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Abstract

A survey of existing methods for stopping ac-
tive learning (AL) reveals the needs for meth-
ods that are: more widely applicable; more ag-
gressive in saving annotations; and more sta-
ble across changing datasets. A new method
for stopping AL based on stabilizing predic-
tions is presented that addresses these needs.
Furthermore, stopping methods are required
to handle a broad range of different annota-
tion/performance tradeoff valuations. Despite
this, the existing body of work is dominated
by conservative methods with little (if any) at-
tention paid to providing users with control
over the behavior of stopping methods. The
proposed method is shown to fill a gap in the
level of aggressiveness available for stopping
AL and supports providing users with control
over stopping behavior.

1 Introduction

The use of Active Learning (AL) to reduce NLP an-
notation costs has generated considerable interest re-
cently (e.g. (Bloodgood and Vijay-Shanker, 2009;
Baldridge and Osborne, 2008; Zhu et al., 2008a)).
To realize the savings in annotation efforts that AL
enables, we must have a mechanism for knowing
when to stop the annotation process.

Figure 1 is intended to motivate the value of stop-
ping at the right time. The x-axis measures the num-
ber of human annotations that have been requested
and ranges from 0 to 70,000. The y-axis measures
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PhD student at the University of Delaware.
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Figure 1: Hypothetical Active Learning Curve with hy-
pothetical stopping points.

performance in terms of F-Measure. As can be seen
from the figure, the issue is that if we stop too early
while useful generalizations are still being made, we
wind up with a lower performing system but if we
stop too late after all the useful generalizations have
been made, we just wind up wasting human annota-
tion effort.

The termsaggressiveand conservativewill be
used throughout the rest of this paper to describe the
behavior of stopping methods. Conservative meth-
ods tend to stop further to the right in Figure 1.
They are conservative in the sense that they’re very
careful not to risk losing significant amounts of F-
measure, even if it means annotating many more ex-
amples than necessary. Aggressive methods, on the
other hand, tend to stop further to the left in Figure 1.
They are aggressively trying to reduce unnecessary
annotations.

There has been a flurry of recent work tackling the
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problem of automatically determining when to stop
AL (see Section 2). There are three areas where this
body of work can be improved:

applicability Several of the leading methods are re-
stricted to only being used in certain situations,
e.g., they can’t be used with some base learn-
ers, they have to select points in certain batch
sizes during AL, etc. (See Section 2 for dis-
cussion of the exact applicability constraints of
existing methods.)

lack of aggressive stopping The leading methods
tend to find stop points that are too far to the
right in Figure 1. (See Section 4 for empirical
confirmation of this.)

instability Some of the leading methods work well
on some datasets but then can completely break
down on other datasets, either stopping way too
late and wasting enormous amounts of annota-
tion effort or stopping way too early and losing
large amounts of F-measure. (See Section 4 for
empirical confirmation of this.)

This paper presents a new stopping method based
on stabilizing predictions that addresses each of
these areas and provides user-adjustable stopping
behavior. The essential idea behind the new method
is to test the predictions of the recently learned mod-
els (during AL) on examples which don’t have to
be labeled and stop when the predictions have sta-
bilized. Some of the main advantages of the new
method are that: it requires no additional labeled
data, it’s widely applicable, it fills a need for a
method which can aggressively save annotations, it
has stable performance, and it provides users with
control over how aggressively/conservatively to stop
AL.

Section 2 discusses related work. Section 3 ex-
plains our Stabilizing Predictions (SP) stopping cri-
terion in detail. Section 4 evaluates the SP method
and discusses results. Section 5 concludes.

2 Related Work

Laws and Schütze (2008) present stopping criteria
based on the gradient of performance estimates and
the gradient of confidence estimates. Their tech-
nique with gradient of performance estimates is only

applicable when probabilistic base learners are used.
The gradient of confidence estimates method is more
generally applicable (e.g., it can be applied with
our experiments where we use SVMs as the base
learner). This method, denoted by LS2008 in Tables
and Figures, measures the rate of change of model
confidence over a window of recent points and when
the gradient falls below a threshold, AL is stopped.

