
Proceedings of the Workshop on BioNLP: Shared Task, pages 77–85,
Boulder, Colorado, June 2009. c©2009 Association for Computational Linguistics

Biomedical Event Annotation with CRFs and Precision Grammars

Andrew MacKinlay, David Martinez and Timothy Baldwin

NICTA Victoria Research Laboratories
University of Melbourne, VIC 3010, Australia

{amack,davidm,tim}@csse.unimelb.edu.au

Abstract

This work describes a system for the tasks
of identifying events in biomedical text and
marking those that are speculative or negated.
The architecture of the system relies on
both Machine Learning (ML) approaches and
hand-coded precision grammars. We submit-
ted the output of our approach to the event ex-
traction shared task at BioNLP 2009, where
our methods suffered from low recall, al-
though we were one of the few teams to pro-
vide answers for task 3.

1 Introduction

We present in this paper our techniques for the tasks
1 and 3 of the event extraction shared task at BioNLP
2009. We make use of both Machine Learning (ML)
approaches and hand-coded precision grammars in
an architecture that combines multiple dedicated
modules. In the third task on negation/speculation,
we extract extract rich linguistic features resulting
from our HPSG high-precision grammar to train an
ML classifier.

2 Methodology

2.1 Task 1: Shallow Features and CRFs

Our system consists of two main modules, the first
of which is devoted to the detection of event trigger
words, and the second to event–theme analysis.

2.1.1 Trigger-word detection
We developed two separate systems to perform

trigger word detection, and also a hybrid system

which combines their outputs. The first system is
a simple dictionary-based look-up tagger; the sec-
ond system learns a structured model from the train-
ing data using conditional random fields (CRFs).
For pre-processing, we relied on the domain-specific
token and sentence splitter from the JULIE Lab
(Tomanek et al., 2007) and the GENIA tagger for
lemmatisation, POS tagging, chunking, and protein
detection (Tsuruoka et al., 2005).

The look-up tagger operates by counting the oc-
currences in the training data of different event tags
for a given term. Over the development and test data,
each occurrence of a given term is assigned the event
class with the highest prior in the training data. We
experimented with a frequency cut-off that allows us
to explore the precision/recall trade-off.

Our second system relies on CRFs, as imple-
mented in the CRF++ toolkit (Lafferty et al., 2001).
CRFs provide a discriminative framework for build-
ing structured models to segment and label sequence
data. CRFs have the well-known advantage that they
both model sequential effects and support the use of
large numbers of features. In our experiments we
used the following feature types: word-forms, lem-
mas, POS, chunk tags, protein annotation, and gram-
matical dependencies. For dependency annotation,
we used the Bikel parser and GDep as provided by
the organisers. This information was provided as a
feature that expresses the grammatical function of
the token. We explored window sizes of±3 and±4.

Finally, we tested combining the outputs of the
look-up tagger and CRF, by selecting all trigger
words from both outputs.

77



2.1.2 Event-theme construction
We constructed the output for task 1 by differenti-

ating among three types of events, according to their
expected themes: basic events, binding events, and
regulation events. We applied a simple strategy, as-
signing the closest events or proteins within a given
sentence as themes.

For the basic events, we simply assigned the clos-
est protein, an approach that we found to perform
well over the training and development data. For
binding events, we estimated the maximum dis-
tance away from the event word(s) for themes, and
the maximum number of themes. For regulation
events, we had to choose between proteins or events
as themes, and the CAUSE field was also required.
Again, we relied on a maximum distance threshold,
and gave priority to events over proteins as themes.
We removed regulation events as theme candidates,
since our basic approach could not indicate the di-
rection of the regulation. We also tested predicting
the CAUSE by relying on the protein closest to the
regulation event.

2.2 Task 3: Deep Parsing and Maximum
Entropy classification

For task 3 we ran a syntactic parser over the abstracts
and used the outputs to construct feature vectors for
a machine learning algorithm. We built two classi-
fiers (possibly with overlapping sets of feature vec-
tors) for each training run: one to identify specula-
tion and one for negation. We deliberately built a
separate binary classifier for each task instead of a
single four-class classifier, since the problem natu-
rally decomposes this way. Speculation and nega-
tion are independent of one another (informally, not
statistically) and it enables us to focus on feature en-
gineering for each subtask.

