationales and nativeness
(R = 0.149) suggests that number of rationales
a user adds may not be influenced much by their
nativeness value. A not significant low correlation
(R = −0.06) between character length and native-

AT CL NR AN PC SP SL
AT 1
CL 0.42 1
NR 0.53 0.24 1
AN -0.22 0.06 0.15 1
PC 0.4 0.89 0.28 0.11 1
SP 0.03 0.06 0.14 0.03 0.04 1
SL 0.08 0.15 0.01 -0.01 0.14 -0.13 1

Table 7: Correlation between Character Length (CL), Num-
ber of Rationales (NR), Annotator Nativeness (AN), Polar
word Count (PC), Stop word Percent (SP), average Sentence
Length (SL) and Annotation Time (AT), calculated over all
documents (125) and all annotators (20). Significant corre-
lations are highlighted in bold.

ness provides no evidence that reviews with different
lengths were distributed non-uniformly across anno-
tators with different nativeness.

The number of polar words in a document has a
similar correlation with annotation time as character
length (R = 0.4). There is also a strong correla-
tion between character length and polar word count
(R = 0.89). Since reviews are essentially people’s
opinions, we can expect longer documents to have
more polar words. This also explains why there is no
significant difference in performance for polar word
count and character length (Table 4). A more useful
feature may be the information about the number of
positive and negative polar words in a review, since a
review with both positive and negative opinions can
be difficult to classify as positive or negative. We
plan to explore these variations of the polar word
feature in the future. We also plan to investigate how
we can exploit this dependence between characteris-
tics for annotation cost estimation.

3.4.3 CRCoef Vs. RMS
We presented our results using correlation coef-

ficient and root mean squared error metrics. Ta-
ble 8 shows the ranking of the feature combinations
from better to worse for both these metrics and as
we can see, there is a difference in the order of fea-
ture combinations for the two metrics. Also, signif-
icance results differ in some cases for the two met-
rics. These differences suggest that features which
correlate well with the annotation times (higher CR-
Coef rank) can give an accurate ranking of examples
based on their annotation cost, but they may not be
as accurate in their absolute estimate for simulating
annotators and thus might have a lower RMS rank.
Thus, it is important to evaluate the user effort esti-
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mator in terms of both these metrics so that the right
estimator can be chosen for a given objective.

Rank CR-Coef RMS
1 (CL+NR+AN) (CL+NR+AN)
2 (CL+NR) (CL+NR)
3 (NR+AN) (NR)
4 (NR) (NR+AN)
5 (CL+AN) (CL)
6 (CL) (CL+AN)
7 (AN) (AN)

Table 8: Ranking of feature combinations.

4 Towards a General Annotation Cost
Estimator

Our multi-annotator environment allows us to train
and test on data from different annotators by using
annotator characteristics as features in the annota-
tion cost estimation. A model trained on data from a
variety of annotators can be used for recommend-
ing examples to annotators not represented in our
training data but with similar characteristics. This
is important since we may not always know all our
annotators before building the model, and training
an estimator for each new annotator is costly. Also,
in active learning research, the goal is to evaluate
selective sampling approaches independently of the
annotator. Choosing annotators for supervised an-
notation cost estimation such that the within group
variance in annotator characteristics is high will give
us a more generic estimator and a stricter evaluation
criterion. Thus, we have a framework that has the
potential to be used to build a user-independent an-
notation cost estimator for a given task.

However, this framework is specific to the User
Interface (UI) used. A change in the user interface
might require recollecting the data from all the an-
notators and training a model on the new data. For
example, if annotating rationales was made signif-
icantly faster in a new UI design, it would have
a major impact on annotation cost. An alternative
would be to incorporate UI features in our model and
train it on several different UIs or modifications of
the same UI, which will allow us to use our trained
model with a new user interface or modifications of
the existing UIs, without having to recollect the data
and retrain the model. A few UI features that can be
used in our context are: adding a rationale annota-

tion, voting positive or negative, etc. The units for
expressing these features will be the low-level user
interface actions such as number of clicks, mouse
drags, etc. For example, in our task, adding a ra-
tionale annotation requires one mouse drag and two
clicks, and adding a vote requires one click. In a dif-
ferent user interface, adding a rationale annotation
might require just one mouse drag.

Using UI features raises a question of whether
they can replace the annotation task features; e.g.,
whether the UI feature for adding rationale anno-
tation can replace the number of rationales feature.
Our hypothesis is that number of rationales has more
influence on annotation time than just the manual ef-
fort of annotating them. It also requires the cognitive
effort of finding the rationale, deciding its span, etc.
We aim to explore incorporating UI features in our
annotation cost estimation model in the future.

5 Conclusion and Future Work

In this work we presented a detailed investigation of
annotation cost estimation for active learning with
multiple annotators. We motivated the task from two
perspectives: selecting examples to minimize anno-
tation cost and simulating annotators for evaluating
active learning approaches. We defined three cate-
gories of features based on instance, annotation task
and annotator characteristics. Our results show that
using a combination of features from all three cate-
gories performs better than any one of them alone.
Our analysis was limited to a small dataset. In the
future, we plan to collect a larger dataset for this task
and explore more features from each feature group.

With the multi-annotator annotation cost estima-
tor proposed, we also motivated the need for a gen-
eral estimator that can be used with new annotators
or user interfaces without having to retrain. We aim
to explore this direction in the future by extending
our model to incorporate user interface features. We
also plan to use the annotation cost model we devel-
oped in an active learning experiment.
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