The margin exhaustion stopping criterion was de-
veloped for AL with SVMs (AL-SVM). It says to
stop when all of the remaining unlabeled examples
are outside of the current model’s margin (Schohn
and Cohn, 2000) and is denoted as SC2000 in Ta-
bles and Figures. Ertekin et al. (2007) developed a
similar technique that stops when the number of sup-
port vectors saturates. This is equivalent to margin
exhaustion in all of our experiments so this method
is not shown explicitly in Tables and Figures. Since
we use AL with SVMs, we will compare with mar-
gin exhaustion in our evaluation section. Unlike our
SP method, margin exhaustion is only applicable for
use with margin-based methods such as SVMs and
can’t be used with other base learners such as Maxi-
mum Entropy, Naive Bayes, and others. Schohn and
Cohn (2000) show in their experiments that margin
exhaustion has a tendency to stop late. This is fur-
ther confirmed in our experiments in Section 4.

The confidence-based stopping criterion (here-
after, V2008) in (Vlachos, 2008) says to stop when
model confidence consistently drops. As pointed out
by (Vlachos, 2008), this stopping criterion is based
on the assumption that the learner/feature represen-
tation is incapable of fully explaining all the exam-
ples. However, this assumption is often violated and
then the performance of the method suffers (see Sec-
tion 4).

Two stopping criteria (max-conf and min-err) are
reported in (Zhu and Hovy, 2007). The max-conf
method indicates to stop when the confidence of the
model on each unlabeled example exceeds a thresh-
old. In the context of margin-based methods, max-
conf boils down to be simply a generalization of the
margin exhaustion method. Min-err, reported to be
superior to max-conf, says to stop when the accu-
racy of the most recent model on the current batch of
queried examples exceeds some threshold (they use
0.9). Zhu et al. (2008b) proposes the use of multi-
criteria-based stopping to handle setting the thresh-
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old for min-err. They refuse to stop and they raise
the min-err threshold if there have been any classi-
fication changes on the remaining unlabeled data by
consecutive actively learned models when the cur-
rent min-err threshold is satisfied. We denote this
multi-criteria-based strategy, reported to work better
than min-err in isolation, by ZWH2008. As seen in
(Zhu et al., 2008a), sometimes min-err indeed stops
later than desired and ZWH2008 must (by nature
of how it operates) stop at least as late as min-err
does. The susceptibility of ZWH2008 to stopping
late is further shown emprically in Section 4. Also,
ZWH2008 is not applicable for use with AL setups
that select examples in small batches.

3 A Method for Stopping Active Learning
Based on Stabilizing Predictions

To stop active learning at the point when annotations
stop providing increases in performance, perhaps the
most straightforward way is to use a separate set of
labeled data and stop when performance begins to
level off on that set. But the problem with this is that
it requires additional labeled data which is counter
to our original reason for using AL in the first place.
Our hypothesis is that we can sense when to stop AL
by looking at (only) thepredictionsof consecutively
learned models on examples that don’t have to be
labeled. We won’t know if the predictions are cor-
rect or not but we can see if they have stabilized. If
the predictions have stabilized, we hypothesize that
the performance of the models will have stabilized
and vice-versa, which will ensure a (much-needed)
aggressive approach to saving annotations.

SP checks for stabilization of predictions on a set
of examples, called the stop set, that don’t have to
be labeled. Since stabilizing predictions on the stop
set is going to be used as an indication that model
stabilization has occurred, the stop set ought to be
representative of the types of examples that will be
encountered at application time. There are two con-
flicting factors in deciding upon the size of the stop
set to use. On the one hand, a small set is desir-
able because then SP can be checked quickly. On
the other hand, a large set is desired to ensure we
don’t make a decision based on a set that isn’t repre-
sentative of the application space. As a compromise
between these factors, we chose a size of 2000. In

Section 4, sensitivity analysis to stop set size is per-
formed and more principled methods for determin-
ing stop set size and makeup are discussed.

It’s important to allow the examples in the stop
set to be queried if the active learner selects them
because they may be highly informative and ruling
them out could hurt performance. In preliminary ex-
periments we had made the stop set distinct from the
set of unlabeled points made available for querying
and we saw performance wasqualitativelythe same
but the AL curve was translated down by a few F-
measure points. Therefore, we allow the points in
the stop set to be selected during AL.1

The essential idea is to compare successive mod-
els’ predictions on the stop set to see if they have
stabilized. A simple way to define agreement be-
tween two models would be to measure the percent-
age of points on which the models make the same
predictions. However, experimental results on a sep-
arate development dataset show then that the cutoff
agreement at which to stop is sensitive to the dataset
being used. This is because different datasets have
different levels of agreement that can be expected by
chance and simple percent agreement doesn’t adjust
for this.

