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Abstract

The combination of Support Vector Machines
with very high dimensional kernels, such as
string or tree kernels, suffers from two ma-
jor drawbacks: first, the implicit representa-
tion of feature spaces does not allow us to un-
derstand which features actually triggered the
generalization; second, the resulting compu-
tational burden may in some cases render un-
feasible to use large data sets for training. We
propose an approach based on feature space
reverse engineering to tackle both problems.
Our experiments with Tree Kernels on a Se-
mantic Role Labeling data set show that the
proposed approach can drastically reduce the
computational footprint while yielding almost
unaffected accuracy.

1 Introduction

The use of Support Vector Machines (SVMs)
in supervised learning frameworks is spreading
across different communities, including Computa-
tional Linguistics and Natural Language Processing,
thanks to their solid mathematical foundations, ef-
ficiency and accuracy. Another important reason
for their success is the possibility of using kernel
functions to implicitly represent examples in some
high dimensional kernel space, where their similar-
ity is evaluated. Kernel functions can generate a very
large number of features, which are then weighted
by the SVM optimization algorithm obtaining a fea-
ture selection side-effect. Indeed, the weights en-
coded by the gradient of the separating hyperplane
learnt by the SVM implicitly establish a ranking be-
tween features in the kernel space. This property has
been exploited in feature selection models based on

approximations or transformations of the gradient,
e.g. (Rakotomamonjy, 2003), (Weston et al., 2003)
or (Kudo and Matsumoto, 2003).

However, kernel based systems have two major
drawbacks: first, new features may be discovered
in the implicit space but they cannot be directly ob-
served. Second, since learning is carried out in the
dual space, it is not possible to use the faster SVM or
perceptron algorithms optimized for linear spaces.
Consequently, the processing of large data sets can
be computationally very expensive, limiting the use
of large amounts of data for our research or applica-
tions.

We propose an approach that tries to fill in the
gap between explicit and implicit feature represen-
tations by 1) selecting the most relevant features in
accordance with the weights estimated by the SVM
and 2) using these features to build an explicit rep-
resentation of the kernel space. The most innovative
aspect of our work is the attempt to model and im-
plement a solution in the context of structural ker-
nels. In particular we focus on Tree Kernel (TK)
functions, which are especially interesting for the
Computational Linguistics community as they can
effectively encode rich syntactic data into a kernel-
based learning algorithm. The high dimensionality
of a TK feature space poses interesting challenges in
terms of computational complexity that we need to
address in order to come up with a viable solution.
We will present a number of experiments carried
out in the context of Semantic Role Labeling, show-
ing that our approach can noticeably reduce training
time while yielding almost unaffected classification
accuracy, thus allowing us to handle larger data sets
at a reasonable computational cost.

The rest of the paper is structured as follows: Sec-
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Figure 1: Esemplification of a fragment space and the
kernel product between two trees.

tion 2 will briefly review SVMs and Tree Kernel
functions; Section 3 will detail our proposal for the
linearization of a TK feature space; Section 4 will
review previous work on related subjects; Section 5
will describe our experiments and comment on their
results; finally, in Section 6 we will draw our con-
clusions.

2 Tree Kernel Functions

The decision function of an SVM is:

f(~x) = ~w · ~x+ b =
n∑

i=1

αiyi ~xi · ~x+ b (1)

where ~x is a classifying example and ~w and b are
the separating hyperplane’s gradient and its bias,
respectively. The gradient is a linear combination
of the training points ~xi, their labels yi and their
weights αi. These and the bias are optimized at
training time by the learning algorithm. Applying
the so-called kernel trick it is possible to replace the
scalar product with a kernel function defined over
pairs of objects:

f(o) =
n∑

i=1

αiyik(oi, o) + b

with the advantage that we do not need to provide
an explicit mapping φ(·) of our examples in a vector
space.