2.2.1 Deep Parsing with the ERG
It seemed likely that syntactico-semantic analysis

would be useful for task 3. To identify negation or
speculation with relatively high precision, it is prob-
able that knowledge of the relationships of possibly
distant elements (such as the negation particle not)
to a particular target word would provide valuable
information for classification.

Further to this, it was our intention to evaluate
the utility of deep parsing in such an approach,

rather than a shallower annotation such as the out-
put of a dependency parser. With this in mind,
we selected the English Resource Grammar1 (ERG:
Copestake and Flickinger (2000)), an open-source,
broad-coverage high-precision grammar of English
in the HPSG framework.

While the ERG is relatively robust across dif-
ferent domains, it is a general-purpose resource,
and there are some aspects of the language used in
the biomedical abstracts that cause difficulties; un-
known word handling is especially important given
the nature of terms in the domain. Fortunately we
can make some optimisations to mitigate this. The
GENIA tagger mentioned in Section 2.1.1 provides
both POS and named entity annotations, which we
used to constrain the input to the ERG in two ways:

• Biological named entities identified by the GE-
NIA tagger are flagged as such, and the parser
does not attempt to decompose them.

• POS tags are appended to each input token to
constrain the token to an appropriate category
if it is absent from the ERG lexicon.

With these modifications to the parser, as well as
preprocessing to handle differences in the tokenisa-
tion expected by the ERG to the output of the tagger,
we were able to obtain a spanning parse for 72% of
the training sentences. This still leaves 28% of the
sentences inaccessible – the need for a fallback strat-
egy is discussed further in Section 4.2.

2.2.2 Feature Extraction from RMRSs
Rather than outputting syntactic parse trees, the

ERG can also produce output in particular semantic
formalisms: Minimal Recursion Semantics (MRS:
Copestake et al. (2005)) and the closely related Ro-
bust Minimal Recursion Semantics (RMRS: Copes-
take (2004)). For our feature generation here we
make use of the latter.

Figure 1 shows an example RMRS obtained from
one of the training documents. While there is in-
sufficient space to give a complete treatment here,
we highlight several aspects for expository purposes.

1Specifically the July 2008 version, downloadable from
http://lingo.stanford.edu/ftp/test/

78



l1,
{ l3: thus a 1〈62:67〉(e5, ARG1: h4),

l16: generic unk nom rel〈68:78〉(x11, CARG: ‘nf- kappa b’),
l6: udef q rel〈68:89〉(x9, RSTR: h8, BODY: h7),
l10: compound rel〈68:89〉(e12, ARG1: x9, ARG2: x11),
l13: udef q rel〈68:89〉(x11, RSTR: h15, BODY: h14),
l101: activation n 1〈79:89〉(x9),
l17: neg rel〈94:97〉(e19, ARG1: h18),
l20: require v 1〈98:106〉(e2, ARG1: u21, ARG2: x9),
l102: parg d rel〈98:106〉(e22, ARG1: e2, ARG2: x9),
l103: for p〈107:110〉(e24, ARG1: e2, ARG2: x23),
l34: generic unk nom rel〈111:129〉(x29,

CARG: ‘neuroblastoma cell’),
l25: udef q rel〈111:146〉(x23, RSTR: h27, BODY: h26),
l28: compound rel〈111:146〉(e30, ARG1: x23, ARG2: x29),
l31: udef q rel〈111:146〉(x29, RSTR: h33, BODY: h32),
l104: differentiation n of〈130:146〉(x23, ARG1: u35) },
{ h4 qeq l17, h8 qeq l10, h15 qeq l16, h18 qeq l20, h27 qeq l28,

h33 qeq l34 },
{ l10 in-g l101, l20 in-g l102, l20 in-g l103, l28 in-g l104 }

Figure 1: RMRS representation of the sentence Thus NF-
kappa B activation requires neuroblastoma cell differ-
entiation showing, in order, elementary predicates, qeq-
constraints, and in-g constraints

