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Abstract

Creating large amounts of manually annotated
training data for statistical parsers imposes
heavy cognitive load on the human annota-
tor and is thus costly and error prone. It
is hence of high importance to decrease the
human efforts involved in creating training
data without harming parser performance. For
constituency parsers, these efforts are tradi-
tionally evaluated using the total number of
constituents (TC) measure, assuming uniform
cost for each annotated item. In this paper, we
introduce novel measures that quantify aspects
of the cognitive efforts of the human annota-
tor that are not reflected by the TC measure,
and show that they are well established in the
psycholinguistic literature. We present a novel
parameter based sample selection approach
for creating good samples in terms of these
measures. We describe methods for global op-
timisation of lexical parameters of the sam-
ple based on a novel optimisation problem, the
constrained multiset multicover problem, and
for cluster-based sampling according to syn-
tactic parameters. Our methods outperform
previously suggested methods in terms of the
new measures, while maintaining similar TC
performance.

1 Introduction

State of the art statistical parsers require large
amounts of manually annotated data to achieve good
performance. Creating such data imposes heavy
cognitive load on the human annotator and is thus
costly and error prone. Statistical parsers are ma-
jor components in NLP applications such as QA
(Kwok et al., 2001), MT (Marcu et al., 2006) and

SRL (Toutanova et al., 2005). These often oper-
ate over the highly variable Web, which consists of
texts written in many languages and genres. Since
the performance of parsers markedly degrades when
training and test data come from different domains
(Lease and Charniak, 2005), large amounts of train-
ing data from each domain are required for using
them effectively. Thus, decreasing the human efforts
involved in creating training data for parsers without
harming their performance is of high importance.

In this paper we address this problem through
sample selection: given a parsing algorithm and a
large pool of unannotated sentencesS, select a sub-
setS1 ⊂ S for human annotation such that the hu-
man efforts in annotatingS1 are minimized while
the parser performance when trained with this sam-
ple is maximized.

Previous works addressing training sample size
vs. parser performance for constituency parsers
(Section 2) evaluated training sample size using the
total number of constituents (TC). Sentences differ
in length and therefore in annotation efforts, and it
has been argued (see, e.g, (Hwa, 2004)) thatTC re-
flects the number of decisions the human annotator
makes when syntactically annotating the sample, as-
suming uniform cost for each decision.

In this paper we posit that important aspects of
the efforts involved in annotating a sample are not
reflected by theTC measure. Since annotators ana-
lyze sentences rather than a bag of constituents, sen-
tence structure has a major impact on their cognitive
efforts. Sizeable psycholinguistic literature points
to the connection between nested structures in the
syntactic structure of a sentence and its annotation
efforts. This has motivated us to introduce (Sec-
tion 3) three sample size measures, the total and av-
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erage number of nested structures of degreek in the
sample, and the average number of constituents per
sentence in the sample.

Active learning algorithms for sample selection
focus on sentences that are difficult for the parsing
algorithm when trained with the available training
data (Section 2). In Section 5 we show that active
learning samples contain a high number of complex
structures, much higher than their number in a ran-
domly selected sample that achieves the same parser
performance level. To avoid that, we introduce (Sec-
tion 4) a novelparameter based sample selection
(PBS) approach which aims to select a sample that
enables good estimation of the model parameters,
without focusing on difficult sentences. In Section 5
we show that the methods derived from our approach
select substantially fewer complex structures than
active learning methods and the random baseline.

We propose two different methods. Incluster
based sampling (CBS), we aim to select a sample
in which the distribution of the model parameters is
similar to their distribution in the whole unlabelled
pool. To do that we build a vector representation for
each sentence in the unlabelled pool reflecting the
distribution of the model parameters in this sentence,
and use a clustering algorithm to divide these vectors
into clusters. In the second method we use the fact
that a sample containing many examples of a certain
parameter yields better estimation of this parameter.
If this parameter is crucial for model performance
and the selection process does not harm the distri-
bution of other parameters, then the selected sam-
ple is of high quality. To select such a sample we
introduce a reduction between this selection prob-
lem and a variant of the NP-hard multiset-multicover
problem (Hochbaum, 1997). We call this problem
theconstrained multiset multicover (CMM) problem,
and present an algorithm to approximate it.

