
NAACL HLT 2009

Software Engineering,
Testing, and Quality

Assurance for
Natural Language

Processing
(SETQA-NLP 2009)

Proceedings of the Workshop

June 5, 2009
Boulder, Colorado

Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53707
USA

c©2009 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-932432-32-9

ii

Introduction

Software engineering is a first-class research topic in computer science, but generally has not been
treated as such within the natural language processing community. However, the need for well-
engineered NLP components is increasing as NLP begins to show up outside our research community:
bioinformatics, the search industry, education applications, etc. In addition, NLP research itself, e.g.,
when it involves large data sets, often requires a high level of software quality. Simply applying standard
software engineering practices to NLP often fails due to the unique characteristics of natural language
as an input type.

The goals of this workshop include raising awareness of the need for good software engineering
practices in NLP, stimulating research on same, and providing a forum for sharing current work in
this area. We are grateful to the authors for sharing their work, our invited speaker, and to the program
committee for their efforts.

Kevin Bretonnel Cohen and Marc Light

iii

Organizers:

Kevin Bretonnel Cohen, Center for Computational Pharmacology, University of Colorado School
of Medicine and The MITRE Corporation

Marc Light, Thomson Reuters

Program Committee:

William A. Baumgartner Jr., University of Colorado School of Medicine
Shannon Bradshaw, Drew University
Bob Carpenter, Alias-i
Hamish Cunningham, University of Sheffield
Dan Flickinger, Stanford University
Michael Gamon, Microsoft
Tracy Holloway King, Microsoft/PowerSet
James Lyle, Microsoft
Stephan Oepen, Stanford University
Jeff Reynar, DBT Labs
Kevin Markey, Silver Creek Systems
Charles Schafer, Google
Jun’ichi Tsujii, University of Tokyo and UK National Centre for Text Mining
Martin Volk, University of Stockholm
Scott Waterman, Microsoft/PowerSet
Ken Williams, Thomson Reuters

Invited Speaker:

Ted Pedersen, University of Minnesota Duluth

v

Table of Contents

Building Test Suites for UIMA Components
Philip Ogren and Steven Bethard . 1

Context-Dependent Regression Testing for Natural Language Processing
Elaine Farrow and Myroslava O. Dzikovska . 5

Using Paraphrases of Deep Semantic Representions to Support Regression Testing in Spoken Dialogue
Systems

Beth Ann Hockey and Manny Rayner .14

Integrated NLP Evaluation System for Pluggable Evaluation Metrics with Extensive Interoperable
Toolkit

Yoshinobu Kano, Luke McCrohon, Sophia Ananiadou and Jun’ichi Tsujii 22

Tightly Packed Tries: How to Fit Large Models into Memory, and Make them Load Fast, Too
Ulrich Germann, Eric Joanis and Samuel Larkin . 31

Scaling up a NLU system from text to dialogue understanding
Rodolfo Delmonte, Antonella Bristot, Gloria Voltolina and Vincenzo Pallotta 40

Towards Agile and Test-Driven Development in NLP Applications
Jana Sukkarieh and Jyoti Kamal .42

Grammar Engineering for CCG using Ant and XSLT
Scott Martin, Rajakrishnan Rajkumar and Michael White . 45

Web Service Integration for Next Generation Localisation
David Lewis, Stephen Curran, Kevin Feeney, Zohar Etzioni, John Keeney, Andy Way and Rein-

hard Schäler . 47

Distributed Parse Mining
Scott Waterman . 56

Modular resource development and diagnostic evaluation framework for fast NLP system improvement
Gaël de Chalendar and Damien Nouvel . 65

Integrating High Precision Rules with Statistical Sequence Classifiers for Accuracy and Speed
Wenhui Liao, Marc Light and Sriharsha Veeramachaneni . 74

vii

Conference Program

Friday, June 5, 2009

9:00–9:30 Building Test Suites for UIMA Components
Philip Ogren and Steven Bethard

9:30–10:00 Context-Dependent Regression Testing for Natural Language Processing
Elaine Farrow and Myroslava O. Dzikovska

10:00–10:30 Using Paraphrases of Deep Semantic Representions to Support Regression Testing
in Spoken Dialogue Systems
Beth Ann Hockey and Manny Rayner

10:30–11:00 Morning Break

11:00–11:30 Integrated NLP Evaluation System for Pluggable Evaluation Metrics with Extensive
Interoperable Toolkit
Yoshinobu Kano, Luke McCrohon, Sophia Ananiadou and Jun’ichi Tsujii

11:30–12:00 Tightly Packed Tries: How to Fit Large Models into Memory, and Make them Load
Fast, Too
Ulrich Germann, Eric Joanis and Samuel Larkin

12:00–12:30 Poster Session

Scaling up a NLU system from text to dialogue understanding
Rodolfo Delmonte, Antonella Bristot, Gloria Voltolina and Vincenzo Pallotta

Towards Agile and Test-Driven Development in NLP Applications
Jana Sukkarieh and Jyoti Kamal

Grammar Engineering for CCG using Ant and XSLT
Scott Martin, Rajakrishnan Rajkumar and Michael White

12:30–2:00 Lunch Break

2:00–3:00 Invited Talk by Ted Pedersen: The road from good software engineering to good
science ... is a two way street

3:00–3:30 Web Service Integration for Next Generation Localisation
David Lewis, Stephen Curran, Kevin Feeney, Zohar Etzioni, John Keeney, Andy
Way and Reinhard Schäler

ix

Friday, June 5, 2009 (continued)

3:30–4:00 Afternoon Break

4:00–4:30 Distributed Parse Mining
Scott Waterman

4:30–5:00 Modular resource development and diagnostic evaluation framework for fast NLP system
improvement
Gaël de Chalendar and Damien Nouvel

5:00–5:30 Integrating High Precision Rules with Statistical Sequence Classifiers for Accuracy and
Speed
Wenhui Liao, Marc Light and Sriharsha Veeramachaneni

x

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 1–4,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Building Test Suites for UIMA Components

Philip V. Ogren Steven J. Bethard

Center for Computational Pharmacology Department of Computer Science

University of Colorado Denver Stanford University

Denver, CO 80217, USA Stanford, CA 94305, USA
philip@ogren.info bethard@stanford.edu

Abstract

We summarize our experiences building a

comprehensive suite of tests for a statistical

natural language processing toolkit, ClearTK.

We describe some of the challenges we en-

countered, introduce a software project that

emerged from these efforts, summarize our re-

sulting test suite, and discuss some of the les-

sons learned.

1 Introduction

We are actively developing a software toolkit for

statistical natural processing called ClearTK (Og-

ren et al., 2008)
 1

, which is built on top of the Un-

structured Information Management Architecture

(UIMA) (Ferrucci and Lally, 2004). From the be-

ginning of the project, we have built and main-

tained a comprehensive test suite for the ClearTK

components. This test suite has proved to be inva-

luable as our APIs and implementations have

evolved and matured. As is common with early-

stage software projects, our code has undergone

number of significant refactoring changes and such

changes invariably break code that was previously

working. We have found that our test suite has

made it much easier to identify problems intro-

duced by refactoring in addition to preemptively

discovering bugs that are present in new code. We

have also observed anecdotally that code that is

1 http://cleartk.googlecode.com

more thoroughly tested as measured by code cov-

erage has proven to be more reliable and easier to

maintain.

While this test suite has been an indispensable

resource for our project, we have found creating

tests for our UIMA components to be challenging

for a number of reasons. In a typical UIMA

processing pipeline, components created by devel-

opers are instantiated by a UIMA container called

the Collection Processing Manager (CPM) which

decides at runtime how to instantiate components

and what order they should run via configuration

information provided in descriptor files. This pat-

tern is typical of programming frameworks: the

developer creates components that satisfy some

API specification and then these components are

managed by the framework. This means that the

developer rarely directly instantiates the compo-

nents that are developed and simple programs con-

sisting of e.g. a main method are uncommon and

can be awkward to create. This is indeed consistent

with our experiences with UIMA. While this is

generally a favorable approach for system devel-

opment and deployment, it presents challenges to

the developer that wants to isolate specific compo-

nents (or classes that support them) for unit or

functional testing purposes.

2 Testing UIMA Components

UIMA coordinates data generated and consumed

by different components using a data structure

called the Common Analysis Structure (CAS). The

1

CAS represents the current state of analysis that

has been performed on the data being analyzed. As

a simple example, a UIMA component that per-

forms tokenization on text would add token anno-

tations to the CAS. A subsequent component such

as a part-of-speech tagger would read the token

annotations from the CAS and update them with

part-of-speech labels. We have found that many of

our tests involve making assertions on the contents

of the CAS after a component or series of compo-

nents has been executed for a given set of configu-

ration parameters and input data. As such, the test

must obtain an instance of a CAS after it has been

passed through the components relevant to the

tests.

For very simple scenarios a single descriptor file

can be written which specifies all the configuration

parameters necessary to instantiate a UIMA com-

ponent, create a CAS instance, and process the

CAS with the component. Creating and processing

a CAS from such a descriptor file takes 5-10 lines

of Java code, plus 30-50 lines of XML for the de-

scriptor file. This is not a large overhead if there is

a single test per component, however, testing a

variety of parameter settings for each component

results in a proliferation of descriptor files. These

descriptor files can be difficult to maintain in an

evolving codebase because they are tightly coupled

with the Java components they describe, yet most

code refactoring tools fail to update the XML de-

scriptor when they modify the Java code. As a re-

sult, the test suite can become unreliable unless

substantial manual effort is applied to maintain the

descriptor files.

Thus, for ease of refactoring and to minimize the

number of additional files required, it made sense

to put most of the testing code in Java instead of

XML. But the UIMA framework does not make it

easy to instantiate components or create CAS ob-

jects without an XML descriptor, so even for rela-

tively simple scenarios we found ourselves writing

dozens of lines of setup code before we could even

start to make assertions about the expected con-

tents of a CAS. Fortunately, much of this code was

similar across test cases, so as the ClearTK test

suite grew, we consolidated the common testing

code. The end result was a number of utility

classes which allow UIMA components to be in-

stantiated and run over CAS objects in just 5-10

lines of Java code. We decided that these utilities

could also ease testing for projects other than

ClearTK, so we created the UUTUC project, which

provides our UIMA unit test utility code.

3 UUTUC

UUTUC
2
 provides a number of convenience

classes for instantiating, running, and testing

UIMA components without the overhead of the

typical UIMA processing pipeline and without the

need to provide XML descriptor files.

Note that UUTUC cannot isolate components

entirely from UIMA – it is still necessary, for ex-

ample, to create AnalysisEngine objects, JCas ob-

jects, Annotation objects, etc. Even if it were

possible to isolate components entirely from

UIMA, this would generally be undesirable as it

would result in testing components in a different

environment from that of their expected runtime.

Instead, UUTUC makes it easier to create UIMA

objects entirely in Java code, without having to

create the various XML descriptor files that are

usually required by UIMA.

Figure 1 provides a complete code listing for a

test of a UIMA component we wrote that provides

a simple wrapper around the widely used Snowball

stemmer
3
. A complete understanding of this code

would require detailed UIMA background that is

outside the scope this paper. In short, however, the

code creates a UIMA component from the Snow-

ballStemmer class, fills a CAS with text and to-

kens, processes this CAS with the stemmer, and

checks that the tokens were stemmed as expected.

Here are some of the highlights of how UUTUC

made this easier:

Line 3 uses TypeSystemDescriptionFactory

to create a TypeSystemDescription from the

user-defined annotation classes Token and Sen-

tence. Without this factory, a 10 line XML de-

scriptor would have been required.

Line 5 uses AnalysisEngineFactory to create

an AnalysisEngine component from the user-

defined annotator class SnowballStemmer and

the type system description, setting the stemmer

name parameter to "English". Without this

factory, a 40-50 line XML descriptor would

have been required (and near duplicate descrip-

2 http://uutuc.googlecode.com – provided under BSD license
3 http://snowball.tartarus.org

2

tor files would have been required for each ad-

ditional parameter setting tested).

Line 11 uses TokenFactory to set the text of

the CAS object and to populate it with Token

and Sentence annotations. Creating these anno-

tations and adding them to the CAS manually

would have taken about 20 lines of Java code,

including many character offsets that would

have to be manually adjusted any time the test

case was changed.

While a Python programmer might not be im-

pressed with the brevity of this code, anyone who

has written Java test code for UIMA components

will appreciate the simplicity of this test over an

approach that does not make use of the UUTUC

utility classes.

4 Results

The test suite we created for ClearTK was built

using UUTUC and JUnit version 4
4
 and consists of

92 class definitions (i.e. files that end in .java) con-

taining 258 tests (i.e. methods with the marked

with the annotation @Test). These tests contain a

total of 1,943 individual assertions. To measure

code coverage of our unit tests we use EclEmma
5
,

a lightweight analysis tool available for the Eclipse

development environment, which counts the num-

ber of lines that are executed (or not) when a suite

of unit tests are executed. While this approach pro-

4 http://junit.org
5 http://www.eclemma.org

vides only a rough approximation of how well the

unit tests “cover” the source code, we have found

anecdotally that code with higher coverage re-

ported by EclEmma proves to be more reliable and

easier to maintain. Overall, our test suite provides

74.3% code coverage of ClearTK (5,391 lines cov-

ered out of 7,252) after factoring out automatically

generated code created by JCasGen. Much of the

uncovered code corresponds to the blocks catching

rare exceptions. While it is important to test that

code throws exceptions when it is expected to,

forcing test code to throw all exceptions that are

explicitly caught can be tedious and sometimes

technically quite difficult.

5 Discussion

We learned several lessons while building our test

suite. We started writing tests using Groovy, a dy-

namic language for the Java Virtual Machine. The

hope was to simplify testing by using a less ver-

bose language than Java. While Groovy provides a

great syntax for creating tests that are much less

verbose, we found that creating and maintaining

these unit tests was cumbersome using the Eclipse

plug-in that was available at the time (Summer

2007). In particular, refactoring tasks such as

changing class names or method names would suc-

ceed in the Java code, but the Groovy test code

would not be updated, a similar problem to that of

UIMA’s XML descriptor files. We also found that

Eclipse became less responsive because user ac-

tions would often wait for the Groovy compiler to

 1 @Test

 2 public void testSimple() throws UIMAException {

 3 TypeSystemDescription typeSystemDescription = TypeSystemDescriptionFactory

 4 .createTypeSystemDescription(Token.class, Sentence.class);

 5 AnalysisEngine engine = AnalysisEngineFactory.createAnalysisEngine(

 6 SnowballStemmer.class, typeSystemDescription,

 7 SnowballStemmer.PARAM_STEMMER_NAME, "English");

 8 JCas jCas = engine.newJCas();

 9 String text = "The brown foxes jumped quickly over the lazy dog.";

10 String tokens = "The brown foxes jumped quickly over the lazy dog .";

11 TokenFactory.createTokens(jCas, text, Token.class, Sentence.class, tokens);

12 engine.process(jCas);

13 List<String> actual = new ArrayList<String>();

14 for (Token token: AnnotationRetrieval.getAnnotations(jCas, Token.class)) {

15 actual.add(token.getStem());

16 }

17 String expected = "the brown fox jump quick over the lazi dog .";

18 Assert.assertEquals(Arrays.asList(expected.split(" ")), actual);

19 }

Figure 1: A complete test case using UUTUC.

3

complete. Additionally, Groovy tests involving

Java’s Generics would sometimes work on one

platform (Windows) and fail on another (Linux or

Mac). For these reasons we abandoned using

Groovy and converted our tests to Java. It should

be noted that the authors are novice users of

Groovy and that Groovy (and the Eclipse Groovy

plug-in) may have matured significantly in the in-

tervening two years.

Another challenge we confronted while building

our test suite was the use of licensed data. For ex-

ample, ClearTK contains a component for reading

and parsing PennTreebank formatted data. One of

our tests reads in and parses the entire PennTree-

bank corpus, but since we do not have the rights to

redistribute the PennTreeBank, we could not in-

clude this test as part of the test suite distributed

with ClearTK. So as not to lose this valuable test,

we created a sibling project of ClearTK which is

not publicly available, but from which we could

run tests on ClearTK. This sibling project now

contains all of our unit tests which use data we

cannot distribute. We are considering making this

project available separately for those who have

access to the relevant data sets.

We have begun to compile a growing list of best

practices for our test suite. These include:

Reuse JCas objects. In UIMA, creating a JCas

object is expensive. Instead of creating a new

JCas object for each test, a single JCas object

should be reused for many tests where possible.

Refer to descriptors by name, not location.
UIMA allows descriptors to be located by either

“location” (a file system path) or “name” (a Ja-

va-style dotted package name). Descriptors re-

ferred to by “name” can be found in a .jar file,

while descriptors referred to by “location” can-

not. This applies to imports of both type system

descriptions (e.g. in component descriptors) and

to imports of CAS processors (e.g. in collection

processing engine descriptors).

Test loading of descriptor files. As discussed,

XML descriptor files can become stale in an

evolving codebase. Simply loading each de-

scriptor in UIMA and verifying that the para-

meters are as expected is often enough to keep

the descriptor files working if the actual com-

ponent code is being properly checked through

other tests.

Test copyright and license statements. We

found it useful to add unit tests that search

through our source files (both Java code and

descriptor files) and verify that appropriate

copyright and license statements are present.

Such statements were a requirement of the

technology transfer office we were working

with, and were often accidentally omitted when

new source files were added to ClearTK. Add-

ing a unit test to check for this meant that we

caught such omissions much earlier.

As ClearTK has grown in size and complexity its

test suite has proven many times over to be a vital

instrument in detecting bugs introduced by extend-

ing or refactoring existing code. We have found

that the code in UUTUC has greatly decreased the

burden of maintaining and extending this test suite,

and so we have made it available for others to use.

References

Philip V. Ogren, Philipp G. Wetzler, and Steven Be-

thard. 2008. ClearTK: a UIMA toolkit for statistical

natural language processing. In UIMA for NLP

workshop at LREC.

David Ferrucci and Adam Lally. 2004. UIMA: an archi-

tectural approach to unstructured information

processing in the corporate research environment.

Natural Language Engineering, 10(3-4):327–348.

4

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 5–13,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Context-Dependent Regression Testing for Natural Language Processing

Elaine Farrow
Human Communication Research Centre

School of Informatics
University of Edinburgh

Edinburgh, UK
Elaine.Farrow@ed.ac.uk

Myroslava O. Dzikovska
Human Communication Research Centre

School of Informatics
University of Edinburgh

Edinburgh, UK
M.Dzikovska@ed.ac.uk

Abstract

Regression testing of natural language sys-
tems is problematic for two main reasons:
component input and output is complex, and
system behaviour is context-dependent. We
have developed a generic approach which
solves both of these issues. We describe our
regression tool, CONTEST, which supports
context-dependent testing of dialogue system
components, and discuss the regression test
sets we developed, designed to effectively iso-
late components from changes and problems
earlier in the pipeline. We believe that the
same approach can be used in regression test-
ing for other dialogue systems, as well as in
testing any complex NLP system containing
multiple components.

1 Introduction

Natural language processing systems, and dialogue
systems in particular, often consist of large sets of
components operating as a pipeline, including pars-
ing, semantic interpretation, dialogue management,
planning, and generation. Testing such a system can
be a difficult task for several reasons. First, the com-
ponent output may be context-dependent. This is
particularly true for a dialogue system – reference
resolution, ellipsis, and sometimes generation typi-
cally have to query the system state to produce their
output, which depends both on the state of the world
(propositions defined in a knowledge base) and on
the dialogue history (object salience). Under these
conditions, unit testing using the input and output of
a single component in isolation is of limited value

– the entire system state needs to be preserved to
check that context-dependent components are func-
tioning as expected.

Second, the inputs and outputs of most system
components are usually very complex and often
change over time as the system develops. When
two complex representations are compared it may
be difficult to determine what impact any change is
likely to have on system performance (far-reaching
or relatively trivial). Further, if we test components
in isolation by saving their inputs, and these inputs
are reasonably complex, then it will become difficult
to maintain the test sets for the components further
along the pipeline (such as diagnosis and generation)
as the output of the earlier components changes dur-
ing development.

The simplest way to deal with both of these is-
sues would be to save a set of test dialogues as a
gold standard, checking that the final system out-
put is correct given the system input. However, this
presents another problem. If a single component
(generation, for example) malfunctions, it becomes
impossible to verify that a component earlier in the
pipeline (for example, reference resolution) is work-
ing properly. In principle we could also save the
messages passing between components and compare
their content, but then we are faced again with the
problems arising from the complexity of component
input and output which we described above.

To solve these problems, we developed a regres-
sion tool called CONTEST (for CONtext-dependent
TESTing). CONTEST allows the authors of individ-
ual system components to control what information
to record for regression testing. Test dialogues are

5

saved and replayed through the system, and individ-
ual components are tested by comparing only their
specific regression output, ignoring the outputs gen-
erated by other components. The components are
isolated by maintaining a minimal set of inputs that
are guaranteed to be processed correctly.

To deal with issues of output complexity we ex-
tend the approach of de Paiva and King (2008) for
testing a deep parser. They created test sets at dif-
ferent levels of granularity, some including detailed
representations, but some just saving very simple
output of a textual entailment component. They
showed that, given a carefully selected test set, test-
ing on the final system output can be a fast and effec-
tive way to discover problems in the interpretation
pipeline.

We show how the same idea can be used to test
other dialogue system components as well. We de-
scribe the design of three different test sets that
effectively isolate the interpretation, tutorial plan-
ning and generation components of our system. Us-
ing CONTEST allows us to detect system errors and
maintain consistent test sets even as the underlying
representations change, and gives us much greater
confidence that the results of our testing are relevant
to the performance of the system with real users.

The rest of this paper is organised as follows. In
Section 2 we describe our system and its compo-
nents in more detail. The design of the CONTEST

tool and the test sets are described in Sections 3 and
4. Finally, in Section 5 we discuss how the inter-
active nature of the dialogue influences the design
of the test sets and the process of verifying the an-
swers; and we discuss features that we would like to
implement in the future.

2 Background

This work has been carried out to support the devel-
opment of BEETLE (Callaway et al., 2007), a tuto-
rial dialogue system for basic electricity and elec-
tronics. The goal of the BEETLE system is to teach
conceptual knowledge using natural language dia-
logue. Students interact with the system through a
graphical user interface (GUI) which includes a chat
interface,1 a window to browse through slides con-

1The student input is currently typed to avoid issues with
automated speech recognition of complex utterances.

taining reading material and diagrams, and an inter-
face to a circuit simulator where students can build
and manipulate circuits.

The system consists of twelve components alto-
gether, including a knowledge base representing the
state of the world, a curriculum planner responsible
for the lesson structure, and dialogue management
and NLP components. We developed CONTEST so
that it could be used to test any system component,
though our testing focuses on the natural language
understanding and generation components.2

BEETLE uses a standard natural language pro-
cessing pipeline, starting with a parser, lexical in-
terpreter, and dialogue manager. The dialogue man-
ager handles all input from the GUI (text, button
presses and circuits) and also supports generic di-
alogue processing, such as dealing with interpreta-
tion failures and moving the lesson along. Student
answers are processed by the diagnosis and tuto-
rial planning components (discussed below), which
function similarly to planning and execution com-
ponents in task oriented dialogue systems. Finally,
a generation subsystem converts the semantic repre-
sentations output by the tutorial planner into the final
text to be presented to the student.

The components communicate with each other
using the Open Agent Architecture (Martin et al.,
1998). CONTEST is implemented as an OAA agent,
accepting requests to record messages. However,
OAA is not essential for the system design – any
communication architecture which supports adding
extra agents into a system would work equally well.

BEETLE aims to get students to support their rea-
soning using natural language, since explanations
and contentful talk are associated with learning gain
(Purandare and Litman, 2008). This requires de-
tailed analyses of student answers in terms of cor-
rect, incorrect and missing parts (Dzikovska et al.,
2008; Nielsen et al., 2008). Thus, we use the TRIPS
parser (Allen et al., 2007), a deep parser which pro-
duces detailed analyses of student input. The lexical
interpreter extracts a list of objects and relationships
mentioned, which are checked against the expected
answer. These lists are fairly long – many expected
answers have ten or more relations in them. The

2All our components are rule-based, but we expect the same
approach would work for components of a statistical nature.

6

diagnoser categorises each of the objects and rela-
tionships as correct, contradictory or irrelevant. The
tutorial planner makes decisions about the remedi-
ation strategy, choosing one strategy from a set of
about thirteen depending on the question type and
tutorial context. Finally, the generation system uses
the FUF/SURGE (Elhadad, 1991) deep generator to
generate feedback automatically.

Obviously, the output from the deep parser and
the input to the tutorial planner and generator are
quite complex, giving rise to the types of problems
that we discussed in the introduction. We already
had a tool for unit-testing the parser output (Swift et
al., 2004), plus some separate tools to test the diag-
noser and the generation component, but the com-
plexity of the representations made it impractical to
maintain large test sets that depended on such com-
plex inputs and outputs. We also wanted a unified
way to test all the components in the context of the
entire system. This led to the creation of CONTEST,
which we describe in the rest of the paper.

3 The CONTEST Tool

Figure 1: The regression testing process.

In this section we describe the process for creat-
ing and using test cases, illustrated in Figure 1. The
first step in building a useful regression tool is to
make it possible to run the same dialogue through
the system many times without retyping the student
answers. We added a wrapper around the GUI to in-
tercept and record the user actions and system calls
for later playback, thus creating a complete record

of the session. Every time our system runs, a new
saved session file is automatically created and saved
in a standard location. This file forms the basis for
our test cases. It uses an XML format, which is
human-readable and hand-editable, easily extensible
and amenable to automatic processing. A (slightly
simplified) example of a saved session file is shown
in Figure 2. Here we can see that a slide was dis-
played, the tutor asked the question “Which compo-
nents (if any) are in a closed path in circuit 1?” and
the student answered “the battery and the lightbulb”.

Creating a new test case is then a simple matter of
starting the system and performing the desired ac-
tions, such as entering text and building circuits in
the circuit simulator. If the system is behaving as it
should, the saved session file can be used directly as
a test case. If the system output is not as desired, the
file can be edited in any text editor.

Of course, this only allows the final output of the
system to be tested, and we have already discussed
the shortcomings of such an approach: if a com-
ponent late in the pipeline has problems, there is
no way to tell if earlier components behaved as ex-
pected. To remedy this, we added a mechanism for
components other than the GUI to record their own
information in the saved session file.

Components can be tested in effective isolation by
combining two mechanisms: carefully designed test
sets which focus on a single component and (impor-
tantly) are expected to succeed even if some other
component is having problems; and a regression tool
which allows us to test the output of an individual
component. Our test sets are discussed in detail in
Section 4. The remainder of this section describes
the design of the tool.

CONTEST reads in a saved session file and re-
produces the user actions (such as typing answers
or building circuits), producing a new saved ses-
sion file as its output. If there have been changes to
the system since the test was created, replaying the
same actions may lead to new slides and tutor mes-
sages being displayed, and different recorded output
from intermediate components. For example, given
the same student answers, the diagnosis may have
changed, leading to different tutor feedback. We
compare the newly generated output file against the
input file. If there are no differences, the test is con-
sidered to have passed. As the input and output files

7

<test>
<action agent="tutor" method="showSlide">
lesson1-oe/exercise/img1.html

</action>
<action agent="tutor" method="showOutput">
Which components (if any) are in a closed path in circuit 1?

</action>
<action agent="student" method="submitText">
the battery and the lightbulb

</action>
</test>

Figure 2: A saved session file showing a single interaction between tutor and student.

are identical in format, the comparison can be done
using a ‘diff’ command.

With each component recording its own output, it
can be the case that there are many differences be-
tween old and new files. It is therefore important to
be able to choose the level of detail we want when
comparing saved session files, so that the output of
a single component can be checked independently
of other system behaviour. We solved this problem
by creating a set of standard XSLT filters. One fil-
ter picks out just the dialogue between student and
tutor to produce a transcript of the session. Other
filters select the output from one particular compo-
nent, for example the tutorial planner, with the tutor
questions included to provide context. In general,
we wrote one filter for each component.

CONTEST creates a test report by comparing the
expected and actual outputs of the system on each
test run. We specify which filter to use (based on
which component we are testing). If the test fails,
we can examine the relevant differences using the
‘ediff’ mode in the emacs text editor. More sophis-
ticated approaches are possible, such as using a fur-
ther XSL transform to count all the errors of a partic-
ular type, but we have found ediff to be good enough
for our purposes. With the filters in place we only
see the differences for the component we are testing.
Since component regression output is designed to be
small and human-readable, checking the differences
is a very quick process.

Test cases can be run individually or in groups.3

3Test cases are usually grouped by directory, but symbolic
links allow us to use the same case in several groups.

Using CONTEST, we can create a single report for a
group of test cases: the individual outputs are com-
bined to create a new output file for the group and
this is compared to the (combined) input file, with
filters applied in the usual way. This is a very use-
ful feature, allowing us to create a report for all the
‘good answer’ cases (for example) in one step.

Differences do not always indicate errors; some-
times they are simply changes or additions to the
recorded information. After satisfying ourselves that
the reported differences are intentional changes, we
can update the test cases to reflect the output of the
latest run. Subsequent runs will test against the new
behaviour. CONTEST includes an update tool which
can update a group of cases with a single command.
This is simpler and less error-prone than editing po-
tentially hundreds of files by hand.

4 Test Cases

We have built several test sets for each component,
amounting to more than 400 individual test cases.
We describe examples of the test sets for three of our
components in more detail below, to demonstrate
how we use CONTEST.

4.1 Interpretation Test Cases

We have a test set consisting of ‘good answers’ for
each of the questions in our system which we use to
test the interpretation component. The regression in-
formation recorded by the interpretation component
includes the internal ID code of the matched answer
and a code indicating whether it is a ‘best’, ‘good’ or
‘minimal’ answer. This is enough to allow us to de-

8

<test name="closed_path_discussion">
<action agent="tutor" method="showOutput">
What are the conditions that are required to make a bulb light up?

</action>
<action agent="student" method="submitText">
a bulb must be in a closed path with the battery

</action>
<action agent="simpleDiagnosis" method="logForRegression">
student-act: answer atype: diagnosis consistency: []
code: complete subcode: best
answer_id: conditions_for_bulb_to_light_ans1

</action>
</test>

Figure 3: A sample test case from our ‘good answers’ set showing the diagnosis produced for the student’s answer.

tect many possible errors in interpretation. We can
run this test set after every change to the parsing or
interpretation components.

A (slightly simplified) example of our XML test
case format is shown in Figure 3, with the tutor ques-
tion “What are the conditions that are required to
make a bulb light up?” and the student answer “a
bulb must be in a closed path with the battery”. The
answer diagnosis shows that the system recognised
that the student was attempting to answer the ques-
tion (rather than asking for help), that the answer
match was complete, with no missing or incorrect
parts, and the answer was consistent with the state of
the world as perceived by the system.4 The matched
answer is marked as the best one for that question.

