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Introduction

Welcome to the workshop on Active Learning for Natural Language Processing!

We started organizing this workshop in mid-2008 after strong encouragement in response to some of
our own work in the area. As we gathered members of the program committee, the timeliness of the
topic resonated with several of them: the growing body of knowledge on active learning and on active
learning for NLP in particular makes this topic one worth exploring in a focused workshop rather than
in isolated papers in occasional, far-flung conferences.

Labeled data is a prerequisite for many popular algorithms in natural language processing and machine
learning. While it is possible to obtain large amounts of annotated data for well-studied languages
in well-studied domains and well-studied problems, labeled data are rarely available for less common
languages, domains, or problems. Unfortunately, obtaining human annotations for linguistic data is
labor-intensive and typically the costliest part of the acquisition of an annotated corpus. It has been
shown before that active learning can be employed to reduce annotation costs but not at the expense of
quality. While diverse work over the past decade has demonstrated the possible advantages of active
learning for corpus annotation and NLP applications, active learning is not widely used in many ongoing
data annotation tasks. Much of the machine learning literature on the topic has focused on active
learning for classification problems with less attention devoted to the kinds of problems encountered
in NLP. Related topics such as distributed “human computation”, cost-sensitive machine learning, and
semi-supervised learning of all kinds are also growing in number as we search for the best ways to
overcome the data acquisition bottleneck.

We were interested in bringing together researchers to explore the challenges and opportunities of
active learning for NLP tasks, language acquisition, and language learning, and we have been rewarded
with excellent submissions and a promising program. The workshop received sixteen submissions,
eight of which are included in the final program. Two of the accepted papers are short papers which
address ongoing work and pertinent issues. We hope that this gathering and these proceedings begin to
shed more light on active learning for NLP classification tasks, sequence labeling, parsing, semantics,
and other more complex tasks. The papers in the program also begin to address issues involving the
application of active learning in real annotation projects.

We are especially grateful to the diverse and helpful program committee, whose reviews were careful
and thoughtful. We are also grateful to all of the researchers who submitted their work for consideration.
For the record, more information about the workshop is available online at http://nlp.cs.byu.edu/alnlp/.

Best regards,

Eric Ringger, Robbie Haertel, and Katrin Tomanek
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Abstract

In this paper we present our experiments with
active learning to improve the performance
of our probabilistic anaphora resolution sys-
tem. We have adopted entropy-based uncer-
tainty measures to select new instances to be
added to our training data. The actively se-
lected instances, however, were not more suc-
cessful in improving the performance of the
system than the same amount of randomly se-
lected instances. The uncertainty measures
we used behave differently from each other
when selecting new instances, but none of
them achieved remarkable performance. Fur-
ther studies on active sample selection for
anaphora resolution are necessary.

1 Introduction

Anaphora is the relation between two linguistic ex-
pressions in the discourse where the reader is re-
ferred back to the first of them when reading the sec-
ond later in the text. Anaphora resolution can be un-
derstood as the process of identifying an anaphoric
relation between two expressions in the text and con-
sequently linking the two of them, one being the
anaphor and the other being the antecedent. Man-
ually annotating corpora with anaphoric links in or-
der to use it as training or test data for a corpus-based
anaphora resolution system is a particulary difficult
and time consuming task, given the complex nature
of the phenomenon.

We have developed a probabilistic model for res-
olution of non-pronominal anaphora and aim to im-
prove its performance by acquiring incrementally

and selectively more training data using active learn-
ing. We have adopted an uncertainty-based active
learning approach in order to do that, and it uses our
probabilistic model as the base classifier.

The uncertainty-based approach has been applied
to, for instance, named-entity recognition by Shen et
al. (2004) who report at least 80% reduction in an-
notation costs, parsing by Tang et al. (2002) who re-
ports 67% savings, and parse selection by Baldridge
and Osborne (2003) who report 60% savings. We
are not aware of any work that has applied active
learning to anaphora resolution.

For calculating the uncertainty of an anaphora res-
olution model, we feel the need to combine the in-
formation about the confindence of the model for
the classification of each antecedent candidate as-
sociated to a given anaphor. We have tested three
entropy-based uncertainty measures in order to se-
lect the instances to be added to the training data.

Our training corpus is composed of five full-
length scientific articles from the biomedical do-
main. We have used this corpus to simulate active
learning: we have divided our training data into two
parts, one for the initial training and the other for ac-
tive learning (simulating unlabelled data), and have
compared the classifier performance when trained
on a sample selected by active learning to its per-
formance when trained on the same amount of ran-
domly selected instances.

In the next section we describe our probabilistic
model for anaphora resolution. In Section 3 we de-
tail our training corpus. In Section ?? we describe
the strategy we have adopted to select the samples
to take part in the active learning, and in Section 5
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we describe our experiments.

2 Anaphora resolution model

We have inplemented a probabilistic model for
anaphora resolution in the biomedical domain
(Gasperin and Briscoe, 2008). This model aims to
resolve both coreferent and associative (also called
bridging (Poesio and Vieira, 1998)) cases of non-
pronominal anaphora. Table 1 shows examples of
these types of anaphoric relations. Coreferent are
the cases in which the anaphor and the antecedent
refer to the same entity in the world, while associa-
tive cases are the ones in which the anaphor and an-
tecedent refer to different but somehow related en-
tities. We only take into account noun phrases re-
ferring to biomedical entities, since this was the fo-
cus of our resolution model. We consider two types
of associative relations: biotype relations, which
are anaphoric associative relations between noun
phrases that share specific ontological relations in
the biomedical domain; and set-member relations,
in which the noun phrases share a set-membership
relation. It is frequent however that some noun
phrases do not have an antecedent, these are con-
sidered discourse-new cases, which we also aim to
identify.

The probabilistic model results from a simple de-
composition process applied to a conditional proba-
bility equation that involves several parameters (fea-
tures). It is inspired by Ge et al.’s (1998) probabilis-
tic model for pronoun resolution. The decomposi-
tion makes use of Bayes’ theorem and independence
assumptions, and aims to decrease the impact of data
sparseness on the model, so that even small train-
ing corpora can be viable. The decomposed model
can be thought of as a more sophisticated version
of the naive-Bayes algorithm, since we consider the
dependence among some of the features instead of
full independence as in naive Bayes. Probabilistic
models can return a confidence measure (probabil-
ity) for each decision they make, which allow us to
adopt techniques such as active learning for further
processing.

Our model seeks to classify the relation between
an anaphoric expression and an antecedent candi-
date as coreferent, biotype, set-member or neither.
It computes the probability of each pair of anaphor

and candidate for each class. The candidate with the
highest overall probability for each class is selected
as the antecedent for that class, or no antecedent is
selected if the probability of no relation overcomes
the positive probabilities; in this case, the expression
is considered to be new to the discourse.

We have chosen 11 features to describe the
anaphoric relations between an antecedent candi-
date a and an anaphor A. The features are pre-
sented in Table 2. Most features are domain-
independent, while one, gpa,A, is specific for the
biomedical domain. Our feature set covers the basic
aspects that influence anaphoric relations: the form
of the anaphor’s NP, string matching, semantic class
matching, number agreement, and distance.

Given these features, we compute the probability
P of an specific class of anaphoric relation C be-
tween a (antecedent candidate) and A (anaphor). For
each pair of a given anaphor and an antecedent can-
didate we compute P for C=‘coreferent’, C=‘biotype’,
and C=‘set-member’. We also compute C=‘none’, that
represents the probability of no relation between the
NPs. P can be defined as follows:

P (C = ‘class’|fA, fa, hma,A, hmma,A, mma,A,

numa,A, sra, bma,A, gpa,A, da,A, dma,A)

If we were to use P as above we would suffer con-
siderably data sparseness. In order to reduce that, we
decompose the probability P and assume indepen-
dence among some of the features in order to handle
the sparseness of the training data. For more detail
on the decomposition process refer to (Gasperin and
Briscoe, 2008).

Applying Bayes’ rule and selectively applying the
chain rule to the above equation, as well as assum-
ing independece among some features, we reach the
following equation:

P (C|fA, fa, hm, hmm, mm, num, sr, bm, gp, d, dm) =

P (C) P (fA|C) P (fa|C, fA) P (d, dm|C, fA, fa)

P (sr|C, d, dm) P (bm, gp|C) P (num|C, fA, fa)

P (hm, hmm, mm|C, fA, fa, bm)

P (fA) P (fa|fA) P (d, dm|fA, fa)

P (sr|d, dm) P (bm, gp) P (num|fA, fa)

P (hm, hmm,mm|fA, fa, bm)

(1)
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C “The expression of reaper has been shown ... the gene encodes ...
B “Drosophila gene Bok interacts with ... expression of Bok protein promotes apoptosis ...”

S
“... ced-4 and ced-9 ... the genes ...”
“... the mammalian anti-apoptotic protein Bcl-2 ... Bcl-2 family ...”

Table 1: Examples of coreferent (C), associative biotype (B) and associative set-member (S) anaphoric relations

Feature Possible values
fA Form of noun phrase of the anaphor A: ‘pn’, ‘defnp’, ‘demnp’, ‘indefnp’, ‘quantnp’, or ‘np’.
fa Form of noun phrase of the antecedent candidate a: same values as for fA.

hma,A Head-noun matching: ‘yes’ if the anaphor’s and the candidate’s head nouns match, ‘no’ otherwise.
hmma,A Head-modifier matching: ‘yes’ if the anaphor’s head noun matches any of the candidate’s pre-

modifiers, or vice-versa, ‘no’ otherwise.
mma,A Modifier matching: ‘yes’ if anaphor and candidate have at least one head modifier in common, ‘no’

otherwise.
numa,A Number agreement: ‘yes’ if anaphor and candidate agree in number, ‘no’ otherwise.

sra,A Syntactic relation between anaphor and candidate: ‘none’, ‘apposition’, ‘subj-obj’, ‘pp’, and few
others.

bma,A Biotype matching: ‘yes’ if anaphor’s and candidate’s biotype (semantic class) match, ‘no’ otherwise.
gpa,A is biotype gene or product? ‘yes’ if the anaphor biotype or candidate biotype is gene or product, ‘no’

otherwise. This feature is mainly to distinguish which pairs can hold biotype relations.
da,A Distance in sentences between the anaphor and the candidate.

dma,A Distance in number of entities (markables) between the anaphor and the candidate.

Table 2: Feature set

This equation is the basis of our resolution model.
We collect the statistics to train this model from a
corpus annotated with anaphoric relations that we
have created. The corpus is described in the next
section.

3 Our corpus

There are very few biomedical corpora annotated
with anaphora information, and all of them are built
from paper abstracts (Cohen et al., 2005), instead of
full papers. As anaphora is a phenomenon that de-
velops through a text, we believe that short abstracts
are not the best source to work with and decided to
concentrate on full papers.

In order to collect the statistics to train our model,
we have manually annotated anaphoric relations
between biomedical entities in 5 full-text articles
(approx. 33,300 words)1, which are part of the
Drosophila molecular biology literature. The corpus
and annotation process are described in (Gasperin et
al., 2007). To the best of our knowledge, this corpus

1Corpus available via the FlySlip project website
http://www.wiki.cl.cam.ac.uk/rowiki/NaturalLanguage/FlySlip

is the first corpus of biomedical full-text articles to
be annotated with anaphora information.

Before annotating anaphora, we have prepro-
cessed the articles in order to (1) tag gene names,
(2) identify all NPs, and (3) classify the NPs accord-
ing to their domain type, which we call biotype. To
tag all gene names in the corpus, we have applied
the gene name recogniser developed by Vlachos et
al. (2006). To identify all NPs, their subconstituents
(head, modifiers, determiner) and broader pre- and
post-modification patterns, we have used the RASP
parser (Briscoe et al., 2006). To classify the NPs ac-
cording to their type in biomedical terms, we have
adopted the Sequence Ontology (SO)2 (Eilbeck and
Lewis, 2004). SO is a fine-grained ontology, which
contains the names of practically all entities that par-
ticipate in genomic sequences, besides the relations
among these entities (e.g. is-a, part-of, derived-from
relations). We derived from SO seven biotypes to
be used to classify the entities in the text, namely:
“gene”, “gene product”, “part of gene”, “part of
product”, “gene variant”, “gene subtype”, and “gene

2http://www.sequenceontology.org/
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Class Relations
coreferent 1678

biotype 274
set-member 543

discourse new 436
Total 3048
none 873,731

Table 3: Training instances, according to anaphoric class

supertype”. We also created the biotype “other-bio”
to be associated with noun phrases that contain a
gene name (identified by the gene name recogniser)
but whose head noun does not fit any of the other
biotypes. All NPs were tagged with their biotypes,
and NPs for which no biotypes were found were ex-
cluded.

The gene-name tags, NP boundaries and biotypes
resulting from the preprocessing phase were revised
and corrected by hand before the anaphoric relations
were annotated.

For each biotyped NP we annotated its closest
coreferent antecedent (if found) and its closest as-
sociative antecedent (if found), from one of the as-
sociative classes. From our annotation, we can infer
coreference chains by merging the coreferent links
between mentions of a same entity.

The annotated relations, and the features derived
from them, are used as training data for the proba-
bilistic model above. A special characteristic of data
annotated with anaphora information is the over-
whelming amount of negative instances, which re-
sult from the absence of an anaphoric relation be-
tween a NP that precedes an anaphoric expression
and was not marked as its antecedent (nor marked as
part of the same coreference chain of its antecedent).
The negative instances outnumber considerably the
number of positive instances (annotated cases). Ta-
ble 3 presents the distribution of the cases among the
classes of anaphoric relations.

To balance the ratio between positive and nega-
tive training samples, we have clustered the negative
samples and kept only a portion of each cluster,
proportional to its size. All negative samples that
have the same values for all features are grouped
together (consequently, a cluster is formed by a set
of identical samples) and only one-tenth of each

cluster members is kept, resulting in 85,314 negative
samples. This way, small clusters (with less than
10 members), which are likely to represent noisy
samples (similar to positive ones), are eliminated,
and bigger clusters are shrunk; however the shape of
the distribution of the negative samples is preserved.
For example, our biggest cluster (feature values
are: fA=‘pn’, fa=‘pn’, hm=‘no’, hmm=‘no‘,
mm=‘no’, bm=‘yes’, gp=‘yes’, num=‘yes’,
sr=‘none’, d=‘16<’, dm=‘50<’) with 33,998
instances is reduced to 3,399 – still considerably
more numerous than any positive sample. Other
works have used a different strategy to reduce the
imbalance between positive and negative samples
(Soon et al., 2001; Ng and Cardie, 2002; Strube
et al., 2002), where only samples composed by a
negative antecedent that is closer than the annotated
one are considered. Our strategy is more flexible
and is able to the reduce further the number of neg-
ative samples. The higher the number of negative
samples, the higher the precision of the resolution,
but the lower the recall.

4 Active learning

When trained using all our annotated corpus on a 10-
fold cross-validation setting our anaphora resolution
model, presented above, reached the results shown
in Table 43.

We would like to improve this results without hav-
ing to annotate too much more data, therefore we
decided to experiment with active learning. We de-
fined three entropy-based measures to calculate the
uncertanty of our model for each decidion is makes.

3‘Perfect’ scores shows the result of a strict evaluation,
where we consider as correct all pairs that match exactly an
antecedent-anaphor pair in the annotated data. On the other
hand, column ‘Relaxed’ treats as correct also the pairs where
the assigned antecedent is not the exact match in the annotated
data but is coreferent with it.

Perfect RelaxedClass
P R F P R F

coreferent 56.3 54.7 55.5 69.4 67.4 68.3
biotype 28.5 35.0 31.4 31.2 37.9 34.2

set-member 35.4 38.2 36.7 38.5 41.5 40.0
discourse new 44.3 53.4 48.4 44.3 53.4 48.4

Table 4: Performance of the probabilistic model
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4.1 Uncertainty measures
In order to measure how confident our model is
about the class it assigns to each candidate, and con-
sequently the one it chooses as the antecedent of an
anaphor, we experiment with the following entropy-
based measures.

We first compute what we call the “local en-
tropy” among the probabilities for each class—
P(C=“coreferent”), P(C=“biotype”), P(C=“set-
member”) and P(C=“none”)—for a given pair
anaphor(A)-candidate(a), which is defined as

LE(A, a) = −
∑

C

P (C)log2P (C) (2)

where P (C) represents Equation 1 above, that is, the
probability assigned to the anaphor-candidate rela-
tion by our probabilistic model for a particular class.
The more similar the probabilities are, the more un-
certain the model is about the relation, so the higher
the local entropy. This measure is similar to others
used in previous work for different problems.

We also compute the “global entropy” of the
distribution of candidates across classes for each
anaphor. The global entropy aims to combine the
uncertainty information from all antecedent candi-
dates for a given anaphor (instead of considering
only a single candidate-anaphor pair as for LE). The
higher the global entropy, the higher the uncertainty
of the model about the antecedent for an anaphor.
The global entropy combines the local entropies for
all antecedent candidates of a given anaphor. We
propose two versions of the global entropy measure.
The first is simply a sum of the local entropies of all
candidates available for a given anaphor, it is defined
as

GE1(A) =
∑

a

LE(A, a) (3)

The second version averages the local entropies
across all candidates, it is defined as

GE2(A) =
∑

a LE(A, a)
|a| (4)

where |a| corresponds to the number of candidates
available for a given anaphor.

We consider that in general the further away a
candidate is from the anaphor, the lower the local

entropy of the pair is (given that when distance in-
creases, the probability of the candidate not being
the antecedent, P(C=“none”), also increases), and
consequently the less it contributes to the global en-
tropy. This is the intuition behind GE1(A).

However, in some cases, mainly when the
anaphor is a proper name, there can be several can-
didates at a long distance from the anaphor that still
get a reasonable probability assigned to them due
to positive string matching. Therefore we decided to
experiment with averaging the sum of the local prob-
abilities by the number of candidates, so GE2(A).

5 Experiments

Initially, our training data was divided in 10-folds
for cross-validation evaluation of our probabilis-
tic model for anaphora resolution. For the active
learning experiments we kept the same folds, us-
ing one for the initial training, eight for the ac-
tive learning phase, and the remaining one for test-
ing. We have experimented with 10 different initial-
training/active-learning/testing splits, selected ran-
domly from all combinations of the 10 folds, and
the results in this section correspond to the average
of the results from the different data splits. A fold
contains the positive and negative samples derived
from about 270 anaphors, it contains about 7000
candidate-anaphor pairs (an average of about 26 an-
tecedent candidates per anaphor). The anaphors that
are part of each fold were randomly selected.

The purpose of our experiments is to check
whether the samples selected by using the entropy-
based measures described above, when added to our
training data, can improve the performance of the
model more than in the case of adding the same
amount of randomly selected samples. For that,
we computed (1) the performance of our model us-
ing one fold of training data, (2) the performance
of the model over 10 iterations of active learning
using each of the uncertainty measures above, and
(3) the performance of the model over 10 iterations
adding the same amount of randomly selected in-
stances as for active learning. At each active learn-
ing iteration, when using LE(A, a) we selected
the 1500 candidate-anaphor pairs for which uncer-
tainty was the highest, and when using GE1(A) and
GE2(A) we selected the 50 anaphors for which the
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model was most uncertain and generated the posi-
tive and negative instances that were associated to
the anaphors.

We expected (2), entropy-based sample selection,
to achieve better performance than (3), random sam-
ple selection, however this has not happened. The
graphs in Figure 1 compare the precision, recall and
F-measure scores for (2) and (3) along the 10 it-
erations for each class of anaphoric relation. The
lines corresponding to random sampling plot the re-
sults of the experiments done in the same way as for
GE1(A) and GE2(A), that is, where 50 anaphors
are selected at each iteration, although we also tested
random sampling in the LE(A, a) fashion, selecting
1500 candidate-anaphor pairs.

We observe that none of the uncertainty measures
that we tested have performed consistently better
than random sampling. LE(A, a) presents the most
dramatic results, it worsens the general performance
of the model for all classes, although it causes a
considerable increase in precision for coreferent and
set-member cases. GE1(A) and GE2(A) have a
less clear pattern, but it is possible to notice that
GE1(A) tends to bring improvements in precision
while GE2(A) causes the opposite, improvements
in recall and drops in precision.

6 Discussion

When looking at the instances selected by each ac-
tive learning strategy, we observe the following.
LE(A, a), which considers anaphor-candidate pairs,
selects mostly negative instances, given the fact that
these are highly frequent. This can explain the in-
crease in precision and drop in recall for the posi-
tive cases (observed for coreferent and set-member,
the most frequent positive classes), since that is ex-
pected with the increase of negative instances.

GE1(A) and GE2(A) select a proportional num-
ber of positive and negative instances, since these
measures consider an anaphor and all possible an-
tecedent candidates, generating all instances that de-
rive from each selected anaphor (usually one or two
positive intances and several negative ones). How-
ever, we can observe some differences between the
impact of using GE1(A) and GE2(A) to select in-
stances. We observe that about 70% of the sam-
ples selected by GE1(A) were proper names, while

the distribution of NP types among the samples se-
lected by GE2(A) is similar to the original distri-
bution in the data. This confirms the problem we
expected to have with GE1(A), since exact matches
of proper names that occur at a considerable distance
from the anaphor still get a higher probability as-
signed to them, which does not happen so often with
other types of NPs. On the other hand, the correct
antecedent of about 30% of GE2(A)-selected sam-
ples were in the same sentence as the anaphor, while
the same occurs with only 8% of GE1(A)-selected
samples. GE2(A) behaviour in this case is counter
intuitive, since antecedents in the same sentence
should be found by the model with lower uncertainty
than antecedents further away from the anaphor. An-
other counter intuitive behaviour of GE2(A) is that
only 3% of the selected anaphors have no string
matching with their antecedents (33% have no head-
noun matching), while these cases correspond to
about 30% of samples selected by GE1(A) (62%
of samples have no head-noun matching). We ex-
pected samples involving no string matching to be
selected because they are usually the ones the model
is mostly uncertain about.

Despite the different behaviour among the mea-
sures none was successful in improving the perfor-
mance of the model in relation to the performance
of random sampling.

While entropy-based measures for sample selec-
tion seem the obvious option given that we use a
probabilistic model, they did not give positive re-
sults in our case. A future study of different ways to
combine the local entropies is necessary, as well as
the study of other non-entropy-based measures for
sample selection.