Measurement of agreement between human anno-
tators has received significant attention and in that
context, the drawbacks of using percent agreement
have been recognized (Artstein and Poesio, 2008).
Alternative metrics have been proposed that take
chance agreement into account. In (Artstein and
Poesio, 2008), a survey of several agreement met-
rics is presented. Most of the agreement metrics are
of the form:

agreement =
Ao − Ae

1 − Ae
, (1)

whereAo = observed agreement, andAe = agree-
ment expected by chance. The different metrics dif-
fer in how they computeAe.

The Kappa statistic (Cohen, 1960) measures
agreement expected by chance by modeling each
coder (in our case model) with a separate distribu-
tion governing their likelihood of assigning a partic-
ular category. Formally, Kappa is defined by Equa-

1They remain in the stop set if they’re selected.
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tion 1 withAe computed as follows:

Ae =
∑

k∈{+1,−1}
P (k|c1) · P (k|c2), (2)

where eachci is one of the coders (in our case,
models), andP (k|ci) is the probability that coder
(model)ci labels an instance as being in categoryk.
Kappa estimatesP (k|ci) based on the proportion of
observed instances that coder (model)ci labeled as
being in categoryk.

We have found Kappa to be a robust parameter
that doesn’t require tuning when moving to a new
dataset. On a separate development dataset, a Kappa
cutoff of 0.99 worked well. All of the experiments
(except those in Table 2) in the current paper used an
agreement cutoff of Kappa = 0.99 with zero tuning
performed. We will see in Section 4 that this cutoff
delivers robust results across all of the folds for all
of the datasets.

The Kappa cutoff captures theintensity of the
agreement that must occur before SP will conclude
to stop. Though an intensity cutoff of K=0.99 is
an excellent default (as seen by the results in Sec-
tion 4), one of the advantages of the SP method is
that by giving users the option to vary the intensity
cutoff, users can control how aggressive SP will be-
have. This is explored further in Section 4.

Another way to give users control over stopping
behavior is to give them control over thelongevity
for which agreement (at the specified intensity) must
be maintained before SP concludes to stop. The sim-
plest implementation would be to check the most
recent model with the previous model and stop if
their agreement exceeds the intensity cutoff. How-
ever, independent of wanting to provide users with
a longevity control, this is not an ideal approach be-
cause there’s a risk that these two models could hap-
pen to highly agree but then the next model will not
highly agree with them. Therefore, we propose us-
ing the average of the agreements from a window
of the k most recent pairs of models. If we call the
most recent modelMn, the previous modelMn−1

and so on, with a window size of 3, we average the
agreements betweenMn andMn−1, betweenMn−1

andMn−2, and betweenMn−2 andMn−3. On sepa-
rate development data a window size of k=3 worked
well. All of the experiments (except those in Ta-
ble 3) in the current paper used a longevity window

size of k=3 with zero tuning performed. We will
see in Section 4 that this longevity default delivers
robust results across all of the folds for all of the
datasets. Furthermore, Section 4 shows that varying
the longevity requirement provides users with an-
other lever for controlling how aggressively SP will
behave.

4 Evaluation and Discussion

4.1 Experimental Setup

We evaluate the Stabilizing Predictions (SP) stop-
ping method on multiple datasets for Text Classifi-
cation (TC) and Named Entity Recognition (NER)
tasks. All of the datasets are freely and publicly
available and have been used in many past works.

For Text Classification, we use two publicly avail-
able spam corpora: the spamassassin corpus used in
(Sculley, 2007) and the TREC spam corpus trec05p-
1/ham25 described in (Cormack and Lynam, 2005).
For both of these corpora, the task is a binary clas-
sification task and we perform 10-fold cross valida-
tion. We also use the Reuters dataset, in particular
the Reuters-21578 Distribution 1.0 ModApte split2.
Since a document may belong to more than one cat-
egory, each category is treated as a separate binary
classification problem, as in (Joachims, 1998; Du-
mais et al., 1998). Consistent with (Joachims, 1998;
Dumais et al., 1998), results are reported for the ten
largest categories. Other TC datasets we use are the
20Newsgroups3 newsgroup article classification and
the WebKB web page classification datasets. For
WebKB, as in (McCallum and Nigam, 1998; Zhu et
al., 2008a; Zhu et al., 2008b) we use the four largest
categories. For all of our TC datasets, we use binary
features for every word that occurs in the training
data at least three times.

For NER, we use the publicly available GENIA
corpus4. Our features, based on those from (Lee et
al., 2004), are surface features such as the words in

2http://www.daviddlewis.com/resources/
testcollections/reuters21578

3We used the “bydate” version of the dataset downloaded
from http://people.csail.mit.edu/jrennie/20Newsgroups/. This
version is recommended since it makes cross-experiment com-
parison easier since there is no randomness in the selectionof
train/test splits.