While the recorded information does not supply
the full interpretation, it can suggest the source of
various possible errors. If interpretation fails, the
student act will be set to uninterpretable,
and the code will correspond to the reason
for failed interpretation: unknown input
if the parse failed, unknown mapping or
restriction failure if lexical interpretation
failed, and unresolvable if reference resolution
failed. If interpretation worked, but took incorrect
scoping or attachment decisions, the resulting
proposition is likely to be inconsistent with the

4Sometimes students are unable to interpret diagrams, or
are lacking essential background knowledge, and therefore say
things that contradict the information in the domain model. The
system detects and remediates such cases differently from gen-
eral errors in explanations (Dzikovska et al., 2006).

current knowledge base, and an inconsistency code
will be reported. In addition, verifying the matched
answer ID provides some information in case only
a partial interpretation was produced. Sometimes
different answer IDs correspond to answers that are
very complete versus answers that are acceptable
because they address the key point of the question,
but miss some small details. Thus if a different
answer ID has matched, it indicates that some
information was probably lost in interpretation.

The codes we report were not devised specifically
for the regression tests. They are used internally to
allow the system to produce accurate feedback about
misunderstandings. However, because they indicate
where the error is likely to originate (parsing, lexi-
cal interpretation, scoping and disambiguation), they
can help us to track it down.

We have another test set for ‘special cases’, such
as the student requesting a hint or giving up. An ex-
ample is shown in Figure 4. Here the student gives
up completely on the first question, then asks for
help with the second. We use this test case to check
that the set phrases “I give up” and “help” are un-
derstood by the system. The ‘special cases’ test set
includes a variety of help request phrasings observed
in the corpora we collected. Note that this example
was recorded while using a tutorial policy that re-
sponds to help requests by simply providing the an-
swer. This does not matter for testing interpretation,
since the information recorded in the test case will
distinguish help requests from give ups, regardless

9

T: Which components (if any) are in a closed path
in circuit 1?

S: I give up
T: The answer is the battery and the bulb in 1.
T: Which components (if any) are in a closed path

in circuit 2?
S: help
T: Here’s the answer. The bulb in 2.

Figure 4: The transcript of a test case for “I give up” and
“help”. T: is the tutor, S: is the student.

of the specific tutorial policy used by the system.
Finally, we have a test set for detection of un-

interpretable utterances. In a tutoring system, stu-
dents often use incorrect terminology or unex-
pected phrasings which the system cannot under-
stand. While we expect coverage and robustness of
parsing and interpretation components to improve
as the system develops, some percentage of errors
is to be expected simply because even state-of-the-
art parsers are not 100% accurate. Thus the sys-
tem needs to detect problems whenever possible,
and produce useful help messages. We have col-
lected a set of student utterances that correspond
to typical interpretation problems – failed parses,
unknown words, sentences that are parsed but the
parser makes an incorrect attachment decision, sen-
tences where the student used terminology incor-
rectly (violating sortal constraints encoded in the
knowledge base), a pronominal referent that could
not be resolved. Identifying the problem type cor-
rectly is important because it affects later processing
in the dialogue manager and tutorial planner. Thus
we have a set of test cases using the collected sen-
tences, which we use to ensure that the problems are
flagged correctly.

4.2 Tutoring Test Cases

The BEETLE tutorial planner makes decisions on
system behaviour and corresponds to planning and
execution components in other dialogue systems.
Here, we are attempting to test that the tutorial plan-
ner selected the right system action. Therefore, since
we are not testing the interpretation component, we
don’t vary the form of the language we use. Instead,

T: Predict the state (on, off) of each bulb in dia-
gram 1.

S: all bulbs are off
T: OK, we’ll check your prediction in a moment.
T: Predict the state (on, off) of each bulb in dia-

gram 2.
S: all bulbs are off
T: OK, we’ll check your prediction in a moment.
T: Test your prediction for diagram 1 by opening

both switches and observing the bulbs.
T: Test your prediction for diagram 2 by closing

both switches and observing the bulbs.
T: Did the bulbs behave the way you expected?
S: no
T: Right. In your second prediction, you said that

Bulb A, Bulb B and Bulb C would be off. But
Bulb A, Bulb B and Bulb C are lit.

Figure 5: A tutorial planner test case transcript. T: is the
tutor, S: is the student.

we vary the combination of good and bad student an-
swers, and record the action chosen by the system.

The tutorial planner chooses feedback in 2 stages.
First, a general algorithm is chosen depending on the
exercise type and student input type: there are sepa-
rate algorithms for addressing, for example, what to
do if the student input was not interpreted, and for
correct and incorrect answers. Choosing the algo-
rithm requires some computation depending on the
question context. Once the main algorithm is cho-
sen, different tutorial strategies can be selected, and
this is reflected in the regression output: the system
records a keyword corresponding to the chosen algo-
rithm, and then the name of the strategy along with
key strategy parameters.

For example, Figure 5 shows the transcript from
a test case for a common exercise type from our
lessons: a so called predict-verify-evaluate se-
quence. In this example, the student is asked to
predict the behaviour of three light bulbs in a cir-
cuit, test it by manipulating the circuit in the simu-
lation environment, and then evaluate whether their
predictions matched the circuit behaviour. The sys-
tem reinforces the point of the exercise by producing
a summary of discrepancies between the student’s

10

<action agent="tutor" method="showOutput">
Did the bulbs behave the way you expected?

</action>
<action agent="student" method="submitText">
no

</action>
<action agent="tc-bee" method="logForRegression">
EVALUATE (INCORRECT-PREDICTION NO_NO)

</action>

Figure 6: An excerpt from a tutorial planner test case showing the recorded summary output.

predictions and the observed outcomes.
An excerpt from the corresponding test case is

shown in Figure 6. Here we can see the tutor ask
the evaluation question “Did the bulbs behave the
way you expected?” and the student answer “no”.
The EVALUATE algorithm was chosen to handle the
student answer, and from the set of available strate-
gies the INCORRECT-PREDICTION strategy was
chosen. That strategy takes a parameter indicating
if there was a discrepancy when the student evalu-
ated the results (here NO NO, corresponding to the
expected and actual evaluation result inputs).

In contrast, in the first example in Figure 4, where
the student gives up and doesn’t provide an an-
swer, the tutorial planner output is REMEDIATE
(BOTTOM-OUT Q IDENTIFY). This shows that
the system has chosen to use a REMEDIATE algo-
rithm, and a ‘bottom-out’ (giving away the answer)
strategy for remediation. The strategy parameter
Q IDENTIFY (which depends on the question type)
determines the phrasing to be used in the generator
to verbalise the tutor’s feedback.

The saved output allows us to see that the cor-
rect algorithm was chosen to handle the student in-
put (for example, that the REMEDIATE algorithm
is correctly chosen after an incorrect student answer
to an explanation question), and that the algorithm
chooses a strategy appropriate for the tutorial con-
text. Certain errors can still go undetected here, for
example, if the algorithm for verbalising the chosen
strategy in the generator is broken. Developing sum-
mary inputs to detect such errors is part of planned
future work.

In order to isolate the tutorial planner from inter-
pretation, we use standard fixed phrasings for stu-

dent answers. The answer phrasings in the ‘good
answers’ test set for interpretation (described in Sec-
tion 4.1) are guaranteed to be understood correctly,
so we use only these phrasings in our tutorial planner
test cases. Thus, we are able to construct tests which
will not be affected by problems in the interpretation
pipeline.

4.3 Generation Test Cases

To test generation, we have a set of test cases where
the student immediately says “I give up” in response
to each question. This phrase is used in our system
to prevent the students getting stuck – the tutorial
policy is to immediately stop and give the answer to
the question. The answers given are generated by
a deep generator from internal semantic representa-
tions, so this test set gives us the assurance that all
relevant domain content is being generated properly.
This is not a complete test for the generation capabil-
ities of our system, since each explanation question
can have several possible answers of varying degrees
of quality (suggested by experienced human tutors
(Dzikovska et al., 2008)), and we always choose
the best possible answer when the student gives up.
However, it gives us confidence that the student can
give up at any point and receive an answer which can
be used as a template for future answers.

5 Discussion and Future Work

We have created more than 400 individual test cases
so far. There are more than 50 for the interpretation
component, more than 150 for the tutorial planner
and more than 200 for the generation component.
We are developing new test sets based on other sce-
narios, such as responding to each question with a

11

help request. We are also refining the summary in-
formation recorded by each component.

An important feature of our testing approach is
the use of short summaries rather than the inter-
nal representations of component inputs and outputs.
Well-designed summaries provide key information
in an easy-to-read format that can remain constant as
internal formats change and develop over time. We
believe that this approach would be useful for other
language processing systems, since at present there
are few standardised formats in the community and
representations are typically developed and refined
together with the algorithms that use them.

The decision about what information to include in
the summary is vital to the success and overall use-
fulness of the regression tool. If too much detail is
recorded, there will be many spurious changes and
it will be burdensome to keep a large regression set
updated. If too little detail is recorded, unwanted
changes in the system may go undetected. The con-
tent of the test cases we discussed in Section 4 rep-
resents our approach to such decisions.

Interpretation was perhaps the most difficult, be-
cause it has a particularly complex output. In deter-
mining the information to record, we were following
the solution of de Paiva and King (2008) who use the
decision result of the textual entailment system as a
way to efficiently test parser output. For our sys-
tem, the information output by the diagnoser about
answer correctness proved to have a similar function
– it effectively provides information about whether
the output of the interpretation component was us-
able, without the need to check details carefully.

The main challenge for our tutorial planner and
generation components (corresponding to planning
and execution components in a task-oriented dia-
logue system) was to ensure that they were suffi-
ciently isolated so as to be unaffected by errors in in-
terpretation. We achieve this by maintaining a small
set of known phrasings which are guaranteed to be
interpreted correctly; this ensures that in practice,
the downstream components are isolated from un-
wanted changes in interpretation.

Our overall methodology of recording and test-
ing summary information for individual components
can be used with any complex NLP system. The spe-
cific details of what information to record obviously
depends on the domain, but our experience suggests

some general principles. For testing the interpreta-
tion pipeline, it is useful to record pre-existing error
codes and a qualitative summary of the information
used to decide on the next system action. Where we
record the code output by the diagnoser, an informa-
tion seeking system could record, for example, the
number of slots filled and the number of items re-
trieved from a database. It is also useful to record
decisions taken by the system, or actions performed
in response to user input; so, just as we record infor-
mation about the chosen tutorial policy, other sys-
tems can record the action taken – whether it is to
search the database, query a new slot, or confirm a
slot value.

One major improvement that we have planned for
the future is adding another layer of test case man-
agement to CONTEST, to enable us to produce sum-
maries and statistics about the total number of test
cases that have passed and failed, instead of check-
ing reports individually. Such statistics can be im-
plemented easily using another XSL transform on
top of the existing filters to count the number of
test cases with no differences and produce summary
counts of each type of error detected.

6 Conclusion

The regression tool we developed, CONTEST, solves
two of the major issues faced when testing dia-
logue systems: context-dependence of component
behaviour and complexity of component output. We
developed a generic approach based on running
saved dialogues through the system, and checking
summary information recorded by different compo-
nents against separate gold standards. We demon-
strated that test sets can be designed in such a way as
to effectively isolate downstream components from
changes and problems earlier in the pipeline. We be-
lieve that the same approach can be used in regres-
sion testing for other dialogue systems, as well as in
testing any complex NLP system containing multi-
ple components.

Acknowledgements

This work has been supported in part by Office of
Naval Research grant N000140810043. We thank
Charles Callaway for help with generation and tu-
toring tests.

12

References
James Allen, Myroslava Dzikovska, Mehdi Manshadi,

and Mary Swift. 2007. Deep linguistic processing
for spoken dialogue systems. In Proceedings of the
ACL-07 Workshop on Deep Linguistic Processing.

Charles B. Callaway, Myroslava Dzikovska, Elaine Far-
row, Manuel Marques-Pita, Colin Matheson, and Jo-
hanna D. Moore. 2007. The Beetle and BeeDiff tutor-
ing systems. In Proceedings of the SLaTE-2007 Work-
shop, Farmington, Pennsylvania, USA, September.

Valeria de Paiva and Tracy Holloway King. 2008. De-
signing testsuites for grammar-based systems in appli-
cations. In Coling 2008: Proceedings of the workshop
on Grammar Engineering Across Frameworks, pages
49–56, Manchester, England, August. Coling 2008 Or-
ganizing Committee.

Myroslava O. Dzikovska, Charles B. Callaway, and
Elaine Farrow. 2006. Interpretation and generation in
a knowledge-based tutorial system. In Proceedings of
EACL-06 workshop on knowledge and reasoning for
language processing, Trento, Italy, April.

Myroslava O. Dzikovska, Gwendolyn E. Campbell,
Charles B. Callaway, Natalie B. Steinhauser, Elaine
Farrow, Johanna D. Moore, Leslie A. Butler, and
Colin Matheson. 2008. Diagnosing natural language
answers to support adaptive tutoring. In Proceed-
ings 21st International FLAIRS Conference, Coconut
Grove, Florida, May.

Michael Elhadad. 1991. FUF: The universal unifier user
manual version 5.0. Technical Report CUCS-038-91,
Dept. of Computer Science, Columbia University.

D. Martin, A. Cheyer, and D. Moran. 1998. Building
distributed software systems with the open agent ar-
chitecture. In Proceedings of the Third International
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology, Blackpool, Lan-
cashire, UK.

Rodney D. Nielsen, Wayne Ward, and James H. Martin.
2008. Learning to assess low-level conceptual under-
standing. In Proceedings 21st International FLAIRS
Conference, Coconut Grove, Florida, May.

Amruta Purandare and Diane Litman. 2008. Content-
learning correlations in spoken tutoring dialogs at
word, turn and discourse levels. In Proceedings 21st
International FLAIRS Conference, Coconut Grove,
Florida, May.

Mary D. Swift, Joel Tetreault, and Myroslava O.
Dzikovska. 2004. Semi-automatic syntactic and se-
mantic corpus annotation with a deep parser. In Pro-
ceedings of LREC-2004.

13

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 14–21,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Using Paraphrases of Deep Semantic Representions
to Support Regression Testing in Spoken Dialogue Systems

Beth Ann Hockey
UC Santa Cruz and BAHRC LLC
Mail Stop 19-26, UCSC UARC

NASA Ames Research Center, Moffett Field, CA 94035–1000
bahockey@bahrc.net

Manny Rayner
University of Geneva, TIM/ISSCO

40 bvd du Pont-d’Arve, CH-1211 Geneva 4, Switzerland
Emmanuel.Rayner@unige.ch

Abstract

Rule-based spoken dialogue systems require
a good regression testing framework if they
are to be maintainable. We argue that there
is a tension between two extreme positions
when constructing the database of test exam-
ples. On the one hand, if the examples con-
sist of input/output tuples representing many
levels of internal processing, they are fine-
grained enough to catch most processing er-
rors, but unstable under most system modi-
fications. If the examples are pairs of user
input and final system output, they are much
more stable, but too coarse-grained to catch
many errors. In either case, there are fairly
severe difficulties in judging examples cor-
rectly. We claim that a good compromise can
be reached by implementing a paraphrasing
mechanism which maps internal semantic rep-
resentations into surface forms, and carrying
out regression testing using paraphrases of se-
mantic forms rather than the semantic forms
themselves. We describe an implementation
of the idea using the Open Source Regulus
toolkit, where paraphrases are produced us-
ing Regulus grammars compiled in generation
mode. Paraphrases can also be used at run-
time to produce confirmations. By compiling
the paraphrase grammar a second time, as a
recogniser, it is possible in a simple and nat-
ural way to guarantee that confirmations are
always within system coverage.

1 Introduction

Design features that enable important functionality
in medium vocabulary, mixed-initiative spoken dia-
logue systems also create challenges for the project
cycle, and in particular for regression testing. Two
issues that make regression testing particularly dif-
ficult are the need for context dependent interpre-
tation, and the use of multiple levels of representa-
tion. Both of these features are typically necessary
for non-trivial dialogue systems of this type. Mul-
tiple levels of processing, as usual, provide neces-
sary modularity. Context dependent interpretation
enables responses that are tuned to the current cir-
cumstances of the interaction or the world, and fre-
quently helps resolve ambiguity.

The implications for regression testing, though,
are less happy. The context of each interaction in
the test suite needs to be stored as part of the inter-
action. Multiple levels of representation that are, for
example, useful for doing ellipsis resolution or ref-
erence resolution, also complicate testing. If regres-
sion testing is done on each separate level of pro-
cessing, or involves internal representations, small
changes to a representation at one level can mean
having to revise and rejudge the entire test suite to
keep it up to date.

This paper discusses the methodology we have
developed to address regression testing issues within
the Regulus framework. Regulus (Rayner et al.,
2006) is an Open Source toolkit for builting medium

14

vocabulary spoken dialogue and translation appli-
cations, and has been used to build a number of
non-trivial spoken dialogue systems. Prominent ex-
amples include NASA’s Clarissa Procedure Navi-
gator (Rayner et al., 2005), Geneva University’s
multi-modal mobile-platform Calendar application
(Tsourakis et al., 2008), SDS, a prototype in-car sys-
tem developed by UC Santa Cruz in collaboration
with Ford Motors Research which was voted first
in Ford’s 2007 internal technology fair, and Taxi,
a speech-enabled game in which the user interacts
with a simulated cab driver to navigate around a map
of Manhattan. It has also been used to build the
MedSLT medical speech translation system (Bouil-
lon et al., 2008).

The Regulus platform includes tools for develop-
ing feature grammars, and compiling them in var-
ious ways. In particular, it is possible to compile
grammars into generators, and use them to support
paraphrasing from the internal semantic representa-
tions created during dialogue processing. This ca-
pability is key to the newest part of our regression
testing approach, and is discussed in detail in Sec-
tion 3. First, though, Section 2 gives an overview of
Regulus and the architecture of Regulus-based sys-
tems; we discuss features that complicate regression
testing, and how to address these problems within
this type of architecture. Section 4 discusses how
test suites are constructed and what types of items
they may contain. In Section 5 we show how para-
phrases can also be included in the run-time archi-
tecture. The final section concludes.

2 The Regulus platform

Regulus is an Open Source toolkit for building
medium vocabulary grammar-based spoken dia-
logue and translation systems. The central idea is to
base run-time processing on efficient, task-specific
grammars derived from general, reusable, domain-
independent core grammars. Early versions of Reg-
ulus used a single core grammar per language; a de-
tailed description of the core grammar for English
can be found in (Rayner et al., 2006, Chapter 9).
More recently, there have been attempts to go fur-
ther, and merge together core grammars for closely
related languages (Bouillon et al., 2007).

The core grammars are automatically specialised,

Figure 1: The Regulus compilation path. The general
unification grammar is first transformed into a specialised
feature grammar. This can then be transformed either into
a CFG grammar and Nuance recogniser, or into a gener-
ator. and a Nuance recogniser.

using corpus-driven methods based on small cor-
pora, to derive simpler grammars. Specialisation
is both with respect to task (recognition, analysis,
generation) and to application domain. The special-
isation process uses the Explanation Based Learning
algorithm (van Harmelen and Bundy, 1988; Rayner,
1988). It starts with a parsed treebank derived from
the training corpus, and then divides the parse tree
created from each training example into a set of one
or more subtrees, following a set of domain- and
grammar-specific rules conventionally known in the
Machine Learning literature as operationality crite-
ria. The rules in each subtree are then combined, us-
ing the unification operation, into a single rule. The
set of all such rules constitutes a specialised unifica-
tion grammar. Each of these specialised unification
grammars is then subjected to a second compila-
tion step, which converts it into its executable form.
For analysis and generation, this form is a standard
parser or generator. For recognition, it is a semanti-
cally annotated CFG grammar in the form required
by the Nuance engine, which is then subjected to
further Nuance-specific compilation steps to derive
a speech recognition package. Figure 1 summarises
compile-time processing.

The Regulus platform also contains infrastructure
to support construction of applications which use the
recognisers, parsers and generators as components.
In this paper, we will only discuss spoken dialogue
system applications. (There is also an elaborate in-
frastructure to support speech translation systems).

15

Figure 2: Top-level architecture for Regulus-based spo-
ken dialogue system

At a high level of generality, the architecture is a
standard one (Figure 2; cf. for example (Allen et
al., 2000)). The central component is the Dialogue
Manager (DM), which receives dialogue moves and
produces abstract actions. It also manipulates an in-
formation state, which maintains context; process-
ing will generally be context-dependent. The DM is
bracketed between two other components, the Input
Manager (IM) and the Output Manager (OM). The
IM receives logical forms, and non-speech inputs if
there are any, and turns them into dialogue moves.
The OM received abstract actions and turns them
into concrete actions. Usually, these actions will be
either speaking, though TTS or recorded speech, or
manipulation of a GUI’s screen area.

In the next section, we examine in more detail
how the various components are constructed, and
what the implications are for the software develop-
ment cycle. We will in particular be interested in
regression testing.

3 Context, regression testing and
paraphrasing

The three main components of the spoken dia-
logue system — the IM, DM and OM — all trans-
form one or more inputs into one or more outputs.
With the current focus on machine learning tech-
niques, a natural thought is to learn the relevant
tranformations from examples. Implemented mainly
through Partially Observable Markov Decision Pro-
cesses (POMDPs), this idea is attractive theoreti-
cally, but has been challenging to scale up. Systems
have been restricted to very simple domains (Roy

et al., 2000; Zhang et al., 2001) and only recently
have techniques been developed that show promise
for use in real-world systems (Williams and Young,
2007; Gasić et al., 2008). The representations re-
quired in many systems are more complex than those
employed even in the more recent POMDP based
work, and there is also the usual problem that it is not
easy to obtain training data. In practice, most peo-
ple are forced to construct the transformation rules
by hand; the Regulus framework assumes this will
be the case. Hand-coding of dialogue processing
components involves the usual software engineering
problems that arise when building and maintaining
substantial rule-sets. In particular, it is necessary to
have a framework that supports efficient regression
testing.

As everyone who has tried will know, the thing
that makes regression testing difficult for this kind
of application is context-dependency. In the worst
case, the context is the whole world, or at least the
part of it that the system is interacting with, and re-
gression testing is impossible. In more typical cases,
however, good architectural choices can make the
problem reasonably tractable. In particular, things
become enormously simpler if it is possible to en-
capsulate all the context information in a datastruc-
ture that can be passed around. In the dialogue man-
agement architecture realised in Regulus (Rayner et
al., 2006, Chapter 5), the assumption is that this is
the case; it is then possible to use a version of “up-
date semantics” (Larsson and Traum, 2000). The
central concepts are those ofdialogue move, infor-
mation stateanddialogue action. At the beginning
of each turn, the dialogue manager is in an infor-
mation state. Inputs to the dialogue manager are by
definition dialogue moves, and outputs are dialogue
actions. The behaviour of the dialogue manager over
a turn is completely specified by anupdate function
f of the form

f : State×Move → State×Actions

Thus if a dialogue move is applied in a given infor-
mation state, the result is a new information state
and a set of zero or more dialogue actions.

3.1 Regression testing

Using the side-effect free framework is certainly a
large step in the right direction; it is in principle pos-

16

sible to construct a regression test suite consisting of
4-tuples of the form

〈InState,Move,OutState,Actions〉

There are however several problems. First, pro-
cessing consists of much more than just the update
function. It is optimistic to assume that the speech
recogniser will be able to produce dialogue moves
directly. In simple cases, this may be possible. In
more complex cases, extra levels of processing be-
come necessary; in other words, the IM component
will generally have a substantial amount of structure.

There are several reasons for this. The representa-
tion delivered by the grammar-based speech recog-
niser is syntax-oriented; it needs to be translated
into a semantic form. Again, because of context-
dependency, this translation often needs to be car-
ried out in more than one step. For example, in the
Calendar application, a question like “When is the
next meeting in Switzerland?” might be followed by
the elliptical utterance “In England?”. Some kind
of mechanism is needed in order to resolve this to
a representation meaning “When is the next meet-
ing in England?” A separate mechanism is used to
perform reference resolution. For instance, the de-
fault database for the Calendar application contains
one person called “Nikos” and two called “Mari-
anne”. The question “Is Nikos attending the meet-
ing?” needs to be converted into a database query
that looks up the appropriate record; however, the
structurally similar query “Is Marianne attending the
meeting?” should produce a disambiguation query.
Examples like these motivate the introduction of yet
another processing step, which carries out reference
resolution.

Of course, different systems will address these is-
sues in different ways; but, whatever the solution,
the general point remains that there will usually be
many layers of representation. From a system devel-
opment point of view, the problem is how to struc-
ture the regression testing needed in order to main-
tain the stability of each processing step. The most
cautious and direct way to do this is to have a corpus
of input/output tuples representing each individual
step, but experience shows that this type of solution
places an enormous burden on the annotators who
are required to judge the correctness or otherwise of

the tuples. First of all, under this approach the anno-
tators must be experts capable of reading and under-
standing internal representations. Second, even very
small changes in the system often require complete
reannotation of the test corpus; for example, some
data structure may have been changed so as to in-
clude an extra field. If constant rejudging is required
to keep the test suite coherent with the current ver-
sion of the system, either the testing is abandoned as
overly difficult and time consuming, or it is done in
a less careful way in order to speed up the process.
Neither outcome is satisfactory.

If annotation uses input/output tuples referring to
internal representations, the problems we have just
named appear inescapable. At the opposite end of
the spectrum, a common approach is not to look
at internal representations at all, but only at in-
put/output pairs consisting of top-level inputs and
outputs. For example, we can pair “When is the next
meeting in Geneva?” with “March 31 2009”, and
“Is Marianne attending the meeting?” with “Which
Marianne do you mean?” This is generally, in prac-
tice, easier than doing regression testing on internal
representations; the key advantages are that, since
we are only dealing with pre-theoretical notions, an-
notation can be performed by non-experts, and an-
notations remain stable across most changes to in-
ternal representations.

Unfortunately, however, new problems arise.
First, determining the correct output response for a
given input is often tedious and slow. For example,
in the Calendar application, this generally involves
carrying out a database search. Suitable annotation
tools can alleviate the pain here, but then a worse
problem arises; it is often possible to produce a cor-
rect system response, even if processing is incorrect.
For instance, even if the system correctly answers
“No” to a yes/no question, this proves very little;
the question could have been interpreted in a mul-
titude of ways, and still produced a negative answer.
Knowing that a WH-question provides a correct an-
swer says more, but can still often be misleading.
Suppose, for example, that we know that the Calen-
dar system correctly answers “None” to the question
“What meetings are there during the next week?”
and there are no meetings for the next 15 days. We
will be unable to tell whether the question has been
interpreted as “What meetings are there during the

17

World Context time=2008-10-14 14:34, speaker=mike
Last Para (none)
Input when is the next meeting with mark
Paraphrase when is [the next meeting attended by mark green]
World Context time=2008-10-16 09:47, speaker=mike
Last Para (none)
Input when is my next meeting with mark
Paraphrase when is [the next meeting attended by mark green and mike jones]
World Context time=2007-07-08 15:03, speaker=susan
Last Para (none)
Input is there a meeting next week
Paraphrase are there meetings between Mon Jul 9 2007 and Sun Jul 15 2007
World Context time=2008-11-17 18:20, speaker=mike
Last Para (none)
Input do i have a meeting on friday morning this week
Paraphrase are there meetings between 06:00 and 12:00 on Fri Nov 21 2008 attended by mike jones
World Context time=2008-11-12 10:19, speaker=mike
Last Para when is [the next meeting attended by mike jones]
Input will alex participate
Paraphrase will that meeting be attended by alex miller
World Context time=2007-07-08 15:56), speaker=susan
Last Para are there meetings on Mon Jul 9 2007
Input how about on tuesday
Paraphrase are there meetings on Tue Jul 10 2007

Table 1: Examples of regression testing tuples in the English Calendar system. Each tuple shows the current world
context (timestamp and speaker), the preceding paraphrase, the input, and the paraphrase produced from it.

next 7 days?”, as “What meetings are there during
the 7 day period starting this Sunday?” or as “What
meetings are there during the 7 day period starting
this Monday?” Examples like these mean that re-
gression testing often fails to catch bugs introduced
by system changes.

3.2 Paraphrasing dialogue moves

To summarise: when carrying out regression testing,
we have two competing requirements. First, we need
to be able to access internal representations, since
they are so informative. At the same time, we prefer
to work with human-readable, pretheorically mean-
ingful objects, which will be stable at least under
most small changes in underlying representations.
There is, in fact, a good compromise between these
goals: we define a transformation which realises the
dialogue move as a human-readable string, which
we call adialogue move paraphrase. So, for ex-

ample, consider the possible interpretations when,
on March 6 2009, a user asks “What meetings are
there during the next week?”. If “What meetings
are there during the next week?” is interpreted as
“What meetings are there during the next 7 days?”,
then the paraphrase might be “What meetings are
there between Fri Mar 6 and Thu Mar 12 2009?”; if
the interpretation is “What meetings are there dur-
ing the 7 day period starting this Monday?”, then
the corresponding paraphrase would be “What meet-
ings are there between Mon Mar 9 and Sun Mar 15
2009?” Regression testing can be carried out using
paraphrases of dialogue moves, rather than the dia-
logue moves themselves.

The paraphrase mechanism is implemented as a
Regulus grammar, compiled in generation mode,
which directly relates a dialogue move and its sur-
face form. We have found that it is not hard to de-
sign “paraphrase grammars” which produce outputs

18

fulfilling the main design requirements. Regression
testing is carried out on tuples consisting of the pre-
ceding paraphrase, the world context (if any), the in-
put, and the resulting paraphrase. Examples of such
tuples for the English Calendar grammar are shown
in Table 1; in Calendar, the world context consists of
the utterance time-stamp and the speaker.

A tuple combines the results of IM and DM
(but not OM) processing for a given example, and
presents them in a pre-theoretically meaningful way.
Although they are not as fine-grained as tuples for
individual processing steps, they are stable over
most system changes. In the opposite direction, they
are far more fine-grained than straight system in-
put/system output tuples. They are much easier to
judge than both of the other types of tuple. The bot-
tom line, at least as far as we are concerned, is that a
regression testing database of paraphrase-based tu-
ples can actually be maintained without inordinate
effort, implying corresponding gains for system sta-
bility. Previously, this was impossible.

The idea of creating paraphrases from dialogue
moves is of course not new; in previous work, how-
ever, they have generally been used at runtime to
provide feedback to the user as to how their input has
been interpreted by the system. Although in the cur-
rent discussion we have been more concerned with
their use in regression testing, we have in fact also
employed them for the more traditional purpose.

We return to this theme in Section 5. First, we
describe in more detail where our test suites come
from.

4 Collecting test suites

The tradition in the speech engineering community
is that a test suite consists of a list of recorded wav-
files, together with accompanying transcriptions.
The Nuance platform contains a fair amount of in-
frastructure, in particular thebatchrec utility, for
processing lists of wavfiles. These tools are very
useful for computing measures like WER, and there
is a strong temptation to try to build on top of
them. After a while, however, we discovered that
they meshed poorly with the the basic goals of re-
gression testing in a spoken dialogue system, which
revolve around speechunderstandingrather than
speechrecognition. There are two central problems.

One of them is context-dependence, which we have
already discussed at length. The other is the fact that
many applications require that the IM process both
speech and non-speech actions, with the sequence
and even the timing of actions being important.

