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Abstract

Clustering is crucial for many NLP tasks and
applications. However, evaluating the results
of a clustering algorithm is hard. In this paper
we focus on the evaluation setting in which a
gold standard solution is available. We discuss
two existing information theory based mea-
sures,V and VI , and show that they are both
hard to use when comparing the performance
of different algorithms and different datasets.
TheV measure favors solutions having a large
number of clusters, while the range of scores
given byVI depends on the size of the dataset.
We present a new measure,NVI , which nor-
malizesVI to address the latter problem. We
demonstrate the superiority ofNVI in a large
experiment involving an important NLP appli-
cation, grammar induction, using real corpus
data in English, German and Chinese.

1 Introduction

Clustering is a major technique in machine learn-
ing and its application areas. It lies at the heart
of unsupervised learning, which has great potential
advantages over supervised learning. This is es-
pecially true for NLP, due to the high efforts and
costs incurred by the human annotations required for
training supervised algorithms. Recent NLP prob-
lems addressed by clustering include POS induction
(Clark, 2003; Goldwater and Griffiths, 2007), word
sense disambiguation (Shin and Choi, 2004), seman-
tic role labeling (Baldewein et al., 2004), pitch ac-
cent type disambiguation (Levow, 2006) and gram-
mar induction (Klein, 2005).

Evaluation of clustering results is a challenging
task. In this paper we address theexternal measures
setting, where a correct assignment of elements to
classesis available and is used for evaluating the
quality of another assignment of the elements into
clusters. Many NLP works have used external clus-
tering evaluation measures (see Section 2).

Recently, two measures have been proposed that
avoid many of the weaknesses of previous measures
and exhibit several attractive properties (see Sec-
tions 2 and 3): theVI measure (Meila, 2007) and
the V measure (Rosenberg and Hirschberg, 2007).
However, each of these has a serious drawback. The
possible values ofVI lie in [0, 2log N ], whereN is
the size of the clustered dataset. Hence it has lim-
ited use when comparing performance on different
datasets.V measure values lie in[0, 1] regardless of
the dataset, but the measure strongly favors a cluster-
ing having many small clusters. In addition,V does
not have many of the attractive properties ofVI .

This paper has two contributions. First, we pro-
pose theNVI measure, a normalization ofVI which
guarantees that the score of clusterings thatVI con-
siders good lies in [0,1], regardless of dataset size.
Most of VI ’s attractive properties are retained by
NVI .

Second, we compare the behavior ofV, VI and
NVI in various situations to the desired behavior and
to each other. In particular, we show thatV gives
high scores to clusterings with a large number of
clusters even when they are of low quality. We
demonstrate this both in a synthetic example (Sec-
tion 5) and in the evaluation (in three languages) of
a difficult NLP problem, labeled parse tree induc-
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tion (Section 6). We show that in both cases,NVI

constitutes a better clustering evaluation measure.

2 Previous Evaluation Measures

A large number of clustering quality measures have
been proposed. Here we briefly survey the three
main types, mapping based measures, counting pairs
measures and information theory based measures.

We first review some terminology (Meila, 2007;
Rosenberg and Hirschberg, 2007). In ahomoge-
neous clustering, every cluster contains only ele-
ments from a single class. In acomplete cluster-
ing, all elements of each class are assigned to the
same cluster. Theperfect solution is the fully ho-
mogeneous and complete clustering. We will illus-
trate the behavior of some measures using three ex-
treme cases: thesingle cluster case, in which all
data elements are put in the same single cluster; the
singletonscase, in which each data element is put
in a cluster of its own; and theno knowledgecase,
in which the class distribution within each cluster
is identical to the class distribution in the entire
dataset. If the single cluster solution is not the per-
fect one, the no knowledge solution is the worst pos-
sible solution. Throughout the paper, the number of
data elements to be clustered is denoted byN.