A Tree Kernel function is a convolution ker-
nel (Haussler, 1999) defined over pairs of trees.
Practically speaking, the kernel between two trees
evaluates the number of substructures (or fragments)
they have in common, i.e. it is a measure of their

overlap. The function can be computed recursively
in closed form, and quite efficient implementations
are available (Moschitti, 2006). Different TK func-
tions are characterized by alternative fragment defi-
nitions, e.g. (Collins and Duffy, 2002) and (Kashima
and Koyanagi, 2002). In the context of this paper
we will be focusing on the SubSet Tree (SST) ker-
nel described in (Collins and Duffy, 2002), which
relies on a fragment definition that does not allow to
break production rules (i.e. if any child of a node is
included in a fragment, then also all the other chil-
dren have to). As such, it is especially indicated for
tasks involving constituency parsed texts.

Implicitly, a TK function establishes a correspon-
dence between distinct fragments and dimensions in
some fragment space, i.e. the space of all the pos-
sible fragments. To simplify, a tree t can be repre-
sented as a vector whose attributes count the occur-
rences of each fragment within the tree. The ker-
nel between two trees is then equivalent to the scalar
product between pairs of such vectors, as exempli-
fied in Figure 1.

3 Mining the Fragment Space

If we were able to efficiently mine and store in a
dictionary all the fragments encoded in a model,
we would be able to represent our objects explicitly
and use these representations to train larger models
and very quick and accurate classifiers. What we
need to devise are strategies to make this approach
convenient in terms of computational requirements,
while yielding an accuracy comparable with direct
tree kernel usage.

Our framework defines five distinct activities,
which are detailed in the following paragraphs.

Fragment Space Learning (FSL) First of all, we
can partition our training data into S smaller sets,
and use the SVM and the SST kernel to learn S mod-
els. We will use the estimated weights to drive our
feature selection process. Since the time complexity
of SVM training is approximately quadratic in the
number of examples, this way we can considerably
accelerate the process of estimating support vector
weights.

According to statistical learning theory, being
trained on smaller subsets of the available data
these models will be less robust with respect to the
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minimization of the empirical risk (Vapnik, 1998).
Nonetheless, since we do not need to employ them
for classification (but just to direct our feature se-
lection process, as we will describe shortly), we can
accept to rely on sub-optimal weights. Furthermore,
research results in the field of SVM parallelization
using cascades of SVMs (Graf et al., 2004) suggest
that support vectors collected from locally learnt
models can encode many of the relevant features re-
tained by models learnt globally. Henceforth, letMs

be the model associated with the s-th split, and Fs

the fragment space that can describe all the trees in
Ms.

Fragment Mining and Indexing (FMI) In Equa-
tion 1 it is possible to isolate the gradient ~w =∑n

i=1 αiyi ~xi, with ~xi = [x(1)
i , . . . , x

(N)
i ], N being

the dimensionality of the feature space. For a tree
kernel function, we can rewrite x(j)

i as:

x
(j)
i =

ti,jλ
`(fj)

‖ti‖
=

ti,jλ
`(fj)

√∑N
k=1(ti,kλ`(fk))2

(2)

where: ti,j is the number of occurrences of the frag-
ment fj , associated with the j-th dimension of the
feature space, in the tree ti; λ is the kernel decay
factor; and `(fj) is the depth of the fragment.

The relevance |w(j)| of the fragment fj can be
measured as:

|w(j)| =
∣∣∣∣∣

n∑

i=1

αiyix
(j)
i

∣∣∣∣∣ . (3)

We fix a threshold L and from each model Ms

(learnt during FSL) we select the L most relevant
fragments, i.e. we build the set Fs,L = ∪k{fk} so
that:

|Fs,L| = L and |w(k)| ≥ |w(i)|∀fi ∈ F \ Fs,L .

In order to do so, we need to harvest all the frag-
ments with a fast extraction function, store them in
a compact data structure and finally select the frag-
ments with the highest relevance. Our strategy is ex-
emplified in Figure 2. First, we represent each frag-
ment as a sequence as described in (Zaki, 2002). A
sequence contains the labels of the fragment nodes
in depth-first order. By default, each node is the
child of the previous node in the sequence. A spe-
cial symbol (↑) indicates that the next node in the
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Figure 2: Fragment indexing. Each fragment is repre-
sented as a sequence 1 and then encoded as a path in the
index 2 which keeps track of its cumulative relevance.

sequence should be attached after climbing one level
in the tree. For example, the tree (B (Z W)) in figure
is represented as the sequence [B, Z, ↑, W]. Then, we
add the elements of the sequence to a graph (which
we call an index of fragments) where each sequence
becomes a path. The nodes of the index are the la-
bels of the fragment nodes, and each arc is associ-
ated with a pair of values 〈d, n〉: d is a node identi-
fier, which is unique with respect to the source node;
n is the identifier of the arc that must be selected at
the destination node in order to follow the path as-
sociated with the sequence. Index nodes associated
with a fragment root also have a field where the cu-
mulative relevance of the fragment is stored.