4http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/home/
wiki.cgi?page=GENIA+Project
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the named entity and two words on each side, suf-
fix information, and positional information. We as-
sume a two-phase model where boundary identifica-
tion has already been performed, as in (Lee et al.,
2004).

SVMs deliver high performance for the datasets
we use so we employ SVMs as our base learner
in the bulk of our experiments (maximum entropy
models are used in Subsection 4.3). For selection of
points to query, we use the approach that was used
in (Tong and Koller, 2002; Schohn and Cohn, 2000;
Campbell et al., 2000) of selecting the points that are
closest to the current hyperplane. We use SVMlight

(Joachims, 1999) for training the SVMs. For the
smaller datasets (less than 50,000 examples in total),
a batch size of 20 was used with an initial training
set of size 100 and for the larger datasets (greater
than 50,000 examples in total), a batch size of 200
was used with an initial training set of size 1000.

4.2 Main Results

Table 1 shows the results for all of our datasets. For
each dataset, we report the average number of anno-
tations5 requested by each of the stopping methods
as well as the average F-measure achieved by each
of the stopping methods.6

There are two facts worth keeping in mind. First,
the numbers in Table 1 are averages and therefore,
sometimes two methods could have very similar
average numbers of annotations but wildly differ-
ent average F-measures (because one of the meth-
ods was consistently stopping around its average
whereas the other was stopping way too early and
way too late). Second, sometimes a method with a
higher average number of annotations has a lower

5Better evaluation metrics would use more refined measures
of annotation effort than the number of annotations becausenot
all annotations require the same amount of effort to annotate but
lacking such a refined model for our datasets, we use number of
annotations in these experiments.

6Tests of statistical significance are performed using
matched pairs t tests at a 95% confidence level.

7(Vlachos, 2008) suggests using three drops in a row to de-
tect a consistent drop in confidence so we do the same in our
implementation of the method from (Vlachos, 2008).

8Following (Zhu et al., 2008b), we set the starting accuracy
threshold to 0.9 when reimplementing their method.

9(Laws and Schütze, 2008) uses a window of size 100
and a threshold of 0.00005 so we do the same in our re-
implementation of their method.

average F-measure than a method with a lower aver-
age number of annotations. This can be caused be-
cause of the first fact just mentioned about the num-
bers being averages and/or this can also be caused
by the ”less is more” phenomenon in active learn-
ing where often with less data, a higher-performing
model is learned than with all the data; this was
first reported in (Schohn and Cohn, 2000) and sub-
sequently observed by many others (e.g., (Vlachos,
2008; Laws and Schütze, 2008)).

There are a few observations to highlight regard-
ing the performance of the various stopping meth-
ods:

• SP is the most parsimonious method in terms
of annotations. It stops the earliest and remark-
ably it is able to do so largely without sacrific-
ing F-measure.

• All the methods except for SP and SC2000 are
unstable in the sense that on at least one dataset
they have a major failure, either stopping way
too late and wasting large numbers of anno-
tations (e.g. ZWH2008 and V2008 on TREC
Spam) or stopping way too early and losing
large amounts of F-measure (e.g. LS2008 on
NER-Protein) .

• It’s not always clear how to evaluate stopping
methods because the tradeoff between the value
of extra F-measure versus saving annotations is
not clearly known and will be different for dif-
ferent applications and users.

This last point deserves some more discussion. In
some cases it is clear that one stopping method is
the best. For example, on WKB-Project, the SP
method saves the most annotationsandhas the high-
est F-measure. But which method performs the
best on NER-DNA? Arguments can reasonably be
made for SP, SC2000, or ZWH2008 being the best
in this case depending on what exactly the anno-
tation/performance tradeoff is. A promising direc-
tion for research on AL stopping methods is to de-
velop user-adjustable stopping methods that stop as
aggressively as the user’s annotation/performance
preferences dictate.