Mapping based measuresare based on a post-
processing step in which each cluster is mapped to a
class. Among these are: L (Larsen, 1999), D (Van
Dongen, 2000), misclassification index (MI) (Zeng
et al., 2002), H (Meila, 2001), clustering F-measure
(Fung et al., 2003) and micro-averaged precision
and recall (Dhillon et al., 2003). As noted in (Rosen-
berg and Hirschberg, 2007), these measures evalu-
ate not only the quality of the proposed clustering
but also of the mapping scheme. Different mapping
schemes can lead to different quality scores for the
same clustering. Moreover, even when the mapping
scheme is fixed, it can lead to not evaluating the en-
tire membership of a cluster and not evaluating every
cluster (Meila, 2007).

Counting pairs measuresare based on a com-
binatorial approach which examines the number of
pairs of data elements that are clustered similarly in
the reference and proposed clustering. Among these
are Rand Index (Rand, 1971), Adjusted Rand In-
dex (Hubert and Arabie, 1985),Γ statistic (Hubert

and Schultz, 1976), Jaccard (Milligan et al., 1983),
Fowlkes-Mallows (Fowlkes and Mallows, 1983) and
Mirkin (Mirkin, 1996).

Meila (2007) described a number of problems
with such measures. The most acute one is that their
values are unbounded, making it hard to interpret
their results. The problem can be solved by transfor-
mations adjusting their values to lie in[0, 1], but the
adjusted measures suffer from severe distributional
problems, again limiting their usability in practice.

Information-theoretic (IT) based measuresare
those addressed in this work. The measures in this
family suffer neither from the problems associated
with mappings, since they evaluate the entire mem-
bership of each cluster and not just a mapped por-
tion, nor from the distributional problems of the
counting pairs measures.

Zhao and Karypis (2001) definePurity and En-
tropyas follows:
Purity =

∑k
r=1

1
N maxi(ni

r)

Entropy =
∑k

r=1
nr
N (− 1

logq

∑q
i=1

ni
r

nr
log(ni

r
nr

))
whereq is the number of classes,k the number of
clusters,nr clusterr’s size, andni

r is the number of
elements in classi assigned to clusterr.

Both measures are good measures for homogene-
ity (Purity increases and Entropy decreases when
homogeneity increases). However, they do not eval-
uate completeness at all. The singletons solution is
thus considered optimal even if in fact it is of very
low quality.

Dom (2001) proposed theQ measure, the sum of
a homogeneity termH(C|K) and a model cost term
calculated using a coding theory argument:
Q(C, K) = H(C|K) + 1

N

∑|k|
k=1 log

(h(k)+|C|−1
|C|−1

)

whereC are the correct classes,K are the induced
clusters andh(k) is the number of elements in clus-
ter k. Dom also presented a normalized version of
theQ measure (calledQ2) whose range is(0, 1] and
gives higher scores to clusterings that are preferable.
As noted by (Rosenberg and Hirschberg, 2007), the
Q measure does not explicitly address the complete-
ness of the suggested clustering. Due to the cost
term, if two clusterings have the sameH(C|K)
value, the model prefers the one with the lower num-
ber of clusters, but the trade-off between homogene-
ity and completeness is not explicitly addressed.

In the next section we describe theV andVI mea-
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sures, which are IT measures that explicitly assess
both the homogeneity and completeness of the clus-
tering solution.

BCubed (Bagga and Baldwin, 1998) is an attrac-
tive measure that addresses both completeness and
homogeneity. It does not explicitly use IT concepts
and avoids mapping. In this paper we focus onV

andVI ; a detailed comparison with BCubed is out of
our scope here and will be done in future work.

Several recent NLP papers used clustering tech-
niques and evaluation measures. Examples include
(Finkel and Manning, 2008), usingVI , Rand in-
dex and clustering F-score for evaluating corefer-
ence resolution; (Headden et al., 2008), usingVI , V,
greedy 1-to-1 and many-to-1 mapping for evaluating
unsupervised POS induction; (Walker and Ringger,
2008), using clustering F-score, the adjusted Rand
index, V, VI andQ2 for document clustering; and
(Reichart and Rappoport, 2008), using greedy 1-to-
1 and many-to-1 mappings for evaluating labeled
parse tree induction.

