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Abstract 

A standard and widespread approach to 
part-of-speech tagging is based on Hidden 
Markov Models (HMMs). An alternative 
approach, pioneered by Schütze (1993), 
induces parts of speech from scratch using 
singular value decomposition (SVD). We 
introduce DEDICOM as an alternative to 
SVD for part-of-speech induction. 
DEDICOM retains the advantages of 
SVD in that it is completely unsupervised: 
no prior knowledge is required to induce 
either the tagset or the associations of 
types with tags. However, unlike SVD, it 
is also fully compatible with the HMM 
framework, in that it can be used to esti-
mate emission- and transition-probability 
matrices which can then be used as the 
input for an HMM. We apply the 
DEDICOM method to the CONLL corpus 
(CONLL 2000) and compare the output of 
DEDICOM to the part-of-speech tags 
given in the corpus, and find that the cor-
relation (almost 0.5) is quite high. Using 
DEDICOM, we also estimate part-of-
speech ambiguity for each type, and find 
that these estimates correlate highly with 
part-of-speech ambiguity as measured in 
the original corpus (around 0.88). Finally, 
we show how the output of DEDICOM 
can be evaluated and compared against 
the more familiar output of supervised 
HMM-based tagging. 

1 Introduction 

Traditionally, part-of-speech tagging has been ap-
proached either in a rule-based fashion, or stochas-
tically. Harris (1962) was among the first to 
develop algorithms of the former type. The rule-
based approach relies on two elements: a dictio-
nary to assign possible parts of speech to each 
word, and a list of hand-written rules – which must 
be painstakingly developed for each new language 
or domain – to disambiguate tokens in context. 
Stochastic taggers, on the other hand, avoid the 
need for hand-written rules by tabulating probabili-
ties of types and part-of-speech tags (which must 
be gathered from a tagged training corpus), and 
applying a special case of Bayesian inference 
(usually, Hidden Markov Models [HMMs]) to dis-
ambiguate tokens in context. The latter approach 
was pioneered by Stolz et al. (1965) and Bahl and 
Mercer (1976), and became widely known through 
the work of e.g. Church (1988) and DeRose 
(1988). 

A third and more recent approach, known as 
‘distributional tagging’ and exemplified by 
Schütze (1993, 1995) and Biemann (2006), aims to 
eliminate the need for both hand-written rules and 
a tagged training corpus, since the latter may not 
be available for every language or domain. Distri-
butional tagging is fully-unsupervised, unlike the 
two traditional approaches described above. 
Schütze suggests analyzing the distributional pat-
terns of words by forming a term adjacency matrix, 
then subjecting that matrix to Singular Value De-
composition (SVD) to reveal latent dimensions. He 
shows that in the reduced-dimensional space im-
plied by SVD, tokens do indeed cluster intuitively 
by part-of-speech; and that if context is taken into 
account, something akin to part-of-speech tagging 
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can be achieved. Whereas the performance of sto-
chastic taggers is generally sub-optimal when the 
domain of the training data differs from that of the 
test data, distributional tagging sidesteps this prob-
lem, since each corpus can be considered in its 
own right. Schütze (1995) notes two general draw-
backs of distributional tagging methods: the per-
formance is relatively modest compared to that of 
supervised methods; and languages with rich mor-
phology may pose a challenge.1

In this paper, we present an alternative unsuper-
vised approach to distributional tagging. Instead of 
SVD, we use a dimensionality reduction technique 
known as DEDICOM, which has various advan-
tages over the SVD-based approach. Principal 
among these is that, even though no pre-tagged 
corpus is required, DEDICOM can easily be used 
as input to a HMM-based approach (and the two 
share linear-algebraic similarities, as we will make 
clear in section 4). Although our empirical results, 
like those of Schütze (1995), are perhaps still rela-
tively modest, the fact that a clearer connection 
exists between DEDICOM and HMMs than be-
tween SVD and HMMs gives us good reason to 
believe that with further refinements, DEDICOM 
may be able to give us ‘the best of both worlds’ in 
many respects: the benefits of avoiding the need 
for a pre-tagged corpus, with empirical results ap-
proaching those of HMM-based tagging. 