The primary component of an RMRS is bag of ele-
mentary predicates, or EPs. Each EP shown has: (a)
a label, such as ‘l104’; (b) a predicate name, such as
‘ differentiation n 1’ (where ‘n’ indicates the part-
of-speech); (c) character indices to the source sen-
tence; and (d) a set of arguments. The first argu-
ment is always ARG0 and is afforded special sta-
tus, generally referring to the variable introduced by
the predicate. Subsequent arguments are labelled ac-
cording to the relation of the argument to the pred-
icate. Arguments can be variables such as ‘e30’ or
‘x23’ (where the first letter indicates the nature of
the variable – ‘e’ referring to events and ‘x’ to enti-
ties), or handles such as ‘h33’.

These handles are generally used in the qeq con-
straints, which relate a handle to a label, indicating
a particular kind of outscoping relationship between
the handle and the label – either that the handle and
label are equal or that the handle is equal to the label
except that one or more quantifiers occur between
the two (the name is derived from ‘equality mod-
ule quantifiers’). Finally there are in-g constraints
which indicate that labels can be treated as equal.
For our purposes this simply affects which qeq con-
straints they participate in – for example from the
in-g constraint ‘l28 in-g l104’ and the qeq constraint

‘h27 qeq l28’, we can also infer that ‘h27 qeq l104’.
In constructing features, we make use of:

• The outscopes relationship (specifically qeq-
outscopes) – if EP A has a handle argument
which qeq-outscopes the label of EP B, A is
said to immediately outscope B ; outscopes is
the transitive closure of this.

• The shared-argument relationship, where EPs
C and D refer to the same variable in one
or more of their argument positions. We also
in some cases make further restrictions on the
types of arguments (ARG0 , RSTR , etc) that
may be shared on either end of the relationship.

2.2.3 Feature Sets and Classification
Feature vectors for a given event are constructed

on the basis of the trigger word for the particular
event, which we assume has already been identified;
a natural consequence is that all events with the same
trigger words have identical feature vectors. We use
the term trigger EPs to describe the EP(s) which cor-
respond to that trigger word – i.e. those whose char-
acter span encompasses the trigger word. We have
a potentially large set of related EPs (with the kinds
of relationships described above), which we filter to
create the various feature sets, as outlined below.

We have several feature sets targeted at identify-
ing negation:

• NEGOUTSCOPE2: If any EPs in the RMRS
have predicate names in { no q, but+not c,
nor c, only a, never a, not+as+yet a,
not+as+yet a, unable a, neg rel}, and that

EP outscopes a trigger EP, set a general feature
as well as a specific one for the particle.

• NEGCONJINDEX: If any EPs in the RMRS
have predicate names in { not c, but+not c,
nor c}, the R-INDEX (RHS of a conjunction)

of that EP is the ARG0 a trigger EP, set a gen-
eral feature as well as a specific one for the par-
ticle – capturing the notion that these conjunc-
tions are semantically negative for the particle
on the right. This also had a corresponding fea-
ture for the L-INDEX of nor c, corresponding
to the LHS of the neither...nor construction.

79



• ARG0NEGOUTSCOPEESA: For any EPs
which have an argument that matches the
ARG0 of a trigger EP, if they are outscoped
by an EP whose predicate name is in
the list { only a, never a, not+as+yet a,
not+as+yet a, unable a, neg rel}, set a gen-

eral feature to true, as well as features for the
name of the outscoping and outscoped EPs.
This is designed to catch trigger EP which are
nouns, where the verb of which they are subject
or object (or indeed an adjective/preposition to
which they are linked) is semantically negated.

And several targeted at identifying speculation:

• SPECVOBJ2: if a verb is a member of
the set { investigate, study, examine, test,
evaluate, observe} and its ARG2 (which cor-

responds to the verb object) is the ARG0 of a
trigger EP. This has a general feature for if any
of the verbs match, and a feature which is spe-
cific to each verb in the target list.

• SPECVOBJ2+WN: as above, but augment the
list of seed verbs with a list of WordNet sisters
(i.e. any lemmas from any synsets for the verb),
and add a feature which is set for the seed verbs
which gave rise to other sister verbs.