We experiment (Section 5) with the WSJ Pen-
nTreebank (Marcus et al., 1994) and Collins’ gen-
erative parser (Collins, 1999), as in previous work.
We show that PBS algorithms achieve good results
in terms of both the traditionalTC measure (signifi-
cantly better than the random selection baseline and
similar to the results of the state of the art tree en-
tropy (TE) method of (Hwa, 2004)) and our novel
cognitively driven measures (where PBS algorithms
significantly outperform bothTE and the random

baseline). We thus argue that PBS provides a way to
select a sample that imposes reduced cognitive load
on the human annotator.

2 Related Work

Previous work on sample selection for statistical
parsers applied active learning (AL) (Cohn and Lad-
ner, 1994) to corpora of various languages and syn-
tactic annotation schemes and to parsers of different
performance levels. In order to be able to compare
our results to previous work targeting high parser
performance, we selected the corpus and parser
used by the method reporting the best results (Hwa,
2004), WSJ and Collins’ parser.

Hwa (2004) used uncertainty sampling with the
tree entropy (TE) selection function1 to select train-
ing samples for the Collins parser. In each it-
eration, each of the unlabelled pool sentences is
parsed by the parsing model, which outputs a list
of trees ranked by their probabilities. The scored
list is treated as a random variable and the sentences
whose variable has the highest entropy are selected
for human annotation. Sample size was measured
in TC and ranged from 100K to 700K WSJ con-
stituents. The initial size of the unlabelled pool was
800K constituents (the 40K sentences of sections 2-
21 of WSJ). A detailed comparison between the re-
sults ofTE and our methods is given in Section 5.

The following works addressed the task of sam-
ple selection for statistical parsers, but in signifi-
cantly different experimental setups. Becker and
Osborne (2005) addressed lower performance lev-
els of the Collins parser. Their uncertainty sam-
pling protocol combined bagging with theTE func-
tion, achieving a 32%TC reduction for reaching a
parser f-score level of 85.5%. The target sample size
set contained a much smaller number of sentences
(∼5K) than ours. Baldridge and Osborne (2004) ad-
dressed HPSG parse selection using a feature based
log-linear parser, the Redwoods corpus and commit-
tee based active learning, obtaining 80% reduction
in annotation cost. Their annotation cost measure
was related to the number of possible parses of the
sentence. Tang et al. (2002) addressed a shallow
parser trained on a semantically annotated corpus.

1Hwa explored several functions in the experimental setup
used in the present work, andTE gave the best results.

4



They used an uncertainty sampling protocol, where
in each iteration the sentences of the unlabelled pool
are clustered using a distance measure defined on
parse trees to a predefined number of clusters. The
most uncertain sentences are selected from the clus-
ters, the training taking into account the densities of
the clusters. They reduced the number of training
sentences required for their parser to achieve its best
performance from 1300 to 400.

The importance of cognitively driven measures of
sentences’ syntactic complexity has been recognized
by Roark et al. (2007) who demonstrated their utility
for mild cognitive impairment diagnosis. Zhu et al.
(2008) used a clustering algorithm for sampling the
initial labeled set in an AL algorithm for word sense
disambiguation and text classification. In contrast to
our CBS method, they proceeded with iterative un-
certainty AL selection. Melville et al. (2005) used
parameter-based sample selection for a classifier in
a classic active learning setting, for a task very dif-
ferent from ours.

Sample selection has been applied to many NLP
applications. Examples include base noun phrase
chunking (Ngai, 2000), named entity recognition
(Tomanek et al., 2007) and multi–task annotation
(Reichart et al., 2008).

3 Cognitively Driven Evaluation Measures

While the resources, capabilities and constraints of
the human parser have been the subject of extensive
research, different theories predict different aspects
of its observed performance. We focus on struc-
tures that are widely agreed to impose a high cog-
nitive load on the human annotator and on theories
considering the cognitive resources required in pars-
ing a complete sentence. Based on these, we derive
measures for the cognitive load on the human parser
when syntactically annotating a set of sentences.