In the following sections, we introduce 
DEDICOM, describe its applicability to the part-
of-speech tagging problem, and outline its connec-
tions to the standard HMM-based approach to tag-
ging. We evaluate the use of DEDICOM on the 
CONLL 2000 shared task data, discuss the results 
and suggest avenues for improvement. 

2 DEDICOM 

DEDICOM, which stands for ‘DEcomposition into 
DIrectional COMponents’, is a linear-algebraic 
decomposition method attributable to Harshman 
(1978) which has been used to analyze matrices of 
 
1 We note the latter is also true for languages in which word 
order is relatively free – usually the same languages as those 
with rich morphology. While English word order is signifi-
cantly constrained by part-of-speech categorizations, this is 
not as true of, say, Russian. Thus, an adjacency matrix formed 
from a Russian corpus is likely to be less informative about 
part-of-speech classifications as one formed from an English 
corpus. Quite possibly, this is as much of a limitation for 
DEDICOM as it is for SVD. 

asymmetrical directional relationships between 
objects or persons. Early on, the technique was 
applied by Harshman et al. (1982) to the analysis 
of two types of marketing data: ‘free associations’ 
– how often one phrase (describing hair shampoo) 
evokes another in the minds of survey respondents, 
and ‘car switching data’ – how often people switch 
from one to another of 16 car types. Both datasets 
are asymmetric and directional: in the first dataset, 
for example, the phrase ‘body’ (referring to sham-
poo) evoked the phrase ‘fullness’ twice as often in 
the minds of respondents as ‘fullness’ evoked 
‘body’. Likewise, the data from Harshman et al. 
(1982) show that in the given period, 3,820 people 
switched from ‘midsize import’ cars to ‘midsize 
domestic’ cars, but only 2,140 switches were made 
in the reverse direction. Another characteristic of 
these ‘asymmetric directional’ datasets is that they 
can be represented in square matrices. For exam-
ple, the raw car switching data can be represented 
in a 16 × 16 matrix, since there are 16 car types. 

The objective of DEDICOM, which can be 
compared to that of SVD, is to factorize the raw 
data matrices into a lower-dimensional space iden-
tifying underlying, idealized directional patterns in 
the data. For example, while there are 16 car types 
in the raw car switching data, Harshman shows 
that under a 4-dimensional DEDICOM analysis, 
these can be ‘boiled down’ to the basic types ‘plain 
large-midsize’, ‘specialty’, ‘fancy large’, and 
‘small’ – and that patterns of switching among 
these more basic types can then be identified. 

If X represents the original n × n matrix of 
asymmetric relationships, and a general entry xij in 
X represents the strength of the directed relation-
ship of object i to object j, then the single-domain 
DEDICOM model2 can be written as follows: 
 

X = ARAT + E (1) 
 
where A denotes an n × q matrix of weights of the 
n observed objects in q dimensions (where q < n), 
and R is a dense q × q asymmetric matrix express-
ing the directional relationships between the q di-
mensions or basic types. AT is simply the transpose 
 
2 There is a dual-domain DEDICOM model, which is also 
described in Harshman (1978). The dual-domain DEDICOM 
model is not relevant to our discussion, and thus it will not be 
mentioned further. References in this paper to ‘DEDICOM’ 
are to be understood as references in shorthand to ‘single-
domain DEDICOM’. 
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of A, and E is a matrix of error terms. Our objec-
tive is to minimize E, so we can also write: 
 

X ≈ ARAT (2) 
 

As noted by Harshman (1978: 209), the fact that 
A appears on both the left and right of R means 
that the data is described ‘in terms of asymmetric 
relations among a single set of things’ – in other 
words, when objects are on the receiving end of the 
directional relationships, they are still of the same 
type as those on the initiating end. 

One difference between DEDICOM and SVD is 
that there is no unique solution: either A or R can 
be scaled or rotated without changing the goodness 
of fit, so long as the inverse operation is applied to 
the other. For example, if we let Â = AD, where D 
is any diagonal scaling matrix (or, more generally, 
any nonsingular matrix), then we can write 
 

X ≈ ARAT = ÂD-1RD-1ÂT (3) 
since ÂT = (AD) T = DAT

(In our application, we constrain A and R to be 
nonnegative as noted below.) 