For example, as we have already seen, time is
a central concept in the Calendar system. If the
user says “Are there any meetings this afternoon?”
the system interprets her as meaning “Are there any
meetings from now until the end of the afternoon?”
This means that the exact clock time for each utter-
ance is important. In the Taxi application, the taxi is
continually in motion, even when the user is not talk-
ing. The simulator sends the IM an non-speech mes-
sage several times a second, giving the taxi’s new
position and heading. This information is passed to
the DM, updating its state, and is essential for cor-
rect interpretation of commands like “Turn right at
the next corner”.

Considerations like these finally convinced us to
move to a different strategy, in which offline regres-
sion testing more closely models the runtime be-
haviour of the application. At runtime, the system
produces a time-stamped log of all input passed to
the IM, including both speech and non-speech mes-
sages, in the sequence in which they were received.
Each speech message is paired with a pointer to the
recorded wavfile which produced it. Sets of such
logs make up the test suite. Offline testing essen-
tially re-runs the sequence of time-stamped records.
Wavfiles are passed to a recognition server, which
returns recognition results; time-stamps are used to
set a notional internal clock, which replaces the real
one for the purposes of performing temporal calcula-
tions. The test harness was quite easy to implement,
and solves all the problems that arose from close ad-
herence to a more speech recognition oriented test
framework.

5 Using paraphrases at run-time

As mentioned in Section 3.2, paraphrase grammars
can also be used at runtime, in order to provide
a direct confirmation to the user showing how the
system has interpreted what they have said. This
is not a compelling design for every system; in a
speech-only system, constant direct confirmation us-
ing paraphrases is in most cases unnatural and te-

19

dious. It is, however, a potentially valid strategy in a
multi-modal system where it is possible to present a
visual display of the paraphrase. In such a system, if
paraphrases are regularly displayed to a user, there
is, however, a good possibility of lexical and/or syn-
tactic entrainment. Entrainment increases the likeli-
hood that the user will produce the paraphrase lan-
guage, which means that it would be valuable to be
able to process that language through the system.

In the Regulus framework, this problem can be
very straightforwardly addressed. Since the para-
phrase grammar is a valid Regulus grammar, it can
be compiled into a Nuance grammar, and hence into
a second recognition package. At runtime, this pack-
age can be used in parallel with the main system
recogniser. Because the paraphrase grammar is de-
signed to directly relate surface language to dialogue
moves, dialogue moves are generated directly, skip-
ping the Input Manager processing. In particular,
since the original point of the paraphrase grammar
is to restate the user’s content in a way that resolves
and disambiguates underspecified material, there is
no need for resolution processing. Figure 3 shows
the dialogue system architecture with the additional
paraphrase processing path.

Input
Manager

Dialogue
Manager

Output
Manager

Main
Recognizer

Paraphrase
Recognizer

Playback
or TTS

GUI
Logical Form

Dialogue
Move

Dialogue
Move

Abstract
Action

Concrete
Action

Concrete
Action

Figure 3: Regulus dialogue architecture with a processing
path for paraphrases added. The paraphrase recognizer
sends a dialogue move directly to the Dialogue Manager.

Although it may seem preferable to include the
paraphrase coverage in the main recogniser cover-
age, we have found, somewhat to our surprise, that
this is not nearly as straightforward as it first ap-
pears. The problem is that the two grammars are de-
signed for very different tasks; the recognition gram-
mar is intended to capture natural user language,
while the paraphrase grammar’s job is to produce
unambiguous surface renderings of resolved seman-
tic representations. Although we have endeavoured
to make the paraphrase language as natural as pos-

sible, it is hard to avoid at least a few marginal
constructions, which do not fit well into the struc-
ture of the normal recognition grammar; even if we
did try to include them, the burden of keeping the
two different grammars in synch would be consider-
able. From a software engineering point of view, it
is far simpler just to maintain the two grammars sep-
arately, with each of them generating its own version
of the recogniser.

We tested the paraphrase grammar recognizer for
the Calendar application using paraphrases taken
from a previous run log and recorded by the two
authors. There were 249 recorded paraphrases to-
tal used. Because the Calendar paraphrase grammar
had originally been designed with only visual dis-
play in mind, some augmentation of the paraphrase
grammar was needed to cover the spoken versions
of the paraphrases. There is often more than one
possible spoken version corresponding to a written
representation as was the case for this data. For ex-
ample with a paraphrase such as “when are meet-
ings on Sat Jan 3 2009”, “Sat” could be pronounced
“sat” or “Saturday”, “3” could be “third” or “three”,
“Jan” could be produced as either “jan” or “January”
and “2009” could be “two thousand nine” or “two
thousand and nine”. With the paraphrase compo-
nent structured as a standard Regulus grammar, all
that was needed was to add lexical items to cover
the spoken variants. These additions were restricted
to the recognition use of the paraphrase grammar
and not used for generation. Word Error (WER) was
4.43% for the paraphrase grammar recognizer, Sen-
tence Error (SER)was 34.53% and Semantic Error
(SemER)was 17.9%. This SemER was calculated
on untuned n-best. Clearly it is not possible to com-
pare with the main recognizer on the same data, but
for a rough comparison, we can look at numbers re-
ported for the Calendar application in (Georgescul
et al., 2008). That paper reports WER of 11.17%
and SemER of 18.85% for the 1-best baseline. The
SemER on the paraphrase grammar is 21.5% for 1-
best. The paraphrase grammar recognizer has much
better WER because it is so much more restricted
than the main recognizer. However, the sentences
covered by the paraphrase grammar are much longer
than those covered in the main grammar, and this
difference is reflected in the poorer performance by
paraphrase grammar when measured in terms of Se-

20

mER. The paraphrase language is long, very unnatu-
ral, yet we are able to produce a level of recognition
performance that is quite usable.

Given the ability to recognize with the paraphrase
grammar, a question which we hope to be able
to investigate empirically is the effect that entrain-
ment from exposure to the longer and less natural
paraphrases actually has on user language, which
initially tends to be biased towards short, natural-
sounding utterances, with frequent use of ellipsis.
This is a interesting topic for future research.

6 Conclusions

The dialogue move paraphrase mechanism provides
a useful approach to streamlining regression testing
without abandoning necessary detail. In non-trivial
spoken dialogue systems, it is generally necessary
to have a number of levels of representation. Our
approach provides a middle ground between track-
ing each of these levels in the test suites, creating a
excessive maintenance burden, and keeping only top
level inputs and outputs, which is too coarse-grained
to catch many errors. The Regulus framework pro-
vides the opportunity to implement this mechanism
as a Regulus grammar, which makes the compilation
into recognisers, parsers and generators available.
While generation with the paraphrase grammar sup-
ports the described improvement in regression test-
ing methodology, compiling the paraphrase gram-
mar into a recogniser allows us to ensure that para-
phrases used as confirmations can also be processed
if directed at the dialogue system. The framework
has been used with several fairly different kinds of
applications, and appears to have a major impact on
the overhead associated with maintenance of a use-
ful regression testing regime.

References

J. Allen, D. Byron, M. Dzikovska, G. Ferguson,
L. Galescu, and A. Stent. 2000. An architecture for
a generic dialogue shell.Natural Language Engineer-
ing, Special Issue on Best Practice in Spoken Lan-
guage Dialogue Systems Engineering, pages 1–16.

P. Bouillon, M. Rayner, B. Novellas, M. Starlander,
M. Santaholma, Y. Nakao, and N. Chatzichrisafis.
2007. Une grammaire partagée multi-tâche pour le
traitement de la parole: application aux langues ro-
manes.TAL.

P. Bouillon, G. Flores, M. Georgescul, S. Halimi, B.A.
Hockey, H. Isahara, K. Kanzaki, Y. Nakao, M. Rayner,
M. Santaholma, M. Starlander, and N. Tsourakis.
2008. Many-to-many multilingual medical speech
translation on a PDA. InProceedings of The Eighth
Conference of the Association for Machine Translation
in the Americas, Waikiki, Hawaii.

Milica Gasić, Simon Keizer, Francois Mairesse, Jost
Schatzmann, Blaise Thomson, Kai Yu, and Steve
Young. 2008. Training and evaluation of the his
pomdp dialogue system in noise. InProceedings of the
9th SIGDIAL Workshop on Discourse and Dialogue.

Maria Georgescul, Manny Rayner, Pierrette Bouillon,
and Nikos Tsourakis. 2008. Discriminative learning
using linguistic features to rescore n-best speech hy-
potheses. InThe IEEE Workshop on Spoken Language
Technology, Goa, India.

S. Larsson and D. Traum. 2000. Information state and
dialogue management in the TRINDI dialogue move
engine toolkit. Natural Language Engineering, Spe-
cial Issue on Best Practice in Spoken Language Dia-
logue Systems Engineering, pages 323–340.

M. Rayner, B.A. Hockey, J.M. Renders,
N. Chatzichrisafis, and K. Farrell. 2005. A voice
enabled procedure browser for the international space
station. InProceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics
(interactive poster and demo track), Ann Arbor, MI.

M. Rayner, B.A. Hockey, and P. Bouillon. 2006.Putting
Linguistics into Speech Recognition: The Regulus
Grammar Compiler. CSLI Press, Chicago.

M. Rayner. 1988. Applying explanation-based general-
ization to natural-language processing. InProceedings
of the International Conference on Fifth Generation
Computer Systems, pages 1267–1274, Tokyo, Japan.

N. Roy, J Pineau, and S. Thrun. 2000. Spoken dia-
logue management using probabilistic reasoning. In
Proceedings of ACL, Hong Kong.

N. Tsourakis, M. Georghescul, P. Bouillon, and
M. Rayner. 2008. Building mobile spoken dialogue
applications using regulus. InProceedings of LREC
2008, Marrakesh, Morocco.

T. van Harmelen and A. Bundy. 1988. Explanation-
based generalization = partial evaluation (research
note).Artificial Intelligence, 36:401–412.

JD Williams and SJ Young. 2007. Partially observable
markov decision processes for spoken dialog systems.
Computer Speech and Language.

B. Zhang, Q Cai, J. Mao, E. Chang, and B Guo. 2001.
Spoken dialogue management as planning and acting
under uncertainty. InProceedings of Eurospeech, Aal-
borg, Denmark.

21

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 22–30,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Integrated NLP Evaluation System for Pluggable Evaluation Metrics
with Extensive Interoperable Toolkit

Yoshinobu Kano1 Luke McCrohon1 Sophia Ananiadou2 Jun’ichi Tsujii1,2

1 Department of Computer Science, University of Tokyo
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 Tokyo

2School of Computer Science, University of Manchester and National Centre for

Text Mining, 131 Princess St, M1 7DN, UK

[kano,tsujii]@is.s.u-tokyo.ac.jp
luke.mccrohon@gmail.com

sophia.ananiadou@manchester.ac.uk

Abstract

To understand the key characteristics of NLP
tools, evaluation and comparison against dif-
ferent tools is important. And as NLP applica-
tions tend to consist of multiple semi-
independent sub-components, it is not always
enough to just evaluate complete systems, a
fine grained evaluation of underlying compo-
nents is also often worthwhile. Standardization
of NLP components and resources is not only
significant for reusability, but also in that it al-
lows the comparison of individual components
in terms of reliability and robustness in a wid-
er range of target domains. But as many eval-
uation metrics exist in even a single domain,
any system seeking to aid inter-domain eval-
uation needs not just predefined metrics, but
must also support pluggable user-defined me-
trics. Such a system would of course need to
be based on an open standard to allow a large
number of components to be compared, and
would ideally include visualization of the dif-
ferences between components. We have de-
veloped a pluggable evaluation system based
on the UIMA framework, which provides vi-
sualization useful in error analysis. It is a sin-
gle integrated system which includes a large
ready-to-use, fully interoperable library of
NLP tools.

1 Introduction

When building NLP applications, the same sub-
tasks tend to appear frequently while construct-

ing different systems. Due to this, the reusability
of tools designed for such subtasks is a common
design consideration; fine grained interoperabili-
ty between sub components, not just between
complete systems.

In addition to the benefits of reusability, inte-
roperability is also important in evaluation of
components. Evaluations are normally done by
comparing two sets of data, a gold standard data
and test data showing the components perfor-
mance. Naturally this comparison requires the
two data sets to be in the same data format with
the same semantics. Comparing of "Apples to
Apples" provides another reason why standardi-
zation of NLP tools is beneficial. Another advan-
tage of standardization is that the number of gold
standard data sets that can be compared against is
also increased, allowing tools to be tested in a
wider range of domains.

The ideal is that all components are standar-
dized to conform to an open, widely used intero-
perability framework. One possible such frame-
work is UIMA; Unstructured Information Man-
agement Architecture (Ferrucci et al., 2004),
which is an open project of OASIS and Apache.
We have been developing U-Compare (Kano et
al., 2009)1, an integrated testing an evaluation
platform based on this framework.

1 Features described in this paper are integrated as U-
Compare system, publicly available from:
http://u-compare.org/

22

Although U-Compare already provided a wide
range of tools and NLP resources, its inbuilt
evaluation mechanisms were hard coded into the
system and were not customizable by end users.
Furthermore the evaluation metrics used were
based only on simple strict matchings which se-
verely limited its domains of application. We
have extended the evaluation mechanism to al-
low users to define their own metrics which can
be integrated into the range of existing evalua-
tion tools.

The U-Compare library of interoperable tools
has also been extended; especially with regard to
resources related to biomedical named entity ex-
traction. U-Compare is currently providing the
world largest library of type system compatible
UIMA components.

In section 2 of this paper we first look at the
underlying technologies, UIMA and
U-Compare. Then we describe the new plugga-
ble evaluation mechanism in section 3 and our
interoperable toolkit with our type system in sec-
tion 4 and 5.

2 Background

2.1 UIMA

UIMA is an open framework specified by OA-
SIS2. Apache UIMA provides a reference im-
plementation as an open source project, with
both a pure java API and a C++ development kit .
UIMA itself is intended to be purely a frame-
work, i.e. it does not intend to provide specific
tools or type system definitions. Users should
develop such resources themselves. In the fol-
lowing subsections, we briefly describe the basic
concepts of UIMA, and define keywords used to
explain our system in later sections.

2.1.1 CAS and Type System

The UIMA framework uses the “stand-off anno-
tation” style (Ferrucci et al., 2006). The underl-
ing raw text of a document is generally kept un-
changed during analysis, and the results of
processing the text are added as new stand-off
annotations with references to their positions in
the raw text. A Common Analysis Structure
(CAS) holds a set of such annotations. Each of
which is of a given type as defined in a specified

2 http://www.oasis-open.org/committees/uima/

hierarchical type system. Annotation3 types may
define features, which are themselves typed.
Apache UIMA provides definitions of a range of
built in primitive types, but a more complete type
system should be specified by developers. The
top level Apache UIMA type is referred to as
TOP, other primitive types include. int, String,
Annotation and FSArray (an array of any annota-
tions).

2.1.2 Component and Capability

UIMA components receive and update CAS one
at a time. Each UIMA component has a capabili-
ty property, which describes what types of anno-
tations it takes as input and what types of anno-
tations it may produce as output.

UIMA components can be deployed either lo-
cally, or remotely as SOAP web services. Re-
motely deployed web service components and
locally deployed components can be freely com-
bined in UIMA workflows.

2.1.3 Aggregate Component and Flow Con-
troller

UIMA components can be either primitive or
aggregate. Aggregate components include other
components as subcomponents. Subcomponents
may themselves be aggregate. In the case where
an aggregate has multiple subcomponents these
are by default processed in linear order. This or-
dering can be customized by implementing a
custom flow controller.

2.2 U-Compare

U-Compare is a joint project of the University of
Tokyo, the Center for Computational Pharma-
cology at the University of Colorado School of
Medicine, and the UK National Centre for Text
Mining.

U-Compare provides an integrated platform
for users to construct, edit and compare
workflows compatible with any UIMA compo-
nent. It also provides a large, ready-to-use toolkit
of interoperable NLP components for use with
any UIMA based system. This toolkit is currently
the world largest repository of type system com-
patible components. These all implement the U-
Compare type system described in section 3.

3 In the UIMA framework, Annotation is a base
type which has begin and end offset values. In this paper
we call any objects (any subtype of TOP) as annotations.

23

2.2.1 Related Works

There also exist several other public UIMA
component repositories: CMU UIMA component
repository, BioNLP UIMA repository (Baum-
gartner et al., 2008), JCoRe (Hahn et al., 2008),
Tsujii Lab Component Repository at the Univer-
sity of Tokyo (Kano et al., 2008a), etc. Each
group uses their own type system, and so com-
ponents provided by each group are incompatible.
Unlike U-Compare these repositories are basical-
ly only collections of UIMA components, U-
Compare goes further by providing a fully inte-
grated set of UIMA tools and utilities.

2.2.2 Integrated Platform

U-Compare provides a variety of features as part
of an integrated platform. The system can be
launched with a single click in a web browser; all
required libraries are downloaded and updated
automatically in background.

The Workflow Manager GUI helps users to
create workflows in an easy drag-and-drop fa-
shion. Similarly, import/export of workflows,
running of workflows and saving results can all
be handled via a graphical interface.

U-Compare special parallel aggregate compo-
nents allow combinations of specified compo-
nents to be automatically combined and com-
pared based on their I/O capabilities (Kano et al.,
2008b). When workflows are run, U-Compare
shows statistics and visualizations of results ap-
propriate to the type of workflow. For example
when workflows including parallel aggregate
components are run comparison statistics be-
tween all possible parallel component combina-
tions are given.

3 Integrated System for Pluggable
Evaluation Metrics

While U-Compare already has a mechanism to
automatically create possible combinations of
components for comparison from a specified
workflow, the comparison (evaluation) metric
itself was hard coded into the system. Only com-
parison based on simple strict matching was
possible.

However, many different evaluation metrics
exist, even for the same type of annotations. For
example, named entity recognition results are
often evaluated based on several different anno-
tation intersection criteria: exact match, left/right
only match, overlap, etc. Evaluation metrics for
nested components can be even more complex
(e.g. biomedical relations, deep syntactic struc-

tures). Sometimes new metrics are also required
for specific tasks. Thus, a mechanism for plugg-
able evaluation metrics in a standardized way is
seen as desirable.

3.1 Pluggable Evaluation Component

Our design goal for the evaluation systems is to
do as much of the required work as possible and
to provide utilities to reduce developer’s labor.
We also want our design to be generic and fix
within existing UIMA standards.

The essential process of evaluation can be ge-
neralized and decomposed as follows:

(a) prepare a pair of annotation sets which

will be used for comparison,

(b) select annotations which should be in-
cluded in the final evaluation step,

(c) compare selected annotations against
each other and mark matched pairs.

For example, in the case of the Penn Treebank
style syntactic bracket matching, these steps cor-
respond to (a) prepare two sets of constituents
and tokens, (b) select only the constituents (re-
moving null elements if required), (c) compare
constituents between the sets and return any
matches.

In our new design, step (a) is performed by the
system, (b) and (c) are performed by an evalua-
tion component. The evaluation component is
just a normal UIMA component, pluggable based
on the UIMA standard. This component is run on
a CAS which was constructed by the system dur-
ing step (a). This CAS includes an instance of
ComparisonSet type and its features GoldAnno-
tationGroup and TestAnnotationGroup. Corres-
ponding to step (b), based on this input the com-
parison component should make a selection of
annotations and store them as FSArray for both
GoldAnnotations and TestAnnotations. Finally
for step (c), the component should perform a
matching and store the results as MatchedPair
instances in the MatchedAnnotations feature of
the ComparisonSet.

Precision, recall, and F1 scores are calculated
by U-Compare based on the outputted Compari-
sonSet. These calculation can be overridden and
customized if the developer so desires.

Implementation of the compare() method of
the evaluation component is recommended. It is
used by the system when showing instance based
evaluations of what feature values are used in

24

matching, which features are matched, and which
are not.

3.2 Combinatorial Evaluation and Er-
ror Analysis

By default, evaluation statistics are calculated by
simply counting the numbers of gold, test,
matched annotations in the returned Compari-
sonSet instance. Then precision, recall, and F1
scores for each CAS and for the complete set of
CASes are calculated. Users can specify which
evaluation metrics are used for each type of an-
notations based on the input specifications they
set for supplied evaluation components.

Normally, precision, recall, and F1 scores are
the only evaluation statistics used in the NLP
community. It is often the case in many research
reports that a new tool A performs better than
another tool B, increasing the F1 score by 1%. In
such cases it is important to analysis what pro-
portion of annotations are shared between A, B,
and the gold standard. Is A a strict 1% increase
over B? Or does it cover 2% of instances B
doesn’t but miss a different 1%? Our system
provides these statistics as well.

Further, our standardized evaluation system
makes more advanced evaluation available.
Since the evaluation metrics themselves are more
or less arbitrary, we should carefully observe the
results of evaluations. When two or more metrics
are available for the same type of annotations,
we can compare the results of each to analyze
and validate the individual evaluations.

An immediate application of such comparison
would be in a voting system, which takes the
results of several tools as input and selects com-
mon overlapping annotations as output.

U-Compare also provides visualizations of
evaluation results allowing instance-based error
analysis.

4 U-Compare Type System

U-Compare currently provides the world largest
set of type system compatible UIMA compo-
nents. We will describe some of these in section
5. In creating compatible components in UIMA a
key task is their type system definitions.

The U-Compare type system is designed in a
hierarchical fashion with distinct types to achieve
a high level of interoperability. It is intended to
be a shared type system capable of mapping
types originally defined as part of independent
type systems (Kano et al., 2008c). In this section
we describe the U-Compare type system in detail.

4.1 Basic Types

While most of the U-Compare types are inherit-
ing a UIMA built-in type, Annotation (Figure 1),
there are also types directly extending the TOP
type; let us call these types as metadata types.

AnnotationMetadata holds a confidence value,
which is common to all of the U-Compare anno-
tation types as a feature of BaseAnnotation type.
BaseAnnotation extends DiscontinuousAnnota-
tion, in which fragmental annotations can be
stored as a FSArray of Annotations, if any.

ExternalReference is another common meta-
data type where namespace and ID are stored,
referring to an external ontology entity outside
UIMA/U-Compare. Because it is not realistic to
represent everything like such a detailed ontolo-
gy hierarchy in a UIMA type system, this meta-
data is used to recover original information,
which are not expressed as UIMA types. Refe-
renceAnnotation is another base annotation type,
which holds an instance of this ExternalRefe-
rence.

UniqueLabel is a special top level type for ex-
plicitly defined finite label sets, e.g. the Penn
Treebank tagset. Each label in such a tagset is
mapped to a single type where UniqueLabel as its

BaseAnnotation
<AnnotationMetadata>

SyntacticAnnotation

Token

POSToken
<POS>

RichToken
<String>base

Sentence Dependency
<DependencyLabel>

Stanford
Dependency

TreeNode
<TOP>parent

<FSArray>children

AbstractConstituent

NullElement
<NullElementLabel>

<Constituent>

Constituent
<ConstituentLabel>

FunctionTaggedConstituent
<FunctionLabel>

TemplateMappedConstituent
<Constituent>

TOP

Coordinations
<FSArray>

Figure 2. Syntactic Types in U-Compare.

25

ancestor, putting middle level types if possible
(e.g. Noun type for the Penn Treebank POS tag-
set). These types are omitted in the figure.

4.2 Syntactic Types

SyntacticAnnotation is the base type of all syn-
tactic types (Figure 2). POSToken holds a POS
label, RichToken additionally holds a base form.
Dependency is used by dependency parsers,
while TreeNode is for syntactic tree nodes. Con-
stituent, NullElement, FunctionTaggedConsti-
tiuent, TemplateMappedConstituent are designed
to fully represent all of the Penn Treebank style
annotations. Coordination is a set of references to
coordinating nodes (currently used by the Genia
Treebank). We are planning on extending the set
of syntactic types to cover the outputs of several
deep parsers.

4.3 Semantic Types

SemanticAnnotation is the base type for semantic
annotations; it extends ReferenceAnnotation by
holding the original reference.

SemanticClassAnnotation is a rather complex
type designed to be somewhat general. In many
cases, semantic annotations may reference other

semantic annotations, e.g. references between
biological events. Such references are often la-
beled with their roles which we express with the
ExternalReference type. Such labeled references
are expressed by LinkingAnnotationSet. As a role
may refer to more than one annotation, Linkin-
gAnnotationSet has an FSArray of SemanticAn-
notation as a feature.

There are several biomedical types included in
Figure 3, e.g. DNA, RNA, Protein, Gene, Cel-
lLine, CellType, etc. It is however difficult to
decide which ontological entities should be in-
cluded in such a type system. One reason for this
is that such concepts are not always distinct; dif-
ferent ontologies may give overlapping defini-
tions of these concepts. Further, the number of
possible substance level entities is infinite; caus-
ing difficult in their expression as individual
types. The current set of biomedical types in the
U-Compare type system includes types which are
frequently used for evaluation in the BioNLP
research.

4.4 Document Types

DocumentAnnotation is the base type for docu-
ment related annotations (Figure 4). It extends

DocumentClassAnnotation
<FSArray:DocumentAttribute>

<FSArray:ReferenceAnnotation>

DocumentAttribute
<ExternalReference>

DocumentAnnotation

DocumentReferenceAttribute
<ReferenceAnnotation>

DocumentValueAttribute
<String>value

ReferenceAnnotation TOP

Figure 4. Document types in the U-Compare type system.

SemanticAnnotation

ReferenceAnnotation

SemanticClassAnnotation
<FSArray:LinkedAnnotationSet>

NamedEntity EventAnnotation

CellType CellLine GeneOrGeneProductRNADNAProper
Name

Title

Place Protein GenePerson

ProteinRegion

DNARegion

LinkingAnnotationSet
<ExternalReference>

<FSArray:SemanticAnnotation>

CoreferenceAnnotation DiscourseEntity Expression

Negation

TOP

Speculation

Figure 3. Semantic types in the U-Compare type system.

26

ReferenceAnnotation to reference the full exter-
nal type in the same way as SemanticAnnotation.

187
The document length in bytes is
output in the first line (end with
new line),

DocumentClassAnnotation together with Do-
cumentAttribute are intended to express XML
style data. XML tags may have fields storing
their values, and/or idref fields refering to other
tags. DocumentValueAttiributerepresents simple
value field, while DocumentReferenceAttribute
represents idref type fields. A DocumentClas-
sAnnotation corresponds to the tag itself.

then the raw text follows as is
(attaching a new line in the end),
finally annotations follow line by
line.
0 187 Document id="u1"
0 3 POSToken id="u2" pos="DT"
....

Although these types can represent most doc-
ument structures, we still plan to add several
specific types such as Paragraph, Title, etc.

Figure 5. An example of the U-Compare simple I/O
format.

5 Interoperable Components and Utili-
ties

In this section, we describe our extensive toolkit
of interoperable components and the set of utili-
ties integrated into the U-Compare system. All of
the components in our toolkit are compatible
with the U-Compare type system described in the
previous section.

5.1 Corpus Reader Components

In the UIMA framework, a component which
generates CASes is called a Collection Reader.
We have developed several collection readers
which read annotated corpora and generates an-
notations using the U-Compare type system.

Because our primary target domain was bio-
medical field, there are corpus readers for the
biomedical corpora; Aimed corpus (Bunescu et
al., 2006) reader and BioNLP ’09 shared task
format reader generate event annotations like
protein-protein interaction annotations; Readers
for BIO/IOB format, Bio1 corpus (Tateisi et al.,
2000), BioCreative (Hirschman et al., 2004) task
1a format, BioIE corpus (Bies et al., 2005),
NLPBA shared task dataset (Kim et al., 2004),
Texas Corpus (Bunescu et al., 2005), Yapex
Corpus (Kristofer Franzen et al., 2002), generate
biomedical named entities, and Genia Treebank
corpus (Tateisi et al., 2005) reader generates
Penn Treebank (Marcus et al., 1993) style brack-
eting and part-of-speech annotations. Format
readers require users to prepare annotated data,
while others include corpora themselves, auto-
matically downloaded as an archive on users’
demand.

In addition, there is File System Collection
Reader from Apache UIMA which reads files as
plain text. We have developed an online interac-
tive text reader, named Input Text Reader.

5.2 Analysis Engine Components

There are many tools covering from basic syn-
tactic annotations to the biomedical annotations.
Some of the tools are running as web services,
but users can freely mix local services and web
services.

For syntactic annotations: sentence detectors
from GENIA, LingPipe, NaCTeM, OpenNLP
and Apache UIMA; tokenizers from GENIA tag-
ger (Tsuruoka et al., 2005), OpenNLP, Apache
UIMA and Penn Bio Tokenizer; POS taggers
from GENIA tagger, LingPipe, OpenNLP and
Stepp Tagger; parsers from OpenNLP (CFG),
Stanford Parser (dependency) (de Marneffe et al.,
2006), Enju (HPSG) (Miyao et al., 2008).

For semantic annotations: ABNER (Settles,
2005) for NLPBA/BioCreative trained models,
GENIA Tagger, NeMine, MedT-NER, LingPipe
and OpenNLP NER, for named entity recogni-
tions. Akane++ (Sætre et al., 2007) for protein-
protein interaction detections.

5.3 Components for Developers

Although Apache UIMA provides APIs in both
Java and C++ to help users develop UIMA com-
ponents, a level of understanding of the UIMA
framework is still required. Conversion of exist-
ing tools to the UIMA framework can also be
difficult, particularly when they are written in
other programming languages.

We have designed a simple I/O format to
make it easy for developers who just want to
provide a UIMA wrapper for existing tools.

Input of this format consists of two parts: raw
text and annotations The first line of the raw text
section is an integer of byte count of the length
of the text. The raw text then follows with a new-
line character appended at the end. Annotations
are then included; one annotation per line, some-
times referring another annotation by assigned
ids (Figure 5). A line consists of begin position,

27

end position, type name, unique id, and feature
values if any. Double newlines indicates an end
of a CAS.

Output of the component is lines of annota-
tions if any created by the component.

U-Compare provides a wrapper component
which uses this I/O format, communicating with
wrapped tools via standard I/O streams.

5.4 Type System Converters

As U-Compare is a joint project, the U-Compare
toolkit includes UIMA components originally
developed using several different type systems.
In order to integrate these components into the
U-Compare type system, we have developed
type system converter components for each ex-
ternal type system.

The CCP team at the University of Colorado
made a converter between their CCP type system
and our type system. We also developed conver-
ters for OpenNLP components and Apache UI-
MA components. These converters remove any
original annotations not compatible with the U-
Compare type system. This prevents duplicated
converters from translating external annotation
multiple times in the same workflow.

We are providing such non U-Compare com-
ponents by aggregating with type system conver-
ters, so users do not need to aware of the type
system conversions.

5.5 Utility Tools

We have developed and integrated several utility
tools, especially GUI tools for usability and error
analysis.

Figure 6 is showing our workflow manager
GUI, which provides functions to create a user
workflow by an easy drag-and-drop way. By
clicking “Run Workflow” button in that manager
window, statistics will be shown (Figure 8).

Figure 6. A s

There are also a couple of annotation visuali-
zation tools. Figure 7 is showing a viewer for
tree structures and HPSG feature structures. Fig-
ure 9 is showing a general annotation viewer,
when annotations have complex inter-
dependencies.