As an example, the index node labeled B in fig-
ure has an associated weight of w3, thus identify-
ing the root of a fragment. Each outgoing edge
univocally identifies an indexed fragment. In this
case, the only outgoing edge is labeled with the pair
〈d = 1, n = 1〉, meaning that we should follow it
to the next node, i.e. Z, and there select the edge la-
beled 1, as indicated by n. The edge with d = 1 in Z
is 〈d = 1, n = 1〉, so we browse to ↑ where we se-
lect the edge 〈d = 1, n = −〉. The missing value for
n tells us that the next node, W, is the last element
of the sequence. The complete sequence is then [B,
Z, ↑, W], which encodes the fragment (B (Z W)).

The index implementation has been optimized for
fast insertions and has the following features: 1)
each node label is represented exactly once; 2) each
distinct sequence tail is represented exactly once.
The union of all the fragments harvested from each
model is then saved into a dictionary DL which will
be used by the next stage.

To mine the fragments, we apply to each tree in
each model the algorithm shown in Algorithm 3.1.
In this context, we call fragment expansion the pro-
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Algorithm 3.1: MINE TREE(tree)

global maxdepth, maxexp
main
mined← ∅; indexed← ∅; MINE(FRAG(tree), 0)

procedure MINE(frag, depth)
if frag ∈ indexed

then return
indexed← indexed ∪ {frag}
INDEX(frag)
for each node ∈ TO EXPAND(frag)

do





if node 6∈ mined

then
{

mined← mined ∪ {node}
MINE(FRAG(node), 0)

if depth < maxdepth

then
{

for each fragment ∈ EXPAND(frag, maxexp)
do MINE(fragment, depth + 1)

cess by which tree nodes are included in a frag-
ment. Fragment expansion is achieved via node ex-
pansions, where expanding a node means includ-
ing its direct children in the fragment. The func-
tion FRAG(n) builds the basic fragment rooted in a
given node n, i.e. the fragment consisting only of n
and its direct children. The function TO EXPAND(f)
returns the set of nodes in a fragment f that can
be expanded (i.e. internal nodes in the origin tree),
while the function EXPAND(f,maxexp) returns all
the possible expansions of a fragment f . The pa-
rameter maxexp is a limit to the number of nodes
that can be expanded at the same time when a new
fragment is generated, while maxdepth sets a limit
on the number of times that a base fragment can be
expanded. The function INDEX(f) adds the frag-
ment f to the index. To keep the notation simple,
here we assume that a fragment f contains all the
necessary information to calculate its relevance (i.e.
the weight, label and norm of the support vector αi,
yi, and ‖ti‖, the depth of the fragment `(f) and the
decay factor λ, see equations 2 and 3).

Performing in a different order the same node ex-
pansions on the same fragment f results in the same
fragment f ′. To prevent the algorithm from entering
circular loops, we use the set indexed so that the
very same fragment in each tree cannot be explored
more than once. Similarly, the mined set is used
so that the base fragment rooted in a given node is
considered only once.

Tree Fragment Extraction (TFX) During this
phase, a data file encoding label-tree pairs 〈yi, ti〉 is
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Figure 3: Examples of ASTm structured features.

transformed to encode label-vector pairs 〈yi, ~vi〉. To
do so, we generate the fragment space of ti, using
a variant of the mining algorithm described in Fig-
ure 3.1, and encode in ~vi all and only the fragments
ti,j so that ti,j ∈ DL, i.e. we perform feature extrac-
tion based on the indexed fragments. The process is
applied to the whole training and test sets. The al-
gorithm exploits labels and production rules found
in the fragments listed in the dictionary to generate
only the fragments that may be in the dictionary. For
example, if the dictionary does not contain a frag-
ment whose root is labeled N , then if a node N is
encountered during TFX neither its base fragment
nor its expansions are generated.