Schulte im Walde (2003) used clustering to in-
duce semantic verb classes and extensively dis-
cussed non-IT based clustering evaluation measures.
Pfitzner et al. (2008) presented a comparison of clus-
tering evaluation measures (IT based and others).
While their analysis is extensive, their experiments
were confined to artificial data. In this work, we
experiment with a complex NLP application using
large real datasets.

3 The V and VI Measures

The V (Rosenberg and Hirschberg, 2007) andVI

(Meila, 2007) measures are IT based measures. In
this section we give a detailed description of these
measures and analyze their properties.

Notations. The partition of theN data elements
into classes is denoted byC = {c1, . . . , c|C|}.
The clustering solution is denoted byK =
{k1, . . . , k|K|}. A = {aij} is a |C| × |K| contin-
gency matrix such thataij is the number of data ele-
ments that are members of classci and are assigned
by the algorithm to clusterkj .

As other IT measures,V and VI assume that the
elements in the dataset are taken from a known dis-
tribution (both assume the uniform distribution), and
thus the classes and clusters can be treated as ran-

dom variables. When assuming the uniform distri-
bution, the probability of an event (a class or a clus-
ter) is its relative size, sop(c) =

∑|K|
k=1

ack
N and

p(k) =
∑|C|

c=1
ack
N . Under this assumption we can

talk about the entropiesH(C) andH(K) and the
conditional entropiesH(C|K) andH(K|C):

H(C) = −∑|C|
c=1

P|K|
k=1 ack

N log
P|K|

k=1 ack

N

H(K) = −∑|K|
k=1

P|C|
c=1 ack

N log
P|C|

c=1 ack

N

H(C|K) = −∑|K|
k=1

∑|C|
c=1

ack
N log ack

P|C|
c=1 ack

H(K|C) = −∑|K|
k=1

∑|C|
c=1

ack
N log ack

P|K|
k=1 ack

In Section 2 we defined the concepts of homo-
geneity and completeness. In order to satisfy the ho-
mogeneity criterion, each cluster must be contained
in a certain class. This results in the minimization
of the conditional entropy of the classes given the
clusters,H(C|K) = 0. In the least homogeneous
solution, the conditional entropy is maximized, and
H(C|K) = H(C). Similarly, in order to satisfy the
completeness criterion, each class must be contained
in a certain cluster, which results in the minimiza-
tion of the conditional entropy of the clusters given
the classes,H(K|C) = 0. In the least complete
solution, the conditional entropy is maximized, and
H(K|C) = H(K).

The VI measure. Variation of information (VI ) is
defined as follows:

V I(C, K) = H(C|K) + H(K|C).

In the least homogeneous (complete) clustering, the
values ofH(C|K) (H(K|C)) are maximal. As
a clustering solution becomes more homogeneous
(complete), the values ofH(C|K) (H(K|C)) de-
crease to zero. Consequently,lower VI values im-
ply better clustering solutions. In the perfect so-
lution, bothH(C|K) = 0 andH(K|C) = 0 and
thusV I = 0. For the least homogeneous and com-
plete clustering solution, where knowing the cluster
tells nothing about the class and vise versa,V I =
H(C) + H(K).

As a result, the range of values thatVI takes is
dataset dependent, and the numbers themselves tell
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us nothing about the quality of the clustering solu-
tion (apart from a score of 0, which is given to the
best possible solution).

A bound forVI values is a function of the maxi-
mum number of clusters inC or K, denoted byk∗.
This is obtained when each cluster contains a sin-
gle element, andk∗ = N . Thus,V I ∈ [0, 2logN ].
Consequently, the range ofVI values is dataset de-
pendent and unbounded when datasets change. This
means that it is hard to useVI to compare the perfor-
mance of a clustering algorithm across datasets.

An apparent simple solution to this problem
would be to normalizeVI by 2logk∗ or 2logN , so
that its values would lie in[0, 1]. We discuss this at
the end of the next section.