The main difference between our application of
active learning to anaphora resolution and previous
successful applications of active learning to other
tasks is the amount of probabilities involved in the
calculation of the uncertainty of the model. We be-
lieve this is the reason why our active learning ex-
periments were not succesfull. While, for example,
name entity recognition involves a binary decision,
and parse selection involves a few parsing options,
in our case there are several antecedent candidates
to be considered. For anaphora resolution, when us-
ing a pairwise resolution model, it is necessary to
combine the predictions for one candidate-anaphor
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Figure 1: Graphs of the performance of active learning using LE(A, a), GE1(A), GE2(A) and random sampling.
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pair to the others in order to predict the global un-
certainty of the model.
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Abstract

Active learning is an effective method for cre-
ating training sets cheaply, but it is a biased
sampling process and fails to explore large
regions of the instance space in many appli-
cations. This can result in a missed cluster
effect, which signficantly lowers recall and
slows down learning for infrequent classes.
We show that missed clusters can be avoided
in sequence classification tasks by using sen-
tences as natural multi-instance units for label-
ing. Co-selection of other tokens within sen-
tences provides an implicit exploratory com-
ponent since we found for the task of named
entity recognition on two corpora that en-
tity classes co-occur with sufficient frequency
within sentences.

1 Introduction

Active learning (AL) has been shown to be an effec-
tive approach to reduce the amount of data needed
to train an accurate statistical classifier. AL selects
highly informative examples from a pool of unla-
beled data and prompts a human annotator for the
labels of these examples. The newly labeled exam-
ples are added to a training set used to build a statis-
tical classifier. This classifier is in turn used to assess
the informativeness of further examples. Thus, a
select-label-retrain loop is formed that quickly se-
lects hard to classify examples, honing in on the de-
cision boundary (Cohn et al., 1996).

A fundamental characteristic of AL is the fact that
it constitutes a biased sampling process. This is so

∗ Both authors contributed equally to this work.

by design, but the bias can have an undesirable con-
sequence: partial coverage of the instance space. As
a result, classes or clusters within classes may be
completely missed, resulting in low recall or slow
learning progress. This has been called the missed
cluster effect (Schütze et al., 2006). While AL has
been studied for a range of NLP tasks, the missed
cluster problem has hardly been addressed.

This paper studies the missed class effect, a spe-
cial case of the missed cluster effect where complete
classes are overlooked by an active learner. The
missed class effect is the result of insufficient ex-
ploration before or during a mainly exploitative AL
process. In AL approaches where exploration is only
addressed by an initial seed set, poor seed set con-
struction gives rise to the missed class effect.

We focus on the missed class effect in the con-
text of a common NLP task: named entity recogni-
tion (NER). We show that for this task the missed
class effect is avoided by increasing the sampling
granularity from single-instance units (i.e., tokens)
to multi-instance units (i.e., sentences). For AL ap-
proaches to NER, sentence selection recovers better
from unfavorable seed sets than token selection due
to what we call the co-selection effect. Under this
effect, a non-targeted entity class co-occurs in sen-
tences that were originally selected because of un-
certainty on tokens of a different entity class.

The rest of the paper is structured as follows: Sec-
tion 2 introduces the missed class effect in detail.
Experiments which demonstrate the co-selection ef-
fect achieved by sentence selection for NER are de-
scribed in Section 3 and their results presented in
Section 4. We draw conclusions in Section 5.
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2 The Missed Class Effect

This section first describes the missed class ef-
fect. Then, we discuss several factors influencing
this effect, focusing on co-selection, a natural phe-
nomenon in common NLP applications of AL.

2.1 Sampling bias and misguided AL

The distribution of the labeled data points obtained
with an active learner deviates from the true data
distribution. While this sampling bias is intended
and accounts for the effectiveness of AL, it also
poses challenges as it leads to classifiers that per-
form poorly in some regions, or clusters, of the ex-
ample space. In the literature, this phenomenon has
been described as the missed cluster effect (Schütze
et al., 2006; Dasgupta and Hsu, 2008)

In this context, we must distinguish between ex-
ploration and exploitation. By design, AL is a
highly exploitative strategy: regions around decision
boundaries are inspected thoroughly so that decision
boundaries are learned well, but regions far from any
of the initial decision boundaries remain unexplored.

An exploitative sampling approach thus has to be
combined with some kind of exploratory strategy to
make sure the example space is adequately covered.
A common approach is to start an AL process with
an initial seed set that accounts for the exploration
step. However, a seed set which is not represen-
tative of the example space may completely mis-
guide AL — at least when no other explorative tech-
niques are applied as a remedy. While approaches
to balancing exploration and exploitation (Baram et
al., 2003; Dasgupta and Hsu, 2008; Cebron and
Berthold, 2009) have been discussed, we here fo-
cus on a “pure” AL scenario where exploration takes
only place in the beginning by a seed set. In sum-
mary, the missed clusters are the result of a sce-
nario where poor exploration is combined with ex-
clusively exploitative sampling.

Why is AL an exploitative sampling strategy? AL
selects data points based on the confidence of the ac-
tive learner. Assume an initial seed set that does not
contain examples of a specific cluster. This leads to
an initial active learner that is mistakenly overconfi-
dent about the class membership of instances in this
missed cluster. Far away from the decision bound-
ary, the active learner assumes a high confidence for

A B C

(a)

A B C

(b)

Figure 1: Illustration of the missed cluster effect in a 1-
d scenario. Shaded points are contained in the seed set,
vertical lines are final decision boundaries, and dashed
rectangles mark the explored regions

all instances in that cluster, even if they are in fact
misclassified. Consequently, the active learner will
fail to select these instances for long until some re-
direction impulse is received (if at all).

To give an example, let us consider a simple 1-
d toy scenario with examples from three clusters A,
B, and C as shown in Figure 1. In scenario (a), AL
is started from a seed set including one example of
clusters A and B only. In subsequent rounds, AL
will select examples in these clusters only (shown as
the dashed box in the figure). Examples in cluster
C are ignored as they are far from the initial deci-
sion boundary. Eventually, a decision boundary is
fixed as shown by the vertical line which indicates
that this AL process has completely overlooked ex-
amples from cluster C.

Assuming that the examples fall in two classes
X1 = {A ∪ C} and X2 = {B} the learned clas-
sifier has low recall for class X1 and relatively low
precision for class X2 as it erroneously assigns ex-
amples of cluster C to class X2. In a related sce-
nario with three classes X1 = {A}, X2 = {B}, and
X3 = {C} this would even mean that the classifier
is not at all aware about the third class resulting in
the missed class problem.

A more representative seed set circumvents this
problem. Given a seed set including one example
of each cluster, AL might find a second decision
boundary1 between clusters B and C because it is
now aware of examples from C. Figure 1(b) shows
a possible result of AL on this seed set.

The missed cluster effect can be understood as
the generalized problem. A special case of it is the

1Assuming a classifier that can learn several boundaries.
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missed class effect as shown in the previous exam-
ple. In general, it has the same causes (insufficient
exploration and misguided exploitation), but is eas-
ier to test. Often we know (at least the number of) all
classes under scrutiny, while we usually cannot as-
sume all clusters in the feature space to be known. In
this paper, we focus on the missed class effect, i.e.,
scenarios where classes are overlooked by a mis-
guided AL process resulting in a slow (active) learn-
ing progress.

2.2 Factors influcencing the missed class effect
AL in a practical scenario is subject to several fac-
tors which mitigate or intensify the missed class ef-
fect described before. In the following, we describe
three such factors, with a special focus on the co-
selection effect, which we claim to significantly mit-
igate the missed class effect in a specific type of NLP
tasks, sequence learning problems such as NER or
POS tagging.

Class imbalance Many studies on AL for NLP
tasks assume that AL is started from a randomly
drawn seed set. Such a seed set can be problem-
atic when the class distribution in the data is highly
skewed. In this case, “rare” classes might not be
represented in the seed set, increasing the chance to
completely miss out such a class using AL. When
classes are relatively frequent, an active learner —
even when started from an unfavorable seed set —
might still mistake an example of one class for an
uncertain example of a different class and conse-
quently select it. Thereby, it can acquire information
about the former class “by accident” leading to sud-
den and rapid discovery of the newly-found class.
However, in the case of extreme class imbalance this
is very unlikely. Severe class imbalance intensifies
the missed cluster effect.

Similarity of considered classes If, e.g., two of
the classes to be learned, say Xi and Xj , are harder
to discriminate than others, or if the data contains
lots of noise, an active learner is more likely to select
some instances of Xi if at least its “similar” coun-
terpart Xj was represented in the seed set. Hence,
it may mistake the instances of Xi and Xj before it
has acquired enough information to discriminate be-
tween them. So, under certain situations similarity
of classes can mitigate the missed class effect.

The co-selection effect Many NLP tasks are se-
quence learning problems including, e.g., POS tag-
ging, and named entity recognition. Sequences are
consecutive text tokens constituting linguistically
plausible chunks, e.g., sentences. Algorithms for se-
quence learning obviously work on sequence data,
so respective AL approaches need to select complete
sequences instead of single text tokens (Settles and
Craven, 2008). Furthermore, sentence selection has
been preferred over token selection in other works
with the argument that the manual annotation of sin-
gle, possibly isolated tokens is almost impossible or
at least extremely time-consuming (Ringger et al.,
2007; Tomanek et al., 2007).

Within such sequences, instances of different
classes often co-occur. Thus, an active learner that
selects uncertain examples of one class gets exam-
ples of a second class as an unintended, yet pos-
itive side effect. We call this the co-selection ef-
fect. As a result, AL for sequence labeling is not
“pure” exploitative AL, but implicitly comprises an
exploratory aspect which can substantially reduce
the missed class problem. In scenarios where we
cannot hope for such a co-selection, we are much
more likely to have decreased AL performance due
to missed clusters or classes.

3 Experiments

We ran several experiments to investigate how the
sampling granularity, i.e. the size of the selection
unit, influences the missed class effect. AL based
on token selection (T-AL) is compared to AL based
on sentence selection (S-AL). Although our experi-
ments are certainly also subject to the other factors
mitigating the missed class effect (e.g. similarity of
classes), the main focus of the experiments is on the
co-selection effect that we expected to observe in
S-AL. Several scenarios of initial exploration were
simulated by seed sets of different characteristics.
The experiments were run on synthetic and real data
in the context of named entity recognition (NER).

3.1 Classifiers and active learning setup

The active learning approach used for both S-AL
and T-AL is based on uncertainty sampling (Lewis
and Gale, 1994) with the margin metric (Schein and
Ungar, 2007) as uncertainty measure. Let c and c′
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be the two most likely classes predicted for token
xj with p̂c,xj and p̂c′,xj

being the associated class
probabilities. The per-token margin is calculated as
M = |p̂c,xj − p̂c′,xj

|.
For T-AL, the sampling granularity is the token,

while in S-AL, complete sentences are selected. For
S-AL, the margins of all tokens in a sentence are
averaged and the aggregate margin is used to select
sentences. We chose this uncertainty measure for S-
AL for better comparison with T-AL. In either case,
examples (tokens or sentences) with a small margin
are preferred for selection. In every iteration, a batch
of examples is selected: 20 sentences for S-AL, 200
tokens for T-AL.

Bayesian logistic regression as implemented in
the BBR classification package (Genkin et al., 2007)
with out-of-the-box parameter settings was used as
base learner for T-AL. For S-AL, a linear-chain
Conditional Random Field (Lafferty et al., 2001) is
employed as implemented in MALLET (McCallum,
2002). Both base learners employ standard features
for NER including the lexical token itself, various
orthographic features such as capitalization, the oc-
currence of special characters like hyphens, and con-
text information in terms of features of neighboring
tokens to the left and right of the current token.

3.2 Data sets
We used three data sets in our experiments. Two of
them (ACE and PBIO) are standard data sets. The
third (SYN) is a synthetic set constructed to have
specific characteristics. For simplicity, we consider
only scenarios with two entity classes, a majority
class (MAJ) and a minority class (MIN). We dis-
carded all other entity annotations originally con-
tained in the corpus assigning the OUTSIDE class.2

The first data set (PBIO) is based on the annota-
tions of the PENNBIOIE corpus for biomedical en-
tity extraction (Kulick et al., 2004). As PENNBIOIE
makes fine-grained and subtle distinctions between
various subtypes of classes irrelevant for this study,
we combined several of the original classes into two
entity classes: The majority class consists of the
three original classes ‘gene-protein’, ‘gene-generic’,
and ‘gene-rna’. The minority class consists of
the original and similar classes ‘variation-type’ and

2The OUTSIDE class marks that a token is not part of an
named entity.

’variation-event’. All other entity labels were re-
placed by the OUTSIDE class.

The second data set (ACE) is based on the
newswire section of the ACE 2005 Multilingual
Training Corpus (Walker et al., 2006). We chose
the ‘person’ class as majority class and the ‘organi-
zation’ class as the minority class. Again, all other
classes are mapped to OUTSIDE.

The synthetic data set (SYN) was constructed by
combining the sentences from the original ACE and
PENNBIOIE corpora. The ‘person’ class consti-
tutes the minority class, the very similar classes
‘malignancy’ and ‘malignancy-type’ were merged
to form the majority class. All other class la-
bels were set to OUTSIDE. SYN’s construction
was motivated by the following characteristics of
the new data set which would make the appear-
ance of the missed class effect very likely for
insufficient exploration scenarios:
(i) absence of inner-sentence entity class correlation
to ensure that sentences contain either mentions of
only a single entity class or no mentions at all.
(ii) marked entity class imbalance between the ma-
jority and minority classes
(iii) dissimilar surface patterns of entity mentions of
the two entity classes with the rationale that class
similarity will be low.

Table 1 summarizes characteristics of the data
sets. While SYN exhibits high imbalance (e.g., 1:9.4
on the token level), PBIO and ACE are moderately
skewed. In PBIO, the number of sentences contain-
ing any entity mention is relatively high compared
to ACE or SYN. For our experiments, the corpora
were randomly split in a pool for AL and a test set
for performance evaluation.

Inner-sentence entity class co-occurrence We
have described co-selection as a potential mitigat-
ing factor for the missed class effect in Section 2.
For this effect to occur, there must be some corre-
lation between the occurrence of entity mentions of
the MAJ class with those from MIN.

Table 2 shows correlation statistics based on the
χ2 measure. We found strong correlation in all three
corpora3: For ACE and PBIO, the correlation is pos-
itive; for SYN it is negative so when a sentence in
SYN contains a majority class entity mention, it is

3All correlations are statistically significant (p < 0.01).
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PBIO ACE SYN

sentences (all) 11,164 2,642 13,804
sentences (MAJ) 7,075 767 5,667
sentences (MIN) 2,156 974 974
MIN-MAJ ratio 1 : 3.3 1 : 1.3 1 : 5.8

tokens (all) 277,053 66,752 343,773
tokens (MAJ) 17,928 2,008 18,959
tokens (MIN) 4,079 1,822 2,008
MIN-MAJ ratio 1 : 4.4 1 : 1.1 1 : 9.4

Table 1: Characteristics of the data sets; “sentences
(MAJ)”, e.g., specifies the number of sentences contain-
ing mentions of the majority class.

PBIO ACE SYN

χ2 132.34 6.07 727
P (MIN |MAJ) 0.26 0.31 0.0

Table 2: Co-occurrence of entity classes in sentences

highly unlikely that it also contains a minority entity.
In fact, it is impossible by construction of the data
set. Further, this table shows the probability that a
sentence containing the majority class also contains
the minority class. As expected, this is exactly 0 for
SYN, but significantly above 0 for PBIO and ACE.

3.3 Seed sets

Selection of an appropriate seed set for the start of an
AL process is important to the success of AL. This is
especially relevant in the case of imbalanced classes
because a typically small random sample will pos-
sibly not contain any example of the rare class. We
constructed different types of seed sets (whose nam-
ing intentionally reflects the use of the entity classes
from Section 3.2) to simulate different scenarios of
ill-managed initial exploration. All seed sets have
a size of 20 sentences. The RANDOM set was ran-
domly sampled, the MAJ set is made of sentences
containing at least one majority class entity, but no
minority class entity. Accordingly, MIN is densely
populated with minority entities. Finally, OUTSIDE
contains only sentences without entity mentions.

One could think of the OUTSIDE and MAJ seed
sets of cases where a random seed set selection has
unluckily produced an especially bad seed set. MIN
serves to demonstrate the opposite case. For each
type of seed set, we sampled ten independent ver-
sions to calculate averages over several AL runs.

3.4 Cost measure

The success of AL is usually measured as reduc-
tion of annotation effort according to some cost mea-
sure. Traditionally, the most common cost measure
considers a unit cost per annotated token, which fa-
vors AL systems that select individual tokens. In
a real annotation setting, however, it is unnatural,
and therefore hard for humans to annotate single,
possibly isolated tokens, leading to bad annotation
quality (Hachey et al., 2005; Ringger et al., 2007).
When providing context, the question arises whether
the annotator can label several tokens present in the
context (e.g., an entire multi-token entity or even
the whole sentence) at little more cost than anno-
tating a single token. Thus, assigning a linear cost
of n to a sentence where n is the sentence’s length
in tokens seems to unfairly disadvantage sentence-
selection AL setups.

However, more work is needed to find a more re-
alistic cost measure. At present there is no other
generally accepted cost measure than unit cost per
token, so we report costs using the token measure.

4 Results

This section presents the results of our experiments
on the missed class effect in two different AL
scenarios, i.e., sentence selection (S-AL) and to-
ken selection (T-AL). The AL runs were stopped
when convergence on the minority class F-score was
achieved. This was done because early AL iterations
before the convergence point are most important and
representative for a real-life scenario where the pool
is extremely large, so that absolute convergence of
the classifier’s performance will never be reached.

The learning curves in Figures 2, 3, and 4 reveal
general characteristics of S-AL compared to T-AL.
For S-AL, the number of tokens on the x-axis is the
total number of tokens in the sentences labeled so
far. While S-AL generally yields higher F-scores, T-
AL converges much earlier when counted in terms
of tokens. The reason for this is that T-AL can se-
lect uncertain data more specifically. In contrast, S-
AL also selects tokens that the classifier can already
classify reliably – these tokens are selected because
they co-occur in a sentence that also contains an un-
certain token. Whether T-AL is really more efficient
clearly depends on the cost-metric applied (cf. Sec-
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Figure 2: Results on SYN corpus for token selection (a,b,c) and sentence selection (d,e,f)

tion 3.4). Since the focus of this paper is on compar-
ing the missed class effect in a sentence and a token
selection AL setting (T-AL and S-AL) we apply the
straight-forward token measure.

4.1 The pathological case

Figure 2 shows results on the SYN corpus for T-AL
(upper row) and S-AL (lower row). Figures 2(a)
and 2(d) show the minority and majority class learn-
ing curves for a single run starting from the OUT-
SIDE seed set, which was particularly problematic
on SYN. (We show single runs to give a better pic-
ture of what happens during the selection process.)
The figures show that for both AL scenarios, the
OUTSIDE seed set caused the active learner to focus
exclusively on the majority class and to completely
ignore the minority class for many AL iterations (al-
most 30,000 tokens for S-AL and over 4,000 tokens
for T-AL). Had we stopped the AL process before
this turning point, the classifier’s performance on
the majority entity class would have been reason-
ably high while the minority class would not have
been learned at all — which is precisely the defini-

tion of an (initially) missed class.
Figures 2(b) and 2(e) show the corresponding

mean margin plots of these AL runs, indicating the
confidence of the classifier on each class. The mean
margin is calculated as the average margin over to-
kens in the remaining pool, separately for each true
class label.4 As expected, the active learner is over-
confident but wrong on instances of the minority
class (assigning them to the OUTSIDE class, we
assume). Only after some time, margin scores on
minority class tokens start decreasing. This hap-
pens because from time to time minority class ex-
amples are mistakenly considered as majority class
examples with low confidence and thus selected by
accident. Lowered minority class confidence then
causes the selection of further minority class exam-
ples, resulting in a turning point with a steep slope
of the minority class learning curve.

Consequences of seed set selection We compare
the minority class learning curves for all types of

4Note that in a real, non-simulation active learning task, the
true class labels would be unknown.
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Figure 3: Results on PBIO corpus for token selection (a,b,c) and sentence selection (d,e,f)

seed sets and for random selection (cf. Figures 2(c)
and 2(f)), now averaged over 10 runs. On S-AL all
but the MIN seed set were inferior to random selec-
tion. Even the commonly used random seed set se-
lection is problematic because the minority class is
so rare that there are random seed sets without any
example of the minority class.

On T-AL, all seed sets are better than random se-
lection. This, however, is because random selec-
tion is an extremely weak baseline for T-AL due to
the token distribution (cf. Table 1). Still, the RAN-
DOM, MAJ, and OUTSIDE seed sets are signifi-
cantly worse than a seed set which covers the minor-
ity class well. Note that the majority class learning
curves are relatively invariant against different seed
sets. The minority class seed set does have some
negative impact on initial learning progress on the
majority class (not shown here), but the impact is
rather small. Because of the higher frequency of
the majority class, the classifier soon finds major-
ity class examples to compensate for the seed set by
chance or class similarity.

4.2 Missed class effect mitigated by co-selection

Results on PBIO corpus On the PBIO corpus,
where minority and majority class entity mentions
naturally co-occur on the sentence level, we get
a different picture. Figure 3 shows the learning
(3(a), 3(d)) and mean margin (3(b), 3(e)) curves for
the MAJ seed set. T-AL still exhibits the missed
class effect on this seed set. The minority class
learning curve again has a delayed slope and high
mean margin scores of minority tokens at the be-
ginning, resulting in insufficient selection and slow
learning. S-AL, on the other hand, does not re-
ally suffer from the missed class effect: minor-
ity class entity mentions are co-selected in sen-
tences which were chosen due to uncertainty on
majority class tokens. Minority class mean mar-
gin scores quickly fall, reinforcing selection for mi-
nority class entities. Learning curves for minority
and majority classes run approximately in parallel.

Figure 3(f) shows that all seed sets perform quite
similar for S-AL. MIN unsurprisingly is a bit better.
With the other seed sets, S-AL performance is com-
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Figure 4: Minority class learning curves for all seeds on
ACE averaged over 10 runs

parable to random selection. On the PBIO corpus,
random selection is a strong baseline as almost every
sentence contains an entity mention — which is not
the case for SYN and ACE (cf. Table 1). As there is
no co-selection effect for T-AL, the MAJ and OUT-
SIDE seed sets also here are subject to the missed
class problem (Figure 3(c)), although not as severely
as on the SYN corpus.