Explicit Space Learning (ESL) After linearizing
the training data, we can learn a very fast model by
using all the available data and a linear kernel. The
fragment space is now explicit, as there is a mapping
between the input vectors and the fragments they en-
code.

Explicit Space Classification (ESC) After learn-
ing the linear model, we can classify our linearized
test data and evaluate the accuracy of the resulting
classifier.

4 Previous work

A rather comprehensive overview of feature selec-
tion techniques is carried out in (Guyon and Elis-
seeff, 2003). Non-filter approaches for SVMs and
kernel machines are often concerned with polyno-
mial and Gaussian kernels, e.g. (Weston et al., 2001)
and (Neumann et al., 2005). Weston et al. (2003) use
the `0 norm in the SVM optimizer to stress the fea-
ture selection capabilities of the learning algorithm.
In (Kudo and Matsumoto, 2003), an extension of the
PrefixSpan algorithm (Pei et al., 2001) is used to ef-
ficiently mine the features in a low degree polyno-
mial kernel space. The authors discuss an approx-
imation of their method that allows them to handle
high degree polynomial kernels.
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Data set Non-linearized classifiers Linearized classifiers (Thr=10k)
Task Pos Neg Train Test P R F1 Train Test P R F1

A0 60,900 118,191 521 7 90.26 92.95 91.59 209 3 88.95 91.91 90.40
A1 90,636 88,455 1,206 11 89.45 88.62 89.03 376 3 89.39 88.13 88.76
A2 21,291 157,800 692 7 84.56 64.42 73.13 248 3 81.23 68.29 74.20
A3 3,481 175,610 127 2 97.67 40.00 56.76 114 3 97.56 38.10 54.79
A4 2,713 176,378 47 1 92.68 55.07 69.10 92 2 95.00 55.07 69.72
A5 69 179,022 3 0 100.00 50.00 66.67 63 2 100.00 50.00 66.67
BC 61,062 938,938 3,059 247 82.57 80.96 81.76 916 39 83.36 78.95 81.10
RM - - 2,596 27 89.37 86.00 87.65 1,090 16 88.50 85.81 87.13

Table 1: Accuracy (P, R, F1), training (Train) and test (Test) time of non-linearized (center) and linearized (right)
classifiers. Times are in minutes. For each task, columns Pos and Neg list the number of positive and negative training
examples, respectively. The accuracy of the role multiclassifiers is the micro-average of the individual classifiers
trained to recognize core PropBank roles.

Suzuki and Isozaki (2005) present an embedded
approach to feature selection for convolution ker-
nels based on χ2-driven relevance assessment. To
our knowledge, this is the only published work
clearly focusing on feature selection for tree ker-
nel functions. In (Graf et al., 2004), an approach
to SVM parallelization is presented which is based
on a divide-et-impera strategy to reduce optimiza-
tion time. The idea of using a compact graph rep-
resentation to represent the support vectors of a TK
function is explored in (Aiolli et al., 2006), where a
Direct Acyclic Graph (DAG) is employed.

Concerning the use of kernels for NLP, inter-
esting models and results are described, for exam-
ple, in (Collins and Duffy, 2002), (Moschitti et al.,
2008), (Kudo and Matsumoto, 2003), (Cumby and
Roth, 2003), (Shen et al., 2003), (Cancedda et al.,
2003), (Culotta and Sorensen, 2004), (Daumé III
and Marcu, 2004), (Kazama and Torisawa, 2005),
(Kudo et al., 2005), (Titov and Henderson, 2006),
(Moschitti et al., 2006), (Moschitti and Bejan, 2004)
or (Toutanova et al., 2004).

5 Experiments

We tested our model on a Semantic Role La-
beling (SRL) benchmark, using PropBank annota-
tions (Palmer et al., 2005) and automatic Charniak
parse trees (Charniak, 2000) as provided for the
CoNLL 2005 evaluation campaign (Carreras and
Màrquez, 2005). SRL can be decomposed into
two tasks: boundary detection, where the word se-
quences that are arguments of a predicate word w
are identified, and role classification, where each ar-
gument is assigned the proper role. The former task
requires a binary Boundary Classifier (BC), whereas

the second involves a Role Multi-class Classifier
(RM).