VI has two useful properties. First, it satis-
fies the metric axioms, that is: V I(C, K) ≥
0, V I(C, K) = V I(K, C), V I(C1, C2) +
V I(C2, C3) ≥ V I(C1, C3). This gives an intuitive
understanding of the relation betweenVI values.

Second, it is convexly additive. This
means that if K is obtained from C by
splitting Cj into clusters K1

j , . . . , Km
j ,

Ĥ(Kj) = −∑m
i=1 P (Ki

j |Cj)logP (Ki
j |Cj),

then V I(C, K) = P (Cj)Ĥ(Kj). This property
guarantees that all changes toVI are local; the
impact of splitting or merging clusters is limited
only to those clusters involved, and its size is
relative to the size of these clusters.

The V measure. TheV measure uses homogeneity
(h) and completeness (c) terms as follows:

h =

{
1 H(C) = 0
1− H(C|K)

H(C) H(C) 6= 0

c =

{
1 H(K) = 0
1− H(K|C)

H(K) H(K) 6= 0

V =
2hc

h + c
In the least homogeneous clustering,H(C|K) is
maximal, atH(C|K) = H(C). In this caseh
reaches its minimum value, which is0. As homo-
geneity increasesH(C|K) values decrease. For the
most homogeneous clustering,H(C|K) = 0 and
h = 1. The same considerations hold forc, which
ranges between0 (for the least complete clustering)

and 1 (for a complete clustering). SinceV is de-
fined to be the harmonic mean ofh andc, V values
lie in [0, 1]. Consequently, it can be used to com-
pare the performance of clustering algorithms across
datasets. HigherV values imply better clusterings.

Unlike VI , V does not satisfy the metric axioms
and is not convexly additive. The range of values it
can get does not depend on dataset size.

Extreme cases for the two measures. In the
single cluster solutionH(C|K) = H(C) and
H(K|C) = 0, and thusV = 0 (the worst possi-
ble score) andV I = H(C). If there is indeed only
a single class, thenV I = 0, the best possible score,
which is the correct behavior.VI behaves better than
V here.

The singletons solution is a fully homogeneous
clustering in whichH(C|K) = 0. The score of each
measure depends on the completeness of the solu-
tion. The completeness of a singletons clustering in-
creases with the number of classes. In the extreme
case where every element is assigned to a unique
class (|C| = |K| = N ) singletons is also complete,
H(K|C) = 0, andV (C, K) = 1, V I(C, K) = 0.
Both measures exhibit the correct behavior.

If there are classes that contain many elements,
singletons is far from being complete and should be
treated as a low quality solution. Again, in the sin-
gletons solutionV I = H(K|C). Suppose that the
number of clusters is fixed. When the number of
classes increases, this value decreases, which is what
we want. When the number of classes decreases, the
score increases, which is again the correct behav-
ior. In Section 5 we show that this desired behavior
shown byVI is not shown byV.

Both measures treat the no knowledge solution as
the worst one possible:V = 0, andV I = H(C) +
H(K).

4 Normalized Variation of Information

In this section we defineNVI , a normalization of
VI . NVI is N -independent and its values for clus-
terings considered as good byVI lie in [0, 1]. Hence,
NVI can be used to compare clustering performance
across datasets. We show thatNVI keeps the convex
additivity property ofVI but not its metric axioms.
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Definition. We defineNVI to be:

NV I(C, K) =

{
H(C|K)+H(K|C)

H(C) H(C) 6= 0

H(K) H(C) = 0

We defineNVI to beH(K) whenH(C) = 0 to sat-
isfy the requirements thatNVI values decrease asC
andK become more similar and thatNVI would be
0 when they are identical1.

