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Abstract

In this paper we describe our entry to the
BioNLP 2009 Shared Task regarding bio-
molecular event extraction. Our work can
be described by three design decisions: (1)
instead of building a pipeline using local
classi�er technology, we design and learn
a joint probabilistic model over events in
a sentence; (2) instead of developing spe-
ci�c inference and learning algorithms for
our joint model, we apply Markov Logic, a
general purpose Statistical Relation Learn-
ing language, for this task; (3) we represent
events as relational structures over the to-
kens of a sentence, as opposed to structures
that explicitly mention abstract event en-
tities. Our results are competitive: we
achieve the 4th best scores for task 1 (in
close range to the 3rd place) and the best
results for task 2 with a 13 percent point
margin.

1 Introduction

The continuing rapid development of the Inter-
net makes it very easy to quickly access large
amounts of data online. However, it is impossi-
ble for a single human to read and comprehend a
signi�cant fraction of the available information.
Genomics is not an exception, with databases
such as MEDLINE storing a vast amount of
biomedical knowledge.
A possible way to overcome this is informa-

tion extraction (IE) based on natural language
processing (NLP) techniques. One speci�c IE
sub-task concerns the extraction of molecular
events that are mentioned in biomedical liter-
ature. In order to drive forward research in this

domain, the BioNLP Shared task 2009 (Kim
et al., 2009) concerned the extraction of such
events from text. In the course of the shared task
the organizers provided a training/development
set of abstracts for biomedical papers, annotated
with the mentioned events. Participants were
required to use this data in order to engineer
a event predictor which was then evaluated on
unseen test data.

The shared task covered three sub-tasks. The
�rst task concerned the extraction of events
along with their clue words and their main argu-
ments. Figure 1 shows a typical example. The
second task was an extension of the �rst one,
requiring participants to not only predict the
core arguments of each event, but also the cel-
lular locations the event is associated with in
the text. The events in this task were simi-
lar in nature to those in �gure 1, but would
also contain arguments that are neither events
nor proteins but cellular location terms. In con-
trast to the protein terms, cellular location terms
were not given as input and had to be predicted,
too. Finally, for task 3 participants were asked
to extract negations and speculations regarding
events. However, in our work we only tackled
Task 1 and Task 2, and hence we omit further
details on Task 3 for brevity.

Our approach to biomedical event extraction
is inspired by recent work on Semantic Role La-
belling (Meza-Ruiz and Riedel, 2009; Riedel and
Meza-Ruiz, 2008) and can be characterized by
three decisions that we will illustrate in the fol-
lowing. First, we do not build a pipelined sys-
tem that �rst predicts event clues and cellular
locations, and then relations between these; in-
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stead, we design and learn a joint discrimina-
tive model of the complete event structure for
a given sentence. This allows us to incorporate
global correlations between decisions in a prin-
cipled fashion. For example, we know that any
event that has arguments which itself are events
(such as the positive regulation event in �gure
1) has to be a regulation event. This means that
when we make the decision about the type of
an event (e.g., in the �rst step of a classi�ca-
tion pipeline) independently from the decisions
about its arguments and their type, we run the
risk of violating this constraint. However, in a
joint model this can be easily avoided.

Our second design choice is the following: in-
stead of designing and implementing speci�c in-
ference and training methods for our structured
model, we use Markov Logic, a Statistical Re-
lational Learning language, and de�ne our global
model declaratively. This simpli�ed the imple-
mentation of our system signi�cantly, and al-
lowed us to construct a very competitive event
extractor in three person-months. For example,
the above observation is captured by the simple
formula:

eventType (e, t) ∧ role (e, a, r) ∧ event (a) ⇒
regType (t) (1)

Finally, we represent event structures as rela-
tional structures over tokens of a sentence,
as opposed to structures that explicitly mention
abstract event entities (compare �gure 1 and 2).
The reason is as follows. Markov Logic, for now,
is tailored to link prediction problems where we
may make inferences about the existence of rela-
tions between given entities. However, when the
identity and number of objects of our domain is
unknown, things become more complicated. By
mapping to relational structure over grounded
text, we also show a direct connection to recent
formulations of Semantic Role Labelling which
may be helpful in the future.