One avenue of providing user-adjustable stopping
is that if some methods are known to perform con-
sistently in an aggressive manner against annotating
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Task-Dataset SP V20087 SC2000 ZWH20088 LS20089 All
TREC-SPAM 2100 56000 3900 29220 3160 56000
(10-fold AVG) 98.33 98.47 98.41 98.44 96.63 98.47
20Newsgroups 678 181 1984 1340 1669 11280
(20-cat AVG) 60.85 18.06 55.43 60.72 54.79 54.81
Spamassassin 326 4362 862 398 1176 5400
(10-fold AVG) 94.57 95.00 95.53 95.94 95.62 95.63
NER-protein 8720 67220 17680 18580 2360 67220
(10-fold AVG) 89.48 90.28 90.38 90.31 76.47 90.28
NER-DNA 4020 67220 10640 7200 3900 67220
(10-fold AVG) 82.40 84.31 84.73 84.51 74.74 84.31
NER-cellType 3840 29600 5540 11580 4580 67220
(10-fold AVG) 86.15 86.87 87.19 87.32 85.65 87.83
Reuters 484 6762 1196 650 1272 9580
(10-cat AVG) 74.29 65.81 73.88 76.77 74.00 75.64
WKB-Course 790 184 1752 912 1740 7420
(10-fold AVG) 83.12 30.34 80.47 83.16 80.55 80.19
WKB-Faculty 808 892 1932 1062 1818 7420
(10-fold AVG) 81.53 40.14 81.79 81.64 81.99 82.36
WKB-Project 646 916 1358 794 1482 7420
(10-fold AVG) 63.30 25.33 58.11 61.82 59.30 61.19
WKB-Student 1258 894 2400 1468 2150 7420
(10-fold AVG) 84.70 50.66 83.46 84.39 83.19 83.30
Average 2152 21294 4477 6655 2301 28509
(macro-avg) 81.70 62.30 80.85 82.27 78.45 81.27

Table 1: Methods for stopping AL. For each dataset, the average number of annotations at the automatically determined
stopping points and the average F-measure at the automatically determined stopping points are displayed.Bold entries
are statistically significantly different than SP (and non-bold entries are not). The Average row is simply an unweighted
macro-average over all the datasets. The final column (labeled ”All”) represents standard fully supervised passive
learning with the entire set of training data.

too much while others are known to perform consis-
tently in a conservative manner, then users can pick
the stopping criterion that’s more suitable for their
particular annotation/performance valuation. For
this purpose, SP fills a gap as the other stopping cri-
teria seem to be conservative in the sense defined
in Section 1. SP, on the other hand, is more of an
aggressive stopping criterion and is less likely to an-
notate data that is not needed.

A second avenue for providing user-adjustable
stopping is a single stopping method that is itself ad-
justable. To this end, Section 4.3 shows howinten-
sity and longevityprovide levers that can be used to
control the behavior of SP in a controlled fashion.

Sometimes viewing the stopping points of the var-

ious criteria on a graph with the active learning curve
can help one visualize how the methods perform.
Figure 2 shows the graph for a representative fold.10

The x-axis measures the number of human annota-
tions that have been requested so far. The y-axis
measures performance in terms of F-Measure. The
vertical lines are where the various stopping meth-
ods would have stopped AL if we hadn’t continued
the simulation. The figure reinforces and illustrates
what we have seen in Table 1, namely that SP stops
more aggressively than existing criteria and is able

10It doesn’t make sense to show a graph for the average over
cross validation because the average number of annotationsat
the stopping point may cross the learning curve at a completely
misleading point. Consider a method that stops way too early
and way too late at times.
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Figure 2: Graphic with stopping criteria in action for fold
1 of NER of DNA from the GENIA corpus. The x-axis
ranges from 0 to 70,000.

to do so without sacrificing performance.

4.3 Additional Experiments

All of the additional experiments in this subsection
were conducted on our least computationally de-
manding dataset, Spamassassin. The results in Ta-
bles 2 and 3 show how varying the intensity cut-
off and the longevity requirement, respectively, of
SP enable a user to control stopping behavior. Both
methods enable a user to adjust stopping in a con-
trolled fashion (without radical changes in behav-
ior). Areas of future work include: combining the
intensity and longevity methods for controlling be-
havior; and developing precise expectations on the
change in behavior corresponding to changes in the
intensity and longevity settings.

The results in Table 4 show results for different
stop set sizes. Even with random selection of a stop
set as small as 500, SP’s performance holds fairly
steady. This plus the fact that random selection of
stop sets of size 2000 worked across all the folds of
all the datasets in Table 1 show that in practice per-
haps the simple heuristic of choosing a fairly large
random set of points works well. Nonetheless, we
think the size necessary will depend on the dataset
and other factors such as the feature representation
so more principled methods of determining the size
and/or the makeup of the stop set are an area for
future work. For example, construction techniques

Intensity Annotations F-Measure
K=99.5 364 96.01
K=99.0 326 94.57
K=98.5 304 95.59
K=98.0 262 93.75
K=97.5 242 93.35
K=97.0 224 90.91

Table 2: Controlling the behavior of stopping through the
use ofintensity. For Kappa intensity levels in{97.0, 97.5,
98.0, 98.5, 99.0, 99.5}, the 10-fold average number of an-
notations at the automatically determined stopping points
and the 10-fold average F-measure at the automatically
determined stopping points are displayed for the Spamas-
sassin dataset.