Nested structures. A nested structure is a parse
tree node representing a constituent created while
another constituent is still being processed (‘open’).
Thedegree K of a nested structure is the number of
such open constituents. In this paper, we enumer-
ate the constituents in a top-down left-right order,
and thus when a constituent is created, only its an-
cestors are processed2. A constituent is processed

2A good review on node enumeration of the human parser
in given in (Abney and Johnson, 1991).
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Figure 1: An example parse tree.

until the processing of its children is completed. For
example, in Figure 1, when the constituent NP3 is
created, it starts a nested structure of degree 2, since
two levels of its ancestors (VP, S) are still processed.
Its parent (VP) starts a nested structure of degree 1.

The difficulty of deeply nested structures for the
human parser is well established in the psycholin-
guistics literature. We review here some of the vari-
ous explanations of this phenomenon; for a compre-
hensive review see (Gibson, 1998).

According to the classical stack overflow theory
(Chomsky and Miller, 1963) and its extension, the
incomplete syntactic/thematic dependencies theory
(Gibson, 1991), the human parser should track the
open structures in its short term memory. When the
number of these structures is too large or when the
structures are nested too deeply, the short term mem-
ory fails to hold them and the sentence becomes un-
interpretable.

According to the perspective shifts theory
(MacWhinney, 1982), processing deeply nested
structures requires multiple shifts of the annotator
perspective and is thus more difficult than process-
ing shallow structures. The difficulty of deeply
nested structured has been demonstrated for many
languages (Gibson, 1998).

We thus propose the total number of nested struc-
tures of degreeK in a sample (TNSK) as a measure
of the cognitive efforts that its annotation requires.
The higherK is, the more demanding the structure.

Sentence level resources. In the psycholinguis-
tic literature of sentence processing there are many
theories describing the cognitive resources required
during a complete sentence processing. These re-
sources might be allocated during the processing of
a certain word and are needed long after its con-
stituent is closed. We briefly discuss two lines of
theory, focusing on their predictions that sentences
consisting of a large number of structures (e.g., con-
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stituents or nested structures) require more cognitive
resources for longer periods.

Levelt (2001) suggested a layered model of the
mental lexicon organization, arguing that when one
hears or reads a sentence s/he activates word forms
(lexemes) that in turn activate lemma information.
The lemma information contains information about
syntactic properties of the word (e.g., whether it is
a noun or a verb) and about the possible sentence
structures that can be generated given that word. The
process of reading words and retrieving their lemma
information is incremental and the lemma informa-
tion for a given word is used until its syntactic struc-
ture is completed. The information about a word in-
clude all syntactic predictions, obligatory (e.g., the
prediction of a noun following a determiner) and op-
tional (e.g., optional arguments of a verb, modifier
relationships). This information might be relevant
long after the constituents containing the word are
closed, sometimes till the end of the sentence.

Another line of research focuses on working
memory, emphasizing theactivation decay princi-
ple. It stresses that words and structures perceived
during sentence processing are forgotten over time.
As the distance between two related structures in a
sentence grows, it is more demanding to reactivate
one when seeing the other. Indeed, supported by
a variety of observations, many of the theories of
the human parser (see (Lewis et al., 2006) for a sur-
vey) predict that processing items towards the end of
longer sentences should be harder, since they most
often have to be integrated with items further back.
Thus, sentences with a large number of structures
impose a special cognitive load on the annotator.

We thus propose to use the number of structures
(constituents or nested structures) in a sentence as a
measure of its difficulty for human annotation. The
measures we use for a sample (a sentence set) are the
average number of constituents (AC) and theaver-
age number of nested structures of degree k (ANSK)
per sentence in the set. HigherAC or ANSK values
of a set imply higher annotation requirements3.

Pschycolinguistics research makes finer observa-

3The correlation between the number of constituents and
sentence length is very strong (e.g., correlation coefficient of
0.93 in WSJ section 0). We could use the number of words, but
we prefer the number of structures since the latter better reflects
the arguments made in the literature.

tions about the human parser than those described
here. A complete survey of that literature is beyond
the scope of this paper. We consider the proposed
measures a good approximation of some of the hu-
man parser characteristics.