Results on ACE corpus Figure 4 shows learning
curves averaged over 10 runs on ACE. Overall, the
missed class effect is less pronounced on ACE com-
pared to PBIO. Still, co-selection avoids a good por-
tion of the missed class effect on S-AL — all seed
sets yield results much better than random selection
right from the beginning.

On T-AL, the OUTSIDE seed set has a marked
negative effect. However, while different seed
sets still have visible differences in learning perfor-
mance, the magnitude of the effect is smaller than
on PBIO. It is difficult to find the exact reasons
in a non-synthetic, natural language corpus where a
lot of different effects are intermingled. One might
assume higher class similarity between the major-
ity (“persons”) and the minority (“organizations”)
classes on the ACE corpus than, e.g., on the PBIO

corpus. Moreover, there is hardly any imbalance
in frequency between the two entity classes on the
ACE corpus. We briefly discussed such influencing
factors possibly mitigating the missed class effect in
Section 2.2.

4.3 Discussion

To summarize, on a synthetic corpus (SYN) the
missed class effect can be well studied in both

AL scenarios, i.e., S-AL and T-AL. Moving from
a relatively controlled, synthetic corpus (extreme
class imbalance, no inner-sentence co-occurrence
between entity classes, quite different entity classes)
to more realistic corpora, effects generally mix a bit
due to different degrees of class imbalance and prob-
ably higher similarity between entity classes.

Our experiments unveil that co-selection in S-AL
effectively helps avoid dysfunctional classifiers that
insufficiently explore the instance space due to a
disadvantageous seed set. In contrast, AL based
on token-selection (T-AL) cannot recover from in-
sufficient exploration as easy as AL with sentence-
selection and is thus more sensitive to the missed
class effect.

5 Conclusion

We have shown that insufficient exploration in the
initial stages of active learning gives rise to regions
of the sample space that contain missed classes that
are incorrectly classified. This results in low clas-
sification performance and slow learning progress.
Comparing two sampling granularities, tokens vs.
sentences, we found that the missed class effect is
more severe when isolated tokens instead of sen-
tences are selected for labeling.

The missed class problem in sequence classifica-
tion tasks can be avoided using sentences as natural
multi-instance units for selection and labeling. Us-
ing multi-instance units, co-selection of other tokens
within sentences provides an implicit exploratory
component. This solution is effective if classes co-
occur sufficiently within sentences which is the case
for many real-life entity recognition tasks.

While other work has proposed sentence selection
in AL for sequence labeling as a means to ease and
speed up annotation, we have gathered here addi-
tional motivation from the perspective of robustness
of learning. Future work will compare the beneficial
effect introduced by co-selection with other forms of
exploration-enabled active learning.
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Abstract

We present an empirical investigation of the
annotation cost estimation task for active
learning in a multi-annotator environment. We
present our analysis from two perspectives:
selecting examples to be presented to the user
for annotation; and evaluating selective sam-
pling strategies when actual annotation cost
is not available. We present our results on a
movie review classification task with rationale
annotations. We demonstrate that a combina-
tion of instance, annotator and annotation task
characteristics are important for developing an
accurate estimator, and argue that both corre-
lation coefficient and root mean square error
should be used for evaluating annotation cost
estimators.

1 Introduction

Active Learning is the process of selectively query-
ing the user to annotate examples with the goal
of minimizing the total annotation cost. Annota-
tion cost has been traditionally measured in terms
of the number of examples annotated, but it has
been widely acknowledged that different examples
may require different annotation effort (Settles et al.,
2008; Ringger et al., 2008).

Ideally, we would use actual human annotation
cost for evaluating selective sampling strategies, but
this will require conducting several user studies, one
per strategy on the same dataset. Alternatively, we
may be able to simulate the real user by an annota-
tion cost estimator that can then be used to evaluate
several selective sampling strategies without having
to run a new user study each time. An annotation
cost estimator models the characteristics that can

differentiate the examples in terms of their annota-
tion time. The characteristics that strongly correlate
with the annotation time can be used as a criterion
in selective sampling strategies to minimize the total
annotation cost.

In some domains, the annotation cost of an ex-
ample is known or can be calculated exactly before
querying the user. For example, in biological ex-
periments it might be calculable from the cost of
the equipment and the material used (King et al.,
2004). In NLP, sometimes a simplifying assumption
is made that the annotation cost for an example can
be measured in terms of its length (e.g. seconds of
voicemail annotated (Kapoor et al., 2007); number
of tokens annotated (Tomanek et al., 2007)). An-
other assumption is that the number of user anno-
tation actions can be used as a proxy for annota-
tion cost of an example (e.g. number of brackets
added for parsing a sentence (Hwa, 2000); number
of clicks for correcting named entities (Kristjannson
et al., 2004)). While these are important factors in
determining the annotation cost, none of them alone
can fully substitute for the actual annotation cost.
For example, a short sentence with a lot of embed-
ded clauses may be more costly to annotate than a
longer sentence with simpler grammatical structure.
Similarly, a short sentence with multiple verbs and
discontinuous arguments may take more time to an-
notate with semantic roles than a longer sentence
with a single verb and simple subject-verb-object
structure (Carreras and Márquez, 2004).

What further complicates the estimation of anno-
tation cost is that even for the same example, anno-
tation cost may vary across annotators (Settles et al.,
2008). For example, non-native speakers of English
were found to take longer time to annotate part of
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speech tags (Ringger et al., 2008). Often multiple
annotators are used for creating an annotated cor-
pus to avoid annotator bias, and we may not know
all our annotators beforehand. Annotation cost also
depends on the user interface used for annotation
(Gweon et al., 2005), and the user interface may
change during an annotation task. Thus, we need
a general annotation cost estimator that can predict
annotation cost for a given annotator and user inter-
face. A general estimator can be built by using an-
notator and user interface characteristics in addition
to the instance characteristics for learning an anno-
tation cost model, and training on data from mul-
tiple annotators and multiple user interfaces. Such
a general estimator is important for active learning
research where the goal is to compare selective sam-
pling strategies independent of the annotator and the
user interface.

In this work, we investigate the annotation cost es-
timation problem for a movie review classification
task in a multi-annotator environment with a fixed
user interface. We demonstrate that a combination
of instance, annotation task and annotator charac-
teristics is important for accurately estimating the
annotation cost. In the remainder of the paper, we
first present a survey of related work and an analysis
of the data collected. We then describe the features
used for our supervised learning approach to anno-
tation cost estimation, followed by the experimental
setup and results. Finally, we conclude with some
future directions we would like to explore.

2 Related work

There has been some recent research effort in using
supervised learning for estimating annotation cost.
The most closely related work is that by Settles et al.
(2008) and Ringger et al. (2008). Settles et al. (2008)
present a detailed analysis of annotation cost for four
NLP applications: named entity recognition, image
retrieval, speculative vs. definite distinction, and in-
formation extraction. They study the effect of do-
main, annotator, jitter, order of examples, etc., on
the annotation cost.

Results from Settles et al. (2008) are promising
but leave much room for improvement. They used
only instance level features such as number of en-
tities, length, number of characters, percentage of

non-alpha numeric characters, etc. for annotation
cost estimation. For three of their tasks, the corre-
lation between the estimated and actual annotation
times was in the range (R = 0.587 to 0.852). Note
that the percentage of variance accounted for by a
model is obtained by squaring the R value from the
correlation coefficient. Thus, an R value of 0.587
indicates that only about 34% (R2) of the variance
is accounted for, so the model will make incorrect
predictions about ranking in the majority of cases.
Nevertheless, we acknowledge that our results are
not substantially better, although we argue that this
work contributes to the pool of knowledge that will
hopefully lead to better performance in the future.

Settles et al. (2008) train and test their estimator
on data from the same annotator. Thus, in order
to use their model for a new annotator, we would
need to first collect data for that annotator and train
a model. In our work, a group of annotators anno-
tate the same text, and we train and test on different
annotators. We also show that using characteristics
of the annotators and annotation task in addition to
the instance characteristics improves performance.

Ringger et al. (2008) use linear regression for an-
notation cost estimation for Part-Of-Speech (POS)
tagging. About 30 annotators annotated 36 different
instances each. The authors present about 13 de-
scriptive statistics of the data, annotator and annota-
tion task, but in their model they only used number
of tokens in the sentence and the number of correc-
tions needed as features. They report that the other
variables didn’t have a significant effect when eval-
uated using a Bayesian Information Criterion (from
the R package).

Ringger et al. (2008) noticed that nativeness of
the annotator did have an effect on the annotation
time, but they chose not to include that feature
in their model as they expected to have a similar
mix of skills and background in their target anno-
tators. However, if annotation times differ substan-
tially across annotators, then not accounting for this
difference will reduce the performance of the model.
Also, the low adjusted correlation value for their
model (R = 0.181) indicates that there is only a
weak correlation between the annotation time and a
linear combination of the length of the example and
the number of corrections.
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3 Analysis and Experiments

In this section, we present our annotation methodol-
ogy and analysis of the data we collected, followed
by a description of the features we used.We then
present our experimental setup followed by a dis-
cussion of our results.

3.1 Annotation Methodology and Data
Analysis

In this work, we estimate the annotation cost for a
movie review classification task. The data we used
were collected as part of a graduate course. Twenty
annotators (students and instructors) were grouped
into five groups of four each. The groups were cre-
ated such that each group had similar variance in
annotator characteristics such as department, educa-
tional experience, programming experience, etc. We
used the first 200 movie reviews from the dataset
provided by Zaidan et al. (2007), with an equal dis-
tribution of positive and negative examples. Each
group annotated 25 movie reviews randomly se-
lected from the 200 reviews and all annotators in
each group annotated all 25 reviews. In addition
to voting positive or negative for a review, annota-
tors also annotated rationales (Zaidan et al., 2007),
spans of text in the review that support their vote.
Rationales can be used to guide the model by identi-
fying the most discriminant features. In related work
(Arora and Nyberg, 2009), we ascertain that with ra-
tionales the same performance can be achieved with
less annotated data. The annotation task with ra-
tionales involved a variety of user actions: voting
positive or negative, highlighting spans of text and
adding rationale annotations. We used the same an-
notation guidelines as Zaidan et al. (2007). The data
has been made available for research purposes1. Fig-
ure 1 shows a screenshot of the GUI used. We per-
formed an analysis of our data similar to that con-
ducted by Settles et al. (2008). We address the fol-
lowing main questions.

Are the annotation times variable enough? If all
examples take a similar time to annotate, then the
number of examples can be used as an approxima-
tion for the annotation cost. Figure 2 shows the his-
togram of averaged annotation times (averaged over

1www.cs.cmu.edu/˜shilpaa/datasets/ial/
ial-uee-mr-v0.1.zip

Figure 1: The GUI used for the annotation task. The user
selects the review (segment) to annotate from the list in the
right panel. The review text is displayed in the left panel. The
user votes positive or negative using the radio buttons. Ratio-
nales are added by selecting a span of text and right clicking
to select the rationale tag. The start/stop button can be used to
pause the current task.

Figure 2: Distribution of averaged annotation times

4 annotators in a group). As can be seen from the
mean (µ = 165 sec.) and the standard deviation
(σ = 68.85), there is a meaningful variance in the
annotation times.

How do the annotation times vary across annota-
tors? A strong correlation between annotation times
from different annotators on a set of instances sug-
gests that there are certain characteristics of these in-
stances, independent of the annotator characteristics,
that can determine their ranking based on the time it
takes to annotate them. We evaluated the pairwise
correlation for all pairs of annotators in each group
(Table 1). As can be seen, there is significant pair-
wise correlation in more than half of the pairs of an-
notators that differ in nativeness (10/16). However,
not all such pairs of annotators are associated with
significant correlation. This suggests that it is im-
portant to consider both instance and annotator char-
acteristics for estimating annotation time.
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group Avg-Na(Std) Avg-CR(Std) #sign-pairs
0 2.25(0.96) 0.54(0.27) 4/6 (4/5)
1 1.75(0.5) 0.45(0.08) 5/6 (2/3)
2 1(0) 0.13(0.17) 0/6 (0/0)
3 1.75(0.96) 0.36(0.12) 2/6 (1/5)
4 2.75(0.5) 0.47(0.04) 6/6 (3/3)

Avg. 1.9(0.58) 0.39(0.21) 17/30 (10/16)

Table 1: The Table shows the average nativeness and average
pairwise correlation between annotation times for the mem-
bers of each group (and their standard deviation). #sign-pairs
shows the fraction of pairwise correlations within the groups
that were significant (p < 0.05). In brackets, is the fraction
of correlations between annotators with different nativeness
within the groups that were significant.

The box plot in Figure 3 shows the distribution
of annotation times across annotators. As can be
seen, some annotators take in general much longer
than others, and the distribution of times is very dif-
ferent across annotators. For some, the annotation
times vary a lot, but not so much for others. This
suggests that using annotator characteristics as fea-
tures in addition to the instance characteristics may
be important for learning a better estimator.

Figure 3: Box plot shows the annotation time (in sec) dis-
tribution (y-axis) for an annotator (x-axis) for a set of 25 doc-
uments. g0-a1 represents annotator 1 of group 0 and g0-avg
represents the average annotation time. A box represents the
middle 50% of annotation times, with the line representing the
median. Whiskers on either side span the 1st and 4th quartiles
and asterisks indicate the outliers.

3.2 Feature Design

We group the features in the following three cat-
egories: Instance, Annotation Task and Annotator

characteristics.

3.2.1 Instance characteristics
Instance characteristics capture the properties of

the example the user annotates. Table 2 describes
the instance based features we used and the intu-
ition supporting their use for annotation cost esti-
mation. Table 3 shows the mean and standard de-
viation of each of these characteristics, and as can
be seen, these characteristics do vary across exam-
ples and hence these features can be beneficial for
distinguishing examples.

3.2.2 Annotation Task characteristics
Annotation task characteristics are those that can

be captured only during or after the annotation task.
We used the number of rationales as a feature from
this category. In addition to voting for movie re-
views as positive or negative, the user also adds ra-
tionales that support their vote. More rationales im-
ply more work since the user must look for the rele-
vant span of text and perform the physical action of
selecting the span and adding an annotation for each
rationale. Table 3 shows the distribution of the aver-
age Number of Rationales (NR) per example (aver-
aged over the four annotators for a given set).

3.2.3 Annotator characteristics
The annotation cost of an example may vary

across annotators. As reported in Table 1, the aver-
age correlation for annotators on the same document
is low (R = 0.39) with 17 out of 30 pairwise correla-
tions being significant. Thus, it is important to con-
sider annotator characteristics, such as whether the
annotator is a native speaker of English, their educa-
tion level, reading ability, etc. In this work, we only
use nativeness of the annotator as a feature and plan
to explore other characteristics in the future. We as-
signed each annotator a nativeness value. A value
of 3 was given to an annotator whose first language
is English. A value of 2 was given to an annotator
who has a different first language but has either been
educated in English or has been in the United States
for a long time. A value of 1 was assigned to the re-
maining annotators. Among the 20 annotators in the
study, there were 8 annotators with nativeness value
of 1, and 6 each for nativeness values of 2 and 3.
Table 1 shows the average and standard deviation of
the nativeness score in each group.
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Feature Definition Intuition
Character
Length (CL)

Length of review in
terms of number of
characters

Longer documents
take longer to anno-
tate

Polar word
Count (PC)

Number of words
that are polar (strong
subjective words
from the lexicon
(Wilson et al., 2005))

More subjectivity
implies user would
need more time to
judge positive vs.
negative

Stop word
Percent (SC)

Percentage of words
that are stop words

A high percentage
of stop words im-
plies that the text is
not very complex and
hence easier to read.

Avg. Sen-
tence Length
(SL)

Average of the char-
acter length of sen-
tences in the review

Long sentences in a
review may make it
harder to read.

Table 2: Instance characteristics

Feature Mean Standard Deviation
CL 2.25 0.92
PC 41.50 20.39
SP 0.45 0.03
SL 121.90 28.72
NR 4.80 2.30

Table 3: Mean and the standard deviation for the feature oc-
currences in the data.

3.3 Evaluation Metric

We use both Root Mean Square (RMS) error and
Correlation Coefficient (CRCoef) to evaluate our
model, since the two metrics evaluate different as-
pects of an estimate. RMS is a way to quantify the
amount by which an estimator differs from the true
value of the quantity being estimated. It tells us how
‘off’ our estimate is from the truth. CRCoef on the
other hand measures the strength and direction of a
linear relationship between two random variables. It
tells us how well correlated our estimate is with the
actual annotation time. Thus, for evaluating how ac-
curate our model is in predicting annotation times,
RMS is a more appropriate metric. For evaluating
the utility of the estimated annotation cost as a cri-
terion for ranking and selecting examples for user’s
annotation, CRCoef is a better metric.

3.4 Experiments & Results

We learn an annotation cost estimator using the Lin-
ear Regression and SMO Regression (Smola and
Scholkopf, 1998) learners from the Weka machine
learning toolkit (Witten and Frank, 2005). As men-

tioned earlier, we have 5 sets of 25 documents each,
and each set was annotated by four annotators. The
results reported are averaged over five folds, where
each set is one fold, and two algorithms (Linear Re-
gression and SMO Regression). Varying the algo-
rithm helps us find the most predictive feature com-
binations across different algorithms. Since each set
was annotated by different annotators, we never train
and test on the data from same annotators. We used
the JMP2 and Minitab3 statistical tools for our analy-
sis. We used an ANOVA model with Standard Least
Squares fitting to compare the different experimen-
tal conditions. We make all comparisons in terms
of both the CRCoef and the RMS metrics. For sig-
nificance results reported, we used 2-tailed paired
T-test, considering (p < 0.05) as significant.

We present our results and analysis in three parts.
We first compare the four instance characteristics,
annotator and annotation task characteristics; and
their combination. We then present an analysis
of the interaction between features and annotation
time. Finally, we compare the ranking of features
based on the two evaluation metrics we used.

3.4.1 Comparing characteristics for annotation
cost estimation

Instance Characteristics: We compare the four
instance characteristics described in Section 3.2.1
and select the most predictive characteristic for fur-
ther analysis with annotator and annotation task
characteristics. As can be seen in Table 4, character
length performs the best, and it is significantly better
than stop word percent and average sentence length.
Character length also outperforms polar word count,
but this difference is not significant. Because of the
large significant difference between the performance
of stop word percent and average sentence length,
compared to character length, we do not consider
them for further analysis.

Feature Combinations: In Table 5, we compare
the feature combinations of instance, annotator and
annotation task characteristics. The table also shows
the weights for the features used and the constant for
the linear regression model trained on all the data. A
missing weight for a feature indicates that it wasn’t
used in that feature combination.

2http://www.jmp.com/software/
3http://www.minitab.com/
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Feature CR-Coef RMS
CL 0.358 104.51
PC 0.337 105.92
SP -0.041* 114.34*
SL 0.042* 114.50*

Table 4: CR-Coef and RMS results for Character Length
(CL), Polar word Count (PC), Stop word Percent (SP) and av-
erage Sentence Length (SL). Best performance is highlighted
in bold. ∗ marks the results significantly worse than the best.

We use only the best performing instance charac-
teristic, the character length. The length of an ex-
ample has often been substituted for the annotation
cost (Kapoor et al., 2007; Tomanek et al., 2007).
We show in Table 5 that certain feature combina-
tions significantly outperform character length. The
combination of all three features (last row) performs
the best for both CRCoef and RMS, and this result
is significantly better than the character length (third
row). The combination of number of rationales and
nativeness (fourth row) also outperforms character
length significantly in CRCoef. This suggests that
the number of rationales we expect or require in a re-
view and the annotator characteristics are important
factors for annotation cost estimation and should be
considered in addition to the character length.

CL NR AN Const. CR-Coef RMS
-29.33 220.77 0.135∗ 123.93∗

17.59 82.81 0.486 95.29
0.027 61.53 0.357∗ 104.51∗

19.11 -40.78 153.21 0.55+ 96.04
0.028 32.79 120.18 0.397∗ 109.85∗

0.02 15.15 17.57 0.553+ 90.27+

0.021 16.64 -41.84 88.09 0.626+ 88.44+

Table 5: CR-Coef and RMS results for seven feature com-
binations of Character Length (CL), Number of Rationales
(NR) and Annotator Nativeness (AN). The values in feature
and ‘Const.’ columns are weights and constant for the linear
regression model trained on all the data. The numbers in bold
are the results for the best feature combination. ∗ marks the
results significantly worse than the best. + marks the results
significantly better than CL.

The impact of the nativeness feature is somewhat
mixed. Adding the nativeness feature always im-
proves the correlation and for RMS, it helps when
added to the combined feature (CL+NR) but not oth-
erwise. Although this improvement with addition
of the nativeness feature is not significant, it does
suggest that annotator characteristics might be im-
portant to consider. To investigate this further, we

evaluated our assumption that native speakers take
less time to annotate. For each set, we compared the
average annotation times (averaged over examples)
against the nativeness values. For all sets, annotators
with nativeness value of 3 always took less time on
average than those with nativeness value of 2 or 1.
Between 2 and 1, there were no reliable differences.
Sometimes annotators with value of 1 took less time
than annotators with value of 2. Also, for group 2
which had all annotators with nativeness value of 1,
we observed a poor correlation between annotators
(Table 1). This suggest two things: 1) our assign-
ment of nativeness value may not be accurate and
we need other ways of quantifying nativeness, 2)
there are other annotator characteristics we should
take into consideration.

PC CL NR AN Const. CR RMS
0.027 61.53 0.358ab 104.5x

2.2 74.20 0.337a 105.9x
0.7 0.019 60.89 0.355b 104.9x

0.028 -32.8 120.2 0.397ab 109.8x
2.3 -35.5 135.1 0.382a 111.1x
1.1 0.016 -34.3 121.8 0.395b 109.9x

0.02 15.1 17.57 0.553a 90.27x
1.5 15.1 32.02 0.542a 91.65x
0.0 0.02 15.1 17.57 0.554a 90.40x

0.021 16.6 -41.8 88.09 0.626a 88.44x
1.6 16.5 -43.5 102.8 0.614a 90.42y
0.0 0.021 16.6 -41.8 88.09 0.626a 88.78x

Table 6: Each block of 3 rows in this table compares the
performance of Character Length (CL) and Polar word Count
(PC) in combination with Number of Rationales (NR) and An-
notator Nativeness (AN) features. The values in feature and
‘Const.’ columns are weights and constant for the linear re-
gression model trained on all the data. Best performance is
highlighted in bold. Results in a block not connected by same
letter are significantly different.