To our knowledge, there have been no applica-
tions of DEDICOM to date in computational lin-
guistics. This is in contrast to SVD, which has 
been extensively used for text analysis (for appli-
cations other than unsupervised part-of-speech 
tagging, see Baeza-Yates and Ribeiro-Neto 1999). 

3 Applicability of DEDICOM to part-of-
speech tagging 

Schütze’s (1993) key insight is that – at least in 
English – adjacencies between types are a good 
guide to their grammatical functions. That insight 
can be leveraged by applying either SVD or 
DEDICOM to a type-by-type adjacency matrix. 
With DEDICOM, however, we add the constraint 
(already stated) that the types are a ‘single set of 
things’: whether a type ‘precedes’ or ‘follows’ – 
i.e., whether it is in a row or a column of the ma-
trix – does not affect its grammatical function. This 
constraint is as it should be, and, to our knowledge, 
sets DEDICOM apart from all previous unsuper-
vised approaches including those of Schütze (1993, 
1995) and Biemann (2006). 

Given any corpus containing n types and k to-
kens, we can let X be an n × n token-adjacency 

matrix. Let each entry xij in X denote the number 
of times in the corpus that type i immediately pre-
cedes type j. X is thus a matrix of bigram frequen-
cies. It follows that the sum of the elements of X 
equals k – 1 (because the first token in the corpus 
is preceded by nothing, and the last token is fol-
lowed by nothing). Any given row sum of X (the 
type frequency corresponding to the particular 
row) will equal the corresponding column sum, 
except if the type happens to occur in the first or 
last position in the corpus. X will be asymmetric, 
since the frequency of bigram ij is clearly not the 
same as that of bigram ji for all i and j.

It can be seen, therefore, that our X represents 
asymmetric directional data, very similar to the 
data analyzed in Harshman (1978) and Harshman 
et al. (1982). If we fit the DEDICOM model to our 
X matrix, then we obtain an A matrix which 
represents types by latent classes, and an R matrix 
which represents directional relationships between 
latent classes. We can think of the latent classes as 
induced parts of speech. 

With SVD, we believe that the orthogonality of 
the reduced-dimensional features militates against 
any attempt to correlate these features with parts of 
speech. From a linguistic point of view, there is no 
reason to believe that parts of speech are orthogon-
al to one another in any sense. For example, nouns 
and adjectives (traditionally classified together as 
‘nominals’) seem to share more in common with 
one another than nouns and verbs. With 
DEDICOM, this is not an issue, because the col-
umns of A are not required to be mutually ortho-
gonal to one another, unlike the left and right 
singular vectors from SVD. 

Thus, the A matrix from DEDICOM shows how 
strongly associated each type is with the different 
induced parts of speech; we would expect types 
which are ambiguous (such as ‘claims’, which can 
be either a noun or a verb) to have high loadings 
on more than one column in A. Again, if the 
classes correlate with parts of speech, the R matrix 
will show the latent patterns of adjacency between 
different parts of speech. 

4 Connections between DEDICOM and 
HMM-based tagging 

For any HMM, two components are necessary: a 
set of emission probabilities and a set of transition 
probabilities. Applying this framework to part-of-
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speech tagging, the tags are conceived of as the 
hidden layer of the HMM and the tokens (each of 
which is associated with a type) as the visible 
layer. The emission probabilities are then the prob-
abilities of types given the tags, and the transition 
probabilities are the probabilities of the tags given 
the preceding tags. If these probabilities are 
known, then there are algorithms (such as the Vi-
terbi algorithm) to determine the most likely se-
quence of tags given the visible sequence of types. 

In the case of supervised learning, we obtain the 
emission and transition probabilities by observing 
actual frequencies in a tagged corpus. Suppose our 
corpus, as previously discussed, consists of n types 
and k tokens. Since we are dealing with supervised 
learning, the number of the tags in the tagset is also 
known: we denote this number q. Now, the ob-
served frequencies can be represented, respective-
ly, as n × q and q × q matrices: we denote these A* 
and R*. Each entry aij in A* denotes the number of 
times type i is associated with tag j, and each entry 
rij in R* denotes the number of times tag j imme-
diately follows tag i. Moreover, we know some 
other properties of A* and R*: 

 
• the respective sums of the elements of A* and 

R* are equal to k – 1; 

• each row sum of A* (∑
=

q

x
ixa

1
) corresponds to 

the frequency in the corpus of type i;
• each column sum of A*, as well as the corres-

ponding row and column sums of R*, are the 
frequencies of the given tags in the corpus (for 

all j, ∑∑∑
===

==
q

x
jx

q

x
xj

q

x
xj rra
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). 

