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Abstract 

This paper reports on a system developed for 
the BioNLP'09 shared task on detection and 
characterisation of biomedical events. Event 
triggers and types were recognised using a 
conditional random field classifier and a set of 
rules, while event participants were identified 
using a rule-based system that relied on rela-
tive distances between candidate entities and 
the trigger in the associated parse tree. The re-
sults on previously unseen test data were en-
couraging: for non-regulatory events, the F-
score was almost 50% (with precision above 
60%), with the overall F-score of around 30% 
(49% precision). The performance on more 
complex regulatory events was poor  
(F-measure of 7%). Among the 24 teams 
submitting the test results, our results were 
ranked 12th for the overall F-score and 8th for 
the F-score of non-regulation events. 

1 Introduction 

The aim of the BioNLP'09 shared task 1 was to 
characterise molecular events being reported in a 
Medline abstract by identifying the textual trigger, 
event type and participating entities (Kim et al. 
2009). Nine event types were considered: gene 
expression, transcription, protein catabolism, lo-
calisation, phosporylation, binding, regulation, 
positive regulation, and negative regulation. De-
pending on the event type, the task included the 
identification of either one (for the first five event 
types mentioned above) or more (e.g. for binding) 
participating proteins. Information requested for 
regulatory events was more complex: in addition to 
one theme (a protein or another event), these 
events could also have a cause (a protein or an-
other event) that needed to be identified. 

 
The organisers have distributed a training 

dataset of 800 abstracts, with gene and gene prod-
uct mentions pre-annotated in text. In addition, a 
development set (150 abstracts) was provided to 
assess the quality of the extractions during the 
training and development phases. 

2 Methods 

The system developed for the challenge consists of 
three main modules: (1) event trigger and type de-
tection, (2) event participant detection, and  
(3) post-processing of the results. 

2.1 Event Trigger and Type Detection 

Our view of the event trigger and type detection 
subtask was that each token in a sentence needed 
to be tagged either as a trigger for one of the nine 
event types, or as a non-trigger/event token. We 
therefore decided to identify event types and trig-
gers in a single step by training a conditional ran-
dom field (CRF) classifier that assigned one of ten 
(nine types plus non-trigger) tags to each token. 
CRFs have been shown to be particularly suitable 
for tagging sequential data such as natural lan-
guage text, because they take into account features 
and tags of neighbouring tokens when evaluating 
the probability of a tag for a given token.  

Tokens and their part-of-speech (POS) tags 
were recognised using the Genia Tagger (Tsuruoka 
et al. 2005). Each stemmed token was represented 
using a feature vector consisting of the following 
features:  

• A binary feature indicating whether the to-
ken is a protein; 

• A binary feature indicating whether the to-
ken is a known protein-protein interaction 
word (we used a pre-complied dictionary of 
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such words collected from previous studies 
(Fu et al. 2008; Yang et al. 2008); 

• The token's POS tag; 
• The log-frequencies of the token being a 

trigger for each event type in the training 
data (nine features); 

• The number of proteins in the given sen-
tence. 

Other features (e.g. separating the known inter-
action words according to the nine event types) 
were explored during the development phase, but 
were not included in the final feature list since they 
increased the sparseness of the data and did not 
improve the overall results. The CRF parameters 
were adjusted for maximum performance, includ-
ing the choice of training algorithms, the number 
of training steps, the size of the window within 
which the tokens can affect any certain token, and 
the number of training abstracts used in each train-
ing step. It was interesting to notice that there were 
no significant improvements in the performance 
after training on 100, 400 or 800 abstracts from the 
training set (data not shown).  

2.2 Locating Event Themes 

After detecting potential triggers and associated 
event types, the next task was to locate possible 
participants (i.e. ‘themes’ and ‘causes’) for each 
event. It was obvious that participants did not have 
to be the nearest to the trigger on the surface level, 
so our approach was based on distances within the 
parse trees associated with the sentences contain-
ing candidate events. Parse tree distances have 
been studied previously in clustering and automatic 
translation tasks (Emms 2008), so we hypothesised 
that we could use them to identify the most likely 
participants. The training data was analysed for the 
proximities between the triggers and the (correct) 
event participants in the parse tree of the sentence.1 
Figure 1 gives a detailed density function of these 
distances (ignoring non-protein nodes). The analy-
sis showed that a theme was usually amongst the 
nearest proteins to the trigger in terms of parse tree 
distances: for example, in 60% of all single theme 
events (e.g. localisation, phosphorylation) the cor-
rect protein participant was the trigger’s nearest or 
second nearest protein in the parse tree. A further 