Polar word Count and Character Length: As we
saw in Table 4, the difference between character
length and polar word count is not significant. We
further compare these two instance characteristics
in the presence of the annotator and annotation task
characteristics. Our goal is to ascertain whether
character length performs better than polar word
count, or vice versa, and whether this difference is
significant. We also evaluate whether using both
performs better than using any one of them alone.
The results presented in Table 6 help us answer these
questions. For all feature combinations character
length, with and without polar word count, performs
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better than polar word count, but this difference is
not significant except in three cases. These results
suggests that polar word count can be used as an al-
ternative to character length in annotation cost esti-
mation.

3.4.2 Interaction between Features and
Annotation Time

As a post-experiment analysis, we studied the
interaction between the features we used and an-
notation time, and the interaction among features
themselves. Table 7 reports the pairwise correlation
(Pearson, 1895) for these variables, calculated over
all 125 reviews. As can be seen, all features have
significant correlation with annotation time except
stop words percentage and average sentence length.

Note that number of rationales has higher correla-
tion with annotation time (R = 0.529) than charac-
ter length (R = 0.417). This suggests that number
of rationales may have more influence than charac-
ter length on annotation time, and a low correlation
between number of rationales and character length
(R = 0.238) indicates that it might not be the case
that longer documents necessarily contain more ra-
tionales. Annotating rationales requires cognitive
effort of identifying the right span and manual ef-
fort to highlight and add an annotation, and hence
more rationales implies more annotation time. We
also found some examples in our data where docu-
ments with substantially different lengths but same
number of rationales took a similar time to anno-
tate. One possible explanation for this observation is
user’s annotation strategy. If the annotator chooses
to skim through the remaining text when enough ra-
tionales are found, two examples with same number
of rationales but different lengths might take similar
time. We plan to investigate the effect of annotator’s
strategy on annotation time in the future.

A negative correlation of nativeness with annota-
tion time (R = −0.219) is expected, since native
speakers (AN = 3) are expected to take less anno-
tation time than non-native speakers (AN = {2, 1}),
although this correlation is low. A low correla-
tion between number of rationales and nativeness
(R = 0.149) suggests that number of rationales
a user adds may not be influenced much by their
nativeness value. A not significant low correlation
(R = −0.06) between character length and native-

AT CL NR AN PC SP SL
AT 1
CL 0.42 1
NR 0.53 0.24 1
AN -0.22 0.06 0.15 1
PC 0.4 0.89 0.28 0.11 1
SP 0.03 0.06 0.14 0.03 0.04 1
SL 0.08 0.15 0.01 -0.01 0.14 -0.13 1

Table 7: Correlation between Character Length (CL), Num-
ber of Rationales (NR), Annotator Nativeness (AN), Polar
word Count (PC), Stop word Percent (SP), average Sentence
Length (SL) and Annotation Time (AT), calculated over all
documents (125) and all annotators (20). Significant corre-
lations are highlighted in bold.

ness provides no evidence that reviews with different
lengths were distributed non-uniformly across anno-
tators with different nativeness.

The number of polar words in a document has a
similar correlation with annotation time as character
length (R = 0.4). There is also a strong correla-
tion between character length and polar word count
(R = 0.89). Since reviews are essentially people’s
opinions, we can expect longer documents to have
more polar words. This also explains why there is no
significant difference in performance for polar word
count and character length (Table 4). A more useful
feature may be the information about the number of
positive and negative polar words in a review, since a
review with both positive and negative opinions can
be difficult to classify as positive or negative. We
plan to explore these variations of the polar word
feature in the future. We also plan to investigate how
we can exploit this dependence between characteris-
tics for annotation cost estimation.

3.4.3 CRCoef Vs. RMS
We presented our results using correlation coef-

ficient and root mean squared error metrics. Ta-
ble 8 shows the ranking of the feature combinations
from better to worse for both these metrics and as
we can see, there is a difference in the order of fea-
ture combinations for the two metrics. Also, signif-
icance results differ in some cases for the two met-
rics. These differences suggest that features which
correlate well with the annotation times (higher CR-
Coef rank) can give an accurate ranking of examples
based on their annotation cost, but they may not be
as accurate in their absolute estimate for simulating
annotators and thus might have a lower RMS rank.
Thus, it is important to evaluate the user effort esti-
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mator in terms of both these metrics so that the right
estimator can be chosen for a given objective.

Rank CR-Coef RMS
1 (CL+NR+AN) (CL+NR+AN)
2 (CL+NR) (CL+NR)
3 (NR+AN) (NR)
4 (NR) (NR+AN)
5 (CL+AN) (CL)
6 (CL) (CL+AN)
7 (AN) (AN)

Table 8: Ranking of feature combinations.

4 Towards a General Annotation Cost
Estimator

Our multi-annotator environment allows us to train
and test on data from different annotators by using
annotator characteristics as features in the annota-
tion cost estimation. A model trained on data from a
variety of annotators can be used for recommend-
ing examples to annotators not represented in our
training data but with similar characteristics. This
is important since we may not always know all our
annotators before building the model, and training
an estimator for each new annotator is costly. Also,
in active learning research, the goal is to evaluate
selective sampling approaches independently of the
annotator. Choosing annotators for supervised an-
notation cost estimation such that the within group
variance in annotator characteristics is high will give
us a more generic estimator and a stricter evaluation
criterion. Thus, we have a framework that has the
potential to be used to build a user-independent an-
notation cost estimator for a given task.

However, this framework is specific to the User
Interface (UI) used. A change in the user interface
might require recollecting the data from all the an-
notators and training a model on the new data. For
example, if annotating rationales was made signif-
icantly faster in a new UI design, it would have
a major impact on annotation cost. An alternative
would be to incorporate UI features in our model and
train it on several different UIs or modifications of
the same UI, which will allow us to use our trained
model with a new user interface or modifications of
the existing UIs, without having to recollect the data
and retrain the model. A few UI features that can be
used in our context are: adding a rationale annota-

tion, voting positive or negative, etc. The units for
expressing these features will be the low-level user
interface actions such as number of clicks, mouse
drags, etc. For example, in our task, adding a ra-
tionale annotation requires one mouse drag and two
clicks, and adding a vote requires one click. In a dif-
ferent user interface, adding a rationale annotation
might require just one mouse drag.

Using UI features raises a question of whether
they can replace the annotation task features; e.g.,
whether the UI feature for adding rationale anno-
tation can replace the number of rationales feature.
Our hypothesis is that number of rationales has more
influence on annotation time than just the manual ef-
fort of annotating them. It also requires the cognitive
effort of finding the rationale, deciding its span, etc.
We aim to explore incorporating UI features in our
annotation cost estimation model in the future.

5 Conclusion and Future Work

In this work we presented a detailed investigation of
annotation cost estimation for active learning with
multiple annotators. We motivated the task from two
perspectives: selecting examples to minimize anno-
tation cost and simulating annotators for evaluating
active learning approaches. We defined three cate-
gories of features based on instance, annotation task
and annotator characteristics. Our results show that
using a combination of features from all three cate-
gories performs better than any one of them alone.
Our analysis was limited to a small dataset. In the
future, we plan to collect a larger dataset for this task
and explore more features from each feature group.

With the multi-annotator annotation cost estima-
tor proposed, we also motivated the need for a gen-
eral estimator that can be used with new annotators
or user interfaces without having to retrain. We aim
to explore this direction in the future by extending
our model to incorporate user interface features. We
also plan to use the annotation cost model we devel-
oped in an active learning experiment.
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Abstract

Annotation acquisition is an essential step in
training supervised classifiers. However, man-
ual annotation is often time-consuming and
expensive. The possibility of recruiting anno-
tators through Internet services (e.g., Amazon
Mechanic Turk) is an appealing option that al-
lows multiple labeling tasks to be outsourced
in bulk, typically with low overall costs and
fast completion rates. In this paper, we con-
sider the difficult problem of classifying sen-
timent in political blog snippets. Annotation
data from both expert annotators in a research
lab and non-expert annotators recruited from
the Internet are examined. Three selection cri-
teria are identified to select high-quality anno-
tations: noise level, sentiment ambiguity, and
lexical uncertainty. Analysis confirm the util-
ity of these criteria on improving data quality.
We conduct an empirical study to examine the
effect of noisy annotations on the performance
of sentiment classification models, and evalu-
ate the utility of annotation selection on clas-
sification accuracy and efficiency.

1 Introduction

Crowdsourcing (Howe, 2008) is an attractive solu-
tion to the problem of cheaply and quickly acquir-
ing annotations for the purposes of constructing all
kinds of predictive models. To sense the potential of
crowdsourcing, consider an observation in von Ahn
et al. (2004): a crowd of 5,000 people playing an
appropriately designed computer game 24 hours a
day, could be made to label all images on Google
(425,000,000 images in 2005) in a matter of just 31

days. Several recent papers have studied the use
of annotations obtained from Amazon Mechanical
Turk, a marketplace for recruiting online workers
(Su et al., 2007; Kaisser et al., 2008; Kittur et al.,
2008; Sheng et al., 2008; Snow et al., 2008; Sorokin
and Forsyth, 2008).

With efficiency and cost-effectiveness, online re-
cruitment of anonymous annotators brings a new set
of issues to the table. These workers are not usually
specifically trained for annotation, and might not be
highly invested in producing good-quality annota-
tions. Consequently, the obtained annotations may
be noisy by nature, and might require additional val-
idation or scrutiny. Several interesting questions im-
mediately arise in how to optimally utilize annota-
tions in this setting: How does one handle differ-
ences among workers in terms of the quality of an-
notations they provide? How useful are noisy anno-
tations for the end task of creating a model? Is it pos-
sible to identify genuinely ambiguous examples via
annotator disagreements? How should these consid-
erations be treated with respect to intrinsic informa-
tiveness of examples? These questions also hint at a
strong connection to active learning, with annotation
quality as a new dimension to the problem.

As a challenging empirical testbed for these is-
sues, we consider the problem of sentiment classi-
fication on political blogs. Given a snippet drawn
from a political blog post, the desired output is a
polarity score that indicates whether the sentiment
expressed is positive or negative. Such an analysis
provides a view of the opinion around a subject of
interest, e.g., US Presidential candidates, aggregated
across the blogsphere. Recently, sentiment analy-
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sis is emerging as a critical methodology for social
media analytics. Previous research has focused on
classifying subjective-versus-objective expressions
(Wiebe et al., 2004), and also on accurate sentiment
polarity assignment (Turney, 2002; Yi et al., 2003;
Pang and Lee, 2004; Sindhwani and Melville, 2008;
Melville et al., 2009).

The success of most prior work relies on the qual-
ity of their knowledge bases; either lexicons defin-
ing the sentiment polarity of words around a topic
(Yi et al., 2003), or quality annotation data for sta-
tistical training. While manual intervention for com-
piling lexicons has been significantly lessened by
bootstrapping techniques (Yu and Hatzivassiloglou,
2003; Wiebe and Riloff, 2005), manual intervention
in the annotation process is harder to avoid. More-
over, the task of annotating blog-post snippets is
challenging, particularly in a charged political at-
mosphere with complex discourse spanning many
issues, use of cynicism and sarcasm, and highly
domain-specific and contextual cues. The downside
is that high-performance models are generally dif-
ficult to construct, but the upside is that annotation
and data-quality issues are more clearly exposed.

In this paper we aim to provide an empirical basis
for the use of data selection criteria in the context
of sentiment analysis in political blogs. Specifically,
we highlight the need for a set of criteria that can be
applied to screen untrustworthy annotators and se-
lect informative yet unambiguous examples for the
end goal of predictive modeling. In Section 2, we
first examine annotation data obtained by both the
expert and non-expert annotators to quantify the im-
pact of including non-experts. Then, in Section 3,
we quantify criteria that can be used to select anno-
tators and examples for selective sampling. Next, in
Section 4, we address the questions of whether the
noisy annotations are still useful for this task and
study the effect of the different selection criteria on
the performance of this task. Finally, in Section 5
we present conclusion and future work.

2 Annotating Blog Sentiment

This section introduces the Political Blog Snippet
(PBS) corpus, describes our annotation procedure
and the sources of noise, and gives an overview of
the experiments on political snippet sentiments.

2.1 The Political Blog Snippet Corpus

Our dataset comprises of a collection of snippets ex-
tracted from over 500,000 blog posts, spanning the
activity of 16,741 political bloggers in the time pe-
riod of Aug 15, 2008 to the election day Nov 4,
2008. A snippet was defined as a window of text
containing four consecutive sentences such that the
head sentence contained either the term “Obama”
or the term “McCain”, but both candidates were
not mentioned in the same window. The global
discourse structure of a typical political blog post
can be highly complicated with latent topics ranging
from policies (e.g., financial situation, economics,
the Iraq war) to personalities to voting preferences.
We therefore expected sentiment to be highly non-
uniform over a blog post. This snippetization proce-
dure attempts to localize the text around a presiden-
tial candidate with the objective of better estimat-
ing aggregate sentiment around them. In all, we ex-
tracted 631,224 snippets. For learning classifiers, we
passed the snippets through a stopword filter, pruned
all words that occur in less than 3 snippets and cre-
ated normalized term-frequency feature vectors over
a vocabulary of 3,812 words.

2.2 Annotation Procedure

The annotation process consists of two steps:
Sentiment-class annotation: In the first step, as

we are only interested in detecting sentiments re-
lated to the named candidate, the annotators were
first asked to mark up the snippets irrelevant to the
named candidate’s election campaign. Then, the an-
notators were instructed to tag each relevant snippet
with one of the following four sentiment polarity la-
bels: Positive, Negative, Both, or Neutral.

Alignment annotation: In the second step, the
annotators were instructed to mark up whether each
snippet was written to support or oppose the target
candidate therein named. The motivation of adding
this tag comes from our interest in building a classi-
fication system to detect positive and negative men-
tions of each candidate. For the snippets that do
not contain a clear political alignment, the annota-
tors had the freedom to mark it as neutral or simply
not alignment-revealing.

In our pilot study many bloggers were observed
to endorse a named candidate by using negative ex-
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pressions to denounce his opponent. Therefore, in
our annotation procedure, the distinction is made
between the coding of manifest content, i.e., sen-
timents “on the surface”, and latent political align-
ment under these surface elements.

2.3 Agreement Study

In this section, we compare the annotations obtained
from the on-site expert annotators and those from the
non-expert AMT annotators.

2.3.1 Expert (On-site) Annotation
To assess the reliability of the sentiment annota-

tion procedure, we conducted an agreement study
with three expert annotators in our site, using 36
snippets randomly chosen from the PBS Corpus.
Overall agreement among the three annotators on
the relevance of snippets is 77.8%. Overall agree-
ment on the four-class sentiment codings is 70.4%.

Analysis indicate that the annotators agreed better
on some codings than the others. For the task of
determining whether a snippet is subjective or not1,
the annotators agreed 86.1% of the time. For the
task of determining whether a snippet is positive or
negative, they agreed 94.9% of the time.

To examine which pair of codings is the most dif-
ficult to distinguish, Table 1 summarizes the confu-
sion matrix for the three pairs of annotator’s judge-
ments on sentiment codings. Each column describes
the marginal probability of a coding and the prob-
ability distribution for this coding being recognized
as another coding (including itself). As many blog-
gers use cynical expressions in their writings, the
most confusing cases occur when the annotators
have to determine whether a snippet is “negative”
or “neutral”. The effect of cynical expressions on

% Neu Pos Both Neg
Marginal 21.9 20.0 10.5 47.6
Neutral (Neu) 47.8 14.3 9.1 16.0
Positive (Pos) 13.0 61.9 18.2 6.0
Both (Both) 4.4 9.5 9.1 14.0
Negative (Neg) 34.8 14.3 63.6 64.0

Table 1: Summary matrix for the three on-site annotators’
sentiment codings.

1This is done by grouping the codings of Positive, Negative,
and Both into the subjective class.

sentiment analysis in the political domain is also re-
vealed in the second step of alignment annotation.
Only 42.5% of the snippets have been coded with
alignment coding in the same direction as its senti-
ment coding – i.e., if a snippet is intended to support
(oppose) a target candidate, it will contain positive
(negative) sentiment. The alignment coding task has
been shown to be reliable, with the annotators agree-
ing 76.8% of the time overall on the three-level cod-
ings: Support/Against/Neutral.

2.3.2 Amazon Mechanical Turk Annotation
To compare the annotation reliability between

expert and non-expert annotators, we further con-
ducted an agreement study with the annotators re-
cruited from Amazon Mechanical Turk (AMT). We
have collected 1,000 snippets overnight, with the
cost of 4 cents per annotation.

In the agreement study, a subset of 100 snippets
is used, and each snippet is annotated by five AMT
annotators. These annotations were completed by
25 annotators whom were selected based on the ap-
proval rate of their previous AMT tasks (over 95%
of times).2 The AMT annotators spent on average
40 seconds per snippet, shorter than the average of
two minutes reported by the on-site annotators. The
lower overall agreement on all four-class sentiment
codings, 35.3%, conforms to the expectation that the
non-expert annotators are less reliable. The Turk an-
notators also agreed less on the three-level alignment
codings, achieving only 47.2% of agreement.

However, a finer-grained analysis reveals that they
still agree well on some codings: The overall agree-
ment on whether a snippet is relevant, whether a
snippet is subjective or not, and whether a snippet
is positive or negative remain within a reasonable
range: 81.0%, 81.8% and 61.9% respectively.

2.4 Gold Standard
We defined the gold standard (GS) label of a snip-
pet in terms of the coding that receives the major-
ity votes.3 Column 1 in Table 2 (onsite-GS predic-

2Note that we do not enforce these snippets to be annotated
by the same group of annotators. However, Kappa statistics
requires to compute the chance agreement of each annotator.
Due to the violation of this assumption, we do not measure the
intercoder agreement with Kappa in this agreement study.

3In this study, we excluded 6 snippets whose annotations
failed to reach majority vote by the three onsite annotators.
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onsite-GS prediction onsite agreement AMT-GS prediction AMT agreement
Sentiment (4-class) 0.767 0.704 0.614 0.353
Alignment (3-level) 0.884 0.768 0.669 0.472
Relevant or not 0.889 0.778 0.893 0.810
Subjective or not 0.931 0.861 0.898 0.818
Positive or negative 0.974 0.949 0.714 0.619

Table 2: Average prediction accuracy on gold standard (GS) using one-coder strategy and inter-coder agreement.

tion) shows the ratio of the onsite expert annotations
that are consistent with the gold standard, and Col-
umn 3 (AMT-GS prediction) shows the same for the
AMT annotations. The level of consistency, i.e., the
percentage agreement with the gold standard labels,
can be viewed as a proxy of the quality of the an-
notations. Among the AMT annotations, Columns
2 (onsite agreement) and 4 (AMT agreement) show
the pair-wise intercoder agreement in the on-site ex-
pert and AMT annotations respectively.

The results suggest that it is possible to take one
single expert annotator’s coding as the gold standard
in a number of annotation tasks using binary clas-
sification. For example, there is a 97.4% chance
that one expert’s coding on the polarity of a snip-
pet, i.e., whether it is positive or negative, will be
consistent with the gold standard coding. However,
this one-annotator strategy is less reliable with the
introduction of non-expert annotators. Take the task
of polarity annotation as an example, the intercoder
agreement among the AMT workers goes down to
61.9% and the “one-coder” strategy can only yield
71.4% accuracy. To determine reliable gold stan-
dard codings, multiple annotators are still necessary
when non-expert annotators are recruited.

3 Annotation Quality Measures

Given the noisy AMT annotations, in this section we
discuss some summary statistics that are needed to
control the quality of annotations.

3.1 Annotator-level noise

To study the question of whether there exists a group
of annotators who tend to yield more noisy annota-
tions, we evaluate the accumulated noise level intro-
duced by each of the annotators. We define the noise
level as the deviation from the gold standard labels.
Similar to the measure of individual error rates pro-

posed in (Dawid and Skene, 1979), the noise level of
a particular annotator j, i.e., noise(annoj), is then
estimated by summing up the deviation of the an-
notations received from this annotator, with a small
sampling correction for chance disagreement. Anal-
ysis results demonstrate that there does exist a subset
of annotators who yield more noisy annotations than
the others. 20% of the annotators (who exceed the
noise level 60%) result in annotations that have 70%
disagreement with the gold standard.

In addition, we also evaluate how inclusion of
noisy annotators reduces the mean agreement with
Gold Standard. The plot (left) in Figure 1 plots the
mean agreement rate with GS over the subset of an-
notators that pass a noise threshold. These results
show that the data quality decreases with the inclu-
sion of more untrustworthy annotators.

3.2 Snippet-level sentiment ambiguity

We have observed that not all snippets are equally
easy to annotate, with some containing more am-
biguous expressions. To incorporate this concern in
the selection process, a key question to be answered
is whether there exist snippets whose sentiment is
substantially less distinguishable than the others.

We address this question by quantifying ambigu-
ity measures with the two key properties shown as
important in evaluating the controversiality of anno-
tation snippets (Carenini and Cheung, 2008): (1) the
strength of the annotators’ judgements and (2) the
polarity of the annotations. The measurement needs
to satisfy the constraints demonstrated in the follow-
ing snippets: (1) An example that has received three
positive codings are more ambiguous than that has
received five, and (2) an example that has received
five positive codings is more ambiguous than the one
that has received four positive and one negative cod-
ing. In addition, as some snippets were shown to
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Figure 1: Data quality (consistency with GS) as a function of noise level (left), sentiment ambiguity (middle), and
lexical uncertainty (right).

be difficult to tell whether they contain negative or
neutral sentiment, the measure of example ambigu-
ity has to go beyond controversiality and incorporate
codings of “neutral” and “both”.