The remainder of this paper is organized as
follows: we will �rst present the preprocessing
steps we perform (section 2), then the conversion
to a link prediction problem (section 3). Subse-
quently, we will describe Markov Logic (section
4) and our Markov Logic Network for event ex-
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Figure 1: Example gold annotation for task 1 of the
shared task.
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Figure 2: Link Prediction version of the events in
�gure 1.

traction (section 5). Finally, we present our re-
sults (in section 6) and conclude (section 7).

2 Preprocessing

The original data format provided by the shared
task organizers consists of (a) a collection
biomedical abstracts, and (b) stando� anno-
tation that describes the proteins, events and
sites mentioned in these abstracts. The organiz-
ers also provided a set of dependency and con-
stituent parses for the abstracts. Note that these
parses are based on a di�erent tokenisation of the
text in the abstracts.

In our �rst preprocessing step we convert the
stando� annotation in the original data to stand-
o� annotation for the tokenisation used in the
parses. This allows us to formulate our proba-
bilistic model in terms of one consistent tokeni-
sation (and be able to speak of token instead of
character o�sets). Then we we retokenise the
input text (for the parses) according the protein
boundaries that were given in the shared task
data (in order to split strings such as �p50/p55�).
Finally, we use this tokenisation to once again
adapt the stand-o� annotation (using the previ-
ously adapted version as input).

3 Link Prediction Representation

As we have mentioned earlier, before we learn
and apply our Statistical Relational Model, we
convert the task to link prediction over a se-
quence of tokens. In the following we will present
this transformation in detail.
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To simplify our later presentation we will �rst
introduce a formal representation of the events,
proteins and locations mentioned in a sentence.
Let us simply identify both proteins and cellular
location entities with their token position in the
sentence. Furthermore, let us describe an event e
as a tuple (i, t, A) where i is the token position of
the clue word of e and t is the event type of e; A
is a set of labelled arguments (a, r) where each a
is either a protein, location or event, and r is the
role a plays with respect to e. We will identify
the set of all proteins, locations and events for a
sentence with P , L and E, respectively.
For example, in �gure 1 we have P =

{4, 7} , L = ∅ and E = {e13, e14, e15} with

e15 = (5, gene_expr, {(4,Theme)})
e14 = (2, pos_reg, {(e15,Theme) , (7,Cause)})
e13 = (1, neg_reg, {(e14,Theme)})

3.1 Events to Links

As we mentioned in section 1, Markov Logic (or
its interpreters) are not yet able to deal with
cases where the number and identity of entities is
unknown, while relations/links between known
objects can be readily modelled. In the follow-
ing we will therefore present a mapping of an
event structure E to a labelled relation over to-
kens. Essentially, we project E to a pair (L,C)
where L is a set of labelled token-to-token links
(i, j, r), and C is a set of labelled event clues
(i, t). Note that this mapping has another ben-
e�t: it creates a �predicate-argument� structure
very similar to most recent formulations of Se-
mantic Role Labelling (Surdeanu et al., 2008).
Hence it may be possible to re-use or adapt the
successful approaches in SRL in order to improve
bio-molecular event extraction. Since our ap-
proach is inspired by the Markov Logic role la-
beller in (Riedel and Meza-Ruiz, 2008), this work
can be seen as an attempt in this direction.
For a sentence with given P , L and E, algo-

rithm 1 presents our mapping from E to (L,C).
For brevity we omit a more detailed description
of the algorithm. Note that for our running ex-
ample eventsToLinks would return

C = {(1, neg_reg) , (2, pos_reg) , (5, gene_expr)}
(2)