• MODALOUTSCOPE: modal verbs (can, should,
etc) may be strong indicators of specula-
tion; this sets a value when the trigger EP is
outscoped by any predicate corresponding to a
modal, both as a general feature and a specific
feature for the particular modal.

• ANALYSISSA: the ARG0 of the trigger EP is
also an argument of an EP with the predicate
name analysis n. Such constructions involv-
ing the word analysis are relatively frequent in
speculative events in the data.

And some general features, aiming to see if the
learning algorithm could pick up other patterns we
had missed:

• TRIGPREDPROPS: Set a feature value for the
predicate name of each trigger EP, as well as
the POS of each trigger EP.

• TRIGOUTSCOPES: Set a feature value for the
predicate name and POS of each EP that is
outscoped by the trigger EP.

• MODADJ: Set a feature value for any EPs
which have an ARG1 which matches the ARG0
of the trigger EP if their POS is marked as ad-
jective or adverb.

• +CONJ: This is actually a variant on the feature
extraction method, which attempts to abstract
away the effect of conjunctions. If the trigger
EP is a member of a conjunction (i.e. shares
an ARG0 with the L-INDEX or R-INDEX of a
conjunction), also treat the EPs which are con-
junction parents (and their conjunctive parents
if they exist) as trigger EPs in the feature con-
struction.

2.2.4 Implementation
To produce training data to feed into a classifier,

we parsed as many sentences as possible using the
ERG, and used the output RMRSs to create train-
ing data using various combinations of the feature
sets described above. The construction of features,
however, presupposes annotations for the events and
trigger words. For producing training data, we used
the provided trigger annotations. For the test phase,
we simply use the outputs of the classifier we built
in phase 1, selecting the combination with the best
performance over the development set. This pipeline
architecture places limits on annotation performance
– in particular, the recall in task 1 is an upper bound
on task 3 recall. We used a maximum entropy clas-
sification algorithm for the ML component here – it
has a low level of parameterization and is a solid per-
former in NLP tasks. The implementation we used
was Zhang Le’s Maxent Toolkit.2

3 Development experiments

3.1 Task 1
We devised a set of experiments over the trial, train-
ing, and development data in order to estimate the
parameters for our final submission. Using the trial
data, we performed manual error analysis on the
rules used to construct events. With the training

2http://homepages.inf.ed.ac.uk/s0450736/
maxent_toolkit.html

80



data, we performed our own evaluation based on
cross-validation to detect trigger words and con-
struct events. For the experiments over the devel-
opment data, we relied on the evaluation interface
provided by the organisation. We focused on testing
the following modules: look-up tagger, CRF, com-
bined system, and event construction.

First, we tuned the parameters of our look-up tag-
ger over the training data. We used a threshold on
the minimum number of term occurrences required
to use the class information for that term from the
training data. We evaluated thresholding on raw fre-
quencies, and also on the percentage of occurrences
of the term that were linked to the majority event. In
cross-validation over the training data, we found that
the raw-frequency threshold worked best, achiev-
ing a maximum F-score of 38.86%, as compared to
30.81% for the percentage approach (the results are
shown in the bottom part of Table 1). We also es-
timated the frequency threshold as ≥ 25, and ob-
served that most of the terms identified consisted of
a single word, due to data sparseness in the training
set.

Our next experiments are devoted to the CRF sys-
tem, focusing on feature engineering. The results
over the training data for: (a) the full feature set, and
(b) removing one feature type at a time, are shown
in Table 1, for windows of size ±3 and ±4. We can
see that the best F-score is achieved by the±3 word-
window system when removing the syntactic depen-
dencies from Bikel’s parser. These results improved
over the look-up system.

As a final experiment on feature combinations
and window size, we used the development evalu-
ation interface. We submitted the best combinations
shown in the above experiment, and also syntactic
dependencies extracted with GDep. We observed
the same behaviour as in training data, with the ±3
word window obtaining the best F-score, and syn-
tactic dependencies harming performance. These re-
sults are shown in the upper part of Table 2. Our
final CRF system used this configuration (±3 word
window and all feature types except syntactic depen-
dencies).