 
If A* and R* contain frequencies, however, we 

must perform a matrix operation to obtain transi-
tion and emission probabilities for use in an 
HMM-based tagger. In effect, A* must be made 
column-stochastic, and R* must be made row-
stochastic. Since the column sums of A* equal the 
respective row sums of R*, this can be achieved by 
post-multiplying both A* and R* by DA, where DA
is a diagonal scaling matrix containing the inverses 
of the column sums of A (or equivalently, the row 
sums of R). Then the matrix of emission probabili-
ties is given by A*DA, and the matrix of transition 
probabilities by R*DA.

We can now make the connection to DEDICOM 
explicit. Let A = A*DA and R = R*, then we can 
rewrite (2) as follows: 
 

X ≈ ARAT = (A*DA) R* (A*DA)T (4) 
X ≈ A*DA R*DA A*T (5) 

 
In other words, for any corpus we may compute 

a probabilistic representation of the type adjacency 
matrix X (which will contain expected frequencies 
comparable to the actual frequencies) by multiply-
ing the emission probability matrix A*DA, the 
transition probability matrix R*DA, and the type-
by-tag frequency matrix A*. (Presumably, the 
closer the approximation, the better the tagging in 
the training set actually factorizes the true direc-
tional relationships.) 

Conversely, for fully unsupervised tagging, we 
can fit the DEDICOM model to the type adjacency 
matrix X. The resulting A matrix contains esti-
mates of what the tags should be (if a tagged train-
ing corpus is unavailable), as well as the emission 
probability of each type given each tag, and the 
resulting R matrix is the corresponding transition 
probability matrix given those tags. In this case, a 
column-stochastic A can be used directly as the 
emission probability matrix, and we simply make 
R* row-stochastic to obtain the matrix of transition 
probabilities. The only difference then between the 
output of the fully-unsupervised DEDICOM/HMM 
tagger and that of a supervised HMM tagger is that 
in the first case, the ‘tags’ are numeric indices 
representing the corresponding column of A, and 
in the second case, they are the members of the 
tagset used in the training data. 

The fact that emission and transition probabili-
ties (or at least something very like them) are a 
natural by-product of DEDICOM sets DEDICOM 
apart from Schütze’s SVD-based approach, and is 
for us a significant reason which recommends the 
use of DEDICOM. 

5 Evaluation 

For all evaluation described here, we used the 
CONLL 2000 shared task data (CONLL 2000). 
This English-language newswire corpus consists of 
19,440 types and 259,104 tokens (including punc-
tuation marks as separate types/tokens). Each to-
ken is associated with a part-of-speech tag and a 
chunk tag, although we did not use the chunk tags 
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in the work described here. The tags are from a 44-
item tagset. The CONLL 2000 tags against which 
we measure our own results are in fact assigned by 
the Brill tagger (Brill 1992), and while these may 
not correlate perfectly with those that would have 
been assigned by a human linguist, we believe that 
the correlation is likely to be good enough to allow 
for an informative evaluation of our method. 

Before discussing the evaluation of unsuper-
vised DEDICOM, let us briefly reconsider the si-
milarities of DEDICOM to the supervised HMM 
model in the light of actual data in the CONLL 
corpus. We stated in (5) that X ≈ A*DAR*DAA*T.
For the CONLL 2000 tagged data, A* is a 19,440 
× 44 matrix and R* is a 44 × 44 matrix. Using 
A*DA and R*DA as emission- and transition-
probability matrices within a standard HMM 
(where the entire CONLL 2000 corpus is treated as 
both training and test data), we obtained a tagging 
accuracy of 95.6%. By multiplying 
A*DAR*DAA*T, we expect to obtain a matrix ap-
proximating X, the table of bigram frequencies. 
This is indeed what we found: it will be apparent 
from Table 1 that the top 10 expected bigram fre-
quencies based on this matrix multiplication are 
generally quite close to actual frequencies. Moreo-
ver, the sum of the elements in A*DAR*DAA*T is 
equal to the sum of the elements in X, and if we let 
E be the matrix of error terms (X - 
A*DAR*DAA*T), then we find that ||E|| (the Frobe-
nius norm of E) is 38.764% of ||X|| - in other 
words, A*DAR*DAA*T accounts for just over 60% 
of the data in X. 
 