Algorithm 1 Event to link conversion

/* returns all clues C and links L given
by the events in E */

1 function eventsToLinks (E):
2 C ← ∅, L← ∅
3 for each event (i, t, A) ∈ E do
4 C ← C∪{(i, t)}
5 for each argument (a, r) ∈ A do
6 if a is an event (i′, t′, A′) do
7 L← L∪{(i, i′, r)} with a = (i′, t′, A′)
8 else
9 L← L ∪ {(i, a, r)}
10 return (C, L)

and

L = {(1, 2,Theme) , (2, 5,Theme) ,

(2, 7,Cause) , (5, 4,Theme)} . (3)

3.2 Links to Events

The link-based representation allows us to sim-
plify the design of our Markov Logic Network.
However, after we applied the MLN to our data,
we still need to transform this representation
back to an event structure (in order to use or
evaluate it). This mapping is presented in al-
gorithm 2 and discussed in the following. Note
that we expect the relational structure L to be
cycle free. We again omit a detailed discussion of
this algorithm. However, one thing to notice is
the special treatment we give to binding events.
Roughly speaking, for the binding event clue c
we create an event with all arguments of c in
L. For a non-binding event clue c we �rst col-
lect all roles for c, and then create one event per
assignment of argument tokens to these roles.

If we would re-convert C and L from equation
2 and 3, respectively, we could return to our orig-
inal event structure in �gure 1. However, con-
verting back and forth is not loss-free in general.
For example, if we have a non-binding event in
the original E set with two arguments A and B
with the same role Theme, the round-trip con-
version would generate two events: one with A
as Theme and one with B as Theme.

4 Markov Logic

Markov Logic (Richardson and Domingos, 2006)
is a Statistical Relational Learning language
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Algorithm 2 link to event conversion. Assume:
no cycles; tokens can only be one of protein, site
or event; binding events have only protein argu-
ments.

/* returns all events E specified

by clues C and links L */
1 function linksToEvents (C, L)

2 return
S

(i,t)∈C resolve (i, C, L)

/* returns all events for

the given token i */
1 function resolve (i, C, L)
2 if no t with (i, t) ∈ C return {i}
3 t← type (i, C)

4 if t = binding return {(i, t, A)} with
5 A = {(a, r) | (i, a, r) ∈ L}
6 Ri ← {r′|∃a : (i, a, r) ∈ L}
7 for each role r ∈ Ri do
8 Ar ← {a| (i, a, r) ∈ L}
9 Br ←

S
a∈Ar

{(resolve (a) , r)}
10 return

S
A∈expand(Br1 ,...,Brn ) {(i, t, A)}

/* returns all possible argument
sets for Br1 , . . . , Brn */

1 function expand (Br1 , . . . , Brn )
2 if n = 1 return Brn

3 returnS
a∈Br1

S
A∈expand(Br2 ,...,Brn ) {(a, r1)} ∪A

based on First Order Logic and Markov Net-
works. It can be seen as a formalism that ex-
tends First Order Logic to allow formulae that
can be violated with some penalty. From an al-
ternative point of view, it is an expressive tem-
plate language that uses First Order Logic for-
mulae to instantiate Markov Networks of repet-
itive structure.

Let us introduce Markov Logic by considering
the event extraction task (as relational structure
over tokens as generated by algorithm 1). In
Markov Logic we can model this task by �rst
introducing a set of logical predicates such as
eventType(Token,Type), role(Token,Token,Role)
and word(Token,Word). Then we specify a set of
weighted �rst order formulae that de�ne a distri-
bution over sets of ground atoms of these pred-
icates (or so-called possible worlds). Note that
we will refer predicates such as word as observed
because they are known in advance. In contrast,
role is hidden because we need to infer its ground
atoms at test time.