Range and extreme cases.Like VI , NVI decreases
as the clustering becomes more complete and more
homogeneous. For the perfect solution,NV I = 0.
In both the single cluster and the no knowledge so-
lutions,H(C|K) = H(C). Thus, in the former case
NV I = 1, and in the latterNV I = 1 + H(K)

HC ≥ 1.
For the singletons clustering case,NV I =

H(K|C)
H(C) . Suppose that the number of clusters is

fixed. When the number of classes increases, the
numerator decreases and the denominator increases,
and hence the score decreases. In other words, as the
real solution gets closer to the singletons solution,
the score decreases, which is the correct behavior.
When the number of classes decreases, the score in-
creases, which is again the correct behavior.

For any pair of clusteringsK1 and K2,
V I(C, K1) > V I(C, K2) iff NV I(C, K1) >
V I(C, K2). This implies that only clustering solu-
tions whoseVI scores are better (i.e., numerically
lower) than the score of the single cluster solution
will be scored lower than1 by NVI .

Note thatNVI is meant to be used when there is
a ‘correct’ reference solution. In this caseH(C) is
constant, so the property above holds. In this sense,
VI is more general, allowing us to compare any three
clustering solutions even when we do not have a cor-
rect reference one.

To summarize:

1. All clusterings considered byVI to be of high
quality (i.e., better than the single cluster solu-
tion) are scored byNVI in the range of[0, 1].

2. All clusterings considered byVI to be of lower
quality than the single cluster solution are
scored higher than1 by NVI .

1H(C) = 0 iff C consists of a single class, and therefore
H(C) = H(K) = 0 iff C (K) consists of a single class (clus-
ter).

3. The ordering of scores between solutions given
by VI is preserved byNVI .

4. The behavior ofNVI on the extreme cases is the
desired one.

Useful properties. In Section 3 we saw thatVI has
two useful properties, satisfying the metric axioms
and being convexly additive.NVI is not symmetric
since the term in its denominator isH(C), the en-
tropy of the correct class assignment. Thus, it does
not satisfy the metric axioms. Being convexly addi-
tive, however, is preserved. In the class splitting sce-
nario (see convex additivity definition in Section 3)

it holds thatNV I(C, K) = P (Cj)Ĥ(Kj)
H(C) . That is,

like for VI , the impact of splitting or merging a clus-
ter onNVI is limited only to those clusters involved,
and its size is relative to the size of these clusters.
Meila (2007) derived various interesting properties
of VI from the convex additivity property. These
properties generally hold forNVI as well.

H(K) normalization. Normalizing by H(C)
takes into consideration the complexity of the cor-
rect clustering. Another normalization option would
be to normalize byH(K), which represents the in-
duced clustering complexity. This normalization
does not guarantee that the scores of the ‘good’ clus-
terings lie in a data-independent range.

Let us define NVIK (C,K) to be V I(C,K)
H(K) if

H(K) > 0 andH(C) if H(K) = 0. Recall that
in order for NVIK to be0 iff C andK are identi-
cal, we must require thatNV IK = H(C) when
H(K) = 0. In the no knowledge case,NV IK =
H(C)+H(K)

H(K) = H(C)
H(K) + 1 > 1. In the single cluster

solution, however,NV IK = H(C) (since in this
caseH(K) = 0) which ranges in[0, logN ]. This is
a serious drawback ofNVIK . In Section 6 we empir-
ically show an additional drawback ofNVIK .

logN normalization. Another possible normal-
ization of VI is by 2logN (or 2logk∗), which is an
upper bound onVI values. However, this results in
the values of the measure being dependent on dataset
size, so results on datasets with different sizes again
cannot be compared. For example, take anyC and
K and split each element into two. All entropy val-
ues, and the quality of the solution, are preserved,
but the scores given to the twoK ’s (before and after
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7 1 1 1 0 0 0 0 0 0
0 7 1 1 1 0 0 0 0 0
0 0 7 1 1 1 0 0 0 0
0 0 0 7 1 1 1 0 0 0
0 0 0 0 7 1 1 1 0 0
0 0 0 0 0 7 1 1 1 0
0 0 0 0 0 0 7 1 1 1
1 0 0 0 0 0 0 7 1 1
1 1 0 0 0 0 0 0 7 1
1 1 1 0 0 0 0 0 0 7