To satisfy these constraints, we first enumerated
through the codings of each snippet and counted
the number of neutral, positive, both, and negative
codings: We added (1) one to the positive (nega-
tive) category for each positive (negative) coding,
(2) 0.5 to the neutral category with each neutral cod-
ing, and (3) 0.5 to both the positive and negative
categories with each both coding. The strength of
codings in the three categories, i.e., str+(snipi),
strneu(snipi), and str−(snipi), were then summed
up into str(snipi). The distribution were parame-
terized with

θ+(snipi) = str+(snipi)/str(snipi)
θneu(snipi) = strneu(snipi)/str(snipi)

θ−(snipi) = str−(snipi)/str(snipi)

We then quantify the level of ambiguity in the an-
notator’s judgement as follows:

H(θ(snipi)) = −θ+(snipi)log(θ+(snipi))
−θneu(snipi)log(θneu(snipi))
−θ−(snipi)log(θ−(snipi))

Amb(snipi) =
str(snipi)
strmax

×H(θ(snipi)),

where strmax is the maximum value of str among
all the snippets in the collection. The plot (middle)
in Figure 1 shows that with the inclusion of snip-
pets that are more ambiguous in sentiment disam-
biguation, the mean agreement with Gold Standard
decreases as expected.

3.3 Combining measures on multiple
annotations

Having established the impact of noise and senti-
ment ambiguity on annotation quality, we then set
out to explore how to integrate them for selection.
First, the ambiguity scores for each of the snippets
are reweighed with respect to the noise level.

w(snipi) =
∑

j

noise(annoj)× (
1
e
)θ(ij)

Conf(snipi) =
w(snipi)∑
iw(snipi)

×Amb(snipi),

where θ(ij) is an indicator function of whether a
coding of snipi from annotator j agrees with its gold
standard coding. w(expi) is thus computed as the
aggregated noise level of all the annotators who la-
beled the ith snippet.

To understand the baseline performance of the se-
lection procedure, we evaluate the the true predic-
tions versus the false alarms resulting from using
each of the quality measures separately to select an-
notations for label predictions. In this context, a true
prediction occurs when an annotation suggested by
our measure as high-quality indeed matches the GS
label, and a false alarm occurs when a high quality
annotation suggested by our measure does not match
the GS label. The ROC (receiver operating charac-
teristics) curves in Figure 2 reflect all the potential
operating points with the different measures.

We used data from 2,895 AMT annotations on
579 snippets, including 63 snippets used in the
agreement study. This dataset is obtained by filter-
ing out the snippets with their GS labels as 1 (“ir-
relevant”) and the snippets that do not receive any
coding that has more than two votes.
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(b) Match Prediction After Removing Divisive Snippets
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Figure 2: Modified ROC curves for quality measures: (a) before removing divisive snippets, (b) after removing divisive
snippets. The numbers shown with the ROC curve are the values of the aggregated quality measure (1-confusion).

Initially, three quality measures are tested: 1-
noise, 1-ambiguity, 1-confusion. Examination of the
snippet-level sentiment codings reveals that some
snippets (12%) result in “divisive” codings, i.e.,
equal number of votes on two codings.

The ROC curves in Figure 2 (a) plot the base-
line performance of the different quality measures.
Results show that before removing the subset of di-
visive snippets, the only effective selection criteria
is obtained by monitoring the noise level of anno-
tators. Figure 2 (b) plots the performance after re-
moving the divisive snippets. In addition, our am-
biguity scores are computed under two settings: (1)
with only the polar codings (pos/neg), and (2) with
all the four codings (all4codings). The ROC curves
reveal that analyzing only the polar codings is not
sufficient for annotation selection.

The results also demonstrate that confusion, an in-
tegrated measure, does perform best. Confusion is
just one way of combining these measures. One may
chose alternative combinations – the results here pri-
marily illustrate the benefit of considering these dif-
ferent dimensions in tandem. Moreover, the differ-
ence between plot (a) and (b) suggests that removing
divisive snippets is essential for the quality measures
to work well. How to automatically identify the di-
visive snippets is therefore important to the success
of the annotation selection process.

3.4 Effect of lexical uncertainty on divisive
snippet detection

In search of measures that can help identify the di-
visive snippets automatically, we consider the inher-
ent lexical uncertainty of an example. Uncertainty
Sampling (Lewis and Catlett, 1994) is one common
heuristic for the selection of informative instances,
which select instances that the current classifier is
most uncertain about. Following on these lines we
measure the uncertainty on instances, with the as-
sumption that the most uncertain snippets are likely
to be divisive.

In particular, we applied a lexical sentiment clas-
sifier (c.f. Section 4.1.1) to estimate the likelihood of
an unseen snippet being of positive or negative sen-
timent, i.e., P+(expi), P−(expi), by counting the
sentiment-indicative word occurrences in the snip-
pet. As in our dataset the negative snippets far ex-
ceed the positive ones, we also take the prior proba-
bility into account to avoid class bias. We then mea-
sure lexical uncertainty as follows.

Deviation(snipi) =
1
C
× |(log(P (+))−log(P (−)))

+(log(P+(snipi))−log(P−(snipi)))|,
Uncertainty(snipi) =1−Deviation(snipi),

where class priors, P (+) and P (−), are estimated
with the dataset used in the agreement studies, and
C is the normalization constant.

We then examine not only the utility of lexical un-
certainty in identifying high-quality annotations, but
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Classifier Accuracy AUC
LC 49.60 0.614
NB 83.53 0.653
SVM 83.89 0.647
Pooling 84.51 0.700

Table 3: Accuracy of sentiment classification methods.

also the utility of such measure in identifying divi-
sive snippets. Figure 1 (right) shows the effect of
lexical uncertainty on filtering out low-quality anno-
tations. Figure 3 demonstrates the effect of lexical
uncertainty on divisive snippet detection, suggesting
the potential use of lexical uncertainty measures in
the selection process.

Lexical Uncertainty

Div
isiv

e S
nip

pet
 De

tec
tion

 Ac
cur

acy

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

Figure 3: Divisive snippet detection accuracy as a func-
tion of lexical uncertainty.

4 Empirical Evaluation

The analysis in Sec. 3 raises two important ques-
tions: (1) how useful are noisy annotations for sen-
timent analysis, and (2) what is the effect of online
annotation selection on improving sentiment polar-
ity classification?

4.1 Polarity Classifier with Noisy Annotations

To answer the first question raised above, we train
classifiers based on the noisy AMT annotations to
classify positive and negative snippets. Four dif-
ferent types of classifiers are used: SVMs, Naive
Bayes (NB), a lexical classifier (LC), and the lexi-
cal knowledge-enhanced Pooling Multinomial clas-
sifier, described below.

4.1.1 Lexical Classifier
In the absence of any labeled data in a domain,

one can build sentiment-classification models that

rely solely on background knowledge, such as a lex-
icon defining the polarity of words. Given a lexi-
con of positive and negative terms, one straightfor-
ward approach to using this information is to mea-
sure the frequency of occurrence of these terms in
each document. The probability that a test document
belongs to the positive class can then be computed
as P (+|D) = a

a+b ; where a and b are the number
of occurrences of positive and negative terms in the
document respectively. A document is then classi-
fied as positive if P (+|D) > P (−|D); otherwise,
the document is classified as negative. For this study,
we used a lexicon of 1,267 positive and 1,701 nega-
tive terms, as labeled by human experts.

4.1.2 Pooling Multinomials
The Pooling Multinomials classifier was intro-

duced by the authors as an approach to incorpo-
rate prior lexical knowledge into supervised learn-
ing for better text classification. In the context
of sentiment analysis, such lexical knowledge is
available in terms of the prior sentiment-polarity of
words. Pooling Multinomials classifies unlabeled
examples just as in multinomial Naı̈ve Bayes clas-
sification (McCallum and Nigam, 1998), by predict-
ing the class with the maximum likelihood, given by
argmaxcjP (cj)

∏
i P (wi|cj); where P (cj) is the

prior probability of class cj , and P (wi|cj) is the
probability of word wi appearing in a snippet of
class cj . In the absence of background knowledge
about the class distribution, we estimate the class
priors P (cj) solely from the training data. However,
unlike regular Naı̈ve Bayes, the conditional prob-
abilities P (wi|cj) are computed using both the la-
beled examples and the lexicon of labeled features.
Given two models built using labeled examples and
labeled features, the multinomial parameters of such
models can be aggregated through a convex combi-
nation, P (wi|cj) = αPe(wi|cj)+(1−α)Pf (wi|cj);
where Pe(wi|cj) and Pf (wi|cj) represent the proba-
bility assigned by using the example labels and fea-
ture labels respectively, and α is the weight for com-
bining these distributions. The weight indicates a
level of confidence in each source of information,
and can be computed based on the training set accu-
racy of the two components. The derivation and de-
tails of these models are not directly relevant to this
paper, but can be found in (Melville et al., 2009).
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Q1 Q2 Q3 Q4
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

Noise 84.62% 0.688 74.36% 0.588 74.36% 0.512 79.49% 0.441
Ambiguity 84.21% 0.715 78.95% 0.618 68.42% 0.624 84.21% 0.691
Confusion 82.50% 0.831 82.50% 0.762 80.00% 0.814 80.00% 0.645

Table 4: Effect of annotation selection on classification accuracy.

4.1.3 Results on Polarity Classification

We generated a data set of 504 snippets that had
3 or more labels for either the positive or negative
class. We compare the different classification ap-
proaches using 10-fold cross-validation and present
our results in Table 3. Results show that the Pool-
ing Multinomial classifier, which makes predictions
based on both the prior lexical knowledge and the
training data, can learn the most from the labeled
data to classify sentiments of the political blog snip-
pets. We observe that despite the significant level
of noise and ambiguity in the training data, using
majority-labeled data for training still results in clas-
sifiers with reasonable accuracy.

4.2 Effect of Annotation Selection

We then evaluate the utility of the quality measures
in a randomly split dataset (with 7.5% of the data in
the test set). We applied each of the measures to rank
the annotation examples and then divide them into
4 equal-sized training sets based on their rankings.
For example, Noise-Q1 contains only the least noisy
quarter of annotations and Q4 the most noisy ones.

Results in Table 4 demonstrate that the classi-
fication performance declines with the decrease of
each quality measure in general, despite exceptions
in the subset with the highest sentiment ambiguity
(Ambiguity-Q4), the most noisy subset Q4 (Noise-
Q4), and the subset yielding less overall confusion
(Confusion-Q2). The results also reveal the benefits
of annotation selection on efficiency: using the sub-
set of annotations predicted in the top quality quar-
ter achieves similar performance as using the whole
training set. These preliminary results suggest that
an active learning scheme which considers all three
quality measures may indeed be effective in improv-
ing label quality and subsequent classification accu-
racy.

5 Conclusion

In this paper, we have analyzed the difference be-
tween expert and non-expert annotators in terms of
annotation quality, and showed that having a single
non-expert annotator is detrimental for annotating
sentiment in political snippets. However, we con-
firmed that using multiple noisy annotations from
different non-experts can still be very useful for
modeling. This finding is consistent with the sim-
ulated results reported in (Sheng et al., 2008). Given
the availability of many non-expert annotators on-
demand, we studied three important dimensions to
consider when acquiring annotations: (1) the noise
level of an annotator compared to others, (2) the in-
herent ambiguity of an example’s class label, and
(3) the informativeness of an example to the current
classification model. While the first measure has
been studied with annotations obtained from experts
(Dawid and Skene, 1979; Clemen and Reilly, 1999),
the applicability of their findings on non-expert an-
notation selection has not been examined.

We showed how quality of labels can be improved
by eliminating noisy annotators and ambiguous ex-
amples. Furthermore, we demonstrated the quality
measures are useful for selecting annotations that
lead to more accurate classification models. Our re-
sults suggest that a good active learning or online
learning scheme in this setting should really con-
sider all three dimensions. The way we use to in-
tegrate the different dimensions now is still prelimi-
nary. Also, our empirical findings suggest that some
of the dimensions may have to be considered sepa-
rately. For example, due to the divisive tendency of
the most informative examples, these examples may
have to be disregarded in the initial stage of anno-
tation selection. Also, the way we use to combine
these measures is still preliminary. The design and
testing of such schemes are avenues for future work.
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Abstract

This paper presents pilot work integrating ma-
chine labeling and active learning with human
annotation of data for the language documen-
tation task of creating interlinearized gloss
text (IGT) for the Mayan language Uspanteko.
The practical goal is to produce a totally an-
notated corpus that is as accurate as possible
given limited time for manual annotation. We
describe ongoing pilot studies which examine
the influence of three main factors on reduc-
ing the time spent to annotate IGT: sugges-
tions from a machine labeler, sample selection
methods, and annotator expertise.

1 Introduction

Languages are dying at the rate of two each month.
By the end of this century, half of the approxi-
mately 6000 extant spoken languages will cease to
be transmitted effectively from one generation of
speakers to the next (Crystal, 2000). Under this
immense time pressure, documentary linguists seek
to preserve a record of endangered languages while
there are still communities of speakers to work with.
Many language documentation projects target lan-
guages about which our general linguistic knowl-
edge is nonexistent or much less than for more
widely-spoken languages. The vast majority of these
are individual or small-group endeavors on small
budgets with little or no institutional guidance by
the greater documentary linguistic community. The
focus in such projects is often first on collection of
data (documentation), with a following stage of lin-
guistic analysis and description. A key part of the
analysis process, detailed linguistic annotation of the
recorded texts, is a time-consuming and tedious task

usually occurring late in the project, if it occurs at
all.

Text annotation typically involves producing in-
terlinearized glossed text (IGT), labeling for mor-
phology, parts-of-speech, etc., which greatly facil-
itates further exploration and analysis of the lan-
guage. The following is IGT for the phrase xelch
li from the Mayan language Uspanteko:1

(1) x-
COM-

el
salir

-ch
-DIR

li
DEM

Spanish: ‘Salio entonces.’ English:‘Then he left.’

The levels of analysis include morpheme segmenta-
tion, transliteration of stems, and labeling of stems
and morphemes with tags, some corresponding to
parts-of-speech and others to semantic distinctions.

There is no single standard format for IGT. The
IGT systems developed by documentation projects
tend to be idiosyncratic: they may be linguistically
well-motivated and intuitive, but they are unlikely to
be compatible or interchangeable with systems de-
veloped by other projects. They may lack internal
consistency as well. Nonetheless, IGT in a read-
ily accessible format is an important resource that
can be used fruitfully by linguists to examine hy-
potheses on novel data (e.g. Xia and Lewis (2007;
2008), Lewis and Xia (2008)). Furthermore, it can
be used by educators and language activists to create
curriculum material for mother language education
and promote the survival of the language.

Despite the urgent need for such resources, IGT
annotations are time consuming to create entirely by
hand, and both human and financial resources are
extremely limited in this domain. Thus, language

1KEY: COM=completive aspect, DEM=demonstrative,
DIR=directional
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documentation presents an interesting test case and
an ideal context for use of machine labeling and ac-
tive learning. This paper describes a series of ex-
periments designed to assess this promise in a re-
alistic documentation context: creation of IGT for
the Mayan language Uspanteko. We systematically
compare varying degrees of machine involvement in
the development of IGT, from minimally involved
situations where examples for tagging are selected
sequentially to active learning situations where the
machine learner selects samples for human tagging
and suggests labels. We also discuss the challenges
faced by linguists in having to learn, transcribe, ana-
lyze, and annotate a language almost simultaneously
and discuss whether machine involvement reduces
or compounds those challenges.

In the experiments, two documentary linguists an-
notate IGT for Uspanteko texts using different lev-
els of support from a machine learned classifier. We
consider the interaction of three main conditions: (1)
sequential, random, or uncertainty sampling for re-
questing labels from an annotator, (2) suggestions or
no suggestions from a machine labeler, and (3) ex-
pert versus non-expert annotator. All annotator deci-
sions are timed, enabling the actual time cost of an-
notation to be measured within the context of each
condition. This paper describes the Uspanteko data
set we adapted for the experiments, expands on the
choices described above, and reports on preliminary
results from our ongoing annotation experiments.

2 Data: Uspanteko IGT

This section describes the Uspanteko corpus used
for the experiments, our clean-up of the corpus, and
the specific task—labeling part-of-speech and gloss
tags—addressed by the experiments.

2.1 OKMA Uspanteko corpus

Our primary dataset is a corpus of texts (Pixabaj et
al., 2007) in the Mayan language Uspanteko that
were collected, transcribed, translated (into Span-
ish) and annotated as part of the OKMA language
documentation project.2 Uspanteko, a member of
the K’ichee’ branch of the Mayan language family,
is spoken by approximately 1320 people in central
Guatemala (Richards, 2003).

2http://www.okma.org

The corpus contains 67 texts, 32 of them glossed.
Four textual genres are represented in the glossed
portion of the corpus: oral histories (five texts) usu-
ally have to do with the history of the village and the
community, personal experience texts (five texts) re-
count events from the lives of individual people in
the community, and stories (twenty texts) are pri-
marily folk stories and children’s stories. The corpus
also contains one recipe and one advice text in which
a speaker discusses what the community should be
doing to better preserve and protect the environment.

The transcriptions are based on spoken data, with
attendant dysfluencies, repetitions, false starts, and
incomplete sentences. Of the 284,455 words, 74,298
are segmented and glossed. This is a small dataset
by computational linguistics standards but rather
large for a documentation project.

2.2 Interlinearized Glossed Text
Once recordings have been made, the next tasks are
typically to produce translations and transcription of
the audio. Transcription is a complex and difficult
process, often involving the development of an or-
thography for the language in parallel. The product
of the transcription is raw text like the Uspanteko
sample shown below (text 068, clauses 283-287):

Non li in yolow rk’il kita’
tinch’ab’ex laj inyolj iin, si no ke
laj yolj jqaaj tinch’ab’ej i non qe li
xk’am rib’ chuwe, non qe li lajori
non li iin yolow rk’ilaq.3

Working with the transcription, the translation, and
any previously-attained knowledge about the lan-
guage, the linguist next makes decisions about the
division of words into morphemes and the contribu-
tions made by individual morphemes to the meaning
of the word or of the sentence. IGT efficiently brings
together and presents all of this information.

In the traditional four-line IGT format, mor-
phemes appear on one line and glosses for those
morphemes on the next. The gloss line includes both
labels for grammatical morphemes (e.g. PL or COM)
and translations of stems (e.g. salir or ropa). See
the following example from Uspanteko:4

3Spanish: Solo asi yo aprendi con él. No le hable en el
idioma mio. Si no que en el idioma su papá le hablo. Y solo asi
me fui acostumbrando. Solo asi ahora yo platico con ellos.

4KEY: E1S=singular first person ergative, INC=incompletive,
PART=particle, PREP=preposition, PRON=pronoun, NEG=negation,
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(2) Kita’ tinch’ab’ej laj inyolj iin

(3) kita’
NEG
PART

t-in-ch’abe-j
INC-E1S-hablar-SC
TAM-PERS-VT-SUF

laj
PREP
PREP

in-yolj
E1S-idioma
PERS-S

iin
yo
PRON

‘No le hablo en mi idioma.’
(‘I don’t speak to him in my language.’)

Most commonly, IGT is presented in a four-tier
format. The first tier (2) is the raw, unannotated
text. The second (first line of (3)) is the same text
with each word morphologically segmented. The
third tier (second line of (3)), the gloss line, is a
combination of Spanish translations of the Uspan-
teko stems and gloss tags representing the grammat-
ical information encoded by affixes and stand-alone
morphemes. The fourth tier (fourth line of (3)) is a
translation in the target language of documentation.

Some interlinear texts include other project-
defined tiers. OKMA uses a fifth tier (third line of
(3)), described as the word-class line. This line is
a mix of traditional POS tags, positional labels (e.g.
suffix, prefix), and broader linguistic categories like
TAM for tense-aspect-mood.

2.3 Cleaning up the OKMA annotations
The OKMA annotations were created using Shoe-
box,5 a standard tool used by documentary linguists
for lexicon management and IGT creation. To de-
velop a corpus suitable for these studies, it was nec-
essary to put considerable effort into normalizing
the original OKMA source annotations. Varied lev-
els of linguistic training of the original annotators
led to many inconsistencies in the original annota-
tions. Also, Shoebox (first developed in 1987) uses
a custom, pre-XML whitespace delimited data for-
mat, making normalization especially challenging.
Finally, not all of the texts are fully annotated. Al-
most half of the 67 texts are just transcriptions, sev-
eral texts are translated but not further analyzed, and
several others are only partially annotated at text
level, clause level, word level, or morpheme level. It
was thus necessary to identify complete texts for use
in our experiments. Some missing labels in nearly-
complete texts were filled in by the expert annotator.

A challenge for representing IGT in a machine-
readable format is maintaining the links between

S=sustantivo (noun), SC=category suffix, SUF=suffix,
TAM=tense/aspect/mood, VT=transitive verb

5http://www.sil.org/computing/shoebox/

the source text morphemes in the second tier and
the morpheme-by-morpheme glosses in the third
tier. The standard Shoebox output format, for ex-
ample, enforces these links through management of
the number of spaces between items in the output.
To address this, we converted the cleaned annota-
tions into IGT-XML (Palmer and Erk, 2007) with
help from the Shoebox/Toolbox interfaces provided
in the Natural Language Toolkit (Robinson et al.,
2007). Automating the transformation from Shoe-
box format to IGT-XML’s hierarchical format re-
quired cleaning up tier-to-tier alignment and check-
ing segmentation in some cases where morphemes
and glosses were misaligned, as in (5) below.6

(4) Non li in yolow rk’il

(5) Non
DEM
DEM

li
DEM
DEM

in
yo
PRON

yolow
platicar
VI

r-k’il
AP
SUF

E3s.-SR
PERS SREL

’Solo asi yo aprendi con él.’

Here, the number of elements in the morpheme tier
(first line of (5)) does not match the number of el-
ements in the gloss tier (second line of (5)). The
problem is a misanalysis of yolow: it should be
segmented yol-owwith the gloss platicar-AP.
Automating this transformation has the advantage of
identifying such inconsistencies and errors.

There also were many low-level issues that had
to be handled, such as checking and enforcing con-
sistency of tags. For example, the tag E3s. in the
gloss tier of (5) is a typo; the correct tag is E3S. The
annotation tool used in these studies does not allow
such inconsistencies to occur.

2.4 Target labels
There are two main tasks in producing IGT: word
segmentation (determination of stems and affixes)
and glossing each segment. Stems and affixes each
get a different type of gloss: the gloss of a stem is
typically its translation whereas the gloss of an affix
is a label indicating its grammatical role. The addi-
tional word-class line provides part-of-speech infor-
mation for the stems, such as VT for salir.