Our next step was to test the integration of the
look-up tagger and CRF into a single system. We
observed that by combining the outputs directly we

W. size Feats. Rec. Prec. FSc.
±3 All 30.28 64.44 41.20
±3 −synt. dep. 30.20 65.01 41.24
±3 −protein NER 28.04 65.73 39.31
±3 −chunking 30.13 65.16 41.20
±3 −POS 29.68 65.25 40.80
±3 −lemma 27.96 62.60 38.66
±3 −word form 29.98 63.81 40.79
±4 All 28.86 66.15 40.19
±4 −synt. dep. 29.75 67.06 41.22
±4 −protein NER 28.11 66.73 39.56
±4 −chunking 28.56 66.61 39.98
±4 −POS 28.19 66.67 39.62
±4 −lemma 26.55 65.20 37.73
±4 −word form 28.19 65.28 39.38
Look-up (freq.) 52.14 30.97 38.86
Look-up (perc.) 38.20 25.82 30.81

Table 1: Trigger-word detection performance over train-
ing data. Results for the look-up tagger and CRFs with
the full feature set and when removing one feature type
at a time, for 3 and 4 word windows. The best results per
column are shown in bold.

W. size Feats. Rec. Prec. FSc.
±3 All - synt. 17.55 56.17 26.75
±4 All - synt. 17.38 56.75 26.62
±3 All (GDep) 15.48 58.69 24.50
Combined (All) 26.94 27.83 27.38
Combined (Best) 21.24 39.92 27.73

Table 2: Performance of selected feature and window-
size combinations over development data. Best results
per column are given in bold.

could improve over the recall of CRF, and achieve
higher F-score. This approach is referred to as
“Combined (All)” in Table 2. We also tested the
results when choosing either the look-up tagger or
CRF depending on their performance over each
event in the training data. The results of this sys-
tem (“Combined (Best)”) show a slight improve-
ment over the basic combination.

Finally, we analysed the results of the event con-
struction step. We used the gold-standard trigger an-
notation over the trial data and analysed the errors of
our rules. We found out that there were three main
types of error: (1) incorrect assignation of regulation
themes; (2) trigger words having multiple themes;
and (3) themes crossing sentence boundaries. We
plan to address these problems in future work. We
also observed that predicting CAUSE for the regula-
tory events caused the F-score to drop, resulting in
us removing this functionality from the system.

81



N1: NEGOUTSCOPE2+CONJ, NEGCONJINDEX
N2: N1, TRIGPREDPROPS
N3: N1, ARG0NEGOUTSCOPEESA
N4: N3, TRIGPREDPROPS, NEGVOUTSCOPE
N5: N3, NEGVOUTSCOPE

S1: SPECVOBJ2+WN+CONJ, ANALYSISSA
S2: S1, TRIGPREDPROPS
S3: S1, MODADJ, MODALOUTSCOPE
S4: S3, TRIGOUTSCOPES
S5: SPECVOBJ2+WN+CONJ, MODADJ,

MODALOUTSCOPE,TRIGOUTSCOPES

B+y
−x: Context window of lemmatized tokens: x preceding and y

following.

Table 3: Task 3 feature sets

3.2 Task 3

We evaluated the classification performance of vari-
ous feature sets (including some not described here)
using 10-fold cross-validation over the training data
in the initial stages. We ran various combinations of
the most promising features over the development
data and evaluated their relative performance in an
attempt to avoid overfitting.

To evaluate the performance boost we got in task
3 relative to more naive methods, we also experi-
mented with feature sets based on a bag-of-words
approach with a sliding context window of lemma-
tised tokens on either side. We evaluated all com-
binations of preceding and following context win-
dow sizes from 0 to 3. There are features for tokens
that precede the trigger, follow the trigger, or lie any-
where within the context window, as well as for the
trigger itself. A ‘token’ here may also be a named
biological entity (protein etc) produced by GENIA
tagger in our preprocessing phase, which would not
be lemmatised. For comparability we only evaluate
these features for sentences which we were able to
parse. For the best performing baseline and RMRS-
based feature sets, we also tested them in combina-
tion to see whether the features produced were com-
plementary.