V VI NVI NVIK

Singletons 0.667 2.303 1 0.5
Solution R 0.587 1.88 0.81 0.81

Table 1: The clustering matrix of solution R (top), and
the scores given to it and to the singletons solution by the
four measures (bottom). Although solution R is superior,
the score given byV to the singletons solution is much
higher. NVI exhibits the most preferable behavior (recall
that higherV values are better, as opposed to the other
three measures).

the split) by such a normalizedVI would be differ-
ent. SinceH(C) is preserved, the scores given by
NVI to the twoK ’s are identical.

5 Problematic V Behavior Example

In this section we provide a synthetic example that
demonstrates an undesireable behavior ofV (and
NVIK ) not manifested byVI and NVI . Specifically,
V favors solutions with a large number of clusters,
giving them higher scores than to solutions that are
evidently superior. In addition, the score given to the
singletons solution is high in absolute terms.

To present the example, we use the matrix repre-
sentationA of a clustering solution defined in Sec-
tion 3. The entries in rowi sum to the number of
elements in classi, while those in columnj sum to
the number of elements in clusterj.

Suppose that we have100 elements assigned to10
classes such that there are10 elements in each class.
We consider two clustering solutions: the singletons
solution, and solution R whose matrix is shown in
Table 1 (top). Like the real solution, solution R also
has10 clusters each having10 elements. Solution
R is not very far from the correct solution, since
each cluster has7 elements of the same class, and
the three other elements in a cluster are taken from

a different class each and can be viewed as ‘noise’.
Solution R is thus much better than the singletons
solution. In order not to rely on our own opinion,
we have performed a simple human judgment ex-
periment with 30 subjects (university graduates in
different fields), all of whom preferred solution R2.

The scores given byV, VI , NVI andNVIK to the
two solutions are shown in Table 1 (bottom).V
scores solution R as being worse than the single-
tons solution, and gives the latter a number that’s
relatively high in absolute terms (0.667). VI ex-
hibits qualitatively correct behavior, but the num-
bers it uses are hard to interpret since they are N-
dependent. NVI scores solution R as being better
than singletons, and its score is less than1, indicat-
ing that it might be a good solution.

6 Grammar Induction Experiment

In this section we analyse the behavior ofV, VI ,
NVI and NVIK using a highly non-trivial NLP ap-
plication with large real datasets, the unsupervised
labeled parse tree induction (LTI ) algorithm of (Re-
ichart and Rappoport, 2008). We focus on the label-
ing that the algorithm finds for parsing constituents,
which is a clustering of constituents.

Summary of result. We show thatV gives about
the same score to a labeling that uses thousands of
labels and to labelings in which the number of la-
bels (dozens) is identical or smaller than the number
of labels in the reference evaluation set (an anno-
tated corpus). Contrary toV, both NVI andVI give
much better scores to the solutions having a smaller
number of labels.

It could be argued that the total number of ‘real’
labels in the data is indeed large (e.g., because every
verb exhibits its own syntactic patterns) and that a
small number of labels is just an arbitrary decision of
the corpus annotators. However, most linguistic the-
ories agree that there is a prototypical level of gen-
eralization that uses concepts such as Noun Phrase
and Verb Phrase, a level which consists of at most
dozens of labels and is strongly manifested by real
language data. Under these accepted assumptions,
the scoring behavior ofV is unreasonable.

2We must rely on people’s expectations, since the whole
point in this area is that clustering quality cannot be formalized
in an objective, application-independent way.
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MDL+SC (T labels) MDL+SC (P labels) MDL labels
Corpus L = 1 < 10 < 102 ≥ 102 L = 1 < 10 < 102 ≥ 102 L = 1 < 10 < 102 ≥ 102

WSJ10 26 0 0 3 23 8 0 0 0 8 2916 2282 2774 2864 52
NEGRA10 22 0 2 12 10 6 0 0 1 5 1202 902 1114 1191 11
CTB10 24 1 4 11 13 9 1 2 4 5 1050 816 993 1044 6

Table 2: The number of elements (constituents) covered by the clusters (labels) produced by the MDL+SC (T or P
labels) and MDL clusterings.L is the total number of labels. Shown are the number of clusters having one element,
less than 10 elements, less than 100 elements, and more than 100 elements. It is evident that MDL induces a sparse
clustering with many clusters that annotate very few constituents.