Ideally, the distribution we de�ne with these
weighted formulae assigns high probability to
possible worlds where events are correctly iden-
ti�ed and a low probability to worlds where this
is not the case. For example, in our running ex-
ample a suitable set of weighted formulae would
assign a higher probability to the world

{word (1, prevented) , eventType (1, neg_reg) ,

role(1, 2,Theme), event(2), . . .}

than to the world

{word (1, prevented) , eventType (1, binding) ,

role(1, 2,Theme), event(2), . . .}

In Markov Logic a set of weighted �rst order for-
mulae is called a Markov Logic Network (MLN).
Formally speaking, an MLN M is a set of pairs
(φ,w) where φ is a �rst order formula and w a
real weigh t. M assigns the probability

p (y) =
1
Z

exp


 ∑

(φ,w)∈M

w
∑

c∈Cφ

fφ
c (y)


 (4)

to the possible world y. Here Cφ is the set of all
possible bindings of the free variables in φ with
the constants of our domain. fφ

c is a feature
function that returns 1 if in the possible world y
the ground formula we get by replacing the free
variables in φ by the constants in the binding
c is true and 0 otherwise. Z is a normalisation
constant.

4.1 Inference and Learning

Assuming that we have an MLN, a set of weights
and a given sentence, we need to predict the
choice of event clues and roles with maximal
a posteriori probability (MAP). To this end
we apply a method that is both exact and ef-
�cient: Cutting Plane Inference Riedel (2008,
CPI) with Integer Linear Programming (ILP) as
base solver.
In order to learn the weights of the MLN

we use the 1-best MIRA Crammer and Singer
(2003) Online Learning method. As MAP infer-
ence method that is applied in the inner loop of
the online learner we apply CPI, again with ILP
as base solver. The loss function for MIRA is a
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weighted sum FP +αFN where FP is the num-
ber of false positives, FN the number of false
negatives and α = 0.01.

5 Markov Logic Network for Event
Extraction

We de�ne four hidden predicates our task:
event(i) indicates that there is an event with
clue word i; eventType(i,t) denotes that at token
i there is an event with type t; site(i) denotes a
cellular location mentioned at token i; role(i,j,r)
indicates that token i has the argument j with
role r. In other words, the four hidden predicates
represent the set of sites L (via site), the set of
event clues C (via event and eventType) and the
set of links L (via role) presented in section 3.
There are numerous observed predicates we

use. Firstly, the provided information about
protein mentions is captured by the predicate
protein(i), indicating there is a protein mention
ending at token i. We also describe event types
and roles in more detail: regType( t) holds for
an event type t i� it is a regulation event type;
task1Role(r) and task2Role(r) hold for a role r
if is a role of task 1 (Theme, Cause) or task 2
(Site, CSite, etc.).
Furthermore, we use predicates that de-

scribe properties of tokens (such as the word
or stem of a token) and token pairs (such
as the dependency between two tokens); this
set is presented in table 1. Here the path
and pathNL predicates may need some fur-
ther explanation. When path(i,j,p,parser) is
true, there must be a labelled dependency
path p between i and j according to the
parser parser. For example, in �gure 1 we
will observe path(1,5,dobj↓prep_of↓,mcclosky-
charniak). pathNL just omits the depen-
dency labels, leading to path(1,5,↓↓,mcclosky-
charniak) for the same example.
We use two parses per sentence: the outputs

of a self-trained reranking parser Charniak and
Johnson (2005); McClosky and Charniak (2008)
and a CCG parser (Clark and Curran, 2007),
provided as part of the shared task dataset. As
dictionaries we use a collection of cellular lo-
cation terms taken from the Genia event cor-
pus (Kim et al., 2008), a small handpicked set of
event triggers and a list of English stop words.

Predicate Description

word(i,w) Token i has word w.

stem(i,s) i has (Porter) stem s.

pos(i,p) i has POS tag p.

hyphen(i,w) i has word w after last hyphen.

hyphenStem(i,s) i has stem s after last hyphen.

dict(i,d) i appears in dictionary d.

genia(i,p) i is event clue in the Genia

corpus with precision p.

dep(i,j,d,parser) i is head of token j with

dependency d according to

parser parser.

path(i,j,p,parser) Labelled Dependency path

according to parser parser

between tokens i and j is p.

pathNL(i,j,p,parser) Unlabelled dependency path

according to parser p between

tokens i and j is path.