Setup. If the constituency parse tree t of a sen-
tence s is available, we can look at all the pairs
〈p, ni〉, where ni is any node in the tree and p is
the node dominating w, and decide whether ni is an
argument node or not, i.e. whether it exactly dom-
inates all and only the words encoding any of w’s
arguments. The objects that we classify are sub-
sets of the input parse tree that encompass both p
and ni. Namely, we use the ASTm structure defined
in (Moschitti et al., 2008), which is the minimal tree
that covers all and only the words of p and ni. In
the ASTm, p and ni are marked so that they can be
distinguished from the other nodes. An ASTm is
regarded as a positive example for BC if ni is an ar-
gument node, otherwise it is considered a negative
example. Positive BC examples can be used to train
an efficient RM: for each role r we can train a clas-
sifier whose positive examples are argument nodes
whose label is exactly r, whereas negative examples
are argument nodes labeled r′ 6= r. Two ASTms
extracted from an example parse tree are shown in
Figure 3: the first structure is a negative example for
BC and is not part of the data set of RM, whereas
the second is a positive instance for BC and A1.

To train BC we used PropBank sections 1 through
6, extracting ASTm structures out of the first 1 mil-
lion 〈p, ni〉 pairs from the corresponding parse trees.
As a test set we used the 149,140 instance collected
from the annotations in Section 24. There are 61,062
positive examples in the training set (i.e. 6.1%) and
8,515 in the test set (i.e. 5.7%).

For RM we considered all the argument nodes of
any of the six PropBank core roles (i.e. A0, . . . ,
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Figure 4: Training time decomposition for the linearized
BC with respect to its main components when varying the
threshold value.

A5) from all the available training sections, i.e. 2
through 21, for a total of 179,091 training instances.
Similarly, we collected 5,928 test instances from the
annotations of Section 24.

In the remainder, we will mark with an ` the lin-
earized classifiers, i.e. BC` and RM` will refer to
the linearized boundary and role classifiers, respec-
tively. Their traditional, vanilla SST counterparts
will be simply referred to as BC and RM.

We used 10 splits for the FMI stage and we set
maxdepth = 4 and maxexp = 5 during FMI and
TFX. We didn’t carry out an extensive validation of
these parameters. These values were selected dur-
ing the development of the software because, on a
very small development set, they resulted in a very
responsive system.

Since the main topic of this paper is the assess-
ment of the efficiency and accuracy of our lineariza-
tion technique, we did not carry out an evaluation
on the whole SRL task using the official CoNLL’05
evaluator. Indeed, producing complete annotations
requires several steps (e.g. overlap resolution, OvA
or Pairwise combination of individual role classi-
fiers) that would shade off the actual impact of the
methodology on classification.

Platform. All the experiments were run on a ma-
chine equipped with 4 Intel R© Xeon R© CPUs clocked
at 1.6 GHz and 4 GB of RAM running on a Linux
2.6.9 kernel. As a supervised learning framework
we used SVM-Light-TK 1, which extends the SVM-
Light optimizer (Joachims, 2000) with tree kernel

1
http://disi.unitn.it/˜moschitt/Tree-Kernel.htm
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Figure 5: BC` accuracy for different thresholds.

support. During FSL, we learn the models using a
normalized SST kernel and the default decay factor
λ = 0.4. The same parameters are used to train
the models of the non linearized classifiers. During
ESL, the classifier is trained using a linear kernel.
We did not carry out further parametrization of the
learning algorithm.

Results. The left side of Table 1 shows the distri-
bution of positive (Column Pos) and negative (Neg)
data points in each classifier’s training set. The cen-
tral group of columns lists training and test effi-
ciency and accuracy of BC and RM, i.e. the non-
linearized classifiers, along with figures for the indi-
vidual role classifiers that make up RM.

Training BC took more than two days of CPU
time and testing about 4 hours. The classifier
achieves an F1 measure of 81.76, with a good bal-
ance between precision and recall. Concerning RM,
sequential training of the 6 models took 2,596 min-
utes, while classification took 27 minutes. The slow-
est of the individual role classifiers happens to be
A1, which has an almost 1:1 ratio between posi-
tive and negative examples, i.e. they are 90,636 and
88,455 respectively.