V VI NVI NVIK

Corpus MDL T P MDL T P MDL T P MDL T P
WSJ10 0.4 0.44 0.41 3.83 2.32 1.9 2.21 1.34 1.1 0.81 0.86 1.2
NEGRA10 0.47 0.5 0.5 2.56 1.8 1.4 1.51 1.1 0.83 0.76 0.96 1.1
CTB10 0.42 0.42 0.45 3 2.22 1.85 1.72 1.26 1.1 0.87 1.1 1.25

Table 3: V, VI , NVI and NVIK values for MDL and MDL+SC withT or P labels. V gives the three clusterings
very similar scores.NVIK prefers MDL labeling.NVI andVI both show the expected qualitative behavior, favoring
MDL+SC clustering withP labels. The most preferable scores are those ofNVI , whose numbers are also the easiest
to interpret.

The experiment. The LTI algorithm has three
stages: bracketing, initial labeling, and label clus-
tering. Bracketing is done from raw text using
the unsupervised incremental parser of (Seginer,
2007). Initial labeling is done using theBMM model
(Borensztajn and Zuidema, 2007), which aims at
minimizing the grammar description length (MDL).
Finally, labels are clustered to a desired number of
labels using the k-means algorithm with syntactic
features extracted from the initially labeled trees.
We refer to this stage as MDL+SC (for ‘syntactic
clustering’). Using a mapping-based evaluation with
two different mapping functions, theLTI algorithm
was shown to outperform previous work on unsu-
pervised labeled parse tree induction.

The MDL clustering step induces several thou-
sand labels for corpora of several tens of thousands
of constituents. The role of the SC step is to gen-
eralize these labels using syntactic features. There
are two versions of the SC step. In one, the num-
ber of clusters is identical to the number of labels
in the gold standard annotation of the experimental
corpus. This set of labels is calledT (for target)
labels. In the other SC version, the number of la-
bels is the minimum number of labels required to
annotate more than 95% of the constituents in the
gold standard annotation of the corpus. This set of
labels is calledP (for prominent) labels. Since con-
stituent labels follow the Zipfian distribution,P is
much smaller thanT .

In this paper we run theLTI algorithm and evalu-
ate its labeling quality usingV, VI , NVI and NVIK .
We compare the quality of the clustering induced by
the first clustering step alone (the MDL clustering)
to the quality of the clustering induced by the full
algorithm (i.e., first applying MDL and then clus-
tering its output using the SC algorithm forT or P
labels)3.

We follow the experimental setup in (Reichart
and Rappoport, 2008), running the algorithm on En-
glish, German and Chinese corpora: the WSJ Penn
Treebank (English), the Negra corpus (Brants, 1997)
(German), and version 5.0 of the Chinese Penn Tree-
bank (Xue et al., 2002). In each corpus, we used
the sentences of length at most 10,4 numbering 7422
(WSJ10), 7542 (NEGRA10) and 4626 (CTB10).

The characteristics of the induced clusterings are
shown in Table 25. The table demonstrates the
fact that MDL labeling, while perhaps capturing the

3Note that our evaluation here has nothing to do with the
evaluation done in (Reichart and Rappoport, 2008), which pro-
vided a comparison of the full grammar induction results be-
tween different algorithms, using mapping-based measures. We
evaluate the labeling stages alone.

4Excluding punctuation and null elements, according to the
scheme of (Klein, 2005).