4 Parameter Based Sampling (PBS)

Our approach is to sample the unannotated pool with
respect to the distribution of the model parameters
in its sentences. In this paper, in order to compare to
previous works, we apply our methods to the Collins
generative parser (Collins, 1999). For any sentence
s and parse treet it assigns a probabilityp(s, t),
and finds the tree for which this probability is maxi-
mized. To do that, it writesp(t, s) as a product of the
probabilities of the constituents int and decomposes
the latter using the chain rule. In simplified notation,
it uses:

p(t, s) =

∏
P (S1 → S2 . . . Sn) =

∏
P (S1)·. . .·P (Sn|φ(S1 . . . Sn))

(1)

We refer to the conditional probabilities as the model
parameters.

Cluster Based Sampling (CBS). We describe
here a method for sampling subsets that leads to a
parameter estimation that is similar to the parame-
ter estimation we would get if annotating the whole
unannotated set.

To do that, we randomly selectM sentences from
the unlabelled poolN , manually annotate them,
train the parser with these sentences and parse the
rest of the unlabelled pool (G = N − M ). Using
this annotation we build a syntactic vector repre-
sentation for each sentence inG. We then cluster
these sentences and sample the clusters with respect
to their weights to preserve the distribution of the
syntactic features. The selected sentences are man-
ually annotated and combined with the group ofM
sentences to train the final parser. The size of this
combined sample is measured when the annotation
efforts are evaluated.

Denote the left hand side nonterminal of a con-
stituent byP and the unlexicalized head of the con-
stituent byH. The domain ofP is the set of non-
terminals (excluding POS tags) and the domain of H
is the set of nonterminals and POS tags of WSJ. In
all the parameters of the Collins parserP andH are
conditioned upon. We thus use(P, H) pairs as the
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features in the vector representation of each sentence
in G. Thei-th coordinate is given by the equation:

∑

c∈t(s)

∑

i

Fi(Q(c) == i) · L(c) (2)

Wherec are the constituents of the sentence parse
t(s), Q is a function that returns the(P, H) pair
of the constituentc, Fi is a predicate that returns 1
iff it is given pair numberi as an argument and 0
otherwise, andL is the number of modifying non-
terminals in the constituent plus 1 (for the head),
counting the number of parameters that condition
on (P, H). Following equation (2), theith coordi-
nate of the vector representation of a sentence inG
contains the number of parameters that will be cal-
culated conditioned on theith (P, H) pair.

We use the k-means clustering algorithm, with the
L2 norm as a distance metric (MacKay, 2002), to di-
vide vectors into clusters. Clusters created by this
algorithm contain adjacent vectors in a Euclidean
space. Clusters represent sentences with similar fea-
tures values. To initialize k-means, we sample the
initial centers values from a uniform distribution
over the data points.

We do not decide on the number of clusters in ad-
vance but try to find inherent structure in the data.
Several methods for estimating the ‘correct’ num-
ber of clusters are known (Milligan and Cooper,
1985). We used a statistical heuristic called the
elbow test. We define the ‘within cluster disper-
sion’ Wk as follows. Suppose that the data is di-
vided intok clustersC1 . . . Ck with |Cj | points in
the jth cluster. LetDt =

∑
i,j∈Ct

di,j where
di,j is the squared Euclidean distance, thenWk :=∑k

t=1
1

2|Ct|Dt. Wk tends to decrease monotonically
ask increases. In many cases, from somek this de-
crease flattens markedly. The heuristic is that the
location of such an ‘elbow’ indicates the appropriate
number of clusters. In our experiments, an obvious
elbow occurred for 15 clusters.

ki sentences are randomly sampled from each
cluster, ki = D |Ci|∑

j
|Cj | , whereD is the number

of sentences to be sampled fromG. That way we
ensure that in the final sample each cluster is repre-
sented according to its size.