Complete prediction of segmentation, gloss trans-
lations and labels is our ultimate goal for aiding IGT

6KEY: AP=antipassive, DEM=demonstrative, E3S=singular third
person ergative, PERS=person marking, SR/SREL=relational noun,
VI=intransitive verb
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creation with automation. Here, we study the poten-
tial for improving annotation efficiency for the more
limited task of predicting the gloss label for each af-
fix and the part-of-speech label for each stem. Thus,
the experiments aim to produce a single label for
each morpheme. We assume that words have been
pre-segmented and we ignore the gloss translations.

The target representation in these studies is an ad-
ditional tier which combines gloss labels for affixes
and stand-alone morphemes with part-of-speech la-
bels for stems. Example (6) repeats the clause in (4),
adding this new combined tier. Stem labels are given
in bold text, and affix labels in plain text.

(6) Non li in yolow rk’il

(7) Non
DEM

li
DEM

in
PRON

yol-ow
VI-AP

r-k’il
E3S-SR

‘Solo asi yo aprendi con él.’

A simple procedure was used to create the new tier.
For each morpheme, if a gloss label (such as DEM
or E3S) appears on the gloss line (second line of
(3)), we select that label. If what appears is a stem
translation, we instead select the part-of-speech la-
bel from the next tier down (third line of (3)).

In the entire corpus, sixty-nine different labels
appear in this combined tier. The following table
shows the five most common part-of-speech labels
(left) and the five most common gloss labels (right).
The most common label, S, accounts for 11.3% of
the tokens in the corpus.

S noun 7167 E3S sg.3p. ergative 3433
ADV adverb 6646 INC incompletive 2835
VT trans. verb 5122 COM completive 2586
VI intrans. verb 3638 PL plural 1905
PART particle 3443 SREL relational noun 1881

3 Integrated annotation and automation

The experimental framework described in this sec-
tion is designed to model and evaluate real-time inte-
gration of human annotation, active learning strate-
gies, and output from machine-learned classifiers.
The task is annotation of morpheme-segmented texts
from a language documentation project (sec. 2).

3.1 Tools and resources

Integrating automated support and human annota-
tion in this context requires careful coordination of

three components: 1) presenting examples to the an-
notator and storing the annotations, 2) training and
evaluation of tagging models using data labeled by
the annotator, and 3) selecting new examples for an-
notation. The processes are managed and coordi-
nated using the OpenNLP IGT Editor.7 The anno-
tation component of the tool, and in particular the
user interface, is built on the Interlinear Text Editor
(Lowe et al., 2004).

For tagging we use a strong but simple standard
classifier. There certainly are many other modeling
strategies that could be used, for example a condi-
tional random field (as in Settles and Craven (2008)),
or a model that deals differently with POS labels and
morpheme gloss labels. Nonetheless, a documen-
tary linguistics project would be most likely to use a
straightforward, off-the-shelf labeler, and our focus
is on exploring different annotation approaches in a
realistic documentation setting rather than building
an optimal classifier. To that end, we use a standard
maximum entropy classifier which predicts the label
for a morpheme based on the morpheme itself plus
a window of two morphemes before and after. Stan-
dard features used in part-of-speech taggers are ex-
tracted from the morpheme to help with predicting
labels for previously unseen stems and morphemes.

3.2 Annotators and annotation procedures

A practical goal of these studies is to explore best
practices for using automated support to create fully-
annotated texts of the highest quality possible within
fixed resource limits. For producing IGT, one of the
most valuable resources is the time of a linguist with
language-specific expertise. Documentary projects
may also (or instead) have access to a trained lin-
guist without prior experience in the language. We
compare results from two annotators with different
levels of exposure to the language. Both are trained
linguists who specialize in language documentation
and have extensive field experience.8

The first, henceforth referred to as the expert
annotator, has worked extensively on Uspanteko,
including writing a grammar of the language and

7http://igt.sourceforge.net/
8It should be noted that these are pilot studies. With just

two annotators, the annotation comparisons are suggestive but
not conclusive. Even so, this scenario accurately reflects the
resource limitations encountered in documentation projects.
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contributing to the publication of an Uspanteko-
Spanish dictionary (Ángel Vicente Méndez, 2007).
She is a native speaker of K’ichee’, a closely-related
Mayan language. The second annotator, the non-
expert annotator, is a doctoral student in language
documentation with no prior experience with Us-
panteko and only limited previous knowledge of
Mayan languages. Throughout the annotation pro-
cess, the non-expert annotator relied heavily on the
Uspanteko-Spanish dictionary. Both annotators are
fluent speakers of Spanish, the target translation and
glossing language for the OKMA texts.

In many annotation projects, labeling of training
data is done with reference to a detailed annotation
manual. In the language documentation context, a
more usual situation is for the annotator(s) to work
from a set of agreed-upon conventions but without
strict annotation guidelines. This is not because doc-
umentary linguists lack motivation or discipline but
simply because many aspects of the language are un-
known and the analysis is constantly changing.

In the absence of explicit written annotation
guidelines, we use an annotation training process for
the annotators to learn the OKMA annotation con-
ventions. Two seed sets of ten clauses each were se-
lected to be used both for human annotation training
and for initial classifier training. The first ten clauses
of the first text in the training data were used to seed
model training for the sequential selection cases (see
3.4). The second set of ten were randomly selected
from the entire corpus and used to seed model train-
ing for both random and uncertainty sampling.

These twenty clauses were used to provide initial
guidance to the annotators. With the aid of a list of
possible labels and the grammatical categories they
correspond to, each annotator was asked to label the
seed clauses, and these labels were compared to the
gold standard labels. Annotators were told which
labels were correct and which were incorrect, and
the process was repeated until all morphemes were
correctly labeled. In some cases during this training
phase, the correct label for a morpheme was sup-
plied to the annotator after several incorrect guesses.

3.3 Suggesting labels
We consider two situations with respect to the con-
tribution of the classifier: a suggest condition in
which the labels predicted by the machine learner

are shown to the annotator as she begins labeling a
selected clause, and a no-suggest condition in which
the annotator does not see the predicted labels.

In the suggest cases, the annotator is shown the la-
bel assigned the greatest likelihood by the tagger as
well as a list of several highly-likely labels, ranked
according to likelihood. To be included on this list,
a label must be assigned a probability greater than
half that of the most-likely label. In the no-suggest
cases, the annotator has access to a list of the la-
bels previously seen in the training data for a given
morpheme, ranked in order of frequency of occur-
rence with the morpheme in question; this is similar
to the input an annotator gets while glossing texts in
Shoebox/Toolbox. Specifically, Shoebox/Toolbox
presents previously seen glosses and labels for a
given morpheme in alphabetic order.

3.4 Sample selection

We consider three methods of selecting examples
for annotation–sequential (seq), random (rand), and
uncertainty sampling (al)–and the performance of
each method in both the suggest and the no-suggest
setups. For uncertainty sampling, we measure un-
certainty of a clause as the average entropy per mor-
pheme (i.e., per labeling decision).

3.5 Measuring annotation cost

Not all examples take the same amount of effort to
annotate. Even so, the bulk of the literature on active
learning assumes some sort of unit cost to determine
the effectiveness of different sample selection strate-
gies. Examples of unit cost measurements include
the number of documents in text classification, the
number of sentences in part-of-speech tagging (Set-
tles and Craven, 2008), or the number of constituents
in parsing (Hwa, 2000). These measures are conve-
nient for performing active learning simulations, but
awareness has grown that they are not truly repre-
sentative measures of the actual cost of annotation
(Haertel et al., 2008a; Settles et al., 2008), with Ngai
and Yarowsky (2000) being an early exception to the
unit-cost approach. Also, Baldridge and Osborne
(2004) use discriminants in parse selection, which
are annotation decisions that they later showed cor-
relate with timing information (Baldridge and Os-
borne, 2008).

The cost of annotation ultimately comes down to
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money. Since annotator pay may be variable but will
(under standard assumptions) be constant for a given
annotator, the best approximation of likely cost sav-
ings is to measure the time taken to annotate under
different levels of automated support. This is es-
pecially important in sample selection and its inter-
action with automated suggestions: active learning
seeks to find more informative examples, and these
will most likely involve more difficult decisions, de-
creasing annotation quality and/or increasing anno-
tation time (Hachey et al., 2005). Thus, we measure
cost in terms of the time taken by each annotator on
each example. This allows us to measure the actual
time taken to produce a given labeled data set, and
thus compare the effectiveness of different levels of
automated support plus their interaction with anno-
tators of different levels of expertise.

Recent work shows that paying attention to pre-
dicted annotation cost in sample selection itself can
increase the effectiveness of active learning (Settles
et al., 2008; Haertel et al., 2008b). Though we have
not explored cost-sensitive selection here, the sce-
nario described here is an appropriate test ground for
it: in fact, the results of our experiments, reported in
the next section, provide strong evidence for a real
natural language annotation task that active learning
selection with cost-sensitivity is indeed sub-optimal.

4 Discussion

This section presents and discusses preliminary re-
sults from the ongoing annotation experiments. The
Uspanteko corpus was split into training, develop-
ment, and held-out test sets, roughly 50%, 25%,
and 25%. Specifically, the training set of 21 texts
contains 38802 words, the development set of 5
texts contains 16792 words, and the held-out test
set, 6 texts, contains 18704 words. These are small
datasets, but the size is realistic for computational
work on endangered languages.

When measuring the performance of annotators,
factors like fatigue, frustration, and especially the
annotator’s learning process must be considered.
Annotators improve as they see more examples (es-
pecially the non-expert annotator). To minimize the
impact of the annotator’s learning process on the re-
sults, annotation is done in rounds. Each round con-
sists of ten clauses from each of the six experimental
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Figure 1: Average annotation time (in seconds per mor-
pheme) over annotation rounds, averaged over all six con-
ditions for each annotator.

cases for each annotator. The newly-labeled clauses
are then added to the labeled training data, and a new
tagging model is trained on the updated training set
and evaluated on the development set. Both annota-
tors have completed fifty-one rounds of annotation
so far, labeling 510 clauses for each of the six ex-
perimental conditions. The average number of mor-
phemes labeled is 3059 per case. Because the anno-
tation experiments are ongoing, we discuss results in
terms of the trends seen thus far.

4.1 Annotator speed

The expert annotator showed a small increase in
speed after an initial familiarization period, and the
non-expert showed a dramatic increase. Figure 1
plots the number of seconds taken per morpheme
over the course of annotation, averaged over all six
conditions for each annotator. The slowest, fastest,
and mean rates, in seconds per morpheme, for the
expert annotator were 12.60, 1.89, and 4.14, respec-
tively. For the non-expert, they were 59.71, 1.90,
and 8.03.

4.2 Accuracy of model on held-out data

Table 1 provides several measures of the current
state of annotation in all 12 conditions after 51
rounds of annotation. The sixth column, labeled
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Anno Suggest Select Time (sec) #Morphs Model Accuracy Total Accuracy of Annotation
NonExp N Seq 23739.79 3314 63.28 63.92
NonExp N Rand 22721.11 2911 68.36 68.69
NonExp N AL 23755.71 2911 68.26 67.84
NonExp Y Seq 21514.05 2887 66.55 66.89
NonExp Y Rand 22189.68 3002 68.41 68.73
NonExp Y AL 25731.57 2750 67.63 67.30
Exp N Seq 11862.39 3354 61.15 61.88
Exp N Rand 11665.10 3043 64.60 64.91
Exp N AL 13894.14 3379 66.74 66.47
Exp Y Seq 11758.74 2892 61.12 61.48
Exp Y Rand 11426.85 2979 60.13 60.57
Exp Y AL 16253.40 3296 63.30 63.15

Table 1: After 51 rounds of annotation: ModelAcc=accuracy on development set, TotalAnnoAcc=accuracy of fully-labeled corpus

ModelAcc, shows the accuracy of models on the
development data. This represents a unit cost as-
sumption at the clause level: measured this way, the
results would suggest that the non-expert was best
served by random selection, with no effect from ma-
chine suggestions. For the expert, they suggest ac-
tive learning without suggestions is best, and that
suggestions actually hurt effectiveness.

4.3 Accuracy of fully-labeled corpus
We are particularly concerned with the question of
how to develop a fully-labeled corpus with the high-
est level of accuracy, given a finite set of resources.
Thus, we combine the portion of the training set la-
beled by the human annotator with the results of tag-
ging the remainder of the training set with the model
trained on those annotations. The rightmost column
of Table 1, labeled Total Accuracy of Annotation,
shows the accuracy of the fully labeled training set
(part human, part machine labels) after 51 rounds.
These accuracies parallel the model accuracies: ran-
dom selection is best for the non-expert annotator,
and uncertainty selection is best for the expert.

Since this tagging task involves labeling mor-
phemes, a clause cost assumption is not ideal—e.g.,
active learning tends to select longer clauses and
thereby obtains more labels. To reflect this, a sub-
clause cost can help: here we use the number of
morphemes annotated. The column labeled Tokens
in Table 2 shows the total accuracy achieved in each
condition when human annotation ceases at 2750
morphemes. The figure in parentheses is the cumu-
lative annotation time at the morpheme cut-off point.
Here, the non-expert does best: he took great care
with the annotations and was clearly not tempted to

Anno Suggest Select Time Tokens (time)
(11427 sec) (2750 morphs)

NonExp N Seq 55.01 59.80 (21678 secs)
NonExp N Rand 59.95 68.68 (22069 secs)
NonExp N AL 59.86 67.70 (22879 secs)
NonExp Y Seq 60.27 66.79 (21053 secs)
NonExp Y Rand 62.96 68.38 (21194 secs)
NonExp Y AL 59.18 67.30 (25732 secs)
Exp N Seq 61.21 59.18 (10110 secs)
Exp N Rand 64.92 64.42 (10683 secs)
Exp N AL 65.72 65.74 (11826 secs)
Exp Y Seq 61.47 61.47 (11436 secs)
Exp Y Rand 60.57 61.16 (10934 secs)
Exp Y AL 61.54 62.87 (13957 secs)

Table 2: For given cost, accuracy of fully-labeled corpus.

accept erroneous suggestions from the machine la-
beler. In contrast, the expert does seem to have ac-
cepted many bad machine suggestions.

Morpheme unit cost is more fine-grained than
clause-level cost, but it hides the fact that the ex-
pert annotator needed far less time to produce a cor-
pus of higher overall labeled quality than the non-
expert. This can be seen in the Time column of
Table 2, which gives the total annotation accuracy
when 11427 seconds are alloted for human label-
ing. The expert annotator achieved the highest accu-
racy for total labeling of the training set using active
learning without machine label suggestions. Active
learning helps the non-expert as well, but his best
condition is random selection with machine labels.

4.4 Annotator accuracy by round

Active learning clearly selects harder examples that
hurt the non-expert’s performance. To see this
clearly, we measured the accuracy of the annotators’
labels for each round of each experimental setup,
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Figure 2: Single round accuracy per round for each experiment type by: (a) non-expert annotator, (b) expert annotator

given in Fig. 2. It is not clear at this stage whether
the tag suggestions by the machine labeler are help-
ful to human annotation. It is useful to compare the
cases where the machine learner is not involved in
example selection (i.e. random and sequential) to
uncertainty sampling, which does involve the ma-
chine learner. One thing that is apparent is that when
active learning is used to select samples for annota-
tion, both the expert and non-expert annotator have
a harder time providing correct tags. A point of con-
trast between the expert and non-expert is that the
non-expert generally outperforms the expert on label
accuracy in the non-active learning scenarios. The
non-expert was very careful with his labeling deci-
sions, but also much slower than the expert. In the
end, speedier annotation rates allowed the expert an-
notator to achieve higher accuracies in less time.

5 Conclusion

We have described a set of ongoing pilot experi-
ments designed to test the utility of machine label-
ing and active learning in the context of documen-
tary linguistics. The production of IGT is a realistic
annotation scenario which desperately needs label-
ing efficiency improvements. Our preliminary re-
sults suggest that both machine labeling and active

learning can increase the effectiveness of annotators,
but they interact quite strongly with the expertise of
the annotators. In particular, though active learn-
ing works well with the expert annotator, for a non-
expert annotator it seems that random selection is
a better choice. However, we stress that our anno-
tation experiments are ongoing. Active learning is
often less effective early in the learning curve, es-
pecially when automated label suggestions are pro-
vided, because the model is not yet accurate enough
to select truly useful examples, nor to suggest labels
for them reliably (Baldridge and Osborne, 2004).
Thus, we expect automation via uncertainty sam-
pling and/or suggestion may gather momentum and
outpace random selection and/or no suggestions by
wider margins as annotation continues.
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Abstract

As supervised machine learning methods for
addressing tasks in natural language process-
ing (NLP) prove increasingly viable, the fo-
cus of attention is naturally shifted towards the
creation of training data. The manual annota-
tion of corpora is a tedious and time consum-
ing process. To obtain high-quality annotated
data constitutes a bottleneck in machine learn-
ing for NLP today. Active learning is one way
of easing the burden of annotation. This pa-
per presents a first probe into the NLP research
community concerning the nature of the anno-
tation projects undertaken in general, and the
use of active learning as annotation support in
particular.

1 Introduction

Supervised machine learning methods have been
successfully applied to many NLP tasks in the last
few decades. While these techniques have shown
to work well, they require large amounts of labeled
training data in order to achieve high performance.
Creating such training data is a tedious, time con-
suming and error prone process. Active learning
(AL) is a supervised learning technique that can be
used to reduce the annotation effort. The main idea
in AL is to put the machine learner in control of the
data from which it learns; the learner can ask an or-
acle (typically a human) about the labels of the ex-
amples for which the model learned so far makes
unreliable predictions. The active learning process
takes as input a set of labeled examples, as well as
a larger set of unlabeled examples, and produces a

classifier and a relatively small set of newly labeled
data. The overall goal is to create as good a classifier
as possible, without having to mark-up and supply
the learner with more data than necessary. AL aims
at keeping the human annotation effort to a mini-
mum, only asking the oracle for advice where the
training utility of the result of such a query is high.
Settles (2009) gives a detailed overview of the liter-
ature on AL.

It has been experimentally shown that AL can in-
deed be successfully applied to a range of NLP tasks
including, e.g., text categorization (Lewis and Gale,
1994), part-of-speech tagging (Dagan and Engelson,
1995; Ringger et al., 2007), parsing (Becker and Os-
borne, 2005), and named entity recognition (Shen et
al., 2004; Tomanek et al., 2007). Despite that some-
what impressive results in terms of reduced anno-
tation effort have been achieved by such studies, it
seems that AL is rarely applied in real-life annota-
tion endeavors.

This paper presents the results from a web survey
we arranged to analyze the extent to which AL has
been used to support the annotation of textual data in
the context of NLP, as well as addressing the reasons
to why or why not AL has been found applicable to a
specific task. Section 2 describes the survey in gen-
eral, Section 3 introduces the questions and presents
the answers received. Finally, the answers received
are discussed in Section 4.

2 The Survey

The survey was realized in the form of a web-based
questionnaire; the primary reason for this approach,
as opposed to reading and compiling information
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from academic publications, was that we wanted to
free ourselves and the participants from the dos and
don’ts common to the discourse of scientific papers.

The survey targeted participants who were in-
volved in the annotation of textual data intended for
machine learning for all kinds of NLP tasks. It was
announced on the following mailing lists: BioNLP,
Corpora, UAI List, ML-news, SIG-IRlist, Linguist
list, as well as lists reaching members of SIGANN,
SIGNLL, and ELRA. By utilizing these mailing
lists, we expect to have reached a fairly large por-
tion of the researchers likely to participate in anno-
tation projects for NLP. The questionnaire was open
February 6–23, 2009.

After an introductory description and one initial
question, the questionnaire was divided into two
branches. The first branch was answered by those
who had used AL to support their annotation, while
the second branch was answered by those who had
not. Both branches shared a common first part about
the general set-up of the annotation project under
scrutiny. The second part of the AL-branch focused
on experiences made with applied AL. The second
part of the non AL-branch asked questions about the
reasons why AL had not been used. Finally, the
questionnaire was concluded by a series of questions
targeting the background of the participant.

The complete survey can be downloaded from
http://www.julielab.de/ALSurvey.

3 Questions and answers

147 people participated in the survey. 54 completed
the survey while 93 did not, thus the overall comple-
tion rate was 37 %. Most of the people who did not
complete the questionnaire answered the first couple
of questions but did not continue. Their answers are
not part of the discussion below. We refrain from a
statistically analysis of the data but rather report on
the distribution of the answers received.

Of the people that finished the survey, the ma-
jority (85 %) came from academia, with the rest
uniformly split between governmental organizations
and industry. The educational background of the
participants were mainly computational linguistics
(46 %), general linguistics (22 %), and computer sci-
ence (22 %).

3.1 Questions common to both branches

Both the AL and the non-AL branch were asked
several questions about the set-up of the annotation
project under scrutiny. The questions concerned,
e.g., whether AL had been used to support the anno-
tation process, the NLP tasks addressed, the size of
the project, the constitution of the corpus annotated,
and how the decision when to stop the annotation
process was made.

The use of AL as annotation support. The first
question posed was whether people had used AL as
support in their annotation projects. 11 participants
(20 %) answered this question positively, while 43
(80 %) said that they had not used AL.

The task addressed. Most AL-based annotation
projects concerned the tasks information extraction
(IE) (52 %), document classification (17.6 %), and
(word sense) disambiguation (17.6 %). Also in non
AL-based projects, most participants had focused on
IE tasks (36.8 %). Here, syntactic tasks including
part-of-speech tagging, shallow, and deep parsing
were also often considered (19.7 %). Textual phe-
nomena, such as coreferences and discourse struc-
ture (9.6 %), and word sense disambiguation (5.5 %)
formed two other answer groups. Overall, the non
AL-based annotation projects covered a wider vari-
ety of NLP tasks than the AL-based ones. All AL-
based annotation projects concerned English texts,
whereas of the non-AL projects only 62.8 % did.

The size of the project. The participants were also
asked for the size of the annotation project in terms
of number of units annotated, number of annotators
involved and person months per annotator. The av-
erage number of person months spent on non AL-
projects was 21.2 and 8.7 for AL-projects. However,
these numbers are subject to a high variance.