Type 1 Type 2 Actual 
frequency 

Expected 
frequency 

of the 1,421.000 1,202.606 
in the 1,213.000 875.822 
for the 553.000 457.067 
to the 445.000 415.524 
on the 439.000 271.528 
the company 383.000 105.794 
a share 371.000 32.447 
that the 315.000 258.679 
and the 302.000 296.737 
to be 285.000 499.315 

Table 1. Actual versus expected frequencies for 10 most 
common bigrams in CONLL 2000 corpus 

 
Having confirmed that there exists an A 

(=A*DA) and R (=R*) which both satisfies the 
DEDICOM model and can be used directly within 

a HMM-based tagger to achieve satisfactory re-
sults, we now consider whether A and R can be 
estimated if no tagged training set is available. 

We start, therefore, from X, the square 19,440 ×
19,440 (sparse) matrix of raw bigram frequencies 
from the CONLL 2000 data. Using Matlab and the 
Tensor Toolbox (Bader and Kolda 2006, 2007), we 
computed the best rank-44 non-negative 
DEDICOM3 decomposition of this matrix using 
the 2-way version of the ASALSAN algorithm 
presented in Bader et al. (2007), which is based on 
iteratively improving random initial guesses for A 
and R. As with SVD, the rank of the decomposi-
tion can be selected by the user; we chose 44 since 
that was known to be the number of items in the 
CONLL 2000 tagset, but a lower number could be 
selected for a coarser-grained part-of-speech anal-
ysis. Ultimately, perhaps the best way to determine 
the optimal rank would be to evaluate different 
options within a larger end-to-end system, for ex-
ample an information retrieval system; this, how-
ever, was beyond our scope in this study. 

As already mentioned, there are indeterminacies 
of rotation and scale in DEDICOM. As Harshman 
et al. (1982: 211) point out, ‘when the columns of 
A are standardized… the R matrix can then be in-
terpreted as expressing relationships among the 
dimensions in the same units as the original data. 

That is, the R matrix can be interpreted as a ma-
trix of the same kind as the original data matrix X, 
but describing the relations among the latent as-
pects of the phrases, rather than the phrases them-
selves’. Thus, if DEDICOM is constrained so that 
A is column-stochastic (which is required in any 
case of the matrix of emission probabilities), then 
the sum of the elements in R should approximate 
the sum of the elements in X. R is therefore com-
parable to R* (with some provisos which shall be 
enumerated below), and to obtain the row-
stochastic transition-probability matrix, we simply 
multiply R by a diagonal matrix DR whose ele-
ments are the inverses of R’s row sums. 

 
3 Non-negative DEDICOM imposes the constraint not present 
in Harshman (1978, 1982) that all entries in A and R must be 
non-negative. This constraint is appropriate in the present 
case, since the entries in A* and R* (and of course the proba-
bilities in A*D and R*D) are by definition non-negative. 
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Table 2. Partial confusion matrix of gold-standard tags against DEDICOM-induced tags for CONLL 2000 dataset 

With A as an emission-probability matrix and 
RDR as a transition-probability matrix, we now 
have all that is needed for an HMM-based tagger 
to estimate the most likely sequence of ‘tags’ given 
the corpus. However, since the ‘tags’ here are nu-
merical indices, as mentioned, to evaluate the out-
put we must look at the correlation between these 
‘tags’ and the gold-standard tags given in the 
CONLL 2000 data. One way this can be done is by 
presenting a 44 × 44 confusion matrix (of gold-
standard tags against induced tags), and then mea-
suring the correlation coefficient (Pearson’s R) 
between that matrix and the ‘idealized’ confusion 
matrix in which each induced tag corresponds to 
one and only one ‘gold standard’ tag. Using A and 
RDR as the input to a HMM-based tagger, we 
tagged the CONLL 2000 dataset with induced tags 
and obtained the confusion matrix shown in Table 
2 (owing to space constraints, only the first 20 col-
umns are shown). The correlation between this 
matrix and the equivalent diagonalized ‘ideal’ ma-
trix is in fact 0.4942, which is significantly higher 
than could have occurred by chance. 