Table 1: Observable predicates for token and token
pair properties.

5.1 Local Formulae

A formula is local if its groundings relate any
number of observed ground atoms to exactly one
hidden ground atom. For example, the ground-
ing

dep (1, 2, dobj, ccg) ∧ word (1, prevented) ⇒
eventType (2, pos_reg) (5)

of the local formula

dep(h, i, d, parser) ∧ word (h, +w) ⇒
eventType(i,+t) (6)

connects a single hidden eventType ground atom
with an observed word and dep atom. Note that
the �+� pre�x for variables indicates that there is
a di�erent weight for each possible pair of word
and event type (w, t).

5.1.1 Local Entity Formulae

The local formulae for the hidden event/1
predicate can be summarized as follows. First,
we add a event (i) formula that postulates the
existence of an event for each token. The weight
of this formulae serves as a general bias for or
against the existence of events.
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Next, we add one formula

T (i,+t) ⇒ event (i) (7)

for each �simple token property� predicate T in
table 1 (those in the �rst section of the table).
For example, when we plug in word for T we get
a formula that encourages or discourages the ex-
istence of an event token based on the word form
of the current token: word (i,+t) ⇒ event (i).
We also add the formula

genia (i, p) ⇒ event (i) (8)

and multiply the feature-weight product for each
of its groundings with the precision p. This is
corresponds to so-called real-valued feature func-
tions, and allows us to incorporate probabili-
ties and other numeric quantities in a principled
fashion.
Finally, we add a version of formula 6 where

we replace eventType(i,t) with event(i).
For the cellular location site predicate we

use exactly the same set of formulae but re-
place every occurrence of event(i) with site(i).
This demonstrates the ease with which we could
tackle task 2: apart from a small set of global
formulae we introduce later, we did not have to
do more than copy one �le (the event model �le)
and perform a search-and-replace. Likewise, in
the case of the eventType predicate we simply
replace event(i) with eventType(i,+t).

5.1.2 Local Link Formulae

The local formulae for the role/3 predicate
are di�erent in nature because they assess two
tokens and their relation. However, the �rst for-
mula does look familiar: role (i, j, +r). This for-
mula captures a (role-dependent) bias for the ex-
istence of a role between any two tokens.
The next formula we add is

dict (i,+di) ∧ dict (j, +dj) ⇒ role (i, j, +r) (9)

and assesses each combination of dictionaries
that the event and argument token are part of.
Furthermore, we add the formula

path (i, j, +p, +parser) ⇒ role (i, j, +r) (10)

that relates the dependency path between two

tokens i and j with the role that j plays with
respect to i. We also add an unlabelled version
of this formula (using pathNL instead of path).
Finally, we add a formula

P (i, j, +p, +parser) ∧ T (i,+t) ⇒
role (i, j, +r) (11)

for each P in {path,pathNL} and T in
{word,stem,pos,dict,protein}. Note that for
T=protein we replace T (i,+t) with T (i).

5.2 Global Formulae

Global formulae relate two or more hidden
ground atoms. For example, the formula in
equation 1 is global. While local formulae can be
used in any conventional classi�er (in the form
of feature functions conditioned only on the in-
put data) this does not hold for global ones.
We could enforce global constraints such as the
formula in equation 1 by building up structure
incrementally (e.g. start with one classi�er for
events and sites, and then predict roles between
events and arguments with another). However,
this does not solve the typical chicken-and-egg
problem: evidence for possible arguments could
help us to predict the existence of event clues,
and evidence for events help us to predict argu-
ments. By contrast, global formulae can capture
this type of correlation very naturally.

Table 2 shows the global formulae we use. We
divide them into three parts. The �rst set of for-
mulae (CORE) ensures that event and eventType
atoms are consistent. In all our experiments we
will always include all CORE formulae; without
them we might return meaningless solutions that
have events with no event types, or types with-
out events.