The constitution of the corpus. Further, the par-
ticipants were asked how the corpus of unlabeled
instances was selected.1 The answer options in-
cluded (a) taking all available instances, (b) a ran-
dom subset of them, (c) a subset based on key-
words/introspection, and (d) others. In the AL-
branch, the answers were uniformly distributed be-

1The unlabeled instances are used as a pool in AL, and as a
corpus in non AL-based annotation.
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tween the alternatives. In the non AL-branch, the
majority of participants had used alternatives (a)
(39.5 %) and (b) (34.9 %).

The decision to stop the annotation process. A
last question regarding general annotation project
execution concerned the stopping of the annotation
process. In AL-based projects, evaluation on a held-
out gold standard (36.5 %) and the exhaustion of
money or time (36.5 %) were the major stopping cri-
teria. Specific stopping criteria based on AL-internal
aspects were used only once, while in two cases the
annotation was stopped because the expected gains
in model performance fell below a given threshold.

In almost half (47.7 %) of the non AL-based
projects the annotation was stopped since the avail-
able money or time had been used up. Another ma-
jor stopping criterion was the fact that the complete
corpus was annotated (36 %). Only in two cases an-
notation was stopped based on an evaluation of the
model achievable from the corpus.

3.2 Questions specific to the AL-branch

The AL-specific branch of the questionnaire was
concerned with two aspects: the learning algorithms
involved, and the experiences of the participants re-
garding the use of AL as annotation support. Per-
centages presented below are all related to the 11
persons who answered this branch.

Learning algorithms used. As for the AL meth-
ods applied, there was no single most preferred
approach. 27.3 % had used uncertainty sampling,
18.2 % query-by-committee, another 18.2% error
reduction-based approaches, and 36.4 % had used
an “uncanonical” or totally different approach which
was not covered by any of these categories. As
base learners, maximum-entropy based approaches
as well as Support-Vector machines were most fre-
quently used (36.4 % each).

Experiences. When asked about their experi-
ences, the participants reported that their expecta-
tions with respect to AL had been partially (54.4 %)
or fully (36.3 %) met, while one of the participants
was disappointed. The AL participants did not leave
many experience reports in the free text field. From
the few received, it was evident that the sampling
complexity and the resulting delay or idle time of

the annotators, as well as the interface design are
critical issues in the practical realization of AL as
annotation support.

3.3 Question specific to the non-AL branch
The non AL-specific branch of the questionnaire
was basically concerned with why people did not use
AL as annotation support and whether this situation
could be changed. The percentages given below are
related to the 43 people who answered this particular
part of the questionnaire.

Why was not AL used? Participants could give
multiple answers to this question. Many partici-
pants had either never heard of AL (11 %) or did
not use AL due to insufficient knowledge or exper-
tise (26 %). The implementational overhead to de-
velop an AL-enabled annotation editor kept 17.8 %
of the participants from using AL. Another 19.2 %
of the participants stated that their project specific
requirements did not allow them to use AL. Given
the comments given in the free text field, it can be
deduced that this was often the case when people
wanted to create a corpus that could be used for a
multitude of purposes (such as building statistics on,
cross-validation, learning about the annotation task
per se, and so forth) and not just for classifier train-
ing. In such scenarios, the sampling bias introduced
by AL is certainly disadvantageous. Finally, about
20.5 % of the participants were not convinced that
AL would work well in their scenario or really re-
duce annotation effort. Some participants stated in
their free form comments that while they believed
AL would reduce the amount of instances to be an-
notated it would probably not reduce the overall an-
notation time.

Would you consider using AL in future projects?
According to the answers of another question of the
survey, 40 % would in general use AL, while 56 %
were sceptical but stated that they would possibly
use a technique such as AL.

4 Discussion

Although it cannot be claimed that the data collected
in this survey is representative for the NLP research
community as a whole, and the number of partic-
ipants was too low to draw statistically firm con-
clusions, some interesting trends have indeed been
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discovered within the data itself. The conclusions
drawn in this section are related to the answers pro-
vided in light of the questions posed in the survey.

The questionnaire was open to the public and was
not explicitly controlled with respect to the distribu-
tion of characteristics of the sample of the commu-
nity that partook in it. One effect of this, coupled
with the fact that the questionnaire was biased to-
wards those familiar with AL, is that we believe that
the group of people that have used AL are overrep-
resented in the data at hand. However, this cannot
be verified. Nevertheless, given this and the poten-
tial reach of the mailing lists used for announcing
the survey, it is remarkable that not more than 20 %
(11 out of 54) of the participants had used AL as
annotation support.

The doubts of the participants who did not use
AL towards considering the technique as a poten-
tial aid in annotation in essence boil down to the
absence of an AL-based annotation editor, as well
as the difficulty in estimating the effective reduction
in effort (such as time, money, labor) that the use
of AL imply. Put simply: Can AL for NLP really
cut annotation costs? Can AL for NLP be practi-
cally realized without too much overhead in terms
of implementation and education of the annotator?
Research addressing the former question is ongo-
ing which is shown, e.g., by the recent Workshop on
Cost-Sensitive Learning held in conjunction with the
Neural Information Processing Systems Conference
2008. As for the latter question, there is evidently a
need of a general framework for AL in which (spe-
cialized) annotation editors can be realized. Also,
hand-in-hand with the theoretical aspects of AL and
their practical realizations in terms of available soft-
ware packages, there clearly is a need for usage and
user studies concerning the effort required by human
annotators operating under AL-based data selection
schemes in real annotation tasks.

Two things worth noticing among the answers
from participants of the survey that had used AL in-
clude that most of these participants had positive ex-
periences from using AL, although turn-around time
and consequently the idle time of the annotator re-
mains a critical issue; and that English was the only
language addressed. This is somewhat surprising
given that AL seems to be a technique well suited
for bootstrapping language resources for, e.g., so

called “under resourced” languages. Also we were
surprised by the fact that both in AL and non-AL
projects rather “unsophisticated” criteria were used
to decide about the stopping of annotation projects.
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Abstract

When faced with the task of building machine
learning or NLP models, it is often worthwhile
to turn to active learning to obtain human an-
notations at minimal costs. Traditional active
learning schemes query a human for labels of
intelligently chosen examples. However, hu-
man effort can also be expended in collecting
alternative forms of annotations. For example,
one may attempt to learn a text classifier by
labeling class-indicating words, instead of, or
in addition to, documents. Learning from two
different kinds of supervision brings a new,
unexplored dimension to the problem of ac-
tive learning. In this paper, we demonstrate
the value of such active dual supervision in
the context of sentiment analysis. We show
how interleaving queries for both documents
and words significantly reduces human effort
– more than what is possible through tradi-
tional one-dimensional active learning, or by
passive combinations of supervisory inputs.

1 Introduction

As a canonical running example for the theme of
this paper, consider the problem ofsentiment anal-
ysis(Pang and Lee, 2008). Given a piece of text as
input, the desired output is apolarity scorethat indi-
cates whether this text expresses a positive or nega-
tive opinion towards a topic of interest. From a ma-
chine learning viewpoint, this problem may be posed
as a typical binary text classification task. Senti-
ment, however, is often conveyed with subtle lin-
guistic mechanisms such as sarcasm, negation and
the use of highly domain-specific and contextual

cues. This brings a multi-disciplinary flavor to the
problem, drawing interest from both Natural Lan-
guage Processing and Machine Learning communi-
ties.

Many methodologies proposed in these disci-
plines share a common limitation that their perfor-
mance is bounded by the amount and quality of la-
beled data. However, they differ conceptually in
the type of human effort they require. On one
hand, supervised machine learning techniques re-
quire human effort in acquiringlabeled examples,
which requires reading documents and annotating
them with their aggregate sentiment. On the other
hand, dictionary-based NLP systems require human
effort in collecting labeled features: for example,
in the domain of movie reviews, words that evoke
positive sentiment (e.g., “mesmerizing”, “thrilling”
etc) may be labeled positive, while words that evoke
negative sentiment (e.g., “boring”,“disappointing”)
may be labeled negative. This kind of annotation
requires a human to condense prior linguistic expe-
rience with a word into a sentiment label that reflects
the net emotion that the word evokes.

We refer to the general setting of learning from
both labels on examples and features asdual super-
vision. This setting arises more broadly in tasks
where in addition to labeled documents, it is fre-
quently possible to provide domain knowledge in the
form of words, or phrases (Zaidan and Eisner, 2008)
or even more sophisticated linguistic features, that
associate strongly with a class. Recent work (Druck
et al., 2008; Sindhwani and Melville, 2008) has
demonstrated that the presence of word supervision
can greatly reduce the number of labeled documents
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required to build high quality text classifiers.
In general, these two sources of supervision are

not mutually redundant, and have different annota-
tion costs, human response quality, and degrees of
utility towards learning a dual supervision model.
This leads naturally to the problem ofactive dual
supervision, or, how to optimally query a human or-
acle to simultaneously collect documentandfeature
annotations, with the objective of building the high-
est quality model with the lowest cost. Much of the
machine learning literature on active learning has
focused on one-sided example-only annotation for
classification problems. Less attention has been de-
voted to simultaneously acquiring alternative forms
of supervisory domain knowledge, such as the kind
routinely encountered in NLP. Our contribution may
be viewed as a step in this direction.

2 Dual supervision

Most work in supervised learning has focused on
learning from examples, each represented by a set
of feature values and a class label. In dual super-
vision we consider an additional aspect, by way of
labels of features, which convey prior knowledge on
associations of features to particular classes. Since
we deal only with text classification in this paper, all
features represent term-frequencies of words, and as
such we usefeatureandword interchangeably.

The active learning schemes we explore in this pa-
per are broadly applicable to any learner that can
support dual supervision, but here we focus on ac-
tive learning for the Pooling Multinomials classi-
fier (Melville et al., 2009) described below. In con-
current related work, we propose active dual su-
pervision schemes for a class of graph-based and
kernel-based dual supervision methods (Sindhwani
et al., 2009).

2.1 Pooling Multinomials

The Pooling Multinomials classifier was introduced
by Melville et al. (2009) as an approach to incorpo-
rate prior lexical knowledge into supervised learn-
ing for better sentiment detection. In the context of
sentiment analysis, lexical knowledge is available in
terms of the prior sentiment-polarity of words. From
a dual supervision point of view, this knowledge can
be seen as labeled features, since the lexicon effec-

tively provides associations of a set of words with
the positive or negative class.

Pooling Multinomials classifies unlabeled exam-
ples just as in multinomial Naı̈ve Bayes classifica-
tion (McCallum and Nigam, 1998), by predicting
the class with the maximum likelihood, given by
argmaxcjP (cj)

∏
i P (wi|cj); where P (cj) is the

prior probability of classcj , and P (wi|cj) is the
probability of wordwi appearing in a document of
classcj . In the absence of background knowledge
about the class distribution, we estimate the class
priorsP (cj) solely from the training data. However,
unlike regular Näıve Bayes, the conditional prob-
abilities P (wi|cj) are computed using both the la-
beled examples and the labeled features.

Pooling distributions is a general approach for
combining information from multiple sources or ex-
perts; where experts are typically represented in
terms of probability distributions (Clemen and Win-
kler, 1999). Here, we only consider the special case
of combining multinomial distributions from two
sources – namely, the labeled examples and labeled
features. The multinomial parameters of such mod-
els can be easily combined using thelinear opin-
ion pool (Clemen and Winkler, 1999), in which
the aggregate probability is given byP (wi|cj) =
αPe(wi|cj) + (1 − α)Pf (wi|cj); wherePe(wi|cj)
andPf (wi|cj) represent the probability assigned by
using the example labels and feature labels respec-
tively, andα is the weight for combining these dis-
tributions. The weight indicates a level of confi-
dence in each source of information, and Melville
et al. (2009) explore ways of automatically selecting
this weight. However, in order to not confound our
results with the choice of weight-selection mecha-
nism, here we make the simplifying assumption that
the two experts based on instance and feature labels
are equally valuable, and as such setα to 0.5.

To learn a model from the labeled examples we
compute conditionalsPe(wi|cj) based on observed
term frequencies, as in standard Naı̈ve Bayes classi-
fication. In addition, for Pooling Multinomials we
need to construct a multinomial model represent-
ing the labeled features in the background knowl-
edge. For this, we assume that the feature-class as-
sociations provided by labeled features are implic-
itly arrived at by human experts by examining many
positive and negative sentiment documents. So we
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attempt to select the parametersPf (wi|cj) of the
multinomial distributions that would generate such
documents. The exact values of these condition-
als are presented below. Their derivation is not di-
rectly pertinent to the subject of this paper, but can
be found in (Melville et al., 2009).
Given:
V – the vocabulary, i.e., set of words in our domain
P – set of words labeled as positive
N – set of words labeled as negative
U – set of unknown words, i.e.V − (N ∪ P)
m – size of vocabulary, i.e.|V|
p – number of positive words, i.e.|P|
n – number of negative words, i.e.|N |

All words in the vocabulary can be divided into
three categories – words with a positive label, nega-
tive label, and unknown label. We refer to the prob-
ability of any positive term appearing in a positive
document simply asPf (w+|+). Similarly, we refer
to the probability of any negative term appearing in a
negative document asPf (w−|−); and the probabil-
ity of an unknown word in a positive or negative con-
text asPf (wu|+) andPf (wu|−) respectively. The
generative model for labeled features can then be de-
fined by:

Pf (w+|+) = Pf (w−|−) =
1

p + n

Pf (w+|−) = Pf (w−|+) =
1

p + n
× 1

r

Pf (wu|+) =
n(1− 1/r)

(p + n)(m− p− n)

Pf (wu|−) =
p(1− 1/r)

(p + n)(m− p− n)

where, thepolarity level, r, is a measure of how
much more likely it is for a positive term to occur
in a positive document compared to a negative term.
The value ofr is set to100 in our experiments, as
done in (Melville et al., 2009).

2.2 Learning from example vs. feature labels

Dual supervision makes it possible to learn from la-
beled examples and labeled features simultaneously;
and, as in most supervised learning tasks, one would
expect more labeled data of either form to lead to
more accurate models. In this section we explore the

influence of increased number of instance labels and
feature labels independently, and also in tandem.

For these, and all subsequent experiments, we
use 10-fold cross-validation on the publicly avail-
able data of movie reviews provided by Pang et
al. (2002). This data consists of 1000 positive
and 1000 negative reviews from the Internet Movie
Database; where positive labels were assigned to re-
views that had a rating above 3.5 stars and negative
labels were assigned to ratings of 2 stars and below.
We use a bag-of-words representation of reviews,
where each review is represented by the term fre-
quencies of the 5000 most frequent words across all
reviews, excluding stop-words.

In order to study the effect of increasing number
of labels we need to simulate a human oracle label-
ing data. In the case of examples this is straight-
forward, since all examples in theMoviesdataset
have labels. However, in the case of features, we
do not have a gold-standard set of feature labels. So
in order to simulate human responses to queries for
feature labels, we construct afeature oraclein the
following manner. The information gain of words
with respect to the known true class labels in the
dataset is computed using binary feature represen-
tations. Next, out of the 5000 total words, the top
1000 as ranked by information gain are assigned a
label. This label is the class in which the word ap-
pears more frequently. The oracle returns a “dont
know” response for the remaining words. Thus, this
oracle simulates a human domain expert who is able
to recognize and label the most relevant task-specific
words, and also reject a word that falls below the rel-
evance threshold. For instance, in sentiment classi-
fication, we would expect a “don’t know” response
for non-polar words.

We ran experiments beginning with a classifier
provided with labels for 10 randomly selected in-
stances and 10 randomly selected features. We then
compare three schemes - Instances-then-features,
Features-then-instances, and Passive Interleaving.
As the name suggests,Instances-then-features, is
provided labels for randomly selected instances until
all instances have been labeled, and then switches to
labeling features. Similarly,Features-then-instances
acquires labels for randomly selected features first
and then switches to getting instance labels. In
Passive Interleavingwe probabilistically switch be-
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tween issuing queries for randomly chosen instance
and feature labels. In particular, at each step we
choose to query for an instance with probability
0.36, otherwise we query for a feature label. The
instance-query rate of0.36 is selected based on the
ratio of available instances (1800) to available fea-
tures (5000). The results of these learning curves are
presented in Fig. 1. Note that the x-axis in the figure
corresponds to the number of queries issued. As dis-
cussed earlier, in the case of features, the oracle may
respond to a query with a class label or may issue
a “don’t know” response, indicating that no label is
available. As such, the number of feature-queries
on the x-axis does not correspond to the number
of actual known feature labels. We would expect
that on average 1 in 5 feature-label queries prompts
a response from the feature oracle that results in a
known feature label being provided.

At the end of the learning curves, each method
has labels for all available instances and features;
and as such, the last points of all three curves are
identical. The results show that fixing the number
of labeled features, and increasing the number of la-
beled instances steadily improves classification ac-
curacy. This is what one would expect from tra-
ditional supervised learning curves. More interest-
ingly, the results also indicate that we can fix the
number of instances, and improve accuracy by la-
beling more features. Finally, results on Passive In-
terleaving show that, though both feature labels and
example labels are beneficial by themselves, dual su-
pervision which exploits the interaction of examples
and features does in fact benefit from acquiring both
types of labels concurrently.

For all results above, we are selecting instances
and/or features to be labeled uniformly at random.
Based on previous work in active learning one would
expect that we can select instances to be labeled
more efficiently, by having the learner decide which
instances it is most likely to benefit from. The results
in this section suggests that actively selecting fea-
tures to be labeled may also be beneficial. Further-
more, the Passive Interleaving results suggest that an
ideal active dual supervision scheme would actively
select both instances and features for labeling. We
begin by exploring active learning for feature labels
in the next section, and then consider the simultane-
ous selection of instances and features in Sec. 4.
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Figure 1: Comparing the effect of instance and feature
label acquisition in dual supervision.

3 Acquiring feature labels

Traditional active learning has primarily focused on
selecting unlabeledinstancesto be labeled. The
dual-supervision setting now provides us with an ad-
ditional dimension to active learning, where labels
may also be acquired for features. In this section
we look at the novel task of active learning applied
only to feature-label acquisition. In Section 4 we
study the more general task of active dual supervi-
sion, where both instance and feature labels may be
acquired concurrently.

3.1 Feature uncertainty vs. certainty

A very common approach to active learning for in-
stances is Uncertainty Sampling (Lewis and Catlett,
1994). In this approach we acquire labels for in-
stances that the current model is most uncertain
about. Uncertainty Sampling is founded on the
heuristic that uncertain instances are close to the cur-
rent classification boundary, and acquiring the cor-
rect labels for them are likely to help refine the loca-
tion of this boundary. Despite its simplicity, Uncer-
tainty Sampling is usually quite effective in practice;
which raises the question of whether one can apply
the same principle to feature-label acquisition. In
this case, we want to select unlabeled features that
the current model is most uncertain about.

Much like instance uncertainty, feature uncer-
tainty can be measured in different ways, depend-
ing on the underlying method used for dual super-
vision. For instance, if the learner produces a lin-
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ear classifier as in (Sindhwani and Melville, 2008),
we could use the magnitude of the weights on the
features as a measure of uncertainty – where lower
weights indicate less certainty. Since Pooling Multi-
nomials builds a multinomial Naı̈ve Bayes model,
we can directly use the model’s conditional proba-
bilities of each word (feature) given a class.

For ease of exposition we refer to the two classes
in binary classification aspostive(+) andnegative
(-), without loss of generality. Given the probabili-
ties of wordf belonging to the positive and negative
class,P (f |+) and P (f |−), we can determine the
uncertainty of a feature using the absolute value of
the log-odds ratio, i.e.,

abs

(
log

(
P (f |+)
P (f |−)

))
(1)

The smaller this value, the more uncertain the model
is about the feature’s class association. In every it-
eration of active learning we can select the features
with the lowest certainty scores. We refer to this ap-
proach asFeature Uncertainty.

Though Uncertainty Sampling for features seems
like an appealing notion, it may not lead to better
models. If a classifier is uncertain about a feature,
it may have insufficient information about this fea-
ture and may indeed benefit from learning its la-
bel. However, it is also quite likely that a feature
has a low certainty score because it does not carry
much discriminative information about the classes.
In the context of sentiment detection, one would ex-
pect that neutral/non-polar words will appear to be
uncertain words. For example, words such as “the”
which are unlikely to help in discriminating between
classes, are also likely to be considered the most un-
certain. As we shortly report, on the movies dataset,
Feature Uncertainty ends up wasting queries on such
words ending up with performance inferior to ran-
dom feature queries. What works significantly bet-
ter is an alternative strategy which acquires labels
for features in the descending order of the score in
Eq 1. We refer to this approach asFeature Certainty.

3.2 Expected feature utility

The intuition underlying the feature certainty heuris-
tic is that it serves to confirm or correct the orienta-
tion of model probabilities on different words during

the active learning process. One can argue that fea-
ture certainty is also suboptimal in that queries may
be wasted simply confirming confident predictions,
which is of limited utility to the model. An alterna-
tive to using a certainty-based heuristic, is to directly
estimate the expected value of acquiring each fea-
ture label. Such Expected Utility (Estimated Risk
Minimization) approaches have been applied suc-
cessfully to traditional active learning (Roy and Mc-
Callum, 2001), and to active feature-value acquisi-
tion (Melville et al., 2005). In this section we de-
scribe how this Expected Utility framework can be
adapted for feature-label acquisition.

At every step of active learning for features, the
next best feature to label is one that will result in
the highest improvement in classifier performance.
Since the true label of the unlabeled features are
unknown prior to acquisition, it is necessary to es-
timate the potential impact of every feature query
for all possible outcomes.1 Hence, the decision-
theoretic optimal policy is to ask for feature labels
which, once incorporated into the data, will result in
the highest increase in classification performance in
expectation.

If fj is the label of thej-th feature, andqj is the
query for this feature’s label, then the Expected Util-
ity of a feature queryqj can be computed as:

EU(qj) =
K∑

k=1

P (fj = ck)U(fj = ck) (2)

WhereP (fj = ck) is the probability thatfj will be
labeled with classck, andU(fj = ck) is the util-
ity to the model of knowing thatfj has the label
ck. In practice, the true values of these two quan-
tities are unknown, and the main challenge of any
Expected Utility approach is to accurately estimate
these quantities from the data currently available.