5The number of MDL labels in the table differs from their
numbers, since we report the number of unique MDL labels
used for annotating correct constituents in the parser’s output,
while they report the number of unique labels used for annotat-
ing all constituents in the parser’s output.
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salient level of generalization of the data in its lead-
ing clusters, is extremely noisy. For WSJ10, for ex-
ample, 2282 of the 2916 unique labels annotate only
one constituent, and 2774 labels label less than 10
constituents. These 2774 labels annotate 14.4% of
compared constituents, and the 2864 labels that an-
notate less than 100 constituents each, cover 30.7%
of the compared constituents (these percentages are
not shown in the table). In other words, MDL is not
a solution in which almost all of the mass is concen-
trated in the few leading clusters; its tail occupies a
large percentage of its mass.

MDL patterns for NEGRA10 and CTB10 are very
similar. For MDL+SC withT or P labels, most
of the induced labels annotate 100 constituents or
more. We thus expect MDL+SC to provide better
clustering than MDL; a good clustering evaluation
measure should reflect this expectation.

Table 3 showsV, VI , NVI and NVIK scores for
MDL and MDL+SC (with T or P labels). For all
three corpora,V values are almost identical for the
MDL and the MDL+SC schemes. This is in con-
trast to VI and NVI values that strongly prefer the
MDL+SC clusterings, fitting our expectations (re-
call that for these measures, the lower the score, the
better the clustering). Moreover,VI and NVI pre-
fer MDL+SC with P labels, which again accords
with our expectations, sinceP labels were defined
as those that are more salient in the data (see above).

The patterns ofNVI and VI are identical, since
NV I = V I

H(C) and H(C) is independent of the
induced clustering. However, the numbers given
by NVI are easier to interpret than those given by
VI . The latter are basically meaningless, convey-
ing nothing about clustering quality. The former are
quite close to1, telling us that clustering quality is
not that good but not horrible either. This makes
sense, because the overall quality of the labeling in-
duction algorithm is indeed not that high: using one-
to-one mapping (the more forgiving mapping), the
accuracy of the labels induced by MDL+SC is only
45–72% (Reichart and Rappoport, 2008).

NVIK , the normalization ofVI with H(K), is
worse even thanV. This measure (which also gives
lower scores to better clusterings) prefers the MDL
over MDL+SC labels. This is a further justification
of our decision to defineNVI by normalizingVI by
H(C) rather than byH(K).

Corpus H(C) H(K)
MDL T P

WSJ10 1.73 4.72 2.7 1.58
NEGRA10 1.69 3.36 1.87 1.29
CTB10 1.76 3.45 2.1 1.48

Table 4: Class (H(C)) and cluster (H(K)) entropy for
MDL and MDL+SC withT or P labels.H(C) is cluster
independent.H(K) increases with the number of clus-
ters.

Table 4 shows theH(C) andH(K) values in the
experiment. WhileH(C) is independent of the in-
duced clustering and is thus constant for a given
annotated corpus,H(K) monotonically increases
with the number of induced clusters. Since both
NVIK and the completeness term ofV are normalized
by H(K), these measures prefer clusterings with a
large number of clusters even when many of these
clusters provide useless information.

7 Conclusion

Unsupervised clustering evaluation is important for
various NLP tasks and applications. Recently, the
importance of the completeness and homogeneity as
evaluation criteria for such clusterings has been rec-
ognized. In this paper we addressed the two mea-
sures that address these criteria:VI (Meila, 2007)
andV (Rosenberg and Hirschberg, 2007).

While VI has many useful properties, the range of
values it can take is dataset dependent, which makes
it unsuitable for comparing clusterings of different
datasets. This imposes a serious restriction on the
measure usage. We presentedNVI , a normalized ver-
sion of VI , which does not have this restriction and
still retains some of its useful properties.

Using experiments with both synthetic data and
a complex NLP application, we showed that theV

measure prefers clusterings with many clusters even
when these are clearly of low quality.VI andNVI do
not exhibit such behavior, and the numbers given by
NVI are easier to interpret than those given byVI .

In future work we intend to explore more of the
properties ofNVI and use it in other real NLP appli-
cations.
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