                                                           
1 The parse trees were produced by the GDep parser (Sagae 
and Tsujii, 2007) and supplied by the challenge organisers. 

analysis demonstrated that it was more likely for a 
theme to appear in the sub-tree of the correspond-
ing trigger, with 70% of all single theme events 
having a theme which appeared in the sub-tree of 
the trigger. Furthermore, specific analyses of the 
parse trees associated to the binding events (which 
can have more than one theme) suggested a linear 
relationship between the parse tree distance and 
binding event participant number (participant1 is 
the nearest, participant2 is the second nearest, etc.). 
 

 
Figure 1: Probability density function of the distance 
between the trigger and the theme in the parse tree  

(ignoring the tokens that are not proteins) 
 

We used this distributional analysis (derived 
from the training data) to design a rule-based 
method for the identification of participating 
themes. The rules were manually derived for each 
of the nine event classes, by defining:  

• a threshold for the maximum distance  to the 
trigger in the sub-tree for the given event 
type; 

• a threshold for the difference between the 
maximum distance in the whole tree and the 
given sub-tree for the given event type; 

• the number of nearest proteins to be re-
ported for each trigger. 

 

All entities that satisfied a distance-based rule 
for a given trigger were selected as the correspond-
ing theme(s). For example, if the event type is 
binding, then up to the second closest protein in the 
sub-tree, and the first closest protein in the rest of 
the tree are reported as themes.  
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Figure 2 provides an example of the method ap-
plied to a sentence with multiple events. Regulates 
and secretion are correctly identified as triggers for 
a regulation and a localization event in the first 
phase. Using the rules for localization, the themes 
for two localization events are correctly recognised 
as proteins T2 and T3, whereas T1 was ignored 
since it did not appear in the trigger's sub-tree.  

Engineering and applying rules for non-
regulatory events was relatively straightforward. 
However, regulatory events can have different 
kinds of participants (a protein or an event). In the 
case of an event, we were trying to locate the near-
est trigger for the event (being regulated) in the 
parse tree. For example, in Figure 2, the nearest 
option to the regulation trigger (secretion) was the 
trigger of the two localization events, and both 
events should be (correctly) reported as the themes 
of two regulation events. Therefore, we require a 
number of recursions in the application of the rules 
to represent higher-order regulatory dependences. 
For the purposes of this challenge, only regulations 
up to the second “order” were detected, allowing 
other events to act as themes and causes as well as 
proteins. Attempts to find more complicated regu-
latory events using this method resulted in a de-
creased precision and/or F-score.  

 

2.3 Post-processing Event Profiles 

The performance of the first two phases was 
studied on the development dataset: we noted a 
number of false-positive and false-negative results 
that were mostly due to a set of recurring triggers. 
We therefore decided to perform a post-processing 
step to improve the identification of event triggers 
and associated types. In the first step (improving 
the event trigger and type detection), the output of 
the CRF was overridden in cases where the triggers 
appeared in a list of negatively discriminated trig-
ger words which was collected after the manual 
analysis of the false positive results on the training 
and development data. Similarly, in cases where 
the CRF missed a highly indicative trigger (from a 
manually collected set) for a given event type, the 
trigger was added as part of post-processing. In the 
latter case, the sentence was then processed for the 
event theme detection (as described in 2.2).  

In the second step of the pre-processing phase, 
we forced highly indicative regulation triggers (if 
not previously identified) to be associated with an 

 
Figure 2: The parse tree of sentence Monocyte tethering 
by P-selectin regulates monocyte chemotactic protein-1 
and tumor necrosis factor-alpha secretion. The triggers 

are shown in boxes, and the entities are numbered.  
 

event by assigning proteins appearing in the sen-
tence to them, even when no protein in the sen-
tence satisfied the theme or cause criteria described 
in Section 2.2. This was aimed at improving the 
extremely low recall for regulatory events. 

Finally, since triggers could consist of more than 
one consecutive token, a set of simple rules were 
applied to remove typical false-negative constitu-
ents identified by the CRF as part of triggers (e.g. 
sometimes linking words appeared within triggers). 