6 Summary and Future Directions

We have designed and developed a pluggable
evaluation system based on the UIMA frame-
work. This evaluation system is integrated with
the U-Compare combinatorial comparison me-
chanism which makes evaluation of many factors
available automatically.

creenshot of Workflow Manager
GUI and Component Library.

Since the system behavior is dependent on the
type system used, we have carefully designed the
U-Compare type system to cover a broad range
of concepts used in NLP applications. Based di-
rectly on this type system, or using type system
converters, we have developed a large toolkit of
type system compatible interoperable UIMA
component. All of these features are integrated
into U-Compare.

Figure 7. A screenshot of HPSG feature structure
viewer, showing a skeleton CFG tree, feature values
and head/semhead links.

28

In future we are planning to increase the num-
ber of components available, e.g. more syntactic
parsers, corpus readers, and resources for lan-
guages other than English. This will also re-
quired enhancements to the existing type system
to support additional components. Finally we
also hope to add integration with machine learn-
ing tools in the near future.

Acknowledgments

onal Centre for Text Mining is

Figure 8. A screenshot of a comparison statistics showing number of instances (gold, test, and
matched), F1, precision, and recall scores of two evaluation metrics on the same data.

We wish to thank Dr. Lawrence Hunter’s text
mining group at Center for Computational Phar-
macology, University of Colorado School of
Medicine, for helping build the type system and
for making their tools available for this research.
This work was partially supported by Grant-in-
Aid for Specially Promoted Research (MEXT,
Japan). The Nati
funded by JISC.

W.

ning sys-
tems. J Biomed Discov Collab, 3(1), 1.

An

ie in the Sky, ACL, Ann Arbor,
Michigan, USA.

Ra

tificial Intelligence in Medi-
cine, 33(2), 139-155.

References
 A. Baumgartner, Jr., K. B. Cohen, and L. Hunter.
2008. An open-source framework for large-scale,
flexible evaluation of biomedical text mi

n Bies, Seth Kulick, and Mark Mandel. 2005. Pa-
rallel entity and treebank annotation. In Proceed-
ings of the the Workshop on Frontiers in Corpus
Annotations II: P

zvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward
M. Marcotte, Raymond J. Mooney, Arun Kumar
Ramani, et al. 2005. Comparative experiments on
learning information extractors for proteins and
their interactions. ArFigure 9. A screenshot of a visualization of com-

plex annotations.

29

Razvan Bunescu, and Raymond Mooney. 2006. Sub-
sequence Kernels for Relation Extraction. In Y.
Weiss, B. Scholkopf and J. Platt (Eds.), Advances
in Neural Information Processing Systems 18 (171-
-178). Cambridge, MA: MIT Press.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses.
In Proceedings of the the 5th International Confe-
rence on Language Resources and Evaluation
(LREC 2006).

David Ferrucci, and Adam Lally. 2004. Building an
example application with the Unstructured Infor-
mation Management Architecture. Ibm Systems
Journal, 43(3), 455-475.

David Ferrucci, Adam Lally, Daniel Gruhl, and Ed-
ward Epstein. 2006. Towards an Interoperability
Standard for Text and Multi-Modal Analytics.

U. Hahn, E. Buyko, R. Landefeld, M. Mühlhausen, M.
Poprat, K. Tomanek, et al. 2008, May. An Over-
view of JCoRe, the JULIE Lab UIMA Component
Repository. In Proceedings of the LREC'08 Work-
shop, Towards Enhanced Interoperability for Large
HLT Systems: UIMA for NLP, Marrakech, Moroc-
co.

Lynette Hirschman, Alexander Yeh, Christian
Blaschke, and Antonio Valencia. 2004. Overview
of BioCreAtIvE: critical assessment of information
extraction for biology. BMC Bionformatics,
6(Suppl 1:S1).

Yoshinobu Kano, William A Baumgartner, Luke
McCrohon, Sophia Ananiadou, Kevin B Cohen,
Lawrence Hunter, et al. 2009. U-Compare: share
and compare text mining tools with UIMA. Bioin-
formatics, accepted.

Yoshinobu Kano, Ngan Nguyen, Rune Sætre, Keiichi-
ro Fukamachi, Kazuhiro Yoshida, Yusuke Miyao,
et al. 2008c, January. Sharable type system design
for tool inter-operability and combinatorial com-
parison. In Proceedings of the the First Internation-
al Conference on Global Interoperability for Lan-
guage Resources (ICGL), Hong Kong.

Yoshinobu Kano, Ngan Nguyen, Rune Sætre, Kazuhi-
ro Yoshida, Keiichiro Fukamachi, Yusuke Miyao,
et al. 2008b, January. Towards Data And Goal
Oriented Analysis: Tool Inter-Operability And
Combinatorial Comparison. In Proceedings of the
3rd International Joint Conference on Natural Lan-
guage Processing (IJCNLP), Hyderabad, India.

Yoshinobu Kano, Ngan Nguyen, Rune Sætre, Kazuhi-
ro Yoshida, Yusuke Miyao, Yoshimasa Tsuruoka,

et al. 2008a, January. Filling the gaps between
tools and users: a tool comparator, using protein-
protein interaction as an example. In Proceedings
of the Pacific Symposium on Biocomputing (PSB),
Hawaii, USA.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction
to the Bio-Entity Recognition Task at JNLPBA. In
Proceedings of the International Workshop on Nat-
ural Language Processing in Biomedicine and its
Applications (JNLPBA-04), Geneva, Switzerland.

Kristofer Franzen, Gunnar Eriksson, Fredrik Olsson,
Lars Asker, Per Liden, and Joakim Coster. 2002.
Protein names and how to find them. International
Journal of Medical Informatics, 67(1-3), 49-61.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of English: the penn treebank. Com-
putational Linguistics, 19(2), 313-330.

Yusuke Miyao, and Jun'ichi Tsujii. 2008. Feature
Forest Models for Probabilistic HPSG Parsing.
Computational Linguistics, 34(1), 35-80.

Rune Sætre, Kazuhiro Yoshida, Akane Yakushiji,
Yusuke Miyao, Yuichiro Matsubayashi, and To-
moko Ohta. 2007, April. AKANE System: Protein-
Protein Interaction Pairs in BioCreAtIvE2 Chal-
lenge, PPI-IPS subtask. In Proceedings of the
Second BioCreative Challenge Evaluation Work-
shop.

Burr Settles. 2005. ABNER: an open source tool for
automatically tagging genes, proteins and other
entity names in text. Bioinformatics, 21(14), 3191-
3192.

Yuka Tateisi, Tomoko Ohta, Nigel Collier, Chikashi
Nobata, and Jun'ichi Tsujii. 2000, August. Building
an Annotated Corpus from Biology Research Pa-
pers. In Proceedings of the COLING 2000 Work-
shop on Semantic Annotation and Intelligent Con-
tent, Luxembourg.

Yuka Tateisi, Akane Yakushiji, Tomoko Ohta, and
Jun'ichi Tsujii. 2005, October. Syntax Annotation
for the GENIA Corpus. In Proceedings of the the
Second International Joint Conference on Natural
Language Processing (IJCNLP '05), Companion
volume, Jeju Island, Korea.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin Dong Kim,
Tomoko Ohta, J. McNaught, Sophia Ananiadou, et
al. 2005. Developing a robust part-of-speech tag-
ger for biomedical text. In Advances in Informatics,
Proceedings (Vol. 3746, 382-392). Berlin: Sprin-
ger-Verlag Berlin.

30

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 31–39,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Tightly Packed Tries: How to Fit Large Models into Memory,
and Make them Load Fast, Too

Ulrich Germann
University of Toronto and

National Research Council Canada
germann@cs.toronto.edu

Eric Joanis Samuel Larkin
National Research Council Canada National Research Council Canada

Eric.Joanis@cnrc-nrc.gc.ca Samuel.Larkin@cnrc-nrc.gc.ca

Abstract

We presentTightly Packed Tries(TPTs), a
compact implementation of read-only, com-
pressed trie structures with fast on-demand
paging and short load times.

We demonstrate the benefits of TPTs for stor-
ing n-gram back-off language models and
phrase tables for statistical machine transla-
tion. Encoded as TPTs, these databases re-
quire less space than flat text file representa-
tions of the same data compressed with the
gzip utility. At the same time, they can be
mapped into memory quickly and be searched
directly in time linear in the length of the key,
without the need to decompress the entire file.
The overhead for local decompression during
search is marginal.

1 Introduction

The amount of data available for data-driven Nat-
ural Language Processing (NLP) continues to grow.
For some languages, language models (LM) are now
being trained on many billions of words, and par-
allel corpora available for building statistical ma-
chine translation (SMT) systems can run into tens
of millions of sentence pairs. This wealth of data
allows the construction of bigger, more comprehen-
sive models, often without changes to the fundamen-
tal model design, for example by simply increasing
then-gram size in language modeling or the phrase
length in phrase tables for SMT.

The large sizes of the resulting models pose an en-
gineering challenge. They are often too large to fit
entirely in main memory. What is the best way to

organize these models so that we can swap informa-
tion in and out of memory as needed, and as quickly
as possible?

This paper presentsTightly Packed Tries(TPTs),
a compact and fast-loading implementation of read-
only trie structures for NLP databases that store
information associated with token sequences, such
as language models,n-gram count databases, and
phrase tables for SMT.

In the following section, we first recapitulate
some basic data structures and encoding techniques
that are the foundations of TPTs. We then lay out
the organization of TPTs. Section 3 discusses com-
pression of node values (i.e., the information asso-
ciated with each key). Related work is discussed in
Section 4. In Section 5, we report empirical results
from run-time tests of TPTs in comparison to other
implementations. Section 6 concludes the paper.

2 Fundamental data structures and
encoding techniques

2.1 Tries

Tries (Fredkin, 1960), also known asprefix trees, are
a well-established data structure for compactly stor-
ing sets of strings that have common prefixes. Each
string is represented by a single node in a tree struc-
ture with labeled arcs so that the sequence of arc la-
bels from the root node to the respective node “spells
out” the token sequence in question. If we augment
the trie nodes with additional information, tries can
be used as indexing structures for databases that rely
on token sequences as search keys. For the remain-
der of this paper, we will refer to such additional

31

total count 20
a 13

aa 10
ab 3
b 7

20

13 7

10 3

a b

a b

(a) Count table (b) Trie representation

field 32-bit 64-bit
index entry: token ID 4 4
index entry: pointer 4 8
start of index (pointer) 4 8
overhead of index structure
node value

}
x y

total (in bytes) 12 + x 20 + y

0 13 offset of root node

1 10 node value of‘aa’
2 0 size of index to child nodes of‘aa’ in bytes
3 3 node value of‘ab’
4 0 size of index to child nodes of‘ab’ in bytes
5 13 node value of‘a’
6 4 size of index to child nodes of ‘a’ in bytes
7 a index key for‘aa’ coming from‘a’
8 4 relative offset of node‘aa’ (5 − 4 = 1)
9 b index key for‘ab’ coming from‘a’

10 2 relative offset of node‘ab’ (5 − 2 = 3)
11 7 node value of‘b’
12 0 size of index to child nodes of‘b’ in bytes
13 20 root node value
14 4 size of index to child nodes of root in bytes
15 a index key for‘a’ coming from root
16 8 relative offset of node‘a’ (13 − 8 = 5)
17 b index key for‘b’ coming from root
18 2 relative offset of node‘b’ (13 − 2 = 11)

(c) Memory footprint per node in an implemen-
tation using memory pointers

(d) Trie representation in a contiguous byte array.
In practice, each field may vary in length.

Figure 1: A count table (a) stored in a trie structure (b) and the trie’s sequential representation in a file (d). As the
size of the count table increases, the trie-based storage becomes more efficient, provided that the keys have common
prefixes. (c) shows the memory footprint per trie node when the trie is implemented as a mutable structure using direct
memory pointers.

information as thenode value. Figure 1b shows a
count table (Figure 1a) represented as a trie.

Tries offer two main advantages over other index-
ing structures, e.g., binary search trees. First, they
are more compact because overlapping prefixes are
stored only once. And second, unless the set of keys
is extremely small, lookup is faster than with binary
search trees. While the latter need time logarithmic
in the number of keys, trie-based search is linear in
the length of the search key.

2.2 Representing tries in memory

Mutable trie implementations usually represent tries
as collections of fixed-size records containing the
node value and a pointer or reference to an index-
ing structure (henceforth:index) that maps from arc
or token labels to the respective child nodes. Links
to child nodes are represented by object references
or C-style memory pointers. To simplify the discus-
sion, we assume in the following that the code con-
sistently uses pointers. Since integers are faster to
compare and require less space to store than char-
acter strings, token labels are best represented as
integer IDs. With typical vocabulary sizes ranging

from hundreds of thousands to several million dis-
tinct items, 32-bit integers are the data type of choice
to store token IDs.1

This type of implementation offers flexibility and
fast lookup but has two major drawbacks. First, load
times are significant (cf. Tables 1 and 3). Since each
node is created individually, the entire trie must be
traversed at load time. In addition, all the informa-
tion contained in the database must be copied ex-
plicitly from the OS-level file cache into the current
process’s memory.

Second, these implementations waste memory,
especially on 64-bit machines. Depending on the
architecture, memory pointers require 4 or 8 byes
of memory. In theory, a 64-bit pointer allows us to
address 16 exabytes (16 million terabytes) of mem-
ory. In practice, 20 to 30 bits per 64-bit pointer will
remain unused on most state-of-the-art computing
equipment.

The use of 32-bit integers to represent token IDs
also wastes memory. Even for large corpora, the size

116 bits have been used occasionally in the past (Clarkson
and Rosenfeld, 1997; Whittaker and Raj, 2001) but limit the
vocabulary ca. 64 K tokens.

32

of the token vocabulary is on the order of several
million distinct items or below. The Google 1T web
n-gram database (Brants and Franz, 2006), for ex-
ample, has a vocabulary of only ca. 13 million dis-
tinct items, which can be represented in 24 bits, let-
ting 8 bits go to waste if IDs are represented as 32-bit
integers.

An alternative is to represent the trie in a single
contiguous byte array as shown in Figure 1d. For
each node, we store the node value, the size of the
index, and the actual index as a list of alternating to-
ken IDs and byte offsets. Byte offsets are computed
as the distance (in bytes) between the first byte of
the child node and the first byte of its parent. The
trie is represented in post-order because this is the
most efficient way to write it out to a file during
construction. For each node, we need to store the
byte offsets of its children. When we write tries to
file in post-order, this information is available by the
time we need it. The only exception is the root node,
whose offset is stored at the beginning of the file in
a fixed-length field and updated at the very end.

This representation scheme has two advantages.
First, since node references are represented as rela-
tive offsets within the array, the entire structure can
be loaded or mapped (cf. Section 2.5) into memory
without an explicit traversal. And secondly, it al-
lows symbol-level compression of the structure with
local, on-the-fly decompression as needed.

2.3 Trie compression by variable-length coding

Variable-length coding is a common technique for
lossless compression of information. It exploits the
uneven distribution of token frequencies in the un-
derlying data, using short codes for frequently oc-
curring symbols and long codes for infrequent sym-
bols. Natural language data with its Zipfian distri-
bution of token frequencies lends itself very well to
variable-length coding. Instead of using more elab-
orate schemes such as Huffman (1952) coding, we
simply assign token IDs in decreasing order of fre-
quency. Each integer value is encoded as a sequence
of digits in base-128 representation. Since the pos-
sible values of each digit (0–127) fit into 7 bits, the
eighth bit in each byte is available as a flag bit to
indicate whether or not more digits need to be read.
Given the address of the first byte of a compressed
integer representation, we know when to stop read-

ing subsequent bytes/digits by looking at the flag
bit.2

TPTs use two variants of this variable-length in-
teger encoding, with different interpretations of the
flag bit. For “stand-alone” values (node values, if
they are integers, and the size of the index), the flag
bit is set to 1 on the last digit of each number, and to
0 otherwise. When compressing node indices (i.e.,
the lists of child nodes and the respective arc labels),
we use the flag bit on each byte to indicate whether
the byte belongs to a key (token ID) or to a value
(byte offset).

2.4 Binary search in compressed indices

In binary search in a sorted list of key-value pairs,
we recursively cut the search range in half by choos-
ing the midpoint of the current range as the new
lower or upper bound, depending on whether the
key at that point is less or greater than the search
key. The recursion terminates when the search key
is found or it has been determined that it is not in the
list.

With compressed indices, it is not possible to de-
termine the midpoint of the list precisely, because
of the variable-length encoding of keys and values.
However, the alternation of flag bits between keys
and values in the index encoding allows us to rec-
ognize each byte in the index as either a ‘key byte’
or a ‘value byte’. During search, we jumpapprox-
imately to the middle of the search range and then
scan bytes backwards until we encounter the begin-
ning of a key, which will either be the byte at the
very start of the index range or a byte with the flag
bit set to ‘1’ immediately preceded by a byte with
the flag bit set to ‘0’. We then read the respective
key and compare it against the search key.

2.5 Memory mapping

Memory mapping is a technique to provide fast
file access through the OS-level paging mechanism.
Memory mapping establishes a direct mapping be-
tween a file on disk and a region of virtual memory,

2This is a common technique for compact representation
of non-negative integers. In the Perl world it is know as
BER (Binary Encoded Representation) compressed integer for-
mat (see the chapterperlpacktut in the Perl documenta-
tion). Apache Lucene and Hadoop, among many other software
projects, also define variable-length encoded integer types.

33

often by providing direct access to the kernel’s file
cache. Transfer from disk to memory and vice versa
is then handled by the virtual memory manager; the
program itself can access the file as if it was mem-
ory. There are several libraries that provide mem-
ory mapping interfaces; we used theBoost Iostreams
C++ library.3 One nice side-effect of memory map-
ping the entire structure is that we can relegate the
decision as to when to fall back on disk to the oper-
ating system, without having to design and code our
own page management system. As long as RAM
is available, the data will reside in the kernel’s file
cache; as memory gets sparse, the kernel will start
dropping pages and re-loading them from disk as
needed. In a computer network, we can furthermore
rely on the file server’s file cache in addition to the
individual host’s file cache to speed up access.

2.6 Additional tweaks

In order to keep the trie representation as small as
possible, we shift key values in the indices two bits
to the left and pad them with two binary flags. One
indicates whether or not a node value is actually
stored on the respective child node. If this flag is
set to 0, the node is assumed to have an externally
defined default value. This is particularly useful for
storing sequence counts. Due to the Zipfian distri-
bution of frequencies in natural language data, the
lower the count, the more frequent it is. If we de-
fine the threshold for storing counts as the default
value, we don’t need to store that value for all the
sequences that barely meet the threshold.

The second flag indicates whether the node is ter-
minal or whether it has children. Terminal nodes
have no index, so we don’t need to store the index
size of 0 on these nodes. In fact, if the value of ter-
minal nodes can be represented as an integer, we can
store the node’s value directly in the index of its par-
ent and set the flag accordingly.

At search time, these flags are interpreted and
the value shifted back prior to comparison with the
search key.

To speed up search at the top level, the index at
the root of the trie is implemented as an array of file
offsets and flags, providing constant time access to
top-level trie nodes.

3Available athttp://www.boost.org.

3 Encoding node values

Information associated with each token sequence is
stored directly in a compact format “on the node”
in the TPT representation. Special reader functions
convert the packed node value into whatever struc-
ture best represents the node value in memory. In
this section, we discuss the encoding of node values
for various sequence-based NLP databases, namely
sequence count tables, language models, and phrase
tables for SMT.

3.1 Count tables

The representation of count tables is straightfor-
ward: we represent the count as a compressed inte-
ger. For representing sequence co-occurrence counts
(e.g., bilingual phrase co-occurrences), we concate-
nate the two sequences with a special marker (an ex-
tra token) at the concatenation point.

3.2 Back-off language models

Back-off language models (Katz, 1987) of order
n define the conditional probabilityP(wi |wi−1

i−n+1)
recursively as follows.

P(wi |wi−1
i−n+1)

=

{
P̄(wi |wi−1

i−n+1) if found

β(wi−1
i−n+1) · P̄(wi |wi−1

i−n+2) otherwise
(1)

Here, P̄(wi |wi−1
i−n+1) is a smoothed estimate

of P(wi |wi−1
i−n+1), β(wi−1

i−n+1) is the back-off
weight (a kind of normalization constant), and
wi−1

i−n+1 is a compact notation for the sequence
wi−n+1, . . . , wi−1.

In order to retrieve the valuēP(wi |wi−1
i−n+1), we

have to retrieve up ton values from the data base.
In the worst case, the language model contains no
probability valuesP̄(wi | context) for any context
but back-off weights for all possible contexts up to
lengthn − 1. Since the contextswi−1

i−n+1, . . . , wi−1
i−1

have common suffixes, it is more efficient to orga-
nize the trie as a backwards suffix tree (Bellet al.,
1990), that is, to represent the context sequences in
right-to-left order in the trie. On each node in the
trie, we store the back-off weight for the respective
context, and the list of possible successor words and
their conditional probabilities. The SRI language
modeling toolkit (Stolcke, 2002) organizes its trie
structure in the same way.

34

Probability values and back-off weights are stored
via value IDs that are assigned in decreasing order of
value frequency in the model and encoded as com-
pressed integers. The list of successor words and
their probability IDs is represented in the same way
as the nodes’ indices, i.e., as a sorted list of〈word
ID, probability value ID〉 pairs in compressed for-
mat.

3.3 Phrase tables for SMT

Phrase tables for phrase-based SMT list for every
source phrase a number of target phrases and for
each phrase pair a number of numerical scores that
are usually combined in a linear or log-linear model
during translation.

To achieve a very compact representation of target
phrases, we organize all target phrases in the table in
a “bottom-up” trie: instead of storing on each node
a list of arcs leading to children, we store the node’s
label and its parent. Each phrase can thus be repre-
sented by a single integer that gives the location of
the leaf node; we can restore the respective phrase
by following the path from the leaf to the root.

Phrase pair scores are entropy-encoded and stored
with variable-length encoding. Since we have sev-
eral entropy-encoded values to store for each phrase
pair, and several phrases for each source phrase,
we can achieve greater compression with optimally
sized “bit blocks” instead of the octets we have used
so far. By way of a historical accident, we are cur-
rently still using indicator bits on each bit block to
indicate whether additional blocks need to be read; a
more principled approach would have been to switch
to proper Huffman (1952) coding. The optimal sizes
of the bit blocks are calculated separately for each
translation table prior to encoding and stored in the
code book that maps from score IDs to actual scores.

4 Related work

The challenges of managing huge models have been
addressed by a number of researchers in recent
years.

4.1 Array offsets instead of memory pointers

The CMU-Cambridge language modeling toolkit
(Clarkson and Rosenfeld, 1997) represents the con-
text trie in contiguous arrays of fixed-size node
records, where each array corresponds to a certain

“layer” of the trie. Instead of memory pointers, links
between nodes are represented by offsets into the
respective array. With some additional bookkeep-
ing, the toolkit manages to store array offsets in
only 16 bits (see Whittaker and Raj (2001) for de-
tails). Quantization of probability values and back-
off weights is used to reduce the amount of mem-
ory needed to store probability values and back-off
weights (see Section 4.4 below).

4.2 Model filtering

Many research systems offer the option to filter the
models at load time or offline, so that only infor-
mation pertaining to tokens that occur in a given in-
put is kept in memory; all other database entries are
skipped. Language model implementations that of-
fer model filtering at load time include the SRILM
toolkit (Stolcke, 2002) and thePortageLM imple-
mentation (Badret al., 2007). For translation ta-
bles, theMosessystem (Koehnet al., 2007) as well
as Portage offer model filtering (Moses: offline;
Portage:offline and/or at load time). Model filtering
requires that the input is known when the respective
program is started and therefore is not feasible for
server implementations.

4.3 On-demand loading

A variant of model filtering that is also viable for
server implementations is on-demand loading. In
the context of SMT, Zens and Ney (2007) store the
phrase table on disk, represented as a trie with rela-
tive offsets, so that sections of the trie can be loaded
into memory without rebuilding them. During trans-
lation, only those sections of the trie that actually
match the input are loaded into memory. They re-
port that their approach is “not slower than the tradi-
tional approach”, which has a significant load time
overhead. They do not provide a comparison of pure
processing speed ignoring the initial table load time
overhead of the “traditional approach”.

IRSTLM (Federico and Cettolo, 2007) offers the
option to use a custom page manager that relegates
part of the structure to disk via memory-mapped
files. The difference with our use of memory map-
ping is that IRSTLM still builds the structure in
memory and then swaps part of it out to disk.

35

4.4 Lossy compression and pruning

Large models can also be reduced in size by lossy
compression. Both SRILM and IRSTLM offer tools
for language model pruning (Stolcke, 1998): if prob-
ability values for long contexts can be approximated
well by the back-off computation, the respective en-
tries are dropped.

Another form of lossy compression is the quan-
tization of probability values and back-off weights.
Whittaker and Raj (2001) use pruning, quantization
and difference encoding to store language model pa-
rameters in as little as 4 bits per value, reducing lan-
guage model sizes by to 60% with “minimal loss
in recognition performance.” Federico and Bertoldi
(2006) show that the performance of an SMT system
does not suffer if LM parameters are quantized into
256 distinct classes (8 bits per value).

Johnsonet al. (2007) use significance tests to
eliminate poor candidates from phrase tables for
SMT. They are able to eliminate 90% of the phrase
table entries without an adverse effect on translation
quality.

Pruning and lossy compression are orthogonal to
the approach taken in TPTs. The two approaches
can be combined to achieve even more compact lan-
guage models and phrase tables.

4.5 Hash functions

An obvious alternative to the use of trie structures
is the use of hash functions that map fromn-grams
to slots containing associated information. With
hash-based implementations, the keys are usually
not stored at all in the database; hash collisions and
therefore lookup errors are the price to be paid for
compact storage. This risk can be controlled by
the design of the hash function. Talbot and Brants
(2008) show that Bloomier filters (Chazelleet al.,
2004) can be used to create perfect hash functions
for language models. This guarantees that there are
no collisions between existing entries in the database
but does not eliminate the risk of false positives for
items that are not in the database.

For situations where space is at a premium and
speed negotiable (e.g., in interactive context-based
spelling correction, where the number of lookups is
not in the range of thousands or millions per sec-
ond), Churchet al. (2007) present a compressed tri-

gram model that combines Stolcke (1998) pruning
with Golomb (1966) coding of inter-arrival times in
the (sparse) range of hash values computed by the
hash function. One major drawback of their method
of storage is that search is linear in the total num-
ber of keys in the worst case (usually mediated by
auxiliary data structures that cache information).

Since hash-based implementations of token
sequence-based NLP databases usually don’t store
the search keys, it is not possible to iterate through
such databases.

4.6 Distributed implementations

Brantset al. (2007) present an LM implementation
that distributes very large language models over a
network of language model servers. The delay due
to network latency makes it inefficient to issue indi-
vidual lookup requests to distributed language mod-
els. As Brantset al. point out: “Onboard memory is
around 10,000 times faster” than access via the net-
work. Instead, requests are batched and sent to the
server in chunks of 1,000 or 10,000 requests.

5 Experiments

We present here the results of empirical evalua-
tions of the effectiveness of TPTs for encodingn-
gram language models and phrase tables for SMT.
We have also used TPTs to encoden-gram count
databases such as the Google 1T webn-gram
database (Brants and Franz, 2006), but are not able
to provide detailed results within the space limita-
tions of this paper.4

5.1 Perplexity computation with 5-gram
language models

We compared the performance of TPT-encoded lan-
guage models against three other language model
implementations: the SRI language modeling toolkit
(Stolcke, 2002), IRSTLM (Federico and Cettolo,
2007), and the language model implementation cur-
rently used in thePortageSMT system (Badret al.,
2007), which uses a pointer-based implementation
but is able to perform fast LM filtering at load time.
The task was to compute the perplexity of a text of

4Bottom line: the entire Google 1T webn-gram data base
fits into about 16 GB (file/virtual memory), compared to 24 GB
asgzip-compressed text files (file only).

36

Table 1: Memory use and runtimes of different LM implementations on a perplexity computation task.

file/mem. size (GB) 1st run (times in sec.) 2nd run (times in sec.)
file virt. real b/ng 1 ttfr 2 wall usr sys cpu ttfr wall usr sys cpu

fu
ll

m
od

el
lo

ad
ed SRILM 3 5.2 16.3 15.3 42.2 940 1136 217 31 21% 846 1047 215 30 23%

SRILM-C 4 5.2 13.0 12.9 33.6 230 232 215 14 98% 227 229 213 14 98%
IRST 5.1 5.5 5.4 14.2 614 615 545 13 90% 553 555 544 11 100%
IRST-m5 5.1 5.5 1.6 14.2 548 744 545 8 74% 547 549 544 5 100%
IRST-Q6 3.1 3.5 3.4 9.1 588 589 545 9 93% 551 553 544 8 100%
IRST-Qm 3.1 3.5 1.4 9.1 548 674 546 7 81% 548 549 544 5 99%
Portage 8.0 10.5 10.5 27.2 120 122 90 15 85% 110 112 90 14 92%
TPT 2.9 3.4 1.4 7.5 2 127 2 2 2% 1 2 1 1 98%

fil
te

re
d

7 SRILM 5.2 6.0 5.9 111 112 90 12 91% 99 99 90 9 99%
SRILM-C 5.2 4.6 4.5 112 113 93 11 91% 100 105 93 8 99%
Portage 8.0 4.5 4.4 120 122 75 11 70% 80 81 74 7 99%

Notes: 1 Bytes pern-gram (Amount of virtual memory used divided by total number ofn-grams). 2 Time to first response
(first value returned). This was measured in a separate experiment, so the times reported sometimes do not match those in the
other columns exactly.3 Node indices stored in hashes.4 “Compact” mode: node indices stored in sorted arrays instead of
hashes.5 Uses a custom paging mechanism to reduce memory requirements; 6 Values are quantized into 256 discrete classes,
so that each value can be stored in 1 byte.7 Models filtered on evaluation text at load time.

Table 2: Language model statistics.

Gigaword Hansard
unigrams 8,135,668 211,055
bigrams 47,159,160 4,045,363
trigrams 116,206,275 6,531,550
4-grams 123,297,762 9,776,573
5-grams 120,416,442 9,712,384
file size (ARPA format) 14.0 GB 1.1 GB
file size (ARPA .gz) 3.7 GB 225 MB

10,000 lines (275,000 tokens) with a 5-gram lan-
guage model trained on the English Gigaword cor-
pus (Graff, 2003). Some language model statistics
are given in Table 2.

We measured memory use and total run time in
two runs: the first run was with an empty OS-level
file cache, forcing the system to read all data from
the hard disk. The second run was immediately af-
ter the first run, utilizing whatever information was
still cached by the operating system. All experi-
ments were run successively on the same 64-bit ma-
chine with 16 GB of physical memory.5 In order to
eliminate distortions by variances in the network and
file server load at the time the experiments were run,
only locally mounted disks were used.