The second set of formulae (VALID) consist
of CORE and formulae that ensure that the link
structure represents a valid set of events. For
example, this includes formula 12 that enforces
each event to have at least one theme.

Finally, FULL includes VALID and two con-
straints that are not strictly necessary to enforce
valid event structures. However, they do help us
to improve performance. Formula 14 forbids a
token to be argument of more than one event. In
fact, this formula does not hold all the time, but
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# Formula Description

1 event (i)⇒ ∃t.eventType (i, t) If there is an event there should be an event type.

2 eventType (i, t)⇒ event (i) If there is an event type there should be an event.

3 eventType (i, t) ∧ t 6= o⇒ ¬eventType (i, o) There cannot be more than one event type per token.

4 ¬site (i) ∨ ¬event (i) A token cannot be both be event and site.

5 role (i, j, r)⇒ event (i) If j plays the role r for i then i has to be an event.

6 role (i, j, r1) ∧ r1 6= r2 ⇒ ¬role (i, j, r2) There cannot be more than one role per argument.

7 eventType (e, t) ∧ role (e, a, r) ∧ event (a)⇒ regType (t) Only reg. type events can have event arguments.

9 role (i, j, r) ∧ taskOne (r)⇒ event (j) ∨ protein (j) For task 1 roles arguments must be proteins or events

10 role (i, j, r) ∧ taskTwo (r)⇒ site (j) Task 2 arguments must be cellular locations (site).

11 site (j)⇒ ∃i, r.role (i, j, r) ∧ taskTwo (r) Sites are always associated with an event.

12 event (i)⇒ ∃j.role (i, j,Theme) Every events need a theme.

13 eventType (i, t) ∧ ¬allowed (t, r)⇒ ¬role (i, j, r) Certain events may not have certain roles.

14 role (i, j, r1) ∧ k 6= i⇒ ¬role (k, j, r2) A token cannot be argument of more than one event.

15 j < k ∧ i < j ∧ role (i, j, r1)⇒ ¬role (i, k, r2) No inside outside chains.

Table 2: All three sets of global formulae used: CORE (1-3), VALID (1-13), FULL (1-15).

by adding it we could improve performance. For-
mula 15 is our answer to a type of event �chain�
that earlier models would tend to produce.

Note that all formulae but formula 15 are de-
terministic. This amounts to giving them a very
high/in�nite weight in advance (and not learn-
ing it during training).

6 Results

In table 3 we can see our results for task 1 and
2 of the shared task. The measures we present
here correspond to the �approximate span, ap-
proximate recursive match� criterion that counts
an event as correctly predicted if all arguments
are extracted and the event clue tokens approx-
imately match the gold clue tokens. For more
details on this metric we refer the reader to the
shared task overview paper.

To put our results into context: for task 1 we
reached the 4th place among 20 participants, are
in close range to place 2 and 3, and signi�cantly
outperform the 5th best entry. Moreover, we
had highest scoring scores for task 2 with a 13%
margin to the runner-up. Using both training
and development set for training (as allowed by
the task organisers), our task 1 score rises to
45.1, slightly higher than the score of the current
third.

In terms of accuracy across di�erent event
types our model performs worse for binding, reg-

ulation type and transcription events. Binding
events are inherently harder to correctly extract
because they often have multiple core arguments
while other non-regulation events have only one;
just missing one of the binding arguments will
lead to an event that is considered as error with
no partial credit given. If we would give credit
for binding with partially correct arguments our
F-score for binding events would rise to 49.8.

One reason why regulation events are di�cult
to extract is the fact that they often have argu-
ments which themselves are events, too. In this
case our recall is bound by the recall for argu-
ment events because we can never �nd a regu-
lation event if we cannot predict the argument
event. Note that we are still unsure about tran-
scription events, in particular because we ob-
serve 49% F-score for such events in the devel-
opment set.