It should be noted that a lack of correlation be-
tween the induced tags and the gold standard tags 
can be attributed to at least two independent fac-
tors. The first, of course, is any inability of the 
DEDICOM model to fit the particular problem and 
data. Clearly, this is undesirable. The other factor 
to be borne in mind, which works to DEDICOM’s 
favor, is that the DEDICOM model could yield an 
A and R which factorize the data more optimally 
than the A*D and R* implied by the gold-standard 
tags. There are three methods we can use to try and 
tease apart these competing explanations of the 
results, two quantitative and the other subjective. 
Quantitatively, we can compare the respective er-
ror matrices E. We have already mentioned that 

38764.0
||X||

||ADRDAX|| T*
A

*
A

*

≈
−

(6) 

Similarly, using the A and R from DEDICOM we 
can compute 

24078.0
||X||

||ARAX|| T

≈
−

(7) 
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The fact that the error is lower in the second case 
implies that DEDICOM allows us to find a part-of-
speech ‘factorization’ of the data which fits better 
even than the gold standard, although again there 
are some caveats to this; we will return to these in 
the discussion. 

Another way to evaluate the output of 
DEDICOM is by comparing the number of part-of-
speech tags for a type in the gold standard to the 
number of classes in the A matrix with which the 
type is strongly associated. We test this by measur-
ing the Pearson correlation between the two va-
riables. First, we compute the average number of 
part-of-speech tags per type using the gold stan-
dard. We refer to this value as ambiguity coeffi-
cient; for the CONLL dataset, this is 1.05. Because 
A is dense, if we count all non-zero columns for a 
type in the A matrix as possible classes, we obtain 
a much higher ambiguity coefficient. We therefore 
set a threshold and consider only those columns 
whose values exceed a certain threshold. The thre-
shold is selected so that the ambiguity coefficient 
of the A matrix is the same as that of the gold stan-
dard. For a given type, every column with a value 
exceeding the threshold is counted as a possible 
class for that type. We then compute the Pearson 
correlation coefficient between the number of 
classes for a type in the A matrix and the number 
of part-of speech tags for that type in the CONLL 
dataset as provided by the Brill tagger. We ob-
tained a correlation coefficient of 0.88, which 
shows that there is indeed a high correlation be-
tween the induced tags and the gold standard tags 
obtained with DEDICOM. 

Finally, we can evaluate the output subjectively 
by looking at the content of the A matrix. For each 
‘tag’ (column) in A, the ‘types’ (rows) can be 
listed in decreasing order of their weighting in A. 
This gives us an idea of which types are most cha-

racteristic of which tags, and whether the grouping 
into tags makes any intuitive sense. These results 
(for selected tags only, owing to limitations of 
space) are given in Table 3. 

Many groupings in Table 3 do make sense: for 
example, the fourth tag is clearly associated with 
verbs, while the two types with significant weight-
ings for tag 2 are both determiners. By referring 
back to Table 2, we can see that many tokens in the 
CONLL 2000 dataset tagged as verbs are indeed 
tagged by the DEDICOM tagger as ‘tag 4’, while 
many determiners are tagged as ‘tag 3’. To under-
stand where a lack of correlation may arise, how-
ever, it is informative to look at apparent 
anomalies in the A matrix. For example, it can be 
seen from Table 3 that ‘new’, an adjective, is 
grouped in the third tag with ‘a’ and ‘the’ (and 
ranking above ‘an’). Although not in agreement 
with the CONLL 2000 ‘gold standard’ tagging, the 
idea that determiners are a type of adjective is in 
fact in accordance with traditional English gram-
mar. Here, the grouping of ‘new’, ‘a’ and ‘the’ can 
be explained by the distributional similarities (all 
precede nouns). It should also be emphasized that 
the A matrix is essentially a ‘soft clustering’ of 
types (meaning that types can belong to more than 
one cluster). Thus, for example, ‘u.s.’ (the abbrevi-
ation for United States) appears under both tag 2 
(which appears to have high loadings for nouns) 
and tag 8 (with high loadings for adjectives). 