The results of the comparison are shown in Ta-
ble 1. SRILM has two modi operandi: one uses

5Linux kernel version 2.6.18 (SUSE) on an IntelR© XeonR©

2.33 GHz processor with 4 MB cache.

hashes to access child nodes in the underlying trie
implementation, the other one (SRILM-C) sorted
arrays. The “faster” hash-based implementation
pushes the architecture beyond its limitations: the
system starts thrashing and is therefore the slowest
by a wide margin.

The most significant bottleneck in the TPT im-
plementation is disk access delay. Notice the huge
difference in run-time between the first and the sec-
ond run. In the first run, CPU utilization is merely
2%: the program is idle most of the time, waiting for
the data from disk. In the second run, the file is still
completely in the system’s file cache and is avail-
able immediately. When processing large amounts
of data in parallel on a cluster, caching on the clus-
ter’s file server will benefit all users of the respective
model, once a particular page has been requested for
the first time by any of them.

Another nice feature of the TPT implementation
is the short delay between starting the program and
being able to perform the first lookup: the firstn-
gram probability is available after only 2 seconds.

The slightly longer wall time of TPLMs (“tightly
packed language models”) in comparison to the
Portage implementation is due to the way the data
file is read: Portage reads it sequentially, while
TPLMs request the pages in more or less random
order, resulting in slightly less efficient disk access.

37

Table 3: Model load times and translation speed for batch translation with thePortageSMT system.

of
sentences
per batch

Baseline TPPT + Baseline LM TPLM + Baseline PT TPPT + TPLM
load
time w/s1 w/s2 load

time w/s1 w/s2 load
time w/s1 w/s2 load

time3 w/s1 w/s2

47 210s 5.4 2.4 16s 5.0 4.6 178s 5.9 2.67 < 1s 5.5 5.5
10 187s 5.5 0.8 16s 5.1 3.6 170s 5.6 0.91 < 1s 5.6 5.6
1 — — — 15s 5.0 1.0 154s 5.5 0.12 < 1s 5.3 5.2

Baseline:Portage’s implementation as pointer structure with load-time filtering.
TP: Tightly packed;PT: phrase table;LM: language model
1 words per second, excluding load time (pure translation time after model loading)
2 words per second, including load time (bottom line translation speed)

5.2 TPTs in statistical machine translation

To test the usefulness of TPTs in a more realistic set-
ting, we integrated them into thePortageSMT sys-
tem (Sadatet al., 2005) and ran large-scale transla-
tions in parallel batch processes on a cluster. Both
language models and translation tables were en-
coded as TPTs and compared against the native
Portageimplementation. The system was trained on
ca. 5.2 million parallel sentences from the Canadian
Hansard (English: 101 million tokens; French: 113
million tokens). The language model statistics are
given in Table 2; the phrase table contained about
60.6 million pairs of phrases up to length 8. The test
corpus of 1134 sentences was translated from En-
glish into French in batches of 1, 10, and 47 or 48
sentences.6

Translation tables were not pre-filtered a priori to
contain only entries matching the input. Pre-filtered
tables are smaller and therefore faster to read, which
is advantageous when the same text is translated re-
peatedly; the set-up we used more closely resem-
bles a system in production that has to deal with un-
known input. Portagedoes, however, filter models
at load time to reduce memory use. The total (real)
memory use for translations was between 1 and 1.2
GB, depending on the batch job, for all systems.

Table 3 shows the run-time test results. Ignoring
model load times, the processing speed of the cur-
rent Portageimplementation and TPTs is compara-
ble. However, when we take into account load times
(which must be taken into account under realistic
conditions), the advantages of the TPT implemen-
tation become evident.

6The peculiar number 47/48 is the result of using the default
batch size used in minimum error rate training of the system in
other experiments.

6 Conclusions

We have presented Tightly Packed Tries, a compact
implementation of trie structures for NLP databases
that provide a good balance between compactness
and speed. They are only slightly (if at all) slower
but require much less memory than pointer-based
implementations. Extensive use of the memory-
mapping mechanism provides very short load times
and allows memory sharing between processes. Un-
like solutions that are custom-tailored to specific
models (e.g., trigram language models), TPTs pro-
vide a general strategy for encoding all types of NLP
databases that rely on token sequences for indexing
information. The novelty in our approach lies in the
compression of the indexing structure itself, not just
of the associated information. While the underlying
mechanisms are well-known, we are not aware of
any work so far that combines them to achieve fast-
loading, compact and fast data structures for large-
scale NLP applications.

References

Badr, G., E. Joanis, S. Larkin, and R. Kuhn.
2007. “Manageable phrase-based statistical ma-
chine translation models.”5th Intl. Conf. on Com-
puter Recognition Systems (CORES). Wroclaw,
Poland.

Bell, T. C., J. G. Cleary, and I. H. Witten. 1990.Text
Compression. Prentice Hall.

Brants, T. and A. Franz. 2006. “Web 1T 5-gram Ver-
sion 1.” LDC Catalogue Number LDC2006T13.

Brants, T., A. C. Popat, P. Xu, F. J. Och, and J. Dean.
2007. “Large language models in machine trans-

38

lation.” EMNLP-CoNLL 2007, 858–867. Prague,
Czech Republic.

Chazelle, B., J. Kilian, R. Rubinfeld, and A. Tal.
2004. “The Bloomier filter: An efficient data
structure for static support lookup tables.”15th
Annual ACM-SIAM Symposium on Discrete Algo-
rithms. New Orleans, LA, USA.

Church, K., T. Hart, and J. Gao. 2007. “Compress-
ing trigram language models with Golomb cod-
ing.” EMNLP-CoNLL 2007, 199–207. Prague,
Czech Republic.

Clarkson, P. R. and R. Rosenfeld. 1997. “Statistical
language modeling using the CMU-Cambridge
toolkit.” EUROSPEECH 1997, 2707–2710.
Rhodes, Greece.

Federico, M. and N. Bertoldi. 2006. “How many bits
are needed to store probabilities for phrase-based
translation?” Workshop on Statistical Machine
Translation, 94–101. New York City.

Federico, M. and M. Cettolo. 2007. “Efficient han-
dling of n-gram language models for statistical
machine translation.”Second Workshop on Statis-
tical Machine Translation, 88–95. Prague, Czech
Republic.

Fredkin, E. 1960. “Trie memory.”Communications
of the ACM, 3(9):490–499.

Golomb, S. W. 1966. “Run-length encodings.”IEEE
Transactions on Information Theory, 12(3):399–
401.

Graff, D. 2003. “English Gigaword.” LDC Cata-
logue Number LDC2003T05.

Huffman, D. A. 1952. “A method for the construc-
tion of minimum-redundancy codes.”Proceed-
ings of the IRE, 40(9):1098–1102. Reprinted in
Resonance11(2).

Johnson, H., J. Martin, G. Foster, and R. Kuhn.
2007. “Improving translation quality by discard-
ing most of the phrasetable.”EMNLP-CoNLL
2007, 967–975. Prague, Czech Republic.

Katz, S. M. 1987. “Estimation of probabilities
from sparse data for the language model com-
ponent of a speech recognizer.”IEEE Transac-
tions on Acoustics, Speech, and Signal Process-
ing, 35(3):400–401.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Con-
stantin, and E. Herbst. 2007. “Moses: Open
source toolkit for statistical machine translation.”
ACL 2007 Demonstration Session. Prague, Czech
Republic.

Sadat, F., H. Johnson, A. Agbago, G. Foster,
R. Kuhn, J. Martin, and A. Tikuisis. 2005.
“PORTAGE: A phrase-based machine translation
system.” ACL Workshop on Building and Us-
ing Parallel Texts, 133–136. Ann Arbor, MI,
USA. Also available as NRC-IIT publication
NRC-48525.

Stolcke, A. 1998. “Entropy-based pruning of
backoff language models.” DARPA Broadcast
News Transcription and Understanding Work-
shop, 270–274. Lansdowne, VA, USA.

Stolcke, A. 2002. “SRILM — an extensible lan-
guage modeling toolkit.” Intl. Conf. on Spoken
Language Processing. Denver, CO, USA.

Talbot, D. and T. Brants. 2008. “Randomized
language models via perfect hash functions.”
ACL 2008, 505–513. Columbus, Ohio.

Whittaker, E. W. D. and B. Raj. 2001.
“Quantization-based language model com-
pression.”EUROSPEECH 2001, 33–36. Aalborg,
Denmark.

Zens, R. and H. Ney. 2007. “Efficient phrase-table
representation for machine translation with ap-
plications to online MT and speech translation.”
NAACL-HLT 2007 2007, 492–499. Rochester,
New York.

39

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 40–41,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Scaling up a NLU system from text to dialogue understanding

R. Delmonte, A. Bristot, G. Voltolina

Department of Language Science -
Università Ca’ Foscari - 30123 -

VENEZIA
delmont@unive.it

Vincenzo Pallotta

Webster University, Geneva
Switzerland

pallotta@webster.ch

Abstract

In this paper we will present work carried out
to scale up the system for text understanding
called GETARUNS, and port it to be used in
dialogue understanding. We will present the
adjustments we made in order to cope with
transcribed spoken dialogues like those
produced in the ICSI Berkely project. In a
final section we present preliminary
evaluation of the system on non-referential
pronominals individuation.

1 Introduction

Very much like other deep linguistic processing
systems (see Allen et al.), our system is a generic
text/dialogue understanding system that can be
used in connection with an ontology – WordNet -
and/or a repository of commonsense knowledge
like CONCEPTNET. Word sense disambiguation
takes place at the level of semantic interpretation
and is represented in the Discourse Model.
Computing semantic representations for spoken
dialogues is a particularly hard task which – when
compared to written text processing - requires the
following additional information to be made
available:
- adequate treatment of fragments;
- adequate treatment of short turns, in particular
one-word turns;
- adequate treatment of first person singular and
plural pronominal expressions;
- adequate treatment of disfluencies, thus including
cases of turns made up of just such expressions, or
cases when they are found inside the utterance;
- adequate treatment of overlaps;
- adequate treatment of speaker identity for
pronominal coreference;
In our system, then, every dialogue turn receives
one polarity label, indicating negativity or

positivity, and this is computed by looking into a
dictionary of polarity items. This is subsequently
used to decide on argumentative automatic
classification.
The Berkeley ICSI dialogues are characterized by
the need to argument in a exhaustive manner the
topics to be debated which are the theme of each
multiparty dialogue. The mean length of
utterances/turns in each dialogue we parsed was
rather long.

2 The System GETARUNS

GETARUNS1, the system for text understanding
developed at the University of Venice, is organized
as a pipeline which includes two versions of the
system: what we call the Partial and the Deep
GETARUNS (Delmonte 2007;2009). The Deep
version is equipped with three main modules: a
lower module for parsing, where sentence
strategies are implemented; a middle module for
semantic interpretation and discourse model
construction which is cast into Situation Semantics;
and a higher module where reasoning and
generation takes place.

2.1 The Algorithm for Overlaps

Overlaps are an important component of all spoken
dialogue analysis. In all dialogue transcription,
overlaps are treated as a separate turn from the one
in which they occur, which usually follows it. On
the contrary, when computing overlaps we set as
our first goal that of recovering the temporal order.
This is done because overlaps may introduce
linguistic elements which influence the local
context. Eventually, they may determine the
interpretation of the current utterance.

1 The system has been tested in STEP competition, and can be
downloaded at, http://project.cgm.unive.it/html/sharedtask/.

40

For these reasons, they cannot be moved to a
separate turn because they must be semantically
interpreted where they temporally belong.
The algorithm we built looks at time stamps, and
everytime the following turn begins at a time
preceding the ending time of current turn it enters a
special recursive procedure. It looks for internal
interruption in the current turn and splits the
utterance where the interruption occurs. Then it
parses it split initial portion of current utterance
and continues with the overlapping turn. This may
be reiterated in case another overlap follows which
again begins before the end of current utterance.
Eventually, it returns to the analysis of the current
turn with the remaining portion of current
utterance.

2.2 The Treatment of Fragments and Short
Turns

Fragments and short turns are filtered by a lexical
lookup procedure that searches for specific
linguistic elements which are part of a list of
backchannels, acknowledgements expressions and
other similar speech acts. In case this procedure has
success, no further computation takes place.
However, this only applies to utterances shorter
than 5 words, and should be made up only of such
special words. No other linguistic element should
be present apart from non-words, that is words
which are only partially produced and have been
transcribed with a dash at the end. Otherwise we
proceed as follows:
- graceful failure procedures for ungrammatical
sentences, which might be fullfledged utterances
but semantically uninterpretable due to the
presence of repetitions, false starts and similar
disfluency phenomena. Or else they may be just
fragments, i.e. partial or incomplete utterances,
hence non-interpretable as such; this is done by
imposing grammatical constraints of
wellformedness in the parser.
We implemented a principled treatment of elliptical
utterances and contribute one specific speech act.
They may express agreement/ disagreement,
acknowledgements, assessments, continuers etc.
All these items are computed as being
complements of abstract verb SAY which is
introduced in the analysis, and has as subject, the
name of current speaker.

3 The Experiment

We set up an experiment in order to test the new
version of the system, that is detecting referential
from nonreferential uses of personal pronouns
“you”, “we” and “it”.
In order to take decisions as to whether pronouns
are to be interpreted as referential or not a
recursive procedure checks the type of governing
predicate. Referential pronouns are then passed on
to the pronominal binding algorithm that looks for
local antecedents if any. Otherwise, the pronouns
is labeled as having External coreference in the
previous discourse stretch. The Anaphora
Resolution module will then take care of the
antecedent and a suitable semantic identifier will
be associated to it. On the contrary, if the pronouns
are judged to be referentially empty or generic, no
binding takes place. Here below is a table
containing total values for pronouns WE/YOU/IT
in all the 10 dialogues analysed.

 Referential Generic Total
WE 1186 706 1892
YOU 1045 742 1787
IT 1593 1008 2601
 Total 3824 2456 6280

Table 1. Overall count of pronominal expressions

Results for the experiment are as follows

 Recall Precision F-Score
WE 98.2% 60.59% 74.94%
YOU 99.3% 70.99% 82.79%
IT 97.6% 64.2% 77.45%
Table 2. Results for pronominal expressions

References

Allen, J., M. Dzikovska, M. Manshadi, and M. Swift.

2007. Deep linguistic processing for spoken dialogue
systems. In ACL 2007 Workshop on Deep Linguistic
Processing, pp. 49–56.

Delmonte R. 2007. Computational Linguistic Text
Processing – Logical Form, Semantic
Interpretation, Discourse Relations and Question
Answering, Nova Science Publishers, New York.

Delmonte R. 2009. Computational Linguistic Text
Processing – Lexicon, Grammar, Parsing and
Anaphora Resolution, Nova Science Publishers,
New York.

41

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 42–44,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

TTTTowards owards owards owards Agile Agile Agile Agile and Testand Testand Testand Test----Driven Driven Driven Driven DDDDeveeveeveevellllopmentopmentopmentopment in NLP A in NLP A in NLP A in NLP Applicationspplicationspplicationspplications

 Jana Z. Sukkarieh Jana Z. Sukkarieh Jana Z. Sukkarieh Jana Z. Sukkarieh JJJJyoti Kamalyoti Kamalyoti Kamalyoti Kamal
 Educational Testing Service Educational Testing Service

Rosedale Road Rosedale Road
Princeton, NJ 08541, USA Princeton, NJ 08541, USA

Jsukkarieh@ets.org Jkamal@ets.org

Abstract

c-rater® is the Educational Testing Service technol-
ogy for automatic content scoring for short free-text
responses. In this paper, we contend that an Agile
and test-driven development environment optimizes
the development of an NLP-based technology.

1 Introduction

c-rater (Leacock and Chodorow, 2003) is the Edu-
cational Testing Service technology for the auto-
matic content scoring of short free-text responses
for items whose rubrics are concept-based. This
means that a set of concepts or main points are pre-
specified in the rubric (see the example in Table 1).
We view c-rater’s task as a textual entailment
problem that involves the detection of whether a
student’s answer entails a particular concept (with
the additional challenge that the students’ data con-
tains misspellings and grammatical errors). Our
solution depends on a combination of rule-based
and statistically-based NLP modules (Sukkarieh
and Blackmore, 2009). In addition to databases, a
JBOSS server (www.jboss.org), and two user inter-
faces, c-rater consists of 10 modules–eight of
which are Natural Language Processing (NLP)
modules. Figure 1 depicts the system’s architec-
ture. The c-rater engine is where all the linguistic
processing and concept detection takes place. Sec-
tion 2 lists some of the major problems we face
while developing such a complex NLP-based ap-
plication and how our adoption of Agile and test-
driven development is helping us.

Example Item (Full Credit 2)

Figures are given

Prompt:

The figures show three poly-
gons. Is the polygon in Figure 1
an octagon, hexagon, or paral-
lelogram? Explain your answer.

Concepts or main/key points:

C1: The polygon/it is a quadri-
lateral with two sets of par-
allel sides OR the opposite
sides are of equal length OR
opposite angles are equal

C2: The polygon/it has four/4
sides

Scoring rules:
2 points for C1 (only if C2 is not present)

1 point for C1 and C2
Otherwise 0

Table 1. Example item for c-rater scoring

Figure 1. c-rater’s System Architecture

2 Major Concerns and Solutions

2.1 Communication

In the past, the implementation of each module
was done in isolation and communication among
team members was lacking. When a team member

42

encountered a problem, it was only then that s/he
would be aware of some logic or data structure
changes by another member. This is not necessar-
ily an NLP-specific problem, however due to the
particularly frequent modifications in NLP-based
applications (see Section 2.2), communication is
more challenging and updates are even more cru-
cial. The adoption of Scrum within Agile
(Augustine, 2005) has improved communication
tremendously. Although both the task backlog and
the choice of tasks within each sprint is done by
the product owner, throughout the sprint the plan-
ning, requirement analysis, design, coding, and
testing is performed by all of the team members.
This has been effecting in decreasing the number
of logic design errors.

2.2 Planning and Frequent Modification

Very frequent modifications and re-prioritizing are,
to a great extent, due to the nature of NL input and
constant re-specification, extension, and customi-
zation of NLP modules. This could also be due to
changes in business requirements, e.g. to tailor the
needs of the application to a particular client’s
needs. Further, this could be a response to emerg-
ing research, following a sudden intuition or per-
forming a heuristic approach. Agile takes care of
all these issues. It allows the development to adapt
to changes more quickly and retract/replace the last
feature-based enhancement(s) when the need
arises. It allows for incorporating research time and
experimental studies into the task backlog; hence
the various sprints. The nature of the Agile envi-
ronment allows us also to add tasks driven by the
business needs and consider them highest in value.

2.3 Metrics for Functionality and Progress

Metrics for functionality includes measuring pro-
gress, comparing one version to another and moni-
toring the effect of frequent modifications. This
particularly proves challenging due to the nature of
c-rater’s tasks and the NLP modules. In most soft-
ware, the business value is a working product. In c-
rater, it is not only about producing a score but
producing one for the “right” reasons and not due
to errors in the linguistic features obtained.

Until recently, comparing versions meant compar-
ing holistic scores without a sense of the effect of
particular changes. Evaluating the effect of a

change often meant hand-checking hundreds and
hundreds of cases. To improve monitoring, we
have designed an engine test suite (each is a pair
<model-sentence, answer> where model-sentence
is a variant of a concept) and introduced automated
testing. The suite is categorized according to the
linguistic phenomenon of interest (e.g., passive,
ergative, negation, appositive, parser output, co-
reference output). Some categories follow the phe-
nomena in Vanderwende and Dolan (2006). Some
RTE data was transformed for engine tests. This
produced a finer-grained view of the NLP modules
performance, decreased the amount of hand-
checking, and increased our confidence about the
“correctness” of our scores.

2.4 Maintenance and Debugging

Until very recently maintaining and debugging
the system was very challenging. We faced many
issues including the unsystematic scattering of
common data structures, making it hard to manage
dependencies; long functions making it difficult to
track bugs; and late integration or lack of regular
updates causing, at times, the system to crash or
not compile. Although this may not be deemed
NLP-specific, the need to modify NLP modules
more frequently than anticipated has made this par-
ticularly challenging. To face this challenge, we
introduced unit tests (UT) and continuous integra-
tion. We usually select some representative or
“typical” NL input for certain phenomena, create
an expected output, create a failed UT, and make it
pass. An additional challenge is that since stu-
dents’ responses are noisy, sometimes choosing
“typical” text is hard. Ideally, unit tests are sup-
posed to be written before or at the same time as
the code; we were able to do that for approxi-
mately 40% of the code. The rest of the unit testing
was being written after the code was written. For
legacy code, we have covered around 10-20% of
the code.

In conclusion, we strongly believe like Degerstedt
and Jönsson (2006), Agile and Test-Driven Devel-
opment form a most-suitable environment for
building NLP-based applications.

Acknowledgments

Special thanks to Kenneth Willian, and Rene Law-
less.

43

References

Augustine, S. Managing Agile Projects. 2005. Published
by Prentice Hall Professional Technical Reference.
ISBN 0131240714, 9780131240711. 229 pages.

Degerstedt, L. and Jönsson, A. 2006. LINTest, A devel-
opment tool for testing dialogue systems. In: Pro-
ceedings of the 9th International Conference on
Spoken Language Processing (Interspeech/ICSLP),
Pittsburgh, USA, pp. 489-492.

Leacock, C. and Chodorow, M. 2003. C-rater: Auto-
mated Scoring of Short-Answer Question. Journal of
Computers and Humanities. pp. 389-405.

Sukkarieh, J. Z., & Blackmore, J. To appear. c-rater:
Automatic Content Scoring for Short Constructed
Responses. To appear in the Proceedings of the 22nd
International Conference for the Florida Artificial In-
telligence Research Society, Florida, USA, May
2009.

Vanderwende, L. and Dolan, W. B. 2006. What Syntax
Can Contribute in the Entailment Task. J. Quinonero-
Candela et al. (eds.). Machine Learning Challenges,
Lecture notes in computer science, pp. 205-216.
Springer Berlin/Heidelberg.

44

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 45–46,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Grammar Engineering for CCG using Ant and XSLT∗

Scott Martin, Rajakrishnan Rajkumar, and Michael White
Ohio State University

Department of Linguistics
{scott,raja,mwhite}@ling.ohio-state.edu

Overview

Corpus conversion and grammar extraction have
traditionally been portrayed as tasks that are
performed once and never again revisited (Burke
et al., 2004). We report the successful imple-
mentation of an approach to these tasks that
facilitates the improvement of grammar engi-
neering as an evolving process. Taking the
standard version of the CCGbank (Hocken-
maier and Steedman, 2007) as input, our sys-
tem then introduces greater depth of linguis-
tic insight by augmenting it with attributes
the original corpus lacks: Propbank roles and
head lexicalization for case-marking preposi-
tions (Boxwell and White, 2008), derivational
re-structuring for punctuation analysis (White
and Rajkumar, 2008), named entity annotation
and lemmatization. Our implementation ap-
plies successive XSLT transforms controlled by
Apache Ant (http://ant.apache.org/) to an
XML translation of this corpus, finally produc-
ing an OpenCCG grammar (http://openccg.
sourceforge.net/). This design is beneficial
to grammar engineering both because of XSLT’s
unique suitability to performing arbitrary trans-
formations of XML trees and the fine-grained
control that Ant provides. The resulting system
enables state-of-the-art BLEU scores for surface
realization on section 23 of the CCGbank.

1 Design

Rather than transforming the corpus, it would
be simple to introduce several of the corpus aug-

∗This work was supported in part by NSF grant no.
IIS-0812297.

mentations that we make (e.g. punctuation re-
structuring) during grammar extraction. How-
ever, machine learning applications (e.g., real-
ization ranking) benefit when the corpus and
extracted grammar are consistent. A case in
point: annotating the corpus with named en-
tities, then using n-gram models with words re-
placed by their class labels to score realization.

Accordingly, our pipeline design starts by gen-
erating an XML version of the CCGbank us-
ing JavaCC (http://javacc.dev.java.net/)
from the original corpus. Next, conversion and
extraction transforms are applied to create a
converted corpus (also in XML) and extracted
grammar (in OpenCCG format).

We refactored our original design to separate
the grammar engineering task into several con-
figurable processes using Ant tasks. This sim-
plifies process management, speeds experiment
iterations, and facilitates the comparison of dif-
ferent grammar engineering strategies.

2 Implementation

It seemed natural to implement our pipeline pro-
cedure in XSLT since both OpenCCG grammars
and our CCGbank translation are represented in
XML. Aside from its inherent attributes, XSLT
requires no re-compilation as a result of being an
interpreted language. Also, because both con-
version and extraction use a series of transforms
in a chain, each required sub-step can be split
into as many XSLT transforms as desired.

Both the conversion and extraction steps
were implemented by extending Ant with cus-
tom tasks as configuring Ant tasks requires no

45

source editing or compilation. Ant is partic-
ularly well-suited to this process because, like
OpenCCG (whose libraries are used in the ex-
traction phase), it is written in Java. Our sys-
tem also employs the Ant-provided javacc task,
invoking the JavaCC parser to translate the
CCGbank to XML. This approach is preferable
to a direct Java implementation because it keeps
source code and configuration separate, allowing
for more rapid grammar engineering iterations.

Our particular implementation harnesses
Ant’s built-in FileSet (for specification of
groups of corpus files) and FileList (for re-
use of series of XSLT transforms) data types.
The first of our extension tasks, convert, encap-
sulates the conversion process while the second
task, extract, implements the grammar extrac-
tion procedure for a previously-converted cor-
pus.

3 Experimental Impact

Our conversion process currently supports var-
ious experiments by including only specified
transforms. We gain the ability to cre-
ate corpora with various combinations of at-
tributes, among them punctuation annotation,
semantic class information, and named entities
(lack of space precludes inclusion of examples
here; see http://www.ling.ohio-state.edu/

~scott/publications/grammareng/). In ad-
dition to extracting grammars, the extraction
task employs a constrained parser to create log-
ical forms (LFs) for surface realization and ex-
tracts SRILM training data for realization scor-
ing. This task also enables feature extraction
from LF graphs for training during supertagging
for realization (Espinosa et al., 2008).

Our design supports comprehensive experi-
mentation and has helped facilitate recent ef-
forts to investigate factors impacting surface re-
alization, such as semantic classes and named
entities. Our initial results reported in (White et
al., 2007) record 69.7% single-rooted LFs with a
BLEU score of 0.5768. But current figures stand
at 95.8% single-rooted LFs and a state-of-the
art BLEU score of 0.8506 on section 23 of the
CCGbank. (Fragmentary LFs result when at

least one semantic dependency is missing from
the LF graph.) In achieving these results, im-
provements in the grammar engineering process
have been at least as important as improvements
in the statistical models.

4 Conclusions and Future Work

We designed and implemented a system that fa-
cilitates the process of grammar engineering by
separating conversion and extraction steps into
a pipeline of XSLT transforms. Our Ant imple-
mentation is highly configurable and has posi-
tive effects on our grammar engineering efforts,
including increased process control and a short-
ened testing cycle for different grammar engi-
neering approaches. Future work will focus on
increasing the number of single-rooted LFs and
integrating this system with OpenCCG.

References

[Boxwell and White2008] Stephen Boxwell and
Michael White. 2008. Projecting Propbank roles
onto the CCGbank. In Proc. LREC-08.

[Burke et al.2004] Michael Burke, Aoife Cahill,
Mairead Mccarthy, Ruth O’Donovan, Josef
Genabith, and Andy Way. 2004. Evaluating
automatic LFG F-structure annotation for the
Penn-II treebank. Research on Language and
Computation, 2:523–547, December.

[Espinosa et al.2008] Dominic Espinosa, Michael
White, and Dennis Mehay. 2008. Hypertagging:
Supertagging for surface realization with CCG.
In Proc. ACL-08: HLT.

[Hockenmaier and Steedman2007] Julia Hockenmaier
and Mark Steedman. 2007. CCGbank: A Corpus
of CCG Derivations and Dependency Structures
Extracted from the Penn Treebank. Computa-
tional Linguistics, 33(3):355–396.

[White and Rajkumar2008] Michael White and Ra-
jakrishnan Rajkumar. 2008. A more precise
analysis of punctuation for broad-coverage sur-
face realization with CCG. In Proc. of the Work-
shop on Grammar Engineering Across Frame-
works (GEAF08).

[White et al.2007] Michael White, Rajakrishnan Ra-
jkumar, and Scott Martin. 2007. Towards broad
coverage surface realization with CCG. In Proc.
of the Workshop on Using Corpora for NLG: Lan-
guage Generation and Machine Translation (UC-
NLG+MT).

46

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 47–55,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Web Service Integration for Next Generation Localisation

David Lewis, Stephen Curran,

Kevin Feeney, Zohar Etzioni,

John Keeney

Andy Way Reinhard Schäler

Centre for Next Generation Localisation
Knowledge and Data Engineering

Group

School of Computing Centre for Localisation

Research

Trinity College Dublin, Ireland Dublin City Universit

y, Ireland

University of Limerick,

Ireland
{Dave.Lewis|Stephen.curran|K

evin.Feeney|etzioniz|John.Ke

eney}@cs.tcd.ie

away@computing.dcu.ie

Reinhard.Schaler@ul.ie

Abstract

Developments in Natural Language Processing technol-

ogies promise a variety of benefits to the localization

industry, both in its current form in performing bulk

enterprise-based localization and in the future in sup-

porting personalized web-based localization on increa-

singly user-generated content. As an increasing variety

of natural language processing services become availa-

ble, it is vital that the localization industry employs the

flexible software integration techniques that will enable

it to make best use of these technologies. To date how-

ever, the localization industry has been slow reap the

benefits of modern integration technologies such as web

service integration and orchestration. Based on recent

integration experiences, we examine how the localiza-

tion industry can best exploit web-based integration

technologies in developing new services and exploring

new business models

 Introduction

Research and development of natural language

processing technologies are leading to a variety of

advances in areas such as text analytics and ma-

chine translation that have a range of commercial

applications. The Localization Industry in particu-

lar, is strategically well placed to make good use of

these advances as it faces the challenge of localiz-

ing accelerating volumes of digital content that is

being targeted at increasingly global markets of

this content. It needs to exploit the benefits of NLP

technologies to reduce the cost of translation and

minimise the time to market of this digital content.

Furthermore, where the localization industry best

learns how to efficiently and flexibly employ NLP

technologies in the localization of digital content it

will be ideally placed to develop new services and

exploit new business opportunities offered by the

WWW. In particular, today‘s localization tech-

niques are not able to keep pace with the WWW‘s

ability to dynamically compose and personalize

existing content and to support rapid development

of large volumes of user generated content. To

meet this challenge, localization processes must

effectively employ NLP to move from manually

centered, professional batch activities to highly

automated, highly participative continuous activi-

ties. To do this, the technologies of the WWW

need to be employed to dynamically combine NLP

technologies and leverage different levels of hu-

man linguistic abilities and knowledge to best ac-

complish the task at hand.

In this paper we examine how this vision, which

we term Next Generation Localization, can be sup-

ported by current web-based, service-oriented

software integration techniques such as web ser-

vice integration and orchestration. Based on recent

integration experience we review the current issues

in using open interoperability standards and web

services to the integration of commercial localiza-

tion platforms and NLP software. We then describe

some generic definitions for NLP web services and

how these provide flexibility in developing new

localization service compositions. Finally, we out-

line the major software integration challenges fac-

ing the localization industry and describe how

these are being addressed at Ireland‘s Centre for

Next Generation Localization (CNGL).