In Table 4 we present the results over the develop-
ment data, using the provided gold-standard annota-
tions of trigger words, as well as some selected re-
sults for our other task 1 outputs. The gold-standard
figures are unrealistically high compared to what
we would expect to achieve against the test data,
but they are indicative at least of what we could
achieve with a perfect event classifier. Similar to

Task 1 Mod Feats. Rec. Prec. FSc.
Gold Spec B+2

−2 23.2 40.0 29.3
Gold Spec B+3

−3 22.1 47.7 30.2
Gold Spec S2 15.8 83.3 26.5
Gold Spec S3 18.9 78.3 30.5
Gold Spec S3,B+2

−2 21.1 58.8 31.0
Gold Spec S3,B+3

−3 23.2 57.9 33.1
Comb(best) Spec S3 4.2 21.0 7.0
Gold Spec S4 17.9 94.4 30.1
Gold Spec S5 17.9 100.0 30.4
Gold Neg B+0

−2 14.0 33.3 19.7
Gold Neg B+1

−3 15.0 30.2 20.0
Gold Neg N2 19.6 61.8 29.8
Comb(best) Neg N2 0.9 7.7 1.7
Gold Neg N3 15.9 68.0 25.8
Gold Neg N4 19.6 67.7 30.4
Gold Neg N4,B+1

−3 22.4 52.2 31.4
Gold Neg N4,B+0

−2 24.3 68.4 35.9
Gold Neg N5 16.8 69.2 30.1

Table 4: Results (exact match) over development data
for task 3 using gold-standard event/trigger annotations
and selected other annotations for task 1. Feature sets
described in Table 3

task 1, our system shows reasonable precision but
suffers badly in recall. The substantially poorer per-
formance when using our own annotations for the in-
put events is discussed in more detail in Section 4.2

One area where we could improve is to go after
the 30% of sentences for which we do not have a
spanning parse and resultant RMRS. To reuse ex-
isting infrastructure, we could produce RMRS out-
put from an alternative processing component with
broader coverage but less precision. Several meth-
ods exist to do this – e.g. producing RMRS out-
put from RASP (Briscoe et al., 2006) is described in
Frank (2004). However there is clearly room for im-
provement in the remaining 70% of sentences which
we can parse – our results in Table 4 are still well
below the limit of roughly 70% recall.3

Additional lexical resources beyond WordNet,
particularly domain-specific ones, are likely to be
useful in boosting performance since they will help
maximally utilise the training data. Additionally,
we have not yet made use of other event annota-
tions apart from the trigger words – features based
on characteristics such as the event class or proper-
ties of the event arguments could also be useful.

3We have not performed any analysis to verify whether the
number of events per sentence differs between parseable and
unparseable sentences.

82



System Rec. Prec. FSc.
Combined (Best) 17.44 39.99 24.29
Combined (All) 24.36 30.87 27.23
CRF 12.23 62.24 20.44
CRF (+ synt feats) 12.01 61.91 20.11
Look-Up 22.88 29.67 25.84
Look-Up (freq >= 20) 23.26 26.74 24.88
Look-Up (freq >= 30) 21.37 30.50 25.13

Table 5: Task 1 results with approximate span matching,
recursive evaluation (our final submission is in bold)

4 Results

4.1 Task 1

Our experiments on the training and development set
showed that our CRF++ was biased towards preci-
sion at the cost of recall, and for the look-up system
the best F-score was obtained when aiming for high
recall at the cost of lower precision. The best results
were obtained when combining both approaches,
and this was the composition of the system we sub-
mitted.