We have alluded above in passing to possible 
methods for improving the results of the 
DEDICOM analysis. One would be to pre-process 
the data differently. Here, a variety of options are 
available which maintain a generally unsupervised 
approach (one example is to avoid treating punctu-
ation as tokens). However, variations in pre-
processing are beyond the scope of this paper. 

Tag Top 10 types (by weight) with weightings 
1 million share said . year billion inc. corp. years quarter 

0.0246 0.0146 0.0129 0.0098 0.0088 0.0069 0.0064 0.0061 0.0058 0.0054 
2 company u.s. new first market share year stock . government 

0.0264 0.0136 0.0113 0.0095 0.0086 0.0086 0.0079 0.0077 0.0065 0.006 
3 the a new an other its any addition their 1988 

0.2889 0.1194 0.0121 0.0094 0.0092 0.0085 0.0067 0.0062 0.0062 0.0057 
…
8 the its his about those their all u.s. . this 

0.0935 0.0462 0.0208 0.0160 0.0096 0.0095 0.0088 0.0077 0.0074 0.0071 
…

Table 3. Type weightings in A matrix, by tag 
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Another method would be to constrain 
DEDICOM so that the output more closely models 
the characteristics of A* and R*, the emission- and 
transition-probability matrices obtained from a 
tagged training set. In particular, there is one im-
portant constraint on R* which is not replicated in 
R: the constraint mentioned above that for all j,

∑∑
==

=
q

x
jx

q

x
xj rr

11

. We note that this constraint can be 

satisfied by Sinkhorn balancing (Sinkhorn 1964)4,
although it remains to be seen how the constraint 
on R can best be incorporated into the DEDICOM 
architecture. Assuming that A is column-
stochastic, another desirable constraint is that the 
rows of A(DR)-1 should sum to the same as the 
rows of X (the respective type frequencies). With 
the implementation of these (and any other) con-
straints, one would expect the fit of DEDICOM to 
the data to worsen (cf. (6) and (7) above), but in-
curring this cost could be worthwhile if the payoff 
were somehow linguistically interesting (for ex-
ample, if it turned out we could achieve a much 
higher correlation to gold-standard tagging). 

6 Conclusion 

In this paper, we have introduced DEDICOM, an 
analytical technique which to our knowledge has 
not previously been used in computational linguis-
tics, and applied it to the problem of completely 
unsupervised part-of-speech tagging. Theoretical-
ly, the model has features which recommend it 
over other previous approaches to unsupervised 
tagging, specifically SVD. Principal among the 
advantages is the compatibility of DEDICOM with 
the standard HMM-based approach to part-of-
speech tagging, but another significant advantage 
is the fact that types are treated as ‘a single set of 
objects’ regardless of whether they occupy the first 
or second position in a bigram. 

By applying DEDICOM to a tagged dataset, we 
have shown that there is a significant correlation 
between the tags induced by unsupervised, 
DEDICOM-based tagging, and the pre-existing 
gold-standard tags. This points both to an inherent 
validity in the gold-standard tags (as a reasonable 

 
4 It is also worth noting that Sinkhorn was motivated by the 
same problem which concerns us, that of estimating a transi-
tion-probability matrix for a Markov model. 

factorization of the data) and to the fact that 
DEDICOM appears promising as a method of in-
ducing tags in cases where no gold standard is 
available. 

We have also shown that the factors of 
DEDICOM are interesting in their own right: our 
tests show that the A matrix (similar to an emis-
sion-probability matrix) models type part-of-
speech ambiguity well. Using insights from 
DEDICOM, we have also shown how linear alge-
braic techniques may be used to estimate the fit of 
a given part-of-speech factorization (whether in-
duced or manually created) to a given dataset, by 
comparing actual versus expected bigram frequen-
cies. 

In summary, it appears that DEDICOM is a 
promising way forward for bridging the gap be-
tween unsupervised and supervised approaches to 
part-of-speech tagging, and we are optimistic that 
with further refinements to DEDICOM (such as 
the addition of appropriate constraints), more in-
sight will be gained on how DEDICOM may most 
profitably be used to improve part-of-speech tag-
ging when few pre-existing resources (such as 
tagged corpora) are available. 
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