A direct way to estimate the utility of a feature la-
bel to classification, is to measure classification ac-
curacy on the training set of a model built using this
feature label. However, small changes in the model
that may result from a acquiring a single additional
feature label may not be reflected by a change in ac-
curacy. As such, we use a more fine-grained mea-
sure of classifier performance, Log Gain, which is

1In the case of binary polarity classification, the possible
outcomes are apositiveor negativelabel for a queried feature.
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computed as follows. For a model induced from a
training setT , let P̂ (ck|xi) be the probability es-
timated by the model that instancexi belongs to
classck; and I is an indicator function such that
I(ck, xi) = 1 if ck is the correct class forxi and
I(ck, xi) = 0, otherwise. Log Gain is then defined
as:

LG(xi) = −
K∑

k=1

I(ck)P̂ (ck|xi) (3)

Then the utility of a classifier,U , can be measured
by summing the Log Gain for all instances in the
training setT . A lower value of Log Gain indi-
cates a better classifier performance. For a deeper
discussion of this measure see (Saar-Tsechansky et
al., 2008).

In Eq. 2, apart from the measure of utility, we
also do not know the true probability distribution
of labels for the feature under consideration. This
too can be estimated from the training data, by see-
ing how frequently the word appears in documents
of each class. In a multinomial Naı̈ve Bayes model
we already collect these statistics in order to deter-
mine the conditional probability of a class given a
word, i.e. P (fj |ck). We can use these probabilities
to get an estimate of the feature label distribution,
P̂ (fj = ck) = P (fj |ck)∑K

k=1 P (fj |ck)
.

Given the estimated values of the feature-label
distribution and the utility of a particular feature
query outcome, we can now estimate the Expected
Utility of each unknown feature, and select the fea-
tures with the highest Expected Utility to modeling.

Though theoretically appealing, this approach is
quite computationally intensive if applied to evalu-
ate all unknown features. In the worst case it re-
quires building and evaluating models for each pos-
sible outcome of each unlabeled feature query. If
you havem features andK classes, this approach
requires trainingO(mK) classifiers. However, the
complexity of the approach can be significantly al-
leviated by only applying Expected Utility evalua-
tion to a sub-sample of all unlabeled features. Given
the large number of features with no true class la-
bels, selecting a sample of available features uni-
formly at random may be sub-optimal. Instead we
select a sample of features based on Feature Cer-
tainty. In particular we select the top 100 unknown

features that the current model is most certain about,
and identify the features in this pool with the highest
Expected Utility. We refer to this approach asEx-
pected Feature Utility. We use Feature Certainty to
sub-sample the available feature queries, since this
approach is more likely to select features for which
the label is known by the Oracle.

3.3 Active learning with feature labels

We ran experiments comparing the three different
active learning approaches described above. In
these, and all subsequent experiments, we begin
with a model trained on 10 labeled features and 100
labeled instances, which were randomly selected.
From our prior efforts of manually labeling such
data, we find this to be a reasonable initial setting.

The experiments in this section focus only on the
selection offeaturesto be labeled. So, in each itera-
tion of active learning we select the next 10 feature-
label queries, based on Feature Uncertainty, Feature
Certainty, or Expected Feature Utility. As a baseline,
we also compare to the performance of a model that
selects features uniformly at random. Our results are
presented in Fig. 2.
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Figure 2: Comparing different active learning approaches
for acquiring feature labels.

The results show that Feature Uncertainty, which
is a direct analog of Uncertainty Sampling, actu-
ally performs worse than random sampling. Many
uncertain features may actually not be very useful
in discriminating between the classes, and selecting
them can be systematically worse than selecting uni-
formly at random. However, the converse approach
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of Feature Certainty does remarkably well. This
may be because polarized words are better for learn-
ing, but it is also likely that querying for such words
increases the likelihood of selecting one whose label
is known to the oracle.

The results on Expected Feature Utility show that
estimating the expected impact of potential labels
for features does in fact perform much better than
feature certainty. The results confirm that despite
our crude estimations in Eq. 2, Expected Feature
Utility is an effective approach to active learning of
feature labels. Furthermore, we demonstrate that by
applying the approach to only a small sub-sample of
certain features, we are able to make this method
computationally feasible to use in practice. In-
creasing the size of the sample of candidate feature
queries is likely to improve performance, at the cost
of increased time in selecting queries.

4 Active dual supervision

In the previous section we demonstrated that ac-
tively selecting informative features to be labeled is
significantly better than random selection. In this
section, we look at the complementary task of se-
lecting instances to be labeled, and combined active
learning for both forms of supervision.

Selecting unlabeled examples for learning has
been a well-studied problem, and we use Uncer-
tainty Sampling (Lewis and Catlett, 1994), which
has been shown to be a computationally efficient
and effective approach in the literature. In particular
we select unlabeled examples to be labeled in order
of decreasing uncertainty, where uncertainty is mea-
sured in terms of the margin, as done in (Melville
and Mooney, 2004). The margin on an unlabeled ex-
ample is defined as the absolute difference between
the class probabilities predicted by the classifier for
the given example, i.e.,|P (+|x)− P (−|x)|. We re-
fer to the selection of instances based on this uncer-
tainty as Instance Uncertainty, in order to distinguish
it from Feature Uncertainty.

We ran experiments as before, comparing selec-
tion of instances using Instance Uncertainty and se-
lection of features using Expected Feature Utility.
In addition, we also combine these to methods by
interleaving feature and instance selection. In par-
ticular, we first order instances in decreasing order

of uncertainty, and features in terms of decreasing
Expected Feature Utility. We then probabilistically
select instances or features from the top of these
lists, where, as before, the probability of selecting
an instance is0.36. Recall that this probability cor-
responds to the ratio of available instances (1800)
and features (5000). We refer to this approach as Ac-
tive Interleaving, in contrast to Passive Interleaving,
which we also present as a baseline. Recall that Pas-
sive Interleaving corresponds to probabilistically in-
terleaving queries for randomly chosen, not actively
chosen, examples and features. Our results are pre-
sented in Fig. 3.

We observe that, Instance Uncertainty performs
better than Passive Interleaving, which in turn is bet-
ter than random selection of only instances or fea-
tures – as seen in Fig. 1. However, effectively se-
lecting features labels, via Expected Feature Util-
ity, does even better than actively selecting only in-
stances. Finally, selecting instance and features si-
multaneously via Active Interleaving performs bet-
ter than active learning of features or instances sep-
arately. Active Interleaving is indeed very effective,
reaching an accuracy of77% with only 500 queries,
while Passive Interleaving requires more than 4000
queries to reach the same performance – as evi-
denced by Fig. 1
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Figure 3: Comparing Active Interleaving to alternative
label acquisition strategies.

5 Related work

Active learning in the context of dual supervision
models is a new area of research with very little prior
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work, to the best of our knowledge. Most prior work
has focused on pooled-based active learning, where
examples from an unlabeled pool are selected for la-
beling (Cohn et al., 1994; Tong and Koller, 2000). In
contrast, active feature-value acquisition (Melville
et al., 2005) andbudgeted learning(Lizotte et al.,
2003) focus on estimating the value of acquiring
missing features, but do not deal with the task of
learning from featurelabels. In contrast, Raghavan
and Allan (2007) and Raghavan et al. (2006) study
the problem oftandem learningwhere they combine
uncertainty sampling for instances along with co-
occurence based interactive feature selection. God-
bole et al. (2004) propose notions of feature uncer-
tainty and incorporate the acquired feature labels,
into learning by creating one-term mini-documents.

Learning from labeled examples and features via
dual supervision, is itself a new area of research.
Sindhwani et al. (2008) use a kernel-based frame-
work to build dual supervision into co-clustering
models. Sindhwani and Melville (2008) apply sim-
ilar ideas for graph-based sentiment analysis. There
have also been previous attempts at using only fea-
ture supervision, mostly along with unlabeled doc-
uments. Much of this work (Schapire et al., 2002;
Wu and Srihari, 2004; Liu et al., 2004; Dayanik
et al., 2006) has focused on using labeled features
to generatepseudo-labeled examplesthat are then
used with well-known models. In contrast, Druck
et al. (2008) constrain the outputs of a multinomial
logistic regression model to match certain reference
distributions associated with labeled features.

6 Perspectives and future work

Though Active Interleaving is a very effective ap-
proach to active dual supervision, there is still a lot
of room for improvement. Firstly, Active Interleav-
ing relies on Uncertainty Sampling for the selection
of instances. Though Uncertainty Sampling has the
advantage of being fast and effective, there exist ap-
proaches that lead to better models with fewer ex-
amples – usually at the cost of computation time.
One such method, estimating error reduction (Roy
and McCallum, 2001), is a direct analog of Ex-
pected Feature Utility applied to instance selection.
One would expect that an improvement in instance
selection, should directly improve any method that

combines instance and feature label selection. Sec-
ondly, Active Interleaving uses the simple approach
of probabilistically choosing to select an instance or
feature for each subsequent query. However, a more
intelligent active scheme should be able to assess if
an instance or feature would be more beneficial at
each step. Furthermore, we do not currently con-
sider the cost of acquiring labels. Presumably la-
beling a feature versus labeling an instance could
incur very different costs – which could be mone-
tary costs or time taken for each annotation. Fortu-
nately, the Expected Utility method is very flexible,
and allows us to address all these issues within a sin-
gle framework. We can specifically estimate the ex-
pected utility of different forms of annotation, per
unit cost. For instance, Provost et al. (2007) use
such an approach to estimate the utility of acquir-
ing class labels and feature values (not labels) per
unit cost, within one unified framework. A similar
method can be applied for a holistic approach to ac-
tive dual supervision, where the Expected Utility of
an instance or feature label queryq, can be computed
asEU(q) =

∑K
k=1 P (q = ck)

U(q=ck)
ωq

; whereωq is
cost of the queryq, and utilityU can be computed as
in Eq. 3. By evaluating instances and features on the
same scale, and by measuring utility per unit cost of
acquisition, such a framework should enable us to
handle the trade-off between the costs and benefits
of the different types of acquisitions. The primary
challenge in the success of this approach is toaccu-
ratelyandefficientlyestimate the different quantities
in the equation above, using only the training data
currently available. These are directions for future
exploration.

7 Conclusions

This paper is a preliminary foray into active dual su-
pervision. We have demonstrated that not only is
combining example and feature labels beneficial for
modeling, but that actively selecting the most infor-
mative examples and features for labeling can sig-
nificantly reduce the burden of annotating such data.
In future work, we would like to explore more effec-
tive solutions to the problem, and also to corroborate
our results on a larger number of datasets and under
different experimental settings.
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Abstract

Building machine translation (MT) for many
minority languages in the world is a serious
challenge. For many minor languages there is
little machine readable text, few knowledge-
able linguists, and little money available for
MT development. For these reasons, it be-
comes very important for an MT system to
make best use of its resources, both labeled
and unlabeled, in building a quality system.
In this paper we argue that traditional active
learning setup may not be the right fit for seek-
ing annotations required for building a Syn-
tax Based MT system for minority languages.
We posit that a relatively new variant of active
learning, Proactive Learning, is more suitable
for this task.

1 Introduction

Speakers of minority languages could benefit from
fluent machine translation (MT) between their native
tongue and the dominant language of their region.
But scarcity in capital and know-how has largely
restricted machine translation to the dominant lan-
guages of first world nations. To lower the barriers
surrounding MT system creation, we must reduce
the time and resources needed to develop MT for
new language pairs. Syntax based MT has proven
to be a good choice for minority language scenario
(Lavie et al., 2003). While the amount of paral-
lel data required to build such systems is orders of
magnitude smaller than corresponding phrase based
statistical systems (Koehn et al., 2003), the variety
of linguistic annotation required is greater. Syntax

based MT systems require lexicons that provide cov-
erage for the target translations, synchronous gram-
mar rules that define the divergences in word-order
across the language-pair. In case of minority lan-
guages one can only expect to find meagre amount
of such data, if any. Building such resources effec-
tively, within a constrained budget, and deploying an
MT system is the need of the day.

We first consider ‘Active Learning’ (AL) as a
framework for building annotated data for the task
of MT. However, AL relies on unrealistic assump-
tions related to the annotation tasks. For instance,
AL assumes there is a unique omniscient oracle. In
MT, it is possible and more general to have multiple
sources of information with differing reliabilities or
areas of expertise. A literate bilingual speaker with
no extra training can produce translations for word,
phrase or sentences and even align them. But it re-
quires a trained linguist to produce syntactic parse
trees. AL also assumes that the single oracle is per-
fect, always providing a correct answer when re-
quested. In reality, an oracle (human or machine)
may be incorrect (fallible) with a probability that
should be a function of the difficulty of the question.
There is also no notion of cost associated with the
annotation task, that varies across the input space.
But in MT, it is easy to see that length of a sentence
and cost of translation are superlinear. Also not all
annotation tasks for MT have the same level of dif-
ficulty or cost. For example, it is relatively cheap
to ask a bilingual speaker whether a word, phrase
or sentence was correctly translated by the system,
but a bit more expensive to ask for a correction. As-
sumptions like these render active learning unsuit-
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able for our task at hand which is building an MT
system for languages with limited resources. We
make the case for “Proactive Learning” (Donmez
and Carbonell, 2008) as a solution for this scenario.

In the rest of the paper, we discuss syntax based
MT approach in Section 2. In Section 3 we first
discuss active learning approaches for MT and de-
tail the characteristics of MT for minority languages
problem that render traditional active learning un-
suitable for practical purposes. In Section 4 we dis-
cuss proactive learning as a potential solution for the
current problem. We conclude with some challenges
that still remain in applying proactive learning for
MT.

2 Syntax Based Machine Translation

In recent years, corpus based approaches to ma-
chine translation have become predominant, with
Phrase Based Statistical Machine Translation (PB-
SMT) (Koehn et al., 2003) being the most ac-
tively progressing area. Recent research in syn-
tax based machine translation (Yamada and Knight,
2001; Chiang, 2005) incorporates syntactic informa-
tion to ameliorate the reordering problem faced by
PB-SMT approaches. While traditional approaches
to syntax based MT were dependent on availabil-
ity of manual grammar, more recent approaches op-
erate within the resources of PB-SMT and induce
hierarchical or linguistic grammars from existing
phrasal units, to provide better generality and struc-
ture for reordering (Yamada and Knight, 2001; Chi-
ang, 2005; Wu, 1997).

2.1 Resources for Syntax MT

Syntax based approaches to MT seek to leverage the
structure of natural language to automatically induce
MT systems. Depending upon the MT system and
the paradigm, the resource requirements may vary
and could also include modules such as morpholog-
ical analyzers, sense disambiguation modules, gen-
erators etc. A detailed discussion of the comprehen-
sive pipeline, may be out of the scope of this pa-
per, more so because such resources can not be ex-
pected in a low-resource language scenario. We only
focus on the quintessential set of modules for MT
pipeline - data acquisition, word-alignment, syntac-
tic analysis etc. The resources can broadly be cat-

egorized as ‘monolingual’ vs ‘bilingual’ depending
upon whether it requires knowledge in one language
or both languages for annotation. A sample of the
different kinds of data and annotation that is ex-
pected by an MT system is shown below. Each of
the additional information can be seen as extra an-
notations for the ‘Source’ sentence. The language
of target in the example is ‘Hindi’.

• Source: John ate an apple

• Target: John ne ek seb khaya

• Alignment: (1,1),(2,5),(3,3),(4,4)

• SourceParse: (S (NP (NNP John)) (VP (VBD
ate) (NP (DT an) (NN apple))))

• Lexicon: (seb→ apple),(ate→ khaya)

• Grammar: VP: V NP→ NP V

3 Active Learning for MT

Modern syntax based MT rides on the success of
both Statistical Machine Translation and Statistical
Parsing. Active learning has been applied to Statis-
tical Parsing (Hwa, 2004; Baldridge and Osborne,
2003) to improve sample selection for manual anno-
tation. In case of MT, active learning has remained
largely unexplored. Some attempts include training
multiple statistical MT systems on varying amounts
of data, and exploring a committee based selection
for re-ranking the data to be translated and included
for re-training. But this does not apply to training in
a low-resource scenario where data is scarce.

In the rest of the section we discuss the different
scenarios that arise in gathering of annotation for
MT under a traditional ‘active learning’ setup and
discuss the characteristics of the task that render it
difficult.

3.1 Multiple Oracles
For each of the sub-tasks of annotation, in reality
we have multiple sources of information or multi-
ple oracles. We can elicit translations for building
a parallel corpus from bilingual speakers who speak
both the languages with certain accuracy or from a
linguist who is well educated in the formal sense
of the languages. With the success of collabora-
tive sites like Amazon’s ‘Mechanical Turk’ 1, one

1http://www.mturk.com/
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can provide the task of annotation to multiple ora-
cles on the internet (Snow et al., 2008). The task
of word alignment can be posed in a similar fash-
ion too. More interestingly, there are statistical tools
like GIZA 2 that take as input un-annotated paral-
lel data and propose automatic correspondences be-
tween words in the language-pair, giving scope to
‘machine oracles’.

3.2 Varying Quality and Reliability

Oracles also vary on the correctness of the answers
they provide (quality) as well as their availability
(robustness) to answer. One typical distinction is
‘human oracles’ vs ‘machine oracles’. Human or-
acle produce higher quality annotations when com-
pared to a machine oracle. We would prefer a tree
bank of parse trees that were manually created over
automatically generated tree banks. Similar is the
case with word-alignment and other tasks of trans-
lation. Some oracles are ‘reluctant’ to produce an
output, for example parsers tend to break on really
long sentences, but when they produce an output
we can associate some confidence with it about the
quality. One can expect a human oracle to produce
parse trees for long sentences, but the quality could
be questionable.

3.3 Non-uniform costs

Each of the annotation tasks has a non-uniform cost
associated with it, the distribution of which is de-
pendent upon the difficulty over the input space.
Clearly, length of the sentence is a good indicator of
the cost. It takes much longer to translate a sentence
of 100 words than to translate one with 10 words. It
takes at least twice as long to create word-alignment
correspondences for a sentence-pair with 40 tokens
than a pair with 20 tokens. Similarly, a human takes
much longer to manually create parse tree for a long
sentence than a short sentence.

It is also the case that not all oracles have the
same non-uniform cost distribution over the input
space. Some oracles are more expensive than the
others. For example a practicing linguist’s time is
perhaps costlier than that of an undergraduate who
is a bilingual speaker. As noticed above, this may
reflect upon the quality of annotation for the task,

2http://www.fjoch.com/GIZA++.html

but sometimes a tradeoff to make is cost vs qual-
ity. We can not afford to introduce a grammar rule
of low-quality into the system, but can possibly do
away with an incorrect word-correspondence link.

4 Proactive Learning

Proactive learning (Donmez and Carbonell, 2008) is
a generalization of active learning designed to re-
lax unrealistic assumptions and thereby reach prac-
tical applications. Active learning seeks to select the
most informative unlabeled instances and ask an om-
niscient oracle for their labels, so as to retrain the
learning algorithm maximizing accuracy. However,
the oracle is assumed to be infallible (never wrong),
indefatigable (always answers), individual (only one
oracle), and insensitive to costs (always free or al-
ways charges the same). Proactive learning relaxes
all these four assumptions, relying on a decision-
theoretic approach to jointly select the optimal or-
acle and instance, by casting the problem as a utility
optimization problem subject to a budget constraint.

maximize E[V (S)] subject to B
maxS∈ULE[V (S)]− λ(

∑

k

tk ∗ Ck)s.t

∑

k

tk ∗ Ck = B

The above equation can be interpreted as maximiz-
ing the expected value of labeling the input set S
under the budget constraint B. The subscript k de-
notes the oracle from which the answer was elicited
under a cost function C. A greedy approximation of
the above results in the equation 1, where Ek[V (x)]
is the expected value of information of the example
x corresponding to oracle k. One can design inter-
esting functions that calculate V (x) in case of MT.
For example, selecting short sentences with an unre-
solved linguistic issue could maximize the utility of
the data at a low cost.

(x∗, k∗) = argmaxx∈UEk[V (x)] subject to B (1)

We now turn to how proactive learning framework
helps solve the issues raised for active learning in
MT in section 3. We can address the issue of multi-
ple oracles where one oracle is fallible or reluctant to
answer, by factoring into Equation 2 its probability
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function for returning an answer. The score returned
by such a factoring can be called the utility associ-
ated with that input for a particular oracle. We call
this U(x, k). A similar factorization can be done in
order to address the issue of oracles that are fallible.

U(x, k) = P (ans|x, k) ∗ V (x)− Ck

(x∗, k∗) = argmaxx∈U U(x, k)

Since we do not have the P (ans/x, k) distribu-
tion information for each oracle, proactive learning
proposes to discover this in a discovery phase under
some allocated budget Bd. Once we have an esti-
mate from the discovery phase, the rest of the label-
ing proceeds according to the optimization function.
For more details of the algorithms refer (Donmez
and Carbonell, 2008). Finally, we can also relax the
assumption of uniform cost per annotation, but re-
placing the Ck term in the above equations with a
Cnon−unifk

function denoting the non-uniform cost
function associated with the oracle.

5 Future Challenges

While proactive learning is a good framework for
building MT systems for minority languages, there
are however a few issues that still remain that need
careful attention.

Joint Utility: In a complex system like MT where
different models combine forces to produce the
translation we have a situation where we need to op-
timize not only for an input and the oracle, but also
the kind of annotation we would like to elicit. For
example given a particular translation model, we do
not know if the most optimal thing at a given point is
to seek more word-alignment annotation from a par-
ticular ’alignment oracle’ or seek parse annotation
from a ’parsing oracle’.

Machine oracles vs Human oracles: The assump-
tion with an oracle is that the knowledge and exper-
tise of the oracle does not change over the course of
annotation. We do not assume that the oracle learns
over time and hence the speed of annotation or per-
haps the accuracy of annotation increases. This is
however very common with ’machine oracles’. For
example, an oracle that suggests automatic align-
ment of data using statistical concordances may ini-
tially be unreliable due to the less amount of data it is

trained on, but as it receives more data, the estimates
get better and so the system gets more reliable.
Evaluation: Performance of underlying system is
typically done by well understood metrics like pre-
cision/recall. However, evaluation of MT output
is quite subjective and automatic evaluation met-
rics may be too coarse to distinguish the nuances
of translation. This becomes quite important in
an online active learning setup, where we add an-
notated data incrementally, and the immediately
trained translation models are not sufficient to make
a difference in the scores of the evaluation metric.
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