47

 Next Generation Localization

Traditional localization technologies and

workflows are no longer able to cope with the es-

calating growth in volume. Traditional localization

methods are not adequate to manage, localize and

personalize unpredictable, on-line, multilingual,

digital content. Machine Translation (MT) needs to

be integrated into translation and post-editing

workflows together with human translators. Novel

machine-learning-based language technologies can

automatically provide metadata annotations (la-

bels) to localization input in order to automate lo-

calization standardization and management.

Figure 1: Example use of Web Service Orchestration in

a Localisation Workflow

For Next Generation Localisation to be

achieved, the individual components need to be

interoperable and easily reconfigurable. The com-

plexity of the resulting systems poses substantial

software engineering challenges and crucially re-

quires detailed user requirement studies, technical

and user interface standards, as well as support for

rapid prototyping and formative evaluation early

on in the software lifecycle. Blueprints for an in-

dustrial environment for Next Generation Localisa-

tion, which we term a Localisation Factory, are

needed to guide the development of localisation

services systems integrating advanced language,

digital content and localisation management tech-

nologies. However, in order to successfully

achieve the goal of technical interoperability these

services crucially needs to be supplemented by

standardised localisation processes and workflows

for the Localisation Factory. Figure 1 gives an

overview of a typical localisation workflow, that

would be used for translating the content such as

the use manual for a product, into multiple lan-

guages for different target markets. Typically this

involves segmenting the content into sentences,

looking up previously translated sentences from a

Translation Memory (MT), before passing untrans-

lated segments to a Machine Translation (TM) ser-

vice to generate further candidate translations.

Next, the job is passed to professional translators,

who can accept automated translations or provide

their own translations. Current practice in perform-

ing such workflows uses localisation platforms

such as SDL‘s Idiom WorldServer to integrate

Translation Memory databases, Machine Transla-

tion packages and the routing of jobs to translators

who typically work remotely under the manage-

ment of a localisation service provision agency.

The localization industry has already underta-

ken a number of separate standardization activities

to support interoperability between different locali-

sation applications. The Localisation Industry

Standards Association (LISA – www.lisa.org) has

developed various localisation standards:

 Translation Memory Exchange (TMX) for ex-

changing TM database content. Many TM tool

providers have implemented support for TMX

in their products.

 Term Base eXchange (TBX): XML Terminol-

ogy Exchange Standard. An XML linking

standard, called Term Link, is also being in-

vestigated.

 Segmentation Rules eXchange (SRX), for ex-

changing the rule by which content is original-

ly segmented. There has been very little sup-

port to date for SRX because segmentation is

the main component that distinguished TM

tools. Segmentation has direct consequences

for the level of reuse of a TM. A TM's value is

significantly reduced without the segmentation

rules that were used to build it.

 Global information management Metrics eX-

change (GMX): A partially populated family

of standards of globalization and localization-

related metrics

The Organization for the Advancement of Struc-

tured Information Standards (OASIS – www.oasis-

open.org), which produces e-business standards

has had a number of initiatives:

 XML Localisation Interchange File Format

(XLIFF): XLIFF is the most common open

standard for the exchange of localisable con-

48

tent and localisation process information be-

tween tools in a workflow. Many tool provid-

ers have implemented support for XLIFF in

their products.

 Trans-WS for automating the translation and

localization process as a Web service. There

has not been much adoption of this standard.

Work on the development and maintenance of

the standard seems to be at a stand-still.

 Open Architecture for XML Authoring and

Localization: A recently started group looking

at linking many existing localisation standards

The W3C, which develops many web stan-

dards, has an Internationalisation Activity

(www.w3.org/International) working on enabling

the use Web technologies with different languages,

scripts, and cultures. Specific standardisation in-

cludes the Internationalisation Tag Set to support

internationalisation of XML Schema/DTDs.

To date, therefore, standard localisation proc-

esses and workflows addressing common interop-

erability issues have not yet been widely adopted.

Outside of proprietary scenarios, digital publishers

and service providers cannot integrate their proc-

esses and technologies and cannot provide inde-

pendent performance measures. This implies lost

business opportunities for many and missed oppor-

tunities for significant performance improvement

for most of the stakeholders. We now examine

how web services may help improve this situation.

 Service Oriented Localization Integra-

tion

The Centre for Next Generation Localisation

[cngl] is developing a number of systems in order

to investigate the issues that arise in integrating

centralized workflows with community-based

value creation. It aims to make full use of Service-

Oriented Architecture [erl]. This advocates

software integration through well defined

functional interfaces that can be invoked remotely,

typically using the Web‘s HTTP protocol with

input and output parameters encoded in XML. The

W3C have standardized an XML format, The Web

Service Description Language (WSDL), for

describing and exchanging such service

definitions. Web services can be composed into

more complicated applications using explicit

control and data flow models that can be directly

executed by workflow engines. This allows new

workflow applications to be defined declaratively

and immediately executed, thus greatly reducing

the integration costs of developing new workflows

and increasing the flexibility to modify existing

ones. Such web-service based service composition

is known as Web Service Orchestration. OASIS

has standardized web service orchestration

language called the Business Process Execution

Language (BPEL), which has resulted in the

development of several commercial execution

platform and BPEL workflow definition tools,

which support workflow definition through drag-

and drop interfaces. In CNGL, web services and

web service orchestration are used for integrating

components and operating workflows between

potential partners in the commercial localization

value chain. This provides a high degree of

flexibility in integrating the different language

technologies and localization products into

different workflow configurations for the project,

while avoiding reliance on any single proprietary

platform. As an initial exploration of this space a

system integration trial was undertaken. The use of

BPEL for integrating NLP software has previously

been used in the LanguageGrid project, but is a

purely in support of academic research integration.

Our work aimed flexibility instantiate commercial

localisation workflow using NLP software

wrapped in services that are orchestrated using

BPEL, while, as indicated in Figure 1, still

integrating with commercial localisation workflow

tools. This exploration also included extending the

human element of the localisation workflow by

soliciting translations from a body of volunteer

translators. This is seen as more appropriate if the

required translation is not time constrained and it

often forms part of a customer relationship

strategy. Quality management may require

involvement of volunteer post-editors, and

incomplete or poor translations may ultimately still

need to be referred to professional translators.

Thus our workflows can be configured to oper-

ate in parallel to provide alternative translations. In

the professional localization workflow, after the

MT stage, the candidate translation would be re-

turned to the SDL Worldserver platform via which

professional translators and post-editors are able to

complete the task. In the crowd-sourcing variation,

this manual step is instead performed by passing

the job to a similar application implemented as a

49

plug-in to the Drupal collaborative content man-

agement system.

Our implementation uses the XLIFF format as a

standard for encapsulating the various transforma-

tions that happen to a resource as it passes through

the localisation process. It should be noted, how-

ever, that support for XLIFF is partial at best in

most localisation tools. Where the standard is sup-

ported, there are often different, specific flavours

used, and embedded elements within the XLIFF

can be lost as the resource passes through various

stages in the process. Another problem with in-

corporating current tools in our service-oriented

framework is that some of them, such as IBM‘s

UIMA, are designed to function in a batch mode –

which does not map cleanly to services. Neverthe-

less, despite a range of practical problems, it was

in general possible to engineer service front-ends

for most of these tools so that they can be inte-

grated into a composable service infrastructure. In

the following section we proceed to detail the de-

sign of the generic web services we defined for this

system and discuss the option undertaken in their

implementation.

3.1 Web Service Definitions

The OASIS TWS working group remains the

only real attempt to define web-services to support

the localization process. However, TWS has a li-

mited scope. Rather than aiming to support the

dynamic composition of language services into

flexible localization workflows, it concentrates on

supporting the negotiation of ―jobs‖ between ser-

vice providers. It is primarily intended to support

the efficient out-sourcing of localization and trans-

lation jobs and it does not address the composition

of language-services to form automated

workflows.

Therefore, in order to deploy web-services to

support such composition, there is little standardi-

sation to rely on. Thus, a first step in addressing

the problem is to design a set of web-services and

their interfaces suitable for the task. In designing

these services, it is worthwhile to recall the general

goals of service-oriented architectures; the services

should be designed to be as flexible and general as

possible and they should neither be tightly coupled

to one another, nor to the overall system which

they are part of. Furthermore, in keeping with the

general trends in service designs [foster], variabili-

ty in service behavior should generally be sup-

ported through the passed data-structures rather

than through different function signatures.

Bearing these design goals in mind, we can be-

gin to analyse the basic requirements of localisa-

tion with a view to translating these requirements

into concrete service definitions. However, in or-

der to further simplify this task, we adopt certain

assumptions about the data-formats that will be

deployed. Firstly, we assume that UTF-8 is the

universal character encoding scheme in use across

our services. Secondly, we assume that XLIFF is

employed as the standard format for exchanging

localization data between different parts of the lo-

calisation process.

XLIFF is primarily focused on describing a re-

source in terms of source segments and target seg-

ments. Essentially, it assumes the following mod-

el: a localization job can be divided up into a set of

translatable resources. Each of these resources is

represented as an XLIFF file. Each resource can

be further sub-divided into a sequence of translata-

ble segments (which may be defined by an SRX

configuration). Each of these source segments can

be associated with a number of target segments,

which represent the source segment translated into

a target language. Finally, XLIFF also supports

the association of various pieces of meta-data with

each resource or with the various elements into

which the resource is sub-divided.

This simple basic structure allows us to define a

very simple set of general web-services, each of

which serves to transform the XLIFF in some way.

These three basic classes of services transform the

XLIFF inputs in the following ways:

1. Addition of target segments.

2. Sorting of target candidates

3. Addition of meta-data.

Thus, we adopt these service-types as the set of

basic, general service interfaces that our services

will implement. They allow us to apply a wide

range of useful language-technology processes to

localization content through an extremely simple

set of service interfaces. To give some examples

of how concrete services map onto these basic in-

terfaces:

 A machine translation service is a manifesta-

tion of type 1. It adds translations, as target

segments, for source segments in the XLIFF

file

50

 A translation memory leveraging service is,

similarly, implemented as a service of type 1.

It can be considered as a special case of a

translation service.

 Our basic service-design supports the applica-

tion of multiple TM and MT services to each

XLIFF file, potentially producing multiple

translation candidates for each source segment.

There are various situations where there is a

need to order these candidates – for example to

choose which one will actually be used in the

final translation, or to present a sorted list to a

human user to allow them to most convenient-

ly select the candidate that is most likely to be

selected by them. These services can be im-

plemented using the common type 2 interface.

 A wide range of text analytics service can be

implemented as services of type 3. For exam-

ple, domain identification, language identifica-

tion and various tagging services are all instan-

tiations of this type.

Although these service types are generic, in terms

of the transformations that they apply to the XLIFF

content, they may be very different in terms of

their management and configuration. Thus, it is

neither possible nor desirable to devise generic

management interfaces – these interfaces need to

be tailored to the particular requirements of each

specific service. Thus, each service really consists

of two specifications – an implementation of the

generic interface which allows the service to be

easily integrated as a standard component into a

workflow that transforms the XLIFF content, and a

specific interface that defines how the service can

be configured and managed. The following section

provides several examples of specific services and

their management interfaces.

Although XLIFF provides significant support for

management of the transformation of resources as

they proceed through the localisation workflow, it

is not a universal solution. It is an inherently re-

source-oriented standard and it is thus not well

suited for the aggregation of meta-data that has

broader scope than that of the translatable resource.

For example, in the course of a localisation

workflow, we may wish to store state information

relating to the user, the project, the workflow itself

or various other entities that are not expressible as

XLIFF resources. Therefore, a service-oriented

localization workflow has a need for a service

which allows the setting and retrieving of such me-

ta-data. The following section also includes a basic

outline of a service which can provide such func-

tionality across the localization workflow.

Finally, it should be pointed out that BPEL

does not provide a universal solution to the prob-

lem of constructing workflows. It is primarily de-

signed to facilitate the orchestration of automated

web-services and does not map well to human

processes. This has been acknowledged in the pro-

posed BPEL4People extension and the incorpora-

tion of better support for human tasks is also a key

motivating factor for the development of the

YAWL workflow specification language – a BPEL

alternative [vanderaalst]. To overcome this limita-

tion, we have designed a general purpose service

which allows components to query the state of hu-

man tasks within the workflow – this allows

workflows to be responsive to the progress of hu-

man tasks (e.g. by redirecting a task that is taking

too long).

3.2 An MT Web Service

As part of our work within CNGL in the devel-

opment of a Localisation Factory we have engi-

neered a web service capable of leveraging transla-

tions from multiple automated translation compo-

nents. The service operates by taking in an XLIFF

document, iterating the segments of the document

and getting a translation from each of the transla-

tion components for each segment. These transla-

tions are attached to the segment within the XLIFF

and the service returns the final XLIFF document

back to the client. The service can be configured

to use any permutation of the automated translation

components depending on the workflow in which

the service finds itself operating. Some translation

components may be inappropriate in a given

workflow context and may be removed. The ser-

vice also allows for the weighting of translations

coming from different translation components so

that certain translations are preferred above others.

The service implementation leverages transla-

tion from two open web based translation systems

Microsoft Live Translator [mslive] and Yahoo Ba-

belfish [babelfish]. Microsoft Live Translator can

be accessed through a web service interface. Ya-

hoo Babelfish has no web service interface so get-

ting back translations is implemented through a

screen-scraping technique on the HTML document

returned.

51

The service also makes use of MaTrEx [ma-

trex], a hybrid statistical/example-based machine

translation system developed by our partner uni-

versity Dublin City University. MaTreX makes use

of the open-source Moses decoder [moses]. Trans-

lation models are created using MaTreX and are

passed to the Moses decoder which performs that

translation from source to target language. We took

the Moses decoder and wrapped it in a web ser-

vice. The web service pipes segments for transla-

tion to Moses which responds with translations.

This translation model is produced based on

aligned source and target corpora of content repre-

sentative of the content passing through the

workflow.

Finally we have taken a translation memory

product LanguageExchange from Alchemy, an

industrial partner within the project, and added that

to the list of automated translation components

available to our service. This allows any previous

human translations to be leveraged during the au-

tomated translation process.

The service is engineered using Business

Process Execution Language (BPEL) to orchestrate

the calling of the various translation components

that compose the service. BPEL allows those

managing the service to easily compose a particu-

lar configuration of the service. Translation com-

ponents can be easily added or removed from the

service. The tool support around BPEL means that

the user does not need a background in program-

ming to develop a particular configuration of the

components.

One problem we encountered implementing the

MT service as a wrapper around existing compo-

nents was that they are unable to handle internal

markup within the segments. Segments passing

through a localisation workflow are likely to con-

tain markup to indicate particular formatting of the

text. The machine translation components are only

able to handle free text and the markup is not pre-

served during translation. Another problem en-

countered in using free web services over the In-

ternet was that implementations did not encourage

volume invocations, with source IP addresses re-

questing high volumes being blacklisted.

3.3 A Text Analytics Web Service

We have implemented a generic text-

categorization service to provide text-analytic sup-

port for localization workflows. It takes an XLIFF

file as input and produces an XLIFF file as output,

transforming it by adding meta-data (a type 3

transform). The meta-data can be added either on a

file-basis or on a segment basis, depending on the

requirements of the workflow as expressed in the

service‘s configuration. The service provides a

simple and generic XLIFF transformation as part

of the localization workflow, while the manage-

ment interface provides flexible configurability.

The management interface is designed in order

to support multiple text analytic engines, each of

which can support multiple categorization schema

at once. Our implementation uses two text en-

gines, the open source TextCat package [textcat]

and IBM‘s Fragma software [fragma]. The follow-

ing operations are provided by the service:

Operation createSchema: The createSchema

function creates a new categorisation schema based

on a provided set of training data, which can op-

tionally be provided by an RSS feed for ongoing

training data updates.

Operation getEngines: This returns a list (en-

coded in XML) of the categorisation engines that

are available to the Service. This allows the client

to specify that a specific categorisation engine be

used in subsequent requests.

Operation viewSchema: This returns a list of the

categories contained within a schema (and the de-

tails of the engine that was used to create it).

Operation addData: This operation adds a piece

of training data to a categorisation schema - i.e. it

allows components to tell the service that a piece

of text has a known category of categoryID accord-

ing to the schema with schemaID.

Operation categorise: This provides a categorisa-

tion of text provided as an XLIFF segment, accord-

ing to a specified schema taken form the list sup-

ported by the service.

3.4 A Crowd-sourcing Web Service

In order to allow the localization workflow to in-

corporate crowd-sourcing, by which we mean col-

laborative input from a volunteer web-based user-

community, we have designed and implemented a

web-service interface. This interface is designed to

52

allow stages in the localization job to be handed

off to such a community. From the point of view

of the workflow, the important thing is that the

localisation requirements can be adequately speci-

fied and that the status of the job can be ascer-

tained by other elements in the workflow – allow-

ing them to react to the progress (or lack thereof)

in the task and, for example, to allow the job to be

redirected to another process when it is not pro-

gressing satisfactorily.

Our service design is focused on supporting

crowd-sourcing, but it is intended to extend it to

offer general-purpose support for the integration of

human-tasks into a BPEL workflow. It serves as a

testbed and proof of concept for the development

of a generic localization human task interface. The

initial specification has been derived from the

TWS specification [tws], but incorporates several

important changes. Firstly, it is greatly simplified

by removing all the quote-related functions and

replacing them with the RequestJob and SubmitJob

functions and combining all of the job control

functions into a single updateJob function and

combining the two job list functions into one.

TWS, as a standard focused on support for lo-

calization outsourcing – hence the concentration on

negotiating ‗quotes‘ between partners. Our re-

quirements are quite different – we cannot assume

that there is any price, or even any formal agree-

ment which governs crowd-sourcing. Indeed, in

general, a major problem with TWS which hin-

dered its uptake is that it assumed a particular

business model – in practice localization jobs are

not so automated, nor so quick that automated

price negotiation is a particularly desired feature.

Such information can be incorporated into a Job

Description data structure, but a generic human-

task interface should not assume any particular

business model – hence the significant changes

between our API and that of TWS. Nevertheless,

there is much clear and well-structured thinking

contained in the TWS standard – how best to de-

scribe language pairs, jobs and various other com-

monly referenced ideas in a localization workflow.

By using TWS as a base, we can take advantage of

all of that work rather than designing our own da-

ta-structures from scratch. The main operation are

as follows:

Operation requestJob: The JobDescription input

parameter is an XML format which contains de-

tails of the job that is being requested. The returned

datatype is the details of the job that is offered by

the service. These are not necessarily the same. For

example, the requested job might contain several

language pairs, but the returned description might

not contain all of these language pairs as some of

those requested might not be available in the ser-

vice. Generally, it can be assumed that the service

will make its ―best effort‖ to fulfill the require-

ments and the returned data will be as close as it

can get to the requirements submitted.

Operation submitJob: This operation works ex-

actly as the one above, except for the fact that it

submits the job to the service with the particular

JobDescription required and receives back the

JobDescription that will actually be carried out.

Operation retrieveJobList: This accepts a Job-

Description input parameter, an XML format

which contains a ‗filter‘ on the various active jobs.

The operation will return a list of all of the jobs

which match that specified in the JobdDescription

argument.

Operation updateJob: A JobDescription input

parameter is an XML format which contains a de-

scription of the various changes to the job that are

being requested. The function will return a descrip-

tion which details the new, updated state of the job

(note that the service does not have to follow all

the requested changes and might ignore them).

Operation retrieveJob: A JobDescription input

parameter is an XML format which contains a ‗fil-

ter‘ on the various jobs. The operation returns a

URI from which the client can retrieve the loca-

lised content corresponding to the filters.

Operation associateResource: This functions as-

sociates a resource (TM / Glossary / etc) with a

particular job. The returned value is the URI of the

resource (which may be different than the passed

ResURI). The types of resource supported will

need to be decided upon.

 Future Work: Translation Quality

The next challenge to applying these techniques

to workable industrial workflows is to fully ad-

dress the metrology of such workflows. The cur-

rent approach does not support the instrumentation

of web services to provide quality measurements.

Further, such quality measures need to be provided

in a way that is relevant to the quality of the

workflow as a whole and the business-driven key

performance indicators which it aims to support.

53

However, the integration of translation quality

metrics across different forms of workflow and

different industrial workflow components and lin-

guistic technologies has been widely identified as

requiring considerable further investigation. Even

the most basic metric used in commercial

workflow, the word count against which transla-

tion effort is estimated, is calculated differently by

different workflow systems. This particular case

has already been addressed by LISA though its

proposal for Global information management Me-

trics eXchange (GMX) [gmx].

It is hardly surprising, therefore, that closing the

gap between the metrics typically used by MT sys-

tem developers and what is needed to support the

use of MT in commercial localization workflows is

likely to be even more challenging. For example,

metrics such as BLEU [bleu] are well-understood

by MT developers used to participating in large-

scale open MT evaluations such as NIST; a BLEU

score of 0.8 (say) means either that one‘s MT sys-

tem is extremely good, or that the task is quite

simple, or both, or even that there are a large num-

ber of reference translations against which the sys-

tem output is being compared. On the other hand, a

score of 0.2 means that the quality is poor, that

there is probably only one reference translation

against which candidate translations are being eva-

luated, or that the task is a very complex one.

However, neither score means anything (much)

to a potential user. In the localization industry,

Translation Memory is much more widely used,

and there users and vendors use a different metric,

namely fuzzy match score, i.e. how closely a pre-

viously translated source sentence matches the cur-

rent input string. Users typically ‗know‘ that a

score of around 70% fuzzy match is useful, whe-

reas for a lower scored sentence it is likely to be

quicker to translate this from scratch.

One of our research goals in the CNGL is to

bring these two communities closer together by

developing a translation quality metric that speaks

to both sets of people, developers and users. One

step in the right direction might be the Translation

Edit Rate metric [ter], which measures the number

of editing commands (deletions, substitutions, and

insertions) that need to be carried out in order to

transform the MT output into the reference transla-

tion(s). This is being quite widely used in the MT

community (cf. the Global Autonomous Language

Exploitation (GALE) project) by MT developers,

and speaks a language that users understand well.

User studies will very much inform the directions

that such research will take, but there are reasons

to believe that the gap can be bridged.

Supposing then that such hurdles can be over-

come, broadly speaking, the quality of a translation

process might be dependent on multiple factors,

each of which could be measured both intrinsically

and extrinsically, including;

 Source and destination languages

 Content domain

 Diversity of vocabulary

 Repetitiveness of text

 Length and complexity of sentences

 Availability of relevant translation memories

 The cost and time incurred per translated word

Often control of quality of the translation process

can be impacted most directly by the quality of the

human translators and the degree of control exerted

over the source text. Different levels of linguistic

quality assurance may be undertaken and post-

editors (who are often more experienced translators

and therefore more expensive) are involved in

handling incomplete or missing translations. How-

ever, even in professional translation environ-

ments, translation quality is regarded as relatively

subjective and exact measurement of the quality of

translation is therefore problematic.

 Conclusion

In this paper we have discussed some the chal-

lenges faced in taking a web service integration

and orchestration approach to the development of

next generation localization workflows. Based on

our experiences of using these approaches to inte-

grate both existing localization products and cut-

ting edge research prototypes in MT , TA and

crowd-sourcing, new, innovative localisation

workflows can be rapidly assembled. The maturity

of the BPEL standard and the design of general

purpose, reusable web service interfaces are key to

this success.

Acknowledgments: This research is supported

by the Science Foundation Ireland (Grant

07/CE/I1142) as part of the Centre for Next Gener-

ation Localisation (www.cngl.ie) at Trinity College

Dublin.

54

References

[babelfish] Yahoo Babelfish Machine Translation

http://babelfish.yahoo.com/ 6th Feb 2009

 [drupal] Drupal Content Management System

http://www.drupal.org 6th Feb 2009

[bleu] Kishore Papineni, Salim Roukos, Todd Ward and

Wei-Jing Zhu. 2002. In 40
th

 Annual Meeting of the

Association for Computational Linguistics, Philadel-

phia, PA., pp.311—318.

[bpel] Web Services Business Process Execution Lan-

guage Version 2.0, OASIS Standard, 11 April 2007,

Downloaded from http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-0S.html 6th

Feb 2009

[erl] Erl, Thomas, Service-oriented Architecture: Con-

cepts, Technology, and Design. Upper Saddle River:

Prentice Hall 2005

[foster] Foster, I., Parastatidis, S., Watson, P., and

Mckeown, M. 2008. How do I model state?: Let me

count the ways. Commun. ACM 51, 9 (Sep. 2008),

34-41.

[fragma] Alexander Troussov, Mayo Takeuchi,

D.J.McCloskey,

http://atroussov.com/uploads/TSD2004_LangID_wor

d_fragments.pdf 6th Feb 2009

[gmx] Global Information Management Metrics Vo-

lume (GMX-V) 1.0 Specification Version 1.0, 26

February 2007, downloaded from http://www.xml-

intl.com/docs/specification/GMX-V.html on 6th Feb

2009

[langexchange] Alchemy Language Exchange

http://www.alchemysoftware.ie/products/alchemy_la

nguage_exchange.html 6th Feb 2009

[matrex] MaTrEx Machine Translation - John Tinsley,

Yanjun Ma, Sylwia Ozdowska, Andy Way.

http://doras.dcu.ie/559/1/Tinsleyetal_WMT08.pdf

[moses] Moses decoder http://www.statmt.org/moses/

9
th

 March 2009

[mslive] Microsoft Live Translator

http://www.windowslivetranslator.com/ 6th Feb 2009

[ter] Matt Snover, Bonnie Dorr, Richard Schwartz, Lin-

nea Micciulla, and John Makhoul. 2006. A Study of

Translation Edit Rate with Targeted Human Annota-

tion. In Proceedings of the 7
th

 Conference of the As-

sociation for Machine Translation in the Americas,

Cambridge, MA., pp.223—231.

 [textcat] Java Text Categorisation

http://textcat.sourceforge.net/ 6th Feb 2009

 [tbx] Termbase eXchange Format

http://www.lisa.org/Term-Base-eXchange.32.0.html

6
th

 March 2009

 [tmx] Translation Memory eXchange

http://www.lisa.org/Translation-Memory-e.34.0.html

6th March 2009

[tws] Translation Web Services Specification:

http://www.oasis-

open.org/committees/download.php/24350/trans-ws-

spec-1.0.3.html

[vanderaalst] Van Der Aalst, W.M.P. Ter Hofstede,

A.H.M. ―YAWL: Yet another workflow language‖ In-

formation Systems, Volume 30, Issue 4, June 2005,

Pages 245-275

[xliff] XML Localisation Interchange File Format

http://docs.oasis-open.org/xliff/v1.2/os/xliff-

core.html 6th March 2009

55

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 56–64,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Distributed Parse Mining

Scott A. Waterman, PhD
Microsoft Live Search/Powerset

475 Brannan St.
San Francisco, USA

waterman@acm.org

Abstract

We describe the design and implementation of
a system for data exploration over dependency
parses and derived semantic representations
in a large-scale NLP-based search system at
powerset.com. Because of the distributed
nature of the document repository and the pro-
cessing infrastructure, and also the complex
representations of the corpus data, standard
text analysis tools such as grep or awk or
language modeling toolkits are not applicable.
This paper explores the challenges of extract-
ing statistical information and of building lan-
guage models in such a distributed NLP envi-
ronment, and introduces a corpus analysis sys-
tem, Oceanography, that simplifies the writ-
ing of analysis code and transparently takes
advantage of existing distributed processing
infrastructure.

1 Introduction

In computational linguistics we deal with large cor-
pora and vast amounts of data from which we would
like to extract useful information. The size of the
text resources, derived linguistic analyses, and the
complexity of their representations is often a stum-
bling block on the way to understanding the statisti-
cal and linguistic behavior within the corpus. Sim-
ple software tools suffice for small or simple anal-
ysis problems, or for building models of easily rep-
resented relations. However, as the size of data, the
intricacy of relations to be analyzed, and the com-
plexity of the representation grow, so too does the
technical difficulty of conducting the analysis.

Software is our given means of escape from this
escalation of complexity. However, as “computa-
tional linguists,” we often find ourselves spending
more time and attention building software to per-
form the required computations than we do on un-
derstanding the linguistics.

Even once a suitable set of NLP tools (e.g. tag-
gers, chunkers, parsers, etc.) has been chosen, anal-
ysis software, in the CL world, often consists of
“throw away” scripts. Small, ad hoc programs are
often the norm, often with no assurance (via strict
design or testing) of correctness or completeness.

1.1 Oceanography

Our goal is to ensure that analysis is not so prob-
lematic. Powerset is a group within the Microsoft
Live Search team focused on using semantic NLP
to improve web search. We face many problems
with the scale and integration of our NLP compo-
nents, and are approaching solving them by applying
sound software design and abstraction principles to
corpus processing. By generalizing tools to fit the
processing environment, and the nature of the prob-
lems at hand, we enable flexible processing which
scales with the size of the platform and the data.

The Oceanography software environment is de-
signed to address two important needs in large cor-
pus analysis. The first is to simplify the actual pro-
gramming of analysis code to reduce development
time and increase reliability, and the second is to use
the available distributed computing resources to re-
duce running time and provide for rapid testing and
experimental turnaraound.

56

1.2 Linguistic and Diagnostic data analysis

There are two separate kinds of analysis we want
to support over this processed corpus. The first is
linguistic modeling. In order to achieve the best se-
mantic interpretation of each source document, we
seek to understand the linguistic behavior within
the corpus. Probabilistic parsing, entity extraction,
sense disambiguation, and argument role assign-
ment are all informed by structured, statistical mod-
els of word behavior within the corpus. Some mod-
els can be built from simple tokenized text, while
other models need to incorporate parse dependen-
cies or real-word knowledge of entities. Some of
these tasks are exploratory and underspecified (e.g.
selectional restrictions), while others, such as name
tagging, have a well-developed literature and a num-
ber of almost standard methodologies.

The second kind of analysis is aimed at character-
izing and improving system behavior. For example,
distributions of POS-tags or preposition attachments
can serve as regression indicators for parser perfor-
mance. In order to perform error analysis, we need
to selectively sample various types of label assign-
ments or parse structures. So summarization and
sampling from the various intermediate NL analyses
are very important processes to support.

2 Generalizing Text Mining

We have found that most of these analysis and data
modeling tasks share certain higher order steps that
allow us to generalize them all into a single pro-
gramming framework. All involve identifying some
phenomena in one of the NLP outputs, represent-
ing it in some characteristic form, and then sum-
ming or comparing distributions. These general
steps apply to many corpus tasks, including building
n-gram data, learning sentence breaks, identifying
selectional preferences, or building role mappings
for verb nominalizations.

The Oceanography system generalizes these steps
into a declarative language for stating the selection
of data, and the form of output, in a way that avoids
repetitive and error prone boilerplate code for file
traversal, regular expression matching, and statistics
programming. By matching a declarative syntax to
the general analysis steps, these common functions
can be relegated to library code, or wrapped into the

executable in the compilation step. The less time
spent in describing a task, or in coding and debug-
ging the implementation, the more time and atten-
tion can be spent in understanding the results and
modeling the linguistic processes that underly the
data.