Longevity Annotations F-Measure
k=1 284 95.17
k=2 318 94.95
k=3 326 94.57
k=4 336 95.40
k=5 346 96.41
k=6 366 94.53

Table 3: Controlling the behavior of stopping through the
use oflongevity. For window length k longevity levels in
{1, 2, 3, 4, 5, 6}, the 10-fold average number of annota-
tions at the automatically determined stopping points and
the 10-fold average F-measure at the automatically deter-
mined stopping points are displayed for the Spamassassin
dataset.

could be developed to create stop sets with high rep-
resentativeness (in terms of feature space) density
(meaning representativeness of stop set divided by
size of stop set). For example, a possibility is to
cluster examples before AL begins and then make
sure the stop set contains examples from each of the
clusters. Another possibility is to use a greedy algo-
rithm where the stop set is iteratively grown where
on each iteration the center of mass of the stop set
in feature space is computed and an example in the
unlabeled pool that is maximally far in feature space
from this center of mass is selected for inclusion in
the stop set. This could be useful for efficiency (in
terms of getting the same stopping performance with
a smaller stop set as could be achieved with a larger
stop set) and also as a way to ensure adequate repre-
sentation of the task space. The latter can be accom-
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Task-Dataset SP V2008 ZWH2008 LS2008 All
Spamassassin 286 1208 386 756 5400
(10-fold AVG) 94.92 89.89 95.31 96.40 91.74

Table 5: Methods for stopping AL with maximum entropy as the base learner. For each stopping method, the average
number of annotations at the automatically determined stopping point and the average F-measure at the automatically
determined stopping point are displayed.Bold entries are statistically significantly different than SP (and non-bold
entries are not). SC2000, the margin exhaustion method, is not shown since it can’t be used with a non-margin-based
learner. The final column (labeled ”All”) represents standard fully supervised passive learning with the entire set of
training data.

Stop Set Size Annotations F-Measure
2500 326 95.58
2000 326 94.57
1500 314 95.00
1000 328 95.73
500 314 94.57

Table 4: Investigating the sensitivity to stop set size. For
stop set sizes in{2500, 2000, 1500, 1000, 500}, the 10-
fold average number of annotations at the automatically
determined stopping points and the 10-fold average F-
measure at the automatically determined stopping points
are displayed for the Spamassassin dataset.

plished by perhaps continuing to add examples to
the stop set until adding new examples is no longer
increasing the representativeness of the stop set.

As one of the advantages of SP is that it’s widely
applicable, Table 5 shows the results when using
maximum entropy models as the base learner dur-
ing AL (the query points selected are those which
the model is most uncertain about). The results re-
inforce our conclusions from the SVM experiments,
with SP performing aggressively and all statistically
significant differences in performance being in SP’s
favor. Figure 3 shows the graph for a representative
fold.

5 Conclusions

Effective methods for stopping AL are crucial for re-
alizing the potential annotation savings enabled by
AL. A survey of existing stopping methods identi-
fied three areas where improvements are called for.
The new stopping method based on Stabilizing Pre-
dictions (SP) addresses all three areas: SP is widely
applicable, stable, and aggressive in saving annota-
tions.
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Figure 3: Graphic with stopping criteria in action for fold
5 of TC of the spamassassin corpus. The x-axis ranges
from 0 to 6,000.

The empirical evaluation of SP and the existing
methods was informative for evaluating the crite-
ria but it was also informative for demonstrating the
difficulties for rigorous objective evaluation of stop-
ping criteria due to different annotation/performance
tradeoff valuations. This opens up a future area for
work on user-adjustable stopping. Two potential
avenues for enabling user-adjustable stopping are a
single criterion that is itself adjustable or a suite of
methods with consistent differing levels of aggres-
siveness/conservativeness from which users can pick
the one(s) that suit their annotation/performance
tradeoff valuation. SP substantially widens the range
of behaviors of existing methods that users can
choose from. Also, SP’s behavior itself can be ad-
justed through user-controllable parameters.
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