3 Results and discussion 

The task 1 assessment was based on the output of 
the system when applied to the test dataset of 260 
previously unseen abstracts. An event was counted 
as a true positive if its type, trigger and all partici-
pants had been correctly identified. The overall F-
score for our system was 30.35% with 48.61% pre-
cision (approximate span matching, see Table 1). 
The best performing event types were phosphory-
lation (the best F-score and the best recall) and 
gene expression (the best precision with a reasona-
bly good F-measure). While the results for non-
regulatory events were encouraging, they were low 
for regulatory events. Among the 24 teams submit-
ting the test results, our results were ranked 12th for 
the overall F-score and 8th for the F-score of non-
regulation events. 

A preliminary analysis of the results was per-
formed on the development data (as the test data is 
not available), which had around 5% higher overall 
F-score than the test data (9% for non-regulation 
events, see Table 2 for details). 
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Event Class #Gold R P F-score 
Localisation 174 44.83 53.06 48.60 

Binding 347 12.68 40.37 19.30 

Gene expression 722 52.63 69.34 59.84 

Transcription 137 15.33 67.74 25.00 

Protein catabolism 14 42.86 50.00 46.15 

Phosphorylation 135 78.52 53.81 63.86 
Non-reg total 1529 41.53 60.82 49.36 

Regulation 291 3.09 19.15  5.33 

Positive regulation 983 1.12 8.87 1.99 

Neg. regulation 379 12.4 20.52 15.46 

Regulatory total 1653 4.05 16.75 6.53 

All total 3182 22.06 48.61 30.35 
 

Table 1: Evaluation of the test data (260 abstracts), 
(approximate span matching; #Gold = the number of  

examples in the gold standard) 
 

 

In order to assess the effects of different steps 
in our approach, we evaluated the performance of 
the event trigger and event participant detection 
steps separately. The results presented in Table 3 
indicated that the performance of the CRF module 
was not much better than the overall performance 
of the system (an F-score of 43% vs. 35%), sug-
gesting that the CRF part was mostly responsible 
for the errors, by both missing triggers and falsely 
reporting them. This was particularly the case with 
non-regulatory events (even for binding). Con-
versely, when considering only those events whose 
triggers were correctly identified, their participants 
were also correctly recognised in most cases. 
Overall, the analysis suggested that the parse tree 
distance method performed reasonable well, de-
spite a reduction in recall of approximately 12%.  

There are a number of possibilities for im-
provements. We believe applying the CRF model 
in two stages would be a better approach to detect 

 

Event Class #Gold R P F-score 
Localisation 40 77.50 47.69 59.05 

Binding 180 33.33 54.55 41.38 

Gene expression 282 76.60 58.54 66.36 

Transcription 68 58.82 18.60 28.27 

Protein catabolism 19 84.21 88.89 86.49 

Phosphorylation 40 97.50 81.25 88.64 
Non-reg total 629 63.91 48.73 55.30 

Regulation 138 13.04 62.07 21.56 

Positive regulation 462 13.85 54.24 22.07 

Neg. regulation 153 29.41 45.92 35.86 

All total 1382 38.28 49.44 43.15 
 

Table 3: Trigger-only evaluation of the development data  

Event Class #Gold R P F-score 
Localisation 53 67.92 46.75 55.38 

Binding 312 21.47 63.81 32.13 

Gene expression 356 64.61 76.33 69.98 

Transcription 82 53.66 89.80 67.18 

Protein catabolism 21 90.48 67.86 77.55 
Phosphorylation 47 91.49 53.09 67.19 

Non-reg total 871 50.4 68.44 58.05 

Regulation 172 5.23 33.33 9.05 

Positive regulation 632 3.48 21.36 5.99 

Neg. regulation 201 9.45 15.08 11.62 

Regulatory total 1005 4.98 19.53 7.93 

All total 1876 26.07 54.46 35.26 
 

Table 2: Evaluation of the development data (150 abstracts) 
(approximate span matching; #Gold as in Table 1) 

 

events: first identify triggers and then link them to 
event classes. In addition, the rules employed for 
determining themes need to be more specific to 
reflect both event type and grammatical structure.  
In the case of regulatory events, however, signifi-
cantly better results were noticed in the trigger de-
tection part when compared to the overall scores, 
indicating that it was difficult to identify regulatory 
participants, as any of those participants could be 
either a protein or another event.  

Overall, the results achieved by our system 
suggest that combining parse tree results, rules and 
CRFs is a promising approach for the identification 
of non-regulatory events in the literature, while 
more work would be needed for regulatory events. 
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