This sort of abstraction away from the details
of file representation, storage architecture, and pro-
cessing model fits a general trend toward data min-
ing, or text mining (Feldman and Dagan, 1995). In
data mining or KDD systems (Fayyad et al., 1996),
the goal is to separate the tasks of creative anal-
ysis and theorizing from the mundane aspects of
traversing the data collection and computing statis-
tics. These are much the same goals emphasized
by Tukey (1977) – exploration of the data and in-
teractions in order to understand which hypotheses,
and which models of interaction, would be fruitful
to explore. For our needs in analyzing collections of
text, parses, and semantic representations, we have
achieved a very practical step toward these goals.

2.1 Matching process to conception

We have found four steps that map very closely to
our conception of the data analysis problem, which
at the same time are easily translated to implemen-
tations that can be run on both small local data sets
and on very large distributed corpora.

1. Pattern matching – find the interesting phe-
nomena among the mass of data, by declaring a
set of desired properties to be met. In Oceanog-
raphy, these are matched per-sentence.

2. Transformation – rewrite the raw occurrence
data to identify the interesting part, and isolate
it from the background

3. Aggregation – group together instances of the
same kind

4. Statistics – compute statistics for counts, relative
frequency, conditional distributions, distribu-
tional comparisons, etc.

In the following sections we describe the nature of
each step in more detail, map these steps to a declar-
ative data analysis language, give some motivating
examples, and describe how these steps are typically

57

accomplished in an exploratory setting for NLP in-
vestigations.

Later, in section 4, we describe how the steps
are mapped to processing operations within the NLP
pipeline architecture. Following that, we give exam-
ples of how this framework maps to specific prob-
lems, of both the exploratory and the diagnostic
type.

2.2 Pattern Matching
The first step is to identify the specific phenomena of
interest within the source data. If the data is a com-
plex structure, it is helpful to express the patterns in
a logical representation of the structure, rather than
matching the representation directly.

Pattern matching in Oceanography for depen-
dency parse structures is handled using a domain
specific language (DSL) built explicitly for pattern-
based manipulation of parse trees and semantic rep-
resentations generated by the XLE linguistic compo-
nents (Crouch et al., 2006). This Transfer language
(Crouch, 2006) is normally used in the regular lin-
guistic processing pipeline to incrementally rewrite
LFG dependency parses into a role-labeled seman-
tic representations (semreps) of entities, events, and
relations in the text. Transfer matches pattern rules
to a current set of parse dependencies or semantic
facts, and writes alternate expressions derived from
the matched components. Variables in these expres-
sions are bound via Prolog-style unification (Huet,
1975).

For example, in figure 1, the first expression
word(· · ·) will match word forms in a parse that
are ‘verb’s, and bind %VerbSk variable to a
unique occurrence id and %VerbWord to the verb
lemma. The second pattern finds the node in the
dependency graph that fills the ob (object) role for
that verb, and extracts its lemmas. (The %%’s are
placeholder variables in the pattern, needed to match
the arity of the expression.) Below, in the same
figure, is a representation of the verb and object
from a parse of the phrase “determined the struc-
ture”. On matching these facts, the VerbWord and
ObjLemma variables would be bound to the strings
determine and structure.

In a simpler environment, with more basic textual
representations, this pattern matching step would be
written with regular expressions, for example using

the familiar grep command. The balance provided
by grep between the simplicity of its operational
model (a transform from stdin to stdout) and the ex-
pressiveness of the regular expressions allows grep
to be a workhorse for data analysis over text.

However, except for simple cases such as word
cooccurrence models, the typical need in deep lin-
guistic analysis is not well served by regular expres-
sions over strings. Anyone in the NLP field who
has written regular expressions to match, say, part-
of-speech labeled text knows the difficulties of hav-
ing a pattern language which differs from the logical
structures being matched. Another typical solution
is to write a short program in a scripting language
(e.g. perl, python, SNOBOL) which combines regu-
lar expressions to provide a simple structure parser.
Tgrep (Pito, 1993) is a one such program which ex-
tends this regular expression notion to patterns over
trees, and can output subtrees matching those ex-
pressions, but only provided they are represented as
text in the LDC TreeBank format.

2.3 Transformation

Once the items of the pattern have been identified in
their original context, it is often necessary to isolate
them from that context, and remove the extraneous,
irrelevant information. For instance, if one is do-
ing a simple word count, the tokenized words of text
must be separated from any annotation and counted
independently. For more complicated tasks, such as
finding a verb’s distribution of occurrence with di-
rect objects, the verb and object need to be isolated
from the remainder of the parse tree, perhaps as the
simple tuple (verb, object), or in a more complex
structure, with additional dependent information.

In our case, we express the transformed output of
each pattern match with an expression built from the
unification variables bound to the match. In figure 2,
we construct a vo pair of (verb, object). This new
construct is simply added to the collection of facts
and representations already present. All other pre-
existing facts in the NL analysis of the sentence also
remain in context, potentially available for aggrega-
tion and counting.

==> vo_pair(%VerbWord, %ObjLemma).

Figure 2: Transforming the matched pattern

58

word(%VerbSk, %VerbWord, verb, verb, %%, %%, %%, %%),
in_context(%%, role(hier(ob, %%), %VerbSk, %ObjLemma:%%))

word(determine:n(41,3),determine,verb,verb,)
in_context(t,role(hier(ob,[[ob,root],..]),

determine:n(82,3),structure:n(91,3))))

Figure 1: Pattern matching using Transfer

In shallower text mining, this might be accom-
plished using regex matching in a perl program. An-
other common approach is to use command-line text
tools such as awk or sed. Awk (Aho et al., 1977)
is designed especially for text mining, but is limited
to plain text files, on single machines, and doesn’t
extend easily to structured graph representations or
distributed processing. (But see, e.g. Sawzall (Pike
et al., 2005) for a scalable awk-like language.)

2.4 Aggregation

The aggregation step collects the extracted instances
and groups them by type and by key. Rather
than have the matched, transformed results simply
dumped out in some enormous file or database in
their order of occurrence in the data set (as one
would get e.g. from grep), it is quite useful even in
the simplest of cases to aggregate all similar output
items. This condenses the mass of data selected, and
allows one to see the extent and diversity of the items
that are found by the patterns. This simple counting
is often enough for diagnostic tasks, and sometimes
for exploratory tasks when a statistical judgement is
not yet desired. The aggregation key might be, for
various kinds of extraction: the head noun of an NN-
compound, or the error type for parse errors, or the
controlling verb of a relative clause.

In Oceanography, we require a declaration of the
data that will be aggregated, in order to separate it
from the remainder which will be discarded. These
declarations take the form of familiar static type dec-
larations, in the style of C++ or Java. Figure 3
shows the simple declaration for our vo pair type,
where both fields are declared as strings. These
named fields also provide a handle to refer to struc-
ture members in later statements.

In the command line text world, aggregation
might be accomplished by using the unix pipeline

vo_pair :: {
verb::String, object::String }

Figure 3: Declaring aggregation types

command sort | uniq -c , to organize the out-
put by the appropriate key. If using a small program
to do this kind of analysis, one would use a dictio-
nary or hash-table and sorting routines to organize
the data before output.

2.5 Statistics
With the matched and extracted data, one can build
up a statistical picture of the data and its interrela-
tions. In our practice, and in the computational NLP
literature, we have found a few fundamental statisti-
cal operations that are frequently used to make sense
of the corpus data. Primary among these are sim-
ple class counts: the number of occurrences of a
given phenomena. For instance, the count of part-
of-speech tags, or of head nouns with adjective mod-
ifiers, or the counts of (verb,object) pairs. These
counts can be computed easily by summing the oc-
currences in the aggregated groups.

Other statistics are more complicated, requiring
combinations of the simple counts and sums —
normalizing distributions by the total occurrence
counts, for instance, as in the conditional occurrence
of a part-of-speech label relative to the frequency
of the token. Estimation of log-likelihood ratios
or Pearson’s Chi-square test for pairwise correlation
also falls in this category. These kinds of computa-
tions are used heavily for building classifiers and for
diagnostic purposes.

Higher order functions of the counts are also in-
teresting, in which various distributions compared.
These include computing KL distance between con-
ditional distributions for similarity measurements,

59

clustering over similarity, and building predictive or
classification models for model corpus behavior.

3 Data Parallel Document Processing at
Powerset

To simplify the processing of large web document
collections, and flexibly include new processing
modules, we have built a single consistent pro-
cessing architecture for the natural language doc-
ument pipeline, which allows us to process mil-
lions of documents and handle terabytes of analy-
sis data effectively. Coral is the name of the dis-
tributed, document-parallel NLP pipeline at Power-
set. Coral provides both a process and a data man-
agement framework in order to smoothly execute the
multi-step linguistic analysis of all content indexed
for Powerset’s search.

Coral controls a multi-step pipeline for deep lin-
guistic processing of documents indexed for search.
A partial list of the steps every web document un-
dergoes includes: HTML destructuring, sentence
breaking, name tagging, parsing, semantic inter-
pretation, anaphora resolution, and indexing. The
pipeline is similar to the UIMA (Ferrucci and Lally,
2004) architecture in that each step adds interme-
diate data — tagged spans, dependency trees, co-
referent expressions — that can be used in subse-
quent steps. Each step adds a different kind of data
to the set, with its own labels and meanings. The
output of all these steps is a daunting amount of in-
formation, all of which is valuable for understanding
the linguistic relations within the text, and also the
behavior and effectiveness of the NLP pipeline.

Documents are processed in a data-parallel fash-
ion. Multiple documents are processed indepen-
dently, across multiple processes on multiple com-
pute nodes within a clustered environment. The doc-
ument processing model is sequential, with multi-
ple steps run in a fixed sequence for each document
in the index. All processing for a single document
is typically performed on a single compute node.
The steps of the pipeline communicate through in-
termediate data writen to the local filesystem in be-
tween steps, where each step is free to consume data
produced earlier. Output from the stages is check-
pointed to backing storage at various points along
the way, and the final index fragments are merged at

the end.
This kind of data-parallel process lends itself well

to a map/reduce programming infrastructure (Dean
and Ghemawat, 2004). Map/reduce divides process-
ing into two classes: data-parallel ‘map’ operations,
and commutative ‘reduce’ operations, in which all
map output aggregated under a particular key is pro-
cessed together. In map/reduce terms, the entire
linguistic processing runs as a sequence of ‘map’
steps (there is no inter-document communication),
with a final ‘reduce’ step to collect index fragments
and construct a unified search index. Coral uses the
open-source hadoop implementation of map/reduce
(Cutting,) as the central task control and distribu-
tion mechanism for assigning NLP pipeline jobs to
documents in the input data, and it has full control
of the map/reduce processing layer.

3.1 Difficulties for data mining in Coral

All of the intermediate processing output of the
pipeline, the name tags, parses, semantic representa-
tions, etc., are are retained by this complex process.
Unfortunately, they are retained in an unfriendly
format: small document-addressed chunks scattered
across a large distributed filesystem, on hundreds of
machines. There is no operational way to collect
these chunks in any single file, or to traverse them
efficiently from any single point. Traditional script-
ing techniques, even if scalable to the terabytes of
data, are not applicable to the distributed organiza-
tion of the underlying data.

3.2 Re-using processing infrastructure for
mining

However, we can re-use the same Coral process and
data management for the problems of data analy-
sis. The breakdown of parse-mining steps presented
earlier, in addition to providing a coherent model
for data analysis, also maps very cleanly to the
distributed map/reduce computational model. By
translating the four steps of any analysis into corre-
sponding map/reduce operations across the linguis-
tic pipeline data, we can efficiently translate the cor-
pus analytics to an arbitrarily large data setting. Fur-
ther, because we can rely on the Coral process and
data management infrastructure to handle the data
movement and traversal, we allow the researcher or
language engineer to concentrate on specifying the

60

patterns and relations to be investigated, rather than
burdening them with complex yet necessary details.

4 Oceanography - a compiled data mining
language

Oceanography has a compiler that transforms short
analysis programs into multiple map/reduce steps
that will operate over the corpus of text and deep lin-
guistic analyses. These multiple sub-operations are
then farmed out through the distributed cluster envi-
ronment, managed by the Coral job controller. The
data flow and dependencies between these jobs are
compiled to a Coral-specific job control language.

An oceanography program (cf. figure 4) is a
single-file description of the data analysis task. It
contains specifications for each of the four oper-
ations: pattern matching, transformation, aggrega-
tion, and statistics. The program style is declarative
– there are no instructions for iterating over files,
summing distributions, or parsing the dependency
graph representations.

We find that this matches our intuitions and con-
ception of the parse mining task. A statement of
the end-product of the analysis is natural: e.g. find
the conditional distribution of object head nouns for
verbs, or symbolically p(obj|verb). The style of the
oceanography program matches this well, where the
statistics statement such as

dist triple.object cond on triple.verb

states the desired output, and the preceding pat-
tern match and type declarations serve as definitions
to specify precisely what is meant by the variable
names.

In the following sections, we will follow the steps
of the Oceanography program in the listing in fig-
ure 4. The example analysis presented is a simple
one – to find all verbs with both subject and object
roles, i.e. triples of (subject, object, verb), and re-
port some counts and relative frequencies of verbs,
subjects, and objects.

4.1 Step 1: Pattern Matching
The pattern matching rules are similar to those
presented above in sec. 2.2. The first line
matches a verb term, and the next two lines
require the presence of terms in both the sub-
ject (role(hier(sb, %%))) and object

role(hier(ob, %%)) roles. Following the
explicit pattern expression, we add negative checks
to ensure that neither the subject or object are PRO
elements, which have no surface form.

4.2 Transformation
The transformation expressed in figure 4 is almost
trivial. We capture the verb-subject-object triple in a
simple three place predicate. Recall that the values
of the triple:
(%VerbWord, %SubjLemma, %ObjLemma)

are bound by unification to the terms matched in the
pattern, above.

Although we have only one pattern and one
matching transformation in this example, we are not
in general limited in the number of patterns or out-
put expressions we might use. Multiple transforms,
from multiple patterns, can be used.

During compilation, these Transfer rules are com-
piled into a binary object module, then distributed
at runtime to the compute nodes where they will be
executed in the proper sequence by the Coral job
controller. Output from the transformation step, and
between all the steps, is encoded as a set of hierar-
chically structured objects using JSON (Crockford,
2006). Because JSON provides a simple structural
encoding with named fields, and many programming
environments can handle the JSON format, it pro-
vides a flexible and self-describing interchange for-
mat between steps in the Oceanography runtime.

4.3 Aggregation
The third section of the Oceanography program de-
clares the types of objects to be aggregated follow-
ing the transform step. The type declarations in
this section serve two purposes. First, they spec-
ify exactly what types of data from the match-
ing/transformation phase should be carried forward.
Recall that all of the source data is available for pro-
cessing, but we are likely only interested in a small
portion of it. Secondly, the declarations serve as type
hints to the compiler so that operations and data stor-
age are performed correctly in the later phases (e.g.
adding strings vs. integers).

4.4 Statistics
The simplest statistic we can compute is the count
of a type that has been aggregated. For example,

61

Step 1: pattern matching
rules {

word(%VerbSk, %VerbWord, verb, verb, %%Pos, %%SentNum, %%Context, %%LexicalInfo),
in_context(%%, role(hier(sb, %%), %VerbSk, %SubjLemma:%%)),
in_context(%%, role(hier(ob, %%), %VerbSk, %ObjLemma:%%)),
{ \+memberchk(%SubjLemma, [group_object, null_pro, agent_pro]),

\+memberchk(%ObjLemma, [group_object, null_pro, agent_pro]) }
Step 2: Transformation

==> triple(%VerbWord, %SubjLemma, %ObjLemma).
}
Step 3: Aggregation
triple :: {

verb :: String,
subject :: String,
object :: String

}
Step 4: Statistics
count triple
count triple.verb
count triple.verb, triple.subject
dist triple.object cond on triple.verb

Figure 4: A complete Oceanography program

count triple.verb

will result in occurrence counts of each verb seen
in the parses. We can combine primitive types into
tuples, in order to count n-grams (which are not nec-
essarily adjacent), e.g.

count triple.verb, triple.subject

to give occurrence counts for all (verb,subject) pairs.
The dist X cond on Y statement is used to

produce the conditional distribution p(x|y). The
map/reduce framework collates all occurrences with
a given value yi to a single reduce function, which
sums the conditional counts of x, and normalizes by
the total.

Other statistics require multiple map/reduce op-
erations. Computing the probability for the verb
unigrams requires knowing the total number of oc-
currences, which, in this kind of data-parallel pro-
cessing architecture, is not available until the out-
put of all occurrence counts is known. So, a prob
triple.verb statistic must implicitly compute
count triple.verb, sum all occurrences, and
normalize across the set. For a good type-driven
analysis of information flow during various stages
of a map/reduce computations, see Lämmel (2008).

4.5 Output

Output is given two forms. For ease of interpreta-
tions, human-readable tab delimited files are writ-
ten, in which each record is preceded by the type,
as given in the argument to the statistics declaration.
To simplify later offline computation, the record can
also be written out in a JSON encoded structure with
named fields corresponding to the type.

5 Development and testing in
Oceanography

Rapid turnaround and testing in exploratory corpus
analytics is essential to understanding the nature of
the data, and the performance and behavior of one’s
program. Because the tools on which Oceanogra-
phy is built are modular, we can compile an anal-
ysis program for a local, single machine target as
easily as we can for a cluster of arbitrarily many
compute nodes. The resulting compiled programs
differ somewhat in the ways they traverse the data,
and in the control structures for the Coral processing
steps. However, it was an important design require-
ment that we could compile and test using small data
on a single machine as easily as on a muti-terabyte
corpus on a distributed cluster.

62

The same source program is compiled for either
single machine or cluster execution. The user must
specify a different type of store location for input
and output data, depending on environment. Compi-
lation is done using a command line program, which
takes as input the Oceanography program, and pro-
duces a set of executable outputs, corresponding to
the tasks in the map/reduce process. These can also
be run immediately in the single machine setting,
with results going to stdout.

5.1 Some sample tasks

Although these tools have been available at Power-
set only a few months, we have already used them
to great advantage in diagnostic and linguistic anal-
ysis tasks. Diagnostically, it is important to un-
derstand the failure modes of the various linguistic
pipeline components. For instance, the morpholog-
ical analysis component of the XLE parser will on
occasion encounter tokens it cannot analyze. Hand-
examining a few hundred parses (which starts to ex-
ceed the mental fatigue threshold), one can find nu-
merous examples. But one has no idea of the rel-
ative frequency of any given type of error, or their
combined effect on the parse output. Oceanography
enables a very simple single pattern match rule to be
used to find the frequency distribution of unknown
tokens over 100M sentences as easily as 100, and the
grammar engineers can use this information to pri-
oritize their effort. Other diagnostics on the parse,
such as the frequency of certain rare grammatical
constructs (e.g. reduced relatives), or the prevalence
of unparseable fragments, or relative frequencies of
transitive v. intransitive use, are immensely impor-
tant for understanding the nature of the corpus and
the behavior of the parser.

The S-V-O triples used as an example also have
practical import. By identifying the most common
verb expressions, we can, just as in a keyword stop
list, eliminate or downweight some of the less mean-
ingful relations in our semantic index. For example,
in the Wikipedia corpus, one of the most common S-
V-O triples comes from the phrase “this article needs
references.”

We are also beginning a series of lexical seman-
tic studies, looking at selectional preferences and
their dependence on surface form. Correspondence
between prepositional adjunct roles and other sur-

face realizations is also an active area. Additionally,
Oceanography is being used to analyze feature data
from the parses in order to experiment with an unsu-
pervised word sense disambiguation project.

6 Conclusion

We have presented a methodology for understanding
a certain class of linguistic data analysis problems,
which identifies the steps of pattern matching, data
transformation, aggregation, and statistics. We have
also presented a programming system, Oceanogra-
phy, which by following this breakdown simplifies
the programming of these tasks while at the same
time enabling us to take advantage of existing large
scale distributed processing infrastructure.

Acknowledgments

I would like to thank Jim Firby, creator of the Coral
document processing pipeline at Powerset, and Dick
Crouch, creator of the XLE Transfer system, for
their foundational work which makes these present
developments possible.

63

References
Alfred V. Aho, Peter J. Weinberger, and Brian W.

Kernighan. 1977. awk.
D. Crockford. 2006. The application/json Media Type

for JavaScript Object Notation (JSON). RFC 4627 (In-
formational), July.

Richard S. Crouch, Mary Dalrymple, Ronald M. Kaplan,
Tracy Holloway King, John Maxwell, and P. Newman.
2006. XLE documentation.

Richard S. Crouch. 2006. Packed rewriting for mapping
text to semantics and KR.

Doug Cutting. Apache Hadoop Project.
http://hadoop.apache.org/.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapRe-
duce: simplified data processing on large clusters. In
OSDI’04: Proceedings of the 6th conference on Sym-
posium on Opearting Systems Design & Implementa-
tion, Berkeley, CA, USA. USENIX Association.

Usama M. Fayyad, David Haussler, and Paul E. Stolorz.
1996. KDD for Science Data Analysis: Issues and
Examples. In KDD, pages 50–56.

Ronen Feldman and Ido Dagan. 1995. Knowledge Dis-
covery in Textual Databases (KDT). In KDD, pages
112–117.

David Ferrucci and Adam Lally. 2004. UIMA: an archi-
tectural approach to unstructured information process-
ing in the corporate research environment. Nat. Lang.
Eng., 10(3-4):327–348.

Grard P. Huet. 1975. A unification algorithm for typed
lambda-calculus. Theor. Comput. Sci, 1:27.

Ralf Lämmel. 2008. Google’s MapReduce programming
model - Revisited. Sci. Comput. Program., 70(1):1–
30.

Rob Pike, Sean Dorward, Robert Griesemer, and Sean
Quinlan. 2005. Interpreting the data: Parallel analy-
sis with Sawzall. Scientific Programming, 13(4):277–
298.

Richard Pito. 1993. Tgrep.
John Wilder Tukey. 1977. Exploratory Data Analysis.

Addison-Wesley, New York.

64

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 65–73,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Modular resource development and diagnostic evaluation framework for
fast NLP system improvement

Gaël de Chalendar, Damien Nouvel
CEA, LIST, Multilingual Multimedia Knowledge Engineering Laboratory,

F-92265 Fontenay-aux-Roses, France.
{Gael.de-Chalendar,Damien.Nouvel}@cea.fr

Abstract

Natural Language Processing systems are
large-scale softwares, whose development in-
volves many man-years of work, in terms of
both coding and resource development. Given
a dictionary of 110k lemmas, a few hundred
syntactic analysis rules, 20k ngrams matrices
and other resources, what will be the impact
on a syntactic analyzer of adding a new pos-
sible category to a given verb? What will be
the consequences of a new syntactic rules ad-
dition? Any modification may imply, besides
what was expected, unforeseeable side-effects
and the complexity of the system makes it dif-
ficult to guess the overall impact of even small
changes. We present here a framework de-
signed to effectively and iteratively improve
the accuracy of our linguistic analyzer LIMA
by iterative refinements of its linguistic re-
sources. These improvements are continu-
ously assessed by evaluating the analyzer per-
formance against a reference corpus. Our first
results show that this framework is really help-
ful towards this goal.

1 Introduction

1.1 The evaluation framework
In Natural Language Processing (NLP), robustness
and reliability of linguistic analyzers becomes an
everyday more addressed issue, given the increas-
ing size of resources and the amount of code im-
plied by the implementation of such systems. Be-
yond choosing a sound technology, one must now
have efficients and user-friendly tools around the
system itself, for evaluating its accuracy. As shown

by (Chatzichrisafis et al., 2008), where developers
receive daily reports of system’s performance for
improving their system, systematic evaluation with
regression testing has shown to be gainful to accel-
erate grammar engineering.

Evaluation campaigns, where several participants
evaluate their system’s performance on a specific
task against other systems, are a good mean to
search for directions in which a system may be able
to improve its performance. Often, these evaluation
campaigns also give possibility for participants to
run their analyzer on test data and retrieve evalua-
tion results. In this context, parsers authors may rely
on evaluation campaigns to provide performance re-
sults, but they should also be able to continuously
evaluate and improve their analyzers between evalu-
ation campaigns. We aim at providing such a generic
evaluation tool, using evaluation data to assess sys-
tems accuracy, this software will be referenced as
the “Benchmarking Tool”.

Approaches concerning Natural Language Pro-
cessing involve everyday more and more resource
data for analyzing texts. These resources have
grown enough (in terms of volume and diversity),
that it now becomes a challenge to manipulate them,
even for experienced users. Moreover, it is needed
to have non-developers being able to work on these
resources: it is necessary to develop accessible tools
through intuitive graphical user interfaces. Such a
resource editing GUI tool represent the second part
of our contribution, called the “Resource Tool”.

The overall picture is to build a diagnostic frame-
work enabling a language specialist, such as a lin-
guist, to status, almost in real-time, how modifica-

65

tions impact our analyzer on as much test data as
possible. For analyzers, each resource may have an
effect on the final accuracy of the analysis. It is of-
ten needed to iterate over tests before understanding
what resource, what part of the code needs to be im-
proved. This is especially the case with grammar
engineering, where it is difficult to predict the con-
sequences of modifying a single rule. Ideally, our
framework would allow the manipulator to slightly
alter a resource, trigger an evaluation and, almost in-
stantaneously, view results and interpret them. With
this framework, we expect a large acceleration in the
process of improving our analyzer.

In the remaining of this introduction, we will
describe our analyzer and Passage, a collabora-
tive project including an evaluation campaign and
the production of a reference treebank for French
through a voting procedure. Section 2 will describe
our evaluation framework; its architecture, its two
main modules and our first results using it. Section
3 describes some related works. We conclude in sec-
tion 4 by describing the next steps of our work.

1.2 The LIMA linguistic analyzer
Our linguistic analyzer LIMA (LIc2m Multilingual
Analyzer, (Besancon and de Chalendar, 2005)), is
implemented as a pipeline of independent modules
applied successively on a text. It implements a de-
pendency grammar (Kahane, 2000) in the sense that
produced analysis are exclusively represented as bi-
nary dependency relations between tokens.

The analyzer includes, among other modules, a
tokenizer segmenting the text based on punctuation
marks, a part of speech tagger, short and long dis-
tance dependencies extractors based on finite-state
automata defined by contextualized rules. The latter
rules express successions of categories, augmented
with constraints (on words inflexion, existence of
other dependencies, etc.). The analyzer also in-
cludes modules to find idiomatic expressions and
named entities that, once recognized, are merged
into a single token, thus allowing grammar rules to
apply on those. Furthermore, modules may be spe-
cialized in processing language-specific phenomena,
e.g. Chinese tokenization, German compounds, etc.
Currently, the analyzer is able to process more or
less deeply ten languages, including English, Span-
ish, Chinese, Arab, French and German.

1.3 The Passage Project
Our work is part of the Passage project (Clergerie
et al., 2008b). The objectives of this project are
twofold. Firstly, it organizes two evaluation cam-
paigns of syntactic analyzers (around 15 participat-
ing systems) for the French language. Secondly, it
aims at producing a large scale reference treebank
for French by merging the output of all the partic-
ipating parsers, using a Rover (Recognizer Output
Voting Error Reduction) (Fiscus, 1997) approach.

Within this project, syntactic annotations are pro-
duced in a common format, rich enough to represent
all necessary linguistic features and simple enough
to allow participating parsers (using very different
parsing approaches) to represent their analysis in
this format. It is an evolution of the EASy cam-
paign format, mixing simple non recursive chunks
and dependency relations between chunks or tokens.
It respects two proposed ISO specifications: MAF
(ISO 24611) and SynAF (ISO 24615). The chunks
and dependencies types are issued from the ISO data
category registry, DCR1, currently using the French
language section names. The syntactic analysis of
a corpus in the Passage format provides information
about:

• Segmentation of the corpus into sentences

• Segmentation of sentences into forms

• Non-recursive typed (listed in Table 1) chunks
embedding forms

• Labeled typed (listed in Table 2) dependencies
that are anchored by either forms or chunks

Type Explanation
GN Nominal Chunk
NV Verbal Kernel
GA Adjectival Chunk
GR Adverbial Chunk
GP Prepositional Chunk
PV Prepositional non-tensed Verbal Kernel

Table 1: Chunks types

Within the EASy project, parsers have been eval-
uated against a reference, which itself was a small
subset of the available corpora. The reference was

1http://www.isocat.org

66

Type Explanation
SUJ-V Subject-verb
AUX-V Aux-verb
COD-V Direct objects
CPL-V Other verb arguments/complements
MOD-V Verb modifiers (e.g. adverbs)
COMP Subordinate sentences
ATB-SO Verb attribute
MOD-N Noun modifier
MOD-A Adjective modifier
MOD-R Adverb modifier
MOD-P Preposition modifier
COORD Coordination
APPOS Apposition
JUXT Juxtaposition

Table 2: Dependencies types

created by human annotation of random sentences
within the corpora. Thus, once this evaluation cam-
paign had been finished, the annotated corpora ref-
erence was released for participants to test and im-
prove their parser. Currently, we use this reference
for benchmarking our analyzer.

1.4 Metrics for parsing evaluation
We are constantly recalled that evaluation metrics
and methodologies evolve and are subject to intense
research and innovation (Carroll et al., 2002). Dis-
cussing these metrics is not in the scope of this pa-
per, we only need to be able to work out as many
metrics as possible on the entire corpus or on any
part of it. The evaluation is supposed, for each doc-
ument d and for each type (of chunk or of depen-
dency) t within all types set T , to return following
counts:

• Number of items found and correct - fc(d, t)

• Number of items found - f(d, t)

• Number of items correct - c(d, t)

With this approach, we are able to compute com-
mon Information Retrieval (IR) metrics (Rijsbergen,
1979): precision, recall, f-measure. We also intro-
duce a new metric that gives us indications about
what types are the most lowering overall perfor-
mance, called “Type error ratio”:

f(d, t) + c(d, t)− 2.fc(d, t)∑
t∈T f(d, t) + c(d, t)− 2.fc(d, t)

(1)

This metric counts the number of errors and
misses for a given type reported to the total number
of errors and misses. It allows us to quantify how
much an improvement on a given type will improve
the overall score. In our case, scores are computed
for chunks on the one hand, and for dependencies
on the other hand. For instance, we have notices
that GN errors represent 34.6% of the chunks errors,
whereas PV only represent 2.2%: we are thus much
more interested in improving detection of GN than
PV regarding current evaluation campaign.

2 The evaluation framework

2.1 Architecture
We need our framework to be portable and to be im-
plemented using an agile approach: each new ver-
sion should be fully functional while adding some
more features. It also must be user-friendly, allow-
ing to easily add eye-candy features. Consequently,
we have chosen to implement these tools in C++,
using the Qt 4.5 library2. This library satisfies our
requirements and will allow to rely on stable and
open source (LGPL) tools, making it feasible for us
to possibly deliver our framework as a free software.