We varied the threshold value (i.e. the number of
fragments that we mine from each model, see Sec-
tion 3) to measure its effect on the resulting classi-
fier accuracy and efficiency. In this context, we call
training time all the time necessary to obtain a lin-
earized model, i.e. the sum of FSL, FMI and TFX
time for every split, plus the time for ESL. Similarly,
we call test time the time necessary to classify a lin-
earized test set, i.e. the sum of TFX and ESC on test
data.

In Figure 4 we plot the efficiency of BC` learn-

35



ing with respect to different threshold values. The
Overall training time is shown alongside with par-
tial times coming from FSL (which is the same for
every threshold value and amounts to 433 minutes),
FMI, training data TFX and ESL. The plot shows
that TFX has a logarithmic behaviour, and that quite
soon becomes the main player in total training time
after FSL. For threshold values lower than 10k, ESL
time decreases as the threshold increases: too few
fragments are available and adding new ones in-
creases the probability of including relevant frag-
ments in the dictionary. After 10k, all the relevant
fragments are already there and adding more only
makes computation harder. We can see that for a
threshold value of 100k total training time amounts
to 1,104 minutes, i.e. 36% of BC. For a threshold
value of 10k, learning time further decreases to 916
minutes, i.e. less than 30%. This threshold value
was used to train the individual linearized role clas-
sifiers that make up RM`.

These considerations are backed by the trend of
classification accuracy shown in Figure 5, where the
Precision, Recall and F1 measure of BC`, evaluated
on the test set, are shown in comparison with BC.
We can see that BC` precision is almost constant,
while its recall increases as we increase the thresh-
old, reaches a maximum of 78.95% for a threshold
of 10k and then settles around 78.8%. The F1 score
is maximized for a threshold of 10k, where it mea-
sures 81.10, i.e. just 0.66 points less than BC. We
can also see that BC` is constantly more conserva-
tive than BC, i.e. it always has higher precision and
lower recall.

Table 1 compares side to side the accuracy
(columns P, R and F1), training (Train) and test
(Test) times of the different classifiers (central block
of columns) and their linearized counterparts (block
on the right). Times are measured in minutes. For
the linearized classifiers, test time is the sum of
TFX and ESC time, but the only relevant contribu-
tion comes from TFX, as the low dimensional linear
space and fast linear kernel allow us to classify test
instances very efficiently 2. Overall, BC` test time is
39 minutes, which is more than 6 times faster than
BC (i.e. 247 minutes). It should be stressed that we

2Although ESC is not shown in table, the classification of all
149k test instances with BC` took 5 seconds with a threshold of
1k and 17 seconds with a threshold of 100k.

Learning parallelization

Task Non Lin.
Linearized (Thr=10k)

1 cpu 5 cpus 10 cpus
BC 3,059 916 293 215
RM 2,596 1,090 297 198

Table 2: Learning time when exploiting the framework’s
parallelization capabilities. Column Non Lin. lists non-
linearized training time.

are comparing against a fast TK implementation that
is almost linear in time with respect to the number of
tree nodes (Moschitti, 2006).

Concerning RM`, we can see that the accuracy
loss is even less than with BC`, i.e. it reaches an F1

measure of 87.13 which is just 0.52 less than RM.
It is also interesting to note how the individual lin-
earized role classifiers manage to perform accurately
regardless of the distribution of examples in the data
set: for all the six classifiers the final accuracy is
in line with that of the corresponding non-linearized
classifier. In two cases, i.e. A2 and A4, the accuracy
of the linearized classifier is even higher, i.e. 74.20
vs. 73.13 and 69.72 vs. 69.10, respectively. As for
the efficiency, total training time for RM` is 37% of
RM, i.e. 1,190 vs. 2,596 minutes, while test time
is reduced to 60%, i.e. 16 vs 27 minutes. These
improvements are less evident than those measured
for boundary detection. The main reason is that
the training set for boundary classification is much
larger, i.e. 1 million vs. 179k instances: therefore,
splitting training data during FSL has a reduced im-
pact on the overall efficiency of RM`.