For our final submission, the CRF++ approach
had a ±3 word window, and all the features ex-
cept for syntactic dependencies, which were found
to harm performance. Our final look-up system re-
lied on raw frequencies to choose candidate terms,
and those above 24 occurrences in training data were
included in the dictionary. For the combination, we
observed that for most events the look-up system
performed better (although the overall F-score was
lower), and we decided to use the CRF++ output
only for the events that showed better performance
than the look-up system (TRANSCRIPTION, GENE

EXPRESSION, and POSITIVE REGULATION).
The results over the test data for our final submis-

sion and the main variants we explored are shown in
Table 5. We can see that the CRF performed poorly,
with very low recall over the test set, in contrast with
the development results, where the higher recall re-
sulted in a higher F-score than the look-up approach.
The best of our systems was the full combination of
CRF and the look-up tagger, with a 27.23% F-score.

The results for each event separately are given in
Table 6. The system performs much worse on regu-
lation events, due to the difficulty of having to cor-

Event Class Rec. Prec. FSc.
Localization 25.86 65.22 37.04
Binding 17.00 28.92 21.42
Gene-expression 45.71 69.18 55.05
Transcription 34.31 26.26 29.75
Protein-catabolism 42.86 85.71 57.14
Phosphorylation 45.19 64.21 53.04
EVT-TOTAL 35.84 53.15 42.81
Regulation 15.46 13.24 14.26
Positive-regulation 13.84 14.82 14.31
Negative-regulation 12.14 20.44 15.23
REG-TOTAL 13.73 15.31 14.48
ALL-TOTAL 24.36 30.87 27.23

Table 6: Results for the different events from our com-
bined system. Averaged scores for single events, regula-
tions, and all.

rectly identify other events in the near context.

4.2 Task 3

For testing, we repurposed all of the development
data as training data and retrained our classifiers.
The results in Table 7 were somewhat disappointing,
but a drop in recall versus the equivalent run over
the development data using oracle task 1 annotations
was unsurprising and the ratio of this drop is within
the bounds of what we would expect. The substan-
tial drop in precision can similarly be explained by
flow-on effects from our task 1 classification, a nat-
ural consequence of our pipeline architecture. It is
quite possible for our system to identify false pos-
itive events as being modified; in the online eval-
uation system, these classifications of non-existent
events reduce our precision in task 3.

In the feature engineering stage, we primarily
used the oracle data for task 1 to maximise the
amount of training data available. We felt that if we
were to use our task 1 classifications for events and
trigger words, the effectively lower number of train-
ing instances would only hurt performance. How-
ever this possibly led to bias towards features which
were more useful for classifying events that we
couldn’t successfully classify in task 1. The devel-
opment set shows similar performance drops under
these conditions in Table 4.

It is also possible that our features work reason-
ably but that our classification engine trained over
the oracle data simply learnt the wrong parameters

83



Task 1 Mod Fts. Rec. Prec. FSc.
Comb(Best) Spc B+3

−3 2.88 12.24 4.67
Comb(Best) Spc S2 4.33 37.50 7.76
Comb(Best) Spc S3 4.81 30.30 8.30
Comb(All) Spc S3 5.29 26.19 8.80
Comb(Best) Spc S3,B+3

−3 4.81 14.08 7.17
Comb(Best) Spc S4 3.85 27.59 6.75
Comb(Best) Spe S5 3.85 27.59 6.75
Comb(Best) Neg B+3

−1 3.96 25.00 6.84
Comb(Best) Neg N2 5.29 34.48 9.17
Comb(All) Neg N2 5.73 30.00 9.62
Comb(Best) Neg N3 5.29 27.78 8.88
Comb(Best) Neg N4 5.29 34.48 9.17
Comb(Best) Neg N4,B+0

−2 4.85 28.12 8.27
Comb(All) Neg N4 5.73 27.27 9.47
Comb(Best) Neg N5 5.29 29.41 8.96

Table 7: Results over test data for task 3 using gold-
standard event annotations (approx recursive matching),
showing which set of trigger word classifications from
task 1 was used as input (submitted results in bold). Fea-
ture sets described in table 3

for the events we had identified correctly in task 1.
We could check this by training a classifier using
our task 1 event classifications combined with the
gold-standard trigger annotations. However com-
bining the gold-standard annotations for task 3 with
the classifier outputs of task 1 is non-trivial and was
not attempted due to time constraints. It also would
have been instructive to calculate a ceiling on our
task 3 performance given our performance in task 1
– i.e. how many modifications we could have cor-
rectly identified with a perfect task 3 classifier, but
we were not able to show this for similar reasons.