How does our model bene�t from the global
formulae we describe in section 5 (and which
represent one of the core bene�ts of a Markov
Logic approach)? To evaluate this we compare
our FULL model with CORE and VALID from
table 2. Note that because the evaluation inter-
face rejects invalid event structures, we cannot
use the evaluation metrics of the shared task.
Instead we use table 4 to present an evaluation
in terms of ground atom F1-score for the hidden
predicates of our model. This amounts to a per-
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Task 1 Task 2

R P F R P F

Loc 37.9 88.0 53.0 32.8 76.0 45.8

Bind 23.1 48.2 31.2 22.4 47.0 30.3

Expr 63.0 75.1 68.5 63.0 75.1 68.5

Trans 16.8 29.9 21.5 16.8 29.9 21.5

Cata 64.3 81.8 72.0 64.3 81.8 72.0

Phos 78.5 77.4 77.9 69.1 70.1 69.6

Total 48.3 68.9 56.8 46.8 67.0 55.1

Reg 23.7 40.8 30.0 22.3 38.5 28.2

Pos 26.8 42.8 32.9 26.7 42.3 32.7

Neg 27.2 40.2 32.4 26.1 38.6 31.2

Total 26.3 41.8 32.3 25.8 40.8 31.6

Total 36.9 55.6 44.4 35.9 54.1 43.1

Table 3: (R)ecall, (P)recision, and (F)-Score for task
1 and 2 in terms of event types.

role, per-site and per-event-clue evaluation. The
numbers here will not directly correspond to ac-
tual scores, but generally we can assume that if
we do better in our metrics, we will likely have
better scores.

In table 4 we notice that ensuring consistency
between all predicates has a signi�cant impact
on the performance across the board (see the
VALID results). Furthermore, when adding ex-
tra formulae that are not strictly necessary for
consistency, but which encourage more likely
event structure, we again see signi�cant improve-
ments (see FULL results). Interestingly, al-
though the extra formulae only directly consider
role atoms, they also have a signi�cant impact
on event and particularly site extraction perfor-
mance. This re�ects how in a joint model deci-
sions which would appear in the end of a tradi-
tional pipeline (e.g., extracting roles for events)
can help steps that would appear in the begin-
ning (extracting events and sites).

For the about 7500 sentences in the training
set we need about 3 hours on a MacBook Pro
with 2.8Ghz and 4Gb RAM to learn the weights
of our MLN. This allowed us to try di�erent sets
of formulae in relatively short time.

7 Conclusion

Our approach the BioNLP Shared Task 2009 can
be characterized by three decisions: (a) jointly

CORE VALID FULL

eventType 52.8 63.2 64.3

role 44.0 53.5 55.7

site 42.0 46.0 51.5

Total 50.7 60.1 61.9

Table 4: Ground atom F-scores for global formulae.

modelling the complete event structure for a
given sentence; (b) using Markov Logic as gen-
eral purpose-framework in order to implement
our joint model; (c) framing the problem as a
link prediction problem between tokens of a sen-
tence.

Our results are competitive: we reach the 4th
place in task 1 and the 1st place for task 2 (with
a 13% margin). Furthermore, the declarative na-
ture of Markov Logic helped us to achieve these
results with a moderate amount of engineering.
In particular, we were able to tackle task 2 by
copying the local formulae for event prediction,
and adding three global formulae (4, 10 and 11
in table 2). Finally, our system was fast to train
(3 hours) . This greatly simpli�ed the search for
good sets of formulae.

We have also shown that global formulae sig-
ni�cantly improve performance in terms of event
clue, site and argument prediction. While a sim-
ilar e�ect may be possible with reranking archi-
tectures, we believe that in terms of implemen-
tation e�orts our approach is at least as simple.
In fact, our main e�ort lied in the conversion to
link prediction, not in learning or inference. In
future work we will therefore investigate means
to extend Markov Logic (interpreter) in order to
directly model event structure.
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