This approach allows us to quickly deliver work-
ing software while continuously testing and devel-
oping it. Iterations of this process are still occurring
but the current version, with its core functions, al-
ready succeeded in running benchmarks and in be-
ginning the improvement of our linguistic resources
while regularly delivering upgraded versions of our
framework. First results of this work will be pre-
sented below in this paper.

The open architecture we have chosen implies to
use externals tools, for analysis and evaluation on
the one hand, for compiling and installing resources
on the other hand. These tools may then be con-
sidered as black boxes, being externals commands
called with convenient parameters. In particular, the
Benchmarking Tool relies on two commands: the
analyzer command, receiving input file as a param-
eter and producing the analyzed file, the evaluation
command, receiving the analyzed file and the ref-
erence file as parameters and outputting counts of
found, correct, found and correct items for each di-
mension. This allows, for example, to replace our

2http://www.qtsoftware.com/

67

analyzer with another one, by just wrapping the lat-
ter in a thin conversion layer to convert its inputs and
its outputs.

2.2 Benchmarking Tool

The Benchmarking Tool, which architecture is de-
picted in Figure 1, is responsible of executing anal-
ysis and evaluation on pairs of data and reference
files, using commands stored in benchmarking con-
figuration. For each pair of files, the registered anal-
ysis command is executed followed by the evalua-
tion one. In our case, those commands apply to the
task of annotating files for syntactic chunks and de-
pendencies.

Figure 1: Benchmarking Tool data flow

We may consider the type of chunks and depen-
dencies as dimensions of an evaluation. To a certain
extent, these may be associated to linguistics phe-
nomena which are tested, as proposed within the
TSNLP project (Balkan et al., 1994) or, more re-
cently, for Q/A systems by (Paiva et al., 2008). But
in these projects, focus is also made on the evalua-
tion tool, where we do not implement the evaluation
tool but rely on an external program to provide ac-
curacy of analysis.

The pairs of data and reference files are inserted
inside a structure implemented as a pipeline, which
may be modified (adding, removing, reordering
units) with common GUI interfaces. After creation
of the pipeline, the user may trigger a benchmark-
ing (progress is shown by coloring pipeline units),
which may be suspended, resumed or restarted at
any moment. For note, the current version of the
framework uses the local machine’s processors to
analyze pipeline units in parallel, but we intend to
distribute the analyzes on the available nodes of a
cluster soon. As soon as results are received, tables
and graphics are updated on screen within a view

showing previous and current results for each eval-
uated dimension. To refine diagnosis, the user may
choose what dimensions are displayed, what met-
rics should be computed, and what pipeline units are
used. Finally, any evaluation may be deleted if the
corresponding modification did not increase perfor-
mance and should be reverted.

Upon demand, the tool saves current benchmark-
ing configuration and results as an XML file. Con-
versely, it loads a pipeline and results from file, so
as to resume or switch between evaluations. The
parsed output of the evaluator tool is recorded for
each pipeline unit and for each dimension, so that
metrics based on those quantities are computed for
each pipeline unity or for the overall corpus. Be-
sides, the date and a user comment for each evalua-
tion are also saved for these records. Writing com-
ments has proved to be very helpful to keep track
of what changes have been made on code, linguistic
resources, configuration, parameters, etc.

As an example within the Passage project, run-
ning evaluation with the Benchmarking Tool al-
lowed us to notice that we had difficulties in rec-
ognizing verb-auxiliary dependencies. Considering
previous results, we detected that this issue appeared
after having introduced a set of idioms concerning
pronominal verbs. Unit testing showed that the anal-
ysis of past perfect progressive for pronominal verbs
was buggy. Patching the code gave us a 10 points f-
measure gain for AUX-V dimension and 0.3 for all
dependencies dimensions (AUX-V having a 2.6%
global error rate within dependencies). Thus, bench-
marking results have been saved with appropriate
comment and other improvements or deficiencies
could be examined.

With these features, the tool offers the possibility
to have an overall view on evaluation results and on
their evolution across time, given multiple data, di-
mensions of analysis and computed metrics. There-
fore, it helps us, without any complex manipulation,
to get a visual report on what implication on evalu-
ation results has a modification to the analysis pro-
cess. Furthermore, those tests allow to search for
errors in resources as well as in code, so as to find
how to enrich our linguistic resources or to identify
deficiencies in our code.

Figure 2 shows a benchmarking using a set of 24
evaluation files (left part) to improve the analyzer’s

68

Figure 2: Chunks (CONSTS), dependencies (RELS), nominal chunks (GN) and direct objects dependencies (COD V)
f-measure results evolution through 4 evaluations on a 24 files corpus

results. The central table shows the measures corre-
sponding to 4 successive evaluations, displaying re-
sults for the dimensions selected on the top most part
(check-boxes). The right-hand side shows graph-
ically the same data, successive evaluations being
displayed as its abscissa and measures as its ordi-
nate.

2.3 Resource Tool

The Resource Tool, which modular design is de-
picted in Figure 3, aims at making resources edit-
ing accessible for people who have neither a deep
knowledge of the system internals nor computer pro-
gramming skills. Enriching our resources implies
having people, either specialized in linguistics or in
testing to interact with the resources, even if not ac-
customed to our specific storage format for each re-
source.

In its current version, the Resource Tool allow to
edit the following resources:

• Dictionary: items and their categories

• Syntactic rules: syntactic dependency detection

Figure 3: Resource Tool modular design

• Part-of-speech tagger learning corpus: tagged
examples of ngrams disambiguation matrices

• Idioms: language dependent fixed expressions

Those resources are presented in a tabbed view,
each having a dedicated interface and access func-
tions. Within each resource, a search feature is im-
plemented, which has shown to be really useful, es-
pecially for dictionary. The tool also provides sim-
ple means to save, compile and install resources,
once they have been modified. This has to be very
transparent for the user and we just provide a “Save”
button and another “Compile and install” button.
The current version of Resource Tool is quite ba-

69

Figure 4: Viewing and editing disambiguation matrices: probabilities and examples for articles followed by nouns

sic in terms of edition capacities. Dictionary has a
dedicated interface for editing words and their cat-
egories, but ngrams, syntactic rules and idioms re-
sources may yet only be changed through a basic
text editor.

Figure 4 shows the resource tool interface for the
annotated corpus that allows to build part-of-speech
disambiguation matrices. The top most tabs allow
to switch between resources among editable ones.
The data table shows the computed 3-grams (from
our own tag set). The left part text field shows a
list of sentences, where occurrences of the ngrams
selected in the above table appear. The right part
text field shows correspondences between two tag
sets. Eventually, the “Edit corpus file” button opens
an editor for the user to add sentences or to modify
sentences in the tagged corpus.

The Resource Tool and the Benchmarking Tool
communicate together through two signals: on the
one hand when resources are installed, the Resource
Tool may trigger an evaluation in the Benchmarking
Tool, on the other hand when the evaluation has fin-
ished, the Resource Tool is notified and warns the
user. Being aware of their respective status, we also

warn the user for dangerous operations, like when
trying to install resources while a benchmarking is
still running, or when quitting the application before
last benchmark is finished.

While these two applications are connected to be
aware of benchmarking and resource installation sta-
tus, no more interaction has been implemented for
the moment to link evaluation and resource edition
together. We have considered implementing a fea-
ture making possible to automatically do unit testing
resource modifications, but, from our point of view,
this has to be implemented with following restric-
tions: the Benchmarking Tool should remain generic
(modifying configuration and resources should not
be part of the tool) ; amount of required disk space
should remain minimal (only differences between
evaluations should be stored).

2.4 Preliminary results

We recently finished the first implementation itera-
tion. The evaluator itself is provided by a partner
laboratory. Its measurement methodology is deeply
presented in (Paroubekr, 2006). From our point of
view, we are only concerned in the fact that these

70

Chunks Dependencies Modifications
F P R F P R
72.6 72.0 73.2 45.9 54.2 39.8 Initial evaluation
76.3 76.2 76.3 47.5 56.1 41.1 Code reengineering / debugging
76.7 76.7 76.7 47.6 56.2 41.3 New set of syntactic rules
76.9 76.9 76.9 47.8 56.7 41.4 Specified preposition detection rules

Table 3: Benchmarking results, f-measure (F), precision (P), recall (R)

measures are relevant for improving the quality of
analysis produced by our parser.

We applied our resource improvement methodol-
ogy on a small annotated corpus of approximately
80.000 words, delivered after the EASy campaign,
among 27 thematic files. For information, the whole
process (analysis and evaluation for each file) is 5
minutes long on a bi-processor: this allows the soft-
ware to be used intensively on a personal computer.
Results in Table 3 show that the use of our frame-
work already allowed us to introduce modifications
of the linguistic resources with the Resource Tool;
these changes lead to a slight improvement of the
overall score of the system.

First, we obtained confirmation that some code
reengineering and some debugging was required.
These tasks, associated with iterative evaluation,
have allowed us to detect parts of the code which
did not give entire satisfaction, especially in the step
transforming output from our analyzer to the ex-
pected Passage format. We also found a bug within
the evaluation scripts, which, once corrected, forced
to restart evaluation measures from the beginning:
this shows the importance of having a stable en-
vironment apart analyzer (evaluation process, valid
data and reference file). These results show that iter-
ating over time and saving history may help to reveal
potential weaknesses of the code and to detect what
goes wrong.

Secondly, these tools where well-suited for eval-
uating the impact of a new set of syntactic rules,
for which we did not have opportunities to do pre-
cise evaluation before. For this set of 20 rules,
we systematically tried each rule separately, then
kept the combination of the rules increasing scores.
This improvement may appear as minimal, but these
rules where written in the context of an ongoing
work on our grammar. It gave an intuitive idea that
this approach is not a dead-end and may be further

explored. Besides, methodologies have been sug-
gested to test the impact of each rule in the entire
set of rules by systematically testing combinations
of rules. But, currently, this is beyond our goal.

Finally, we also introduced some “syntactic
sugar”, by grouping some expressions within rules,
and successfully obtained insurance that these mod-
ification did not lower scores. This is an important
result for us in the sense that we ensure that the same
set of rules expressed differently (with rules more
concise thus more readable) do not introduce regres-
sions.

3 Related works

We have previously described the test suite ap-
proach, along with the TSNLP project. This ap-
proach was concerned with identifying and system-
atically testing linguistic phenomena. As a conclu-
sion of TSNLP, (Oepen et al., 1998) points out the
necessity “to assess the impact of individual contri-
butions, regularly evaluate the quality of the overall
grammar, and compare it to previous versions”. This
project thus showed how positive it is to identify de-
ficiencies and improve grammars by iterating tests
over time. This is the goal we intend to reach with
our framework.

More recently, in biomedical domain, (Baum-
gartner et al., 2008) describes implementation of
a framework and, although it is applied to a text
mining task, the approach remains quite close in
its foundations (evaluation oriented, iterative testing,
modular framework, open source, corpora based,
etc.) to ours and encourages these kind of initiative
by showing the importance of continuous evaluation
while coding parser and engineering grammar. This
work present the interest to rely on the UIMA frame-
work, thus allowing a good modularity. In the future,
we should study the interest to give the ability to our
framework to integrate UIMA-ready modules.

71

Close to our Benchmarking Tool, some projects
aim at building frameworks for text analysis, an-
notation and evaluation, which projects encourage
people to use a common architecture, as openNLP
or GATE. Those may also be used for benchmark-
ing and evaluation tasks (Cunningham et al., 2002)
as part of their process. But, while these frame-
work often provide evaluation and regression test-
ing tools, they are rarely well-suited for only imple-
menting specific diagnostic tasks. We would appre-
ciate that such frameworks focusing on evaluating,
benchmarking and diagnosing, as generic as possi-
ble across IR tasks, become more widely available.
If our Benchmarking Tool appears to be appropri-
ate for other systems evaluations, we will consider
making it available for the IR community.

4 Conclusions and future work

From our first use of the framework, we are con-
vinced of the importance of diagnostic for acceler-
ating the improvement of our analyzer, by making
linguistic resources accessible and by iterating tests
and comparing results obtained over time. We also
concluded that this generic framework would be use-
ful in other tasks, such as Information Retrieval. Es-
pecially, image retrieval is a very active and growing
field of research, and we currently consider apply-
ing the Benchmarking Tool for accelerating the im-
provement of the image retrieval system developed
in our laboratory (Joint et al., 2004).

This work also emphasizes the great distinc-
tion between performance evaluation and diagnos-
tic evaluation. In our case, the association of the
Benchmarking Tool and the Resource Tool used in
conjunction with unit and regression testings helps
to identify what part of the analysis process is con-
cerned and, for grammar engineering, what rule or
set of rules have to be questioned in order to improve
the overall system performance.

Future directions of our work include the paral-
lelization of the analysis on a cluster, so as to re-
trieve evaluation results as quickly as possible. This
should allow us to use evaluation results from a
larger annotated corpus. We also intend to focus on
visualization of results for better identification and
interpretation of errors, in order to access directly er-
roneous analysis and involved resources. A second

development iteration will include the development
of more user friendly resources editors.

We also plan to work on automatic syntactic rules
inference, based on previous work in our laboratory
(Embarek and Ferret, 2008). For this goal, contin-
uous benchmarking will be even more important as
the system will rely on experts tuning parameters for
learning rules, the syntactic rules themselves being
not necessarily edited nor viewable for the expert.

Acknowledgments

This work was partly funded by the French National
Research Agency (ANR), MDCA program 2006.

References

Lorna Balkan, Klaus Netterz, Doug Arnold, Siety Meijer,
1994. Test Suites for Natural Language Processing.
Proceedings of the Language Engineering Convention
(LEC’94), 17–22.

William A Baumgartner, Kevin Bretonnel Cohen,
Lawrence Hunter, 2008. An open-source framework
for large-scale, flexible evaluation of biomedical text
mining systems. Journal of Biomedical Discovery and
Collaboration 2008, Vol. 3, pp 1.

Romaric Besançon, Gaël de Chalendar, 2005.
L’analyseur syntaxique de LIMA dans la campagne
d’valuation EASY. Actes des Ateliers de la 12e Con-
frence annuelle sur le Traitement Automatique des
Langues Naturelles (TALN 2005), Vol. 2, pp 21.

John Carroll, Anette Frank, Dekang Lin, Detlef Prescher,
Hans Uszkoreit, 2002. Proceedings of the workshop
beyond parseval - toward improved evaluation mea-
sures for parsing systems. Proceedings of the 3rd
International Conference on Language Resources and
Evaluation (LREC’02).

Nikos Chatzichrisafis, Dick Crouch, Tracy Holloway
King, Rowan Nairn, Manny Rayner, Marianne Santa-
holma, 2007. Regression Testing For Grammar-Based
Systems. Proceedings of the GEAF07 Workshop, pp
128–143.

Eric V. de la Clergerie, Olivier Hamon, Djamel Mostefa,
Christelle Ayache, Patrick Paroubek, Anne Vilnat,
2008. PASSAGE: from French Parser Evaluation
to Large Sized Treebank. Proceedings of the Sixth
International Language Resources and Evaluation
(LREC’08).

Eric V. de la Clergerie, Christelle Ayache, Gaël de
Chalendar, Gil Francopoulo, Claire Gardent, Patrick
Paroubek, 2008. Large scale production of syntactic

72

annotations for French. In Proceedings of the interna-
tional workshop on Automated Syntactic Annotations
for Interoperable Language Resources, Hong-Kong.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, 2002. GATE: A
framework and graphical development environment
for robust NLP tools and applications. Proceedings of
the 40th Anniversary Meeting of the ACL, 2002.

Mehdi Embarek, Olivier Ferret, 2008. Learning patterns
for building resources about semantic relations in the
medical domain. 6th Conference on Language Re-
sources and Evaluation (LREC’08), Marrakech, Mo-
rocco.

Jonathan G. Fiscus, 1997. A Post-Processing System to
Yield Reduced Word Error Rates: Recognizer Output
Voting Error Reduction (ROVER). Proceedings IEEE
Workshop on Automatic Speech Recognition and Un-
derstanding (ASRU97), pp 347–352.

Magali Joint, Pierre-Alain Moellic, Patrick Hede, Pas-
cal Adam, 2004. PIRIA: a general tool for indexing,
search, and retrieval of multimedia content. Proceed-
ings of SPIE, Vol. 5298, 116 (2004), San Jose, CA,
USA.

Sylvain Kahane, 2000. Les grammaires de dpendance.
Traitement Automatique des Langues, Vol. 41.

Stephan Oepen, Daniel P. Flickinger, 1998. Towards sys-
tematic grammar profiling. Test suite technology ten
years after. Special Issue on Evaluation 12, 411–436.

Valeria de Paiva, Tracy Holloway King, 2008. Design-
ing Testsuites for Grammar-based Systems in Appli-
cations. Proceedings of the GEAF08 Workshop, pp
49–56.

Patrick Paroubek, Isabelle Robba, Anne Vilnat, Christelle
Ayache, 2006. Data, Annotations and Measures in
EASY, the Evaluation Campaign for Parsers of French.
5th Conference on Language Resources and Evalua-
tion (LREC’06), Genoa, Italy.

C. J. van Rijsbergen, 1979. Information Retrieval, 2nd
edition.

73

Proceedings of the NAACL HLT Workshop on Software Engineering, Testing, and Quality Assurance for Natural Language Processing, pages 74–77,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Integrating High Precision Rules with Statistical Sequence Classifiers for
Accuracy and Speed

Wenhui Liao, Marc Light, and Sriharsha Veeramachaneni
Research and Development,Thomson Reuters

610 Opperman Drive, Eagan MN 55123

Abstract

Integrating rules and statistical systems is a
challenge often faced by natural language pro-
cessing system builders. A common sub-
class is integrating high precision rules with a
Markov statistical sequence classifier. In this
paper we suggest that using such rules to con-
strain the sequence classifier decoder results
in superior accuracy and efficiency. In a case
study of a named entity tagging system, we
provide evidence that this method of combina-
tion does prove efficient than other methods.
The accuracy was the same.

1 Introduction

Sequence classification lies at the core of several
natural language processing applications, such as
named entity extraction, Asian language segmen-
tation, Germanic language noun decompounding,
and event identification. Statistical models with a
Markov dependency have been successful employed
to perform these tasks, e.g., hidden Markov mod-
els (HMMs)(Rabiner, 1989) and conditional random
fields (CRFs)(Lafferty et al., 2001). These statistical
systems employ a Viterbi (Forney, 1973) decoder at
runtime to efficiently calculate the most likely la-
bel sequence based on the observed sequence and
model. Statistical machine translation systems make
use of similar decoders.

In many situations it is beneficial, and some-
times required, for these systems to respect con-
straints from high precision rules. And thus when
building working sequence labeling systems, re-
searchers/software engineers are often faced with

the task of combining these two approaches. In
this paper we argue for a particular method of com-
bining statistical models with Markov dependencies
and high precision rules. We outline a number of
ways to do this and then argue that guiding the de-
coder of the statistical system has many advantages
over other methods of combination.

But first, does the problem of combining multi-
ple approaches really happen? In our experience the
need arises in the following way: a statistical ap-
proach with a Markov component is chosen because
it has the best precision/recall characteristics and has
reasonable speed. However, a number of rules arise
for varied reasons. For example, the customer pro-
vides domain knowledge not present in the training
data or a particular output characteristic is more im-
portant that accuracy. Consider the following ficti-
tious but plausible situation: A named entity tagging
system is built using a CRF. The customer then pro-
vides a number of company names that cannot be
missed, i.e., false negatives for these companies are
catastrophic but false positives can be tolerated. In
addition, it is known that, unlike in the training data,
the runtime data will have a company name immedi-
ately before every ticker symbol. The question fac-
ing the builder of the system is how to combine the
CRF with rules based on the must-find company list
and the company-name-before-every-ticker-symbol
fact.

Similar situations arise for the other sequence tag-
ging situations mentioned above and for machine
translation. We suspect that even for non-language
applications, such as gene sequence labeling, similar
situations arise.

74

In the next section we will discuss a number of
methods for combining statistical systems and high
precision rules and argue for guiding the decoder
of the statistical model. Then in section 3, we de-
scribe an implementation of the approach and give
evidence that the speed benefits are substantial.

2 Methods for Combining a Markov
Statistical System and High Precision
Rules

One method of combination is to encode high preci-
sion rules as features and then train a new model that
includes these features. One advantage is that the
system stays a straightforward statistical system. In
addition, the rules are fully integrated into the sys-
tem allowing the statistical model weigh the rules
against other evidence. However, the model may
not give the rules high weight if training data does
not bear out their high precision or if the rule trig-
ger does not occur often enough in the training data.
Thus, despite a “rule” feature being on, the system
may not “follow” the rule in its result labeling. Also,
addition or modification of a rule would require a
retraining of the model for optimal accuracy. The
retraining process may be costly and/or may not be
possible in the operational environment.

Another method is to run both the statistical sys-
tem and the rules and then merge the resulting labels
giving preference to the labels resulting from the
high precision rules. The benefits are that the rules
are always followed. However, the statistical system
does not have the information needed to give an op-
timal solution based on the results of the high preci-
sion rules. In other words, the results will be incon-
sistent from the view of the statistical system; i.e., if
it had know what the rules were going to say, then it
would have calculated the remaining part of the label
sequence differently. In addition, the decoder con-
siders part of the label sequence search space that is
only going to be ruled out, pun intended, later.

Now for the preferred method: run the rules first,
then use their output to guide the decoder for the
statistical model. The benefits of this method are
that the rules are followed, the statistical system is
informed of constraints imposed by the rules and
thus the statistical system calculates optimal paths
given these constraints. In addition, the decoder

considers only those label sequences consistent with
these constraints, resulting in a smaller search space.
Thus, we would expect this method to produce both
a more accurate and a faster implementation.

Consider Figure 1 which shows a lattice that rep-
resents all the labeling sequences for the input ...
Microsoft on Monday announced a ... The possible
labels are O (out), P (person), C (company), L (lo-
cation) . Assume Microsoft is in a list of must-find
companies and that on and Monday are part of a rule
that makes them NOT names in this context. The
bold points are constraints from the high-precision
rules. In other words, only sequences that include
these bold points need to be considered.

Figure 1: Guiding decoding with high-precision rules

Figure 1 also illustrates how the constraints re-
duce the search space. Without constraints, the
search space includes 46 = 4096 sequences, while
with constraints, it includes only 43 = 64.

It should also be noted that we do not claim to
have invented the idea of constraining the decoder.
For example, in the context of active learning, where
a human corrects some of the errors made by a CRF
sequence classifier, (Culota et al., 2006) proposed a
constrained Viterbi algorithm that finds the path with
maximum probability that passes through the labels
assigned by the human. They showed that constrain-
ing the path to respect the human labeling consider-
ably improves the accuracy on the remaining tokens
in the sequence. Our contribution is noticing that
constraining the decoder is a good way to integrate
rule output.

3 A Case Study: Named Entity
Recognition

In this section, we flesh out the discussion of named
entity (NE) tagging started above. Since the entity
type of a word is determined mostly by the context
of the word, NE tagging is often posed as a sequence

75

classification problem and solved by Markov statis-
tical systems.

3.1 A Named Entity Recognition System
The system described here starts with a CRF which
was chosen because it allows for the use of numer-
ous and arbitrary features of the input sequence and
it can be efficiently trained and decoded. We used
the Mallet toolkit (McCallum, 2002) for training the
CRF but implemented our own feature extraction
and runtime system. We used standard features such
as the current word, the word to the right/left, ortho-
graphic shape of the word, membership in word sets
(e.g., common last names), features of neighboring
words, etc.

The system was designed to run on news wire text
and based on this data’s characteristics, we designed
a handful of high precision rules including:

Rule 1: if a token is in a must-tag list, this token
should be marked as Company no matter what the
context is.

Rule 2: if a capitalized word is followed by cer-
tain company suffix such as Ltd, Inc, Corp, etc., la-
bel both as Company.

Rule 3: if a token sequence is in a company list
and the length of the sequence is larger than 3, label
them as Company.

Rule 4: if a token does not include any uppercase
letters, is not pure number, and is not in an excep-
tions list, label it as not part of a name. (The ex-
ceptions list includes around 70 words that are not
capitalized but still could be an NE, such as al, at,
in, -, etc.)

Rule 5: if a token does not satisfy rule 4 but its
neighboring tokens satisfy rule 4, then if this token
is a time related word, label it as not part of a name.
(Example time tokens are January and Monday.)

The first three rules aim to find company names
and the last two to find tokens that are not part of a
name.

These rules are integrated into the system as de-
scribed in section 2: we apply the rules to the input
token sequence and then use the resulting labels, if
any, to constrain the Viterbi decoder for the CRF.

A further optimization of the system is based on
the following observation: features need not be cal-
culated for tokens that have already received labels
from the rules. (An exception to this is when fea-

tures are copied to a neighbor, e.g., the token to my
left is a number.) Thus, we do not calculate many
features of rule-labeled tokens. Note that feature ex-
traction can often be a major portion of the compu-
tational cost of sequence labeling systems (see Table
1(b))

3.2 Evidence of Computational Savings
Resulting from Our Proposed Method of
Integration

We compare the results when high-precision rules
are integrated into CRF for name entity extraction
(company, person, and location) in terms of both ac-
curacy and speed for different corpora. Three cor-
pora are used, CoNLL (CoNLL 2003 English shared
task official test set), MUC (Message Understanding
Conference), and TF (includes around 1000 news ar-
ticles from Thomson Financial).

Table 1(a) shows the results for each corpora re-
spectively. The baseline method does not use any
high-precision rules, the Post-corr uses the high-
precision rules to correct the labeling from the CRF,
and Constr-viti uses the rules to constrain the label
sequences considered by the Viterbi decoder. In gen-
eral, Constr-viti achieves slightly better precision
and recall.

(a)

(b)
Figure 2: (b) A test example : (a) without constraints; (b)
with constraints

To better understand how our strategy could im-
prove the accuracy, we did some analysis on the

76

Table 1: Experiment Results
Database Methods Precision Recall F1
CoNLL Baseline 84.38 83.02 83.69

Post-corr 85.87 84.86 85.36
Constr-viti 85.98 85.55 85.76

TF Baseline 88.39 82.42 85.30
Post-corr 87.69 88.30 87.99
Constr-viti 88.02 88.54 88.28

MUC Baseline 92.22 88.72 90.43
Post-Corr 91.28 88.87 90.06
Constr-viti 90.86 89.37 90.11

(a)Precision and Recall

Methods Rules Features Viterbi Overall
Baseline 0 0.78 0.22 1
Post-corr 0.08 0.78 0.22 1.08
Constr-vite 0.08 0.35 0.13 0.56
Baseline 0 0.85 0.15 1
Post-Corr 0.14 0.85 0.15 1.14
Constr-vite 0.14 0.38 0.1 0.62
Baseline 0 0.79 0.21 1
Post-corr 0.12 0.79 0.21 1.12
Constr-vite 0.12 0.36 0.12 0.60

(b)Time Efficiency

testing data. In one example as shown in Figure 2,
Steel works as an attorney, without high-precision
rules, Steel works is tagged as a company since it is
in our company list. Post-correction changes the la-
bel of works to O, but it is unable to fix Steel. With
our strategy, since works is pinned as O in the Vert-
ibi algorithm, Steel is tagged as Per. Thus, com-
pared to post-correction, the advantage of constrain-
ing Viterbi is that it is able to affect the whole path
where the token is, instead a token itself. However,
the improvements were not significant in our case
study. We have not done an error analysis. We can
only speculate that the high precision rules do not
have perfect precision and thus create a number of
errors that the statistical model would not have made
on its own.

We also measured how much the constrained
Viterbi method improves efficiency. We divide the
computational time to three parts: time in applying
rules, time in feature extraction, and time in Viterbi
computation. Table 1(b) lists the time efficiency. In-
stead using specific time unit (e.g. second), we use
ratio instead by assuming the overall time for the
baseline method is 1. As shown in the table, for
the three data sets, the overall time of our method
is 0.56, 0.62, and 0.60 of the time of the baseline
algorithm respectively. The post-correction method
is the most expensive one because of the extra time
spending in rules. Overall, the constrained Viterbi
method is substantially faster than the Baseline and
Post-corr methods in addition to being more accu-
rate.

4 Conclusions

The contribution of this paper is the repurposing of
the idea of constraining a decoder: we constrain the
decoder as a way to integrate high precision rules
with a statistical sequence classifier. In a case study
of named entity tagging, we show that this method
of combination does in fact increase efficiency more
than competing methods without any lose of ac-
curacy. We believe analogous situations exist for
other sequence classifying tasks such as Asian lan-
guage segmentation, Germanic language noun de-
compounding, and event identification.

References
Aron Culota, Trausti Kristjansson, Andrew McCallum,

and Paul Viola. 2006. Corrective feedback and per-
sistent learning for information extraction. Artificial
Intelligence Journal, 170:1101–1122.

G. D. Forney. 1973. The viterbi algorithm. Proceedings
of the IEEE, 61(3):268–278.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. In Proc.
18th International Conf. on Machine Learning, pages
282–289.

A.K. McCallum. 2002. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu.

Lawrence R. Rabiner. 1989. A tutorial on hidden markov
models and selected applications in speech recogni-
tion. Proceedings of the IEEE, pages 257–286.

77

Author Index

Ananiadou, Sophia, 22

Bethard, Steven, 1
Bristot, Antonella, 40

Curran, Stephen, 47

de Chalendar, Gaël, 65
Delmonte, Rodolfo, 40
Dzikovska, Myroslava O., 5

Etzioni, Zohar, 47

Farrow, Elaine, 5
Feeney, Kevin, 47

Germann, Ulrich, 31

Hockey, Beth Ann, 14

Joanis, Eric, 31

Kamal, Jyoti, 42
Kano, Yoshinobu, 22
Keeney, John, 47

Larkin, Samuel, 31
Lewis, David, 47
Liao, Wenhui, 74
Light, Marc, 74

Martin, Scott, 45
McCrohon, Luke, 22

Nouvel, Damien, 65

Ogren, Philip, 1

Pallotta, Vincenzo, 40

Rajkumar, Rajakrishnan, 45
Rayner, Manny, 14

Schäler, Reinhard, 47
Sukkarieh, Jana, 42

Tsujii, Jun’ichi, 22

Veeramachaneni, Sriharsha, 74
Voltolina, Gloria, 40

Waterman, Scott, 56
Way, Andy, 47
White, Michael, 45

79

	Conference Program
	Building Test Suites for UIMA Components
	Context-Dependent Regression Testing for Natural Language Processing
	Using Paraphrases of Deep Semantic Representions to Support Regression Testing in Spoken Dialogue Systems
	Integrated NLP Evaluation System for Pluggable Evaluation Metrics with Extensive Interoperable Toolkit
	Tightly Packed Tries: How to Fit Large Models into Memory, and Make them Load Fast, Too
	Scaling up a NLU system from text to dialogue understanding
	Towards Agile and Test-Driven Development in NLP Applications
	Grammar Engineering for CCG using Ant and XSLT
	Web Service Integration for Next Generation Localisation
	Distributed Parse Mining
	Modular resource development and diagnostic evaluation framework for fast NLP system improvement
	Integrating High Precision Rules with Statistical Sequence Classifiers for Accuracy and Speed