5 Conclusions

Our analysis of task 1 seemed to indicate that the
scarcity of training instances was the main reason
for the low recall of CRFs. The look-up system con-
tributed to increase the recall, but at the cost of lower
precision. In order to improve this module we plan
to find ways to extend the training data automatically
in a bootstrapping process.

Another limitation of our system is the event-
construction module, which follows simple rules
and performs poorly on regulation events. For this
subtask we plan to extend the rule set and apply op-
timisation techniques, following the lessons learned
in error analysis.

In task 3 we investigated the application of a pre-

cise, general-purpose grammar over this domain,
and were relatively successful. However, while the
parse coverage for task 3 is very respectable for a
precision grammar on comparatively difficult mate-
rial, it is clearly unwise to throw away 30% of sen-
tences, so a method to extract features from these is
desirable. Further sources of data would also be use-
ful, such as data from the event annotations them-
selves, and additional lexical resources tailored to
the biomedical domain.

We have also shown the syntactico-semantic out-
put of a deep parser, in the form of an RMRS, can
be beneficial in such a task compared with a more
naive approach based on bags of words within a
sliding context window. From Table 4, for nega-
tion, the syntactic features provided substantial per-
formance gains over the best set of baseline param-
eters we could find. For speculation the evidence
here is less compelling, with similar scores from
both approaches. Over test data in Table 7, the the
deep methods showed superior performance, albeit
over a smaller number of instances. Regardless, the
RMRS still has some advantages, giving (unsurpris-
ingly) higher precision than the baseline methods.
Combining naive and deep features does tend to give
slightly higher performance than either of the inputs
over the development data (although not over the test
data, perhaps due to the poorer performance of naive
methods), suggesting that the two approaches iden-
tify slightly different kinds of modification.

Our system suffered from the pipeline approach –
there was no way to recover from an incorrect classi-
fication in task 1, resulting in greatly reduced preci-
sion and recall in task 3. It is possible that a carefully
constructed integrated system could annotate events
for trigger words and argument at the same time as
modification, with features shared between the two,
which may avoid some of these issues.

Acknowledgements

We wish to thank Rebecca Dridan, Dan Flickinger
and Lawrence Cavedon for their advice. NICTA
is funded by the Australian Government as repre-
sented by the Department of Broadband, Communi-
cations and the Digital Economy and the Australian
Research Council through the ICT Centre of Excel-
lence program.

84



References
Edward Briscoe, John Carroll, and Rebecca Watson.

2006. The second release of the RASP system. In Pro-
ceedings of the COLING/ACL 2006 Interactive Poster
System, pages 77–80, Sydney, Australia.

Ann Copestake and Dan Flickinger. 2000. An open
source grammar development environment and broad-
coverage English grammar using HPSG. In Interna-
tional Conference on Language Resources and Evalu-
ation.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl
Pollard. 2005. Minimal recursion semantics: An in-
troduction. Research on Language and Computation,
pages 281–332.

Ann Copestake. 2004. Report on the design of RMRS.
Technical Report D1.1a, University of Cambridge,
Cambridge, UK.

Anette Frank. 2004. Constraint-based RMRS construc-
tion from shallow grammars. In COLING ’04: Pro-
ceedings of the 20th international conference on Com-
putational Linguistics, page 1269, Morristown, NJ,
USA. Association for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando Pereira.
2001. Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In Pro-
ceedings of the International Conference on Machine
Learning, pages 282–289.

Katrin Tomanek, Joachim Wermter, and Udo Hahn.
2007. Sentence and token splitting based on condi-
tional random fields. In Proceedings of the 10th Con-
ference of the Pacific Association for Computational
Linguistics, pages 49–57, Melbourne, Australia.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin-Dong Kim,
Tomoko Ohta, John McNaught, Sophia Ananiadou,
and Jun’ichi Tsujii. 2005. Developing a robust part-
of-speech tagger for biomedical text. In Advances in
Informatics - 10th Panhellenic Conference on Infor-
matics, pages 382–392.

85