Parallelization. All the efficiency improvements
that have been discussed so far considered a com-
pletely sequential process. But one of the advan-
tages of our approach is that it allows us to paral-
lelize some aspect of SVM training. Indeed, every
activity (but ESL) can exploit some degree of par-
allelism: during FSL, all the models can be learnt
at the same time (for this activity, the maximum de-
gree of parallelization is conditioned by the number
of training data splits); during FMI, models can be
mined concurrently; during TFX, the data-set to be
linearized can be split arbitrarily and individual seg-
ments can be processed in parallel. Exploiting this
possibility we can drastically improve learning ef-
ficiency. As an example, in Table 2 we show how
the total learning of the BC` can be cut to as low as
215 seconds when exploiting ten CPUs and using a
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Figure 6: Growth of dictionary size when including frag-
ments from more splits at different threshold values.
When a low threshold is used, the contribution of indi-
vidual dictionaries tends to be more marginal.

threshold of 10k. Even running on just 5 CPUs, the
overall computational cost of BC` is less than 10%
of BC (Column Non Lin.). Similar considerations
can be drawn concerning the role multi-classifier.

Fragment space. In this section we take a look at
the fragments included in the dictionary of the BC`

classifier. During FMI, we incrementally merge the
fragments mined from each of the models learnt dur-
ing FSL. Figure 6 plots, for different threshold val-
ues, the percentage of new fragments (on the y axis)
that the i-th model (on the x axis) contributes with
respect to the number of fragments mined from each
model (i.e. the threshold value).

If we consider the curve for a threshold equal to
100k, we can see that each model after the first ap-
proximately contributes with the same number of
fragments. On the other hand, if the threshold is set
to 1k than the contribution of subsequent models is
increasingly more marginal. Eventually, less than
10% of the fragments mined from the last model are
new ones. This behaviour suggests that there is a
core set of very relevant fragments which is com-
mon across models learnt on different data, i.e. they
are relevant for the task and do not strictly depend
on the training data that we use. When we increase
the threshold value, the new fragments that we index
are more and more data specific.

The dictionary compiled with a threshold of 10k
lists 62,760 distinct fragments. 15% of the frag-
ments contain the predicate node (which generally
is the node encoding the predicate word’s POS tag),
more than one third contain the candidate argument

node and, of these, about one third are rooted in it.
This last figure strongly suggests that the internal
structure of an argument is indeed a very powerful
feature not only for role classification, as we would
expect, but also for boundary detection. About 10%
of the fragments contain both the predicate and the
argument node, while about 1% encode the Path fea-
ture traditionally used in explicit semantic role label-
ing models (Gildea and Jurafsky, 2002). About 5%
encode a sort of extended Path feature, where the ar-
gument node is represented together with its descen-
dants. Overall, about 2/3 of the fragments contain at
least some terminal symbol (i.e. words), generally a
preposition or an adverb.

6 Conclusions

We presented a supervised learning framework for
Support Vector Machines that tries to combine the
power and modeling simplicity of convolution ker-
nels with the advantages of linear kernels and ex-
plicit feature representations. We tested our model
on a Semantic Role Labeling benchmark and ob-
tained very promising results in terms of accuracy
and efficiency. Indeed, our linearized classifiers
manage to be almost as accurate as non linearized
ones, while drastically reducing the time required to
train and test a model on the same amounts of data.

To our best knowledge, the main points of nov-
elty of this work are the following: 1) it addresses
the problem of feature selection for tree kernels, ex-
ploiting SVM decisions to guide the process; 2) it
provides an effective way to make the kernel space
observable; 3) it can efficiently linearize structured
data without the need for an explicit mapping; 4) it
combines feature selection and SVM parallelization.

We began investigating the fragments generated
by a TK function for SRL, and believe that study-
ing them in more depth will be useful to identify
new, relevant features for the characterization of
predicate-argument relations.

In the months to come, we plan to run a set of ex-
periments on a wider list of tasks so as to consolidate
the results we obtained so far. We will also test the
generality of the approach by testing with different
high-dimensional kernel families, such as sequence
and polynomial kernels.
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