CMM Sampling. All of the parameters in the
Collins parser are conditioned on the constituent’s

head word. Since word statistics are sparse, sam-
pling from clusters created according to a lexical
vector representation of the sentences does not seem
promising4.

Another way to create a sample from which the
parser can extract robust head word statistics is to
select a sample containing many examples of each
word. More formally, we denote the words that oc-
cur in the unlabelled pool at leastt times byt-words,
wheret is a parameter of the algorithm. We want to
select a sample containing at leastt examples of as
many t-words as possible.

To select such a sample we introduce a novel op-
timisation problem. Our problem is a variant of the
multiset multicover (MM ) problem, which we call
the constrained multiset multicover (CMM) prob-
lem. The setting of theMM problem is as fol-
lows (Hochbaum, 1997): Given a setI of m ele-
ments to be covered eachbi times, a collection of
multisetsSj ⊂ I, j ∈ J = {1, . . . , n} (a multiset is
a set in which members’ multiplicity may be greater
than 1), and weightswj , find a subcollectionC of
multisets that covers eachi ∈ I at leastbi times, and
such that

∑
j∈C wj is minimized.

CMM differs from MM in that in CMM the sum
of the weights (representing the desired number of
sentences to annotate) is bounded, while the num-
ber of covered elements (representing the t-words)
should be maximized. In our case,I is the set of
words that occur at leastt times in the unlabelled
pool, bi = t,∀i ∈ I, the multisets are the sentences
in that pool andwj = 1,∀j ∈ J .

Multiset multicover is NP-hard. However, there is
a good greedy approximation algorithm for it. De-
fine a(sj , i) = min(R(sj , i), di), wheredi is the
difference betweenbi and the number of instances
of item i that are present in our current sample, and
R(sj , i) is the multiplicity of thei-th element in the
multisetsj . DefineA(sj) to be the multiset contain-
ing exactlya(sj , i) copies of any elementi if sj is
not already in the set cover and the empty set if it
is. The greedy algorithm repeatedly adds a set mini-
mizing wj

|A(sj)| . This algorithm provenly achieves an

approximation ratio betweenln(m) andln(m) + 1.
In our case all weights are 1, so the algorithm would

4We exploredCBSwith several lexical features schemes and
got only marginal improvement over random selection.
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simply add the sentence that maximizesA(sj) to the
set cover.

The problem in directly applying the algorithm to
our case is that it does not take into account the de-
sired sample size. We devised a variant of the algo-
rithm where we use a binary tree to ‘push’ upwards
the number of t-words in the whole batch of unan-
notated sentences that occurs at least t times in the
selected one. Below is a detailed description.D de-
notes the desired number of items to sample.

The algorithm has two steps. First, we iter-
atively sample (without replacement)D multisets
(sentences) from a uniform distribution over the
multisets. In each iteration we calculate for the se-
lected multiset its ‘contribution’ – the number of
items that cross the threshold oft occurrences with
this multiset minus the number of items that cross
thet threshold without this multiset (i.e. the contri-
bution of the first multiset is the number of t-words
occurring more thant times in it). For each multiset
we build a node with a key that holds its contribu-
tion, and insert these nodes in a binary tree. Inser-
tion is done such that all downward paths are sorted
in decreasing order of key values.

Second, we iteratively sample (from a uniform
distribution, without replacement) the rest of the
multisets pool. For each multiset we perform two
steps. First, we prepare a node with a key as de-
scribed above. We then randomly chooseZ leaves5

in the binary tree (if the number of leaves is smaller
thanZ all of the leaves are chosen). For each leaf we
find the place of the new node in the path from the
root to the leaf (paths are sorted in decreasing order
of key values). We insert the new node to the high-
est such place found (if the new key is not smaller
than the existing paths), add its multiset to the set of
selected multisets, and remove the multiset that cor-
responds to the leaf of this path from the batch and
the leaf itself from the binary tree. We finally choose
the multisets that correspond to the highestD nodes
in the tree.

An empirical demonstration of the quality of ap-
proximation that the algorithm provides is given in
Figure 2. We ran our algorithm with the threshold
parameter set tot ∈ [2, 14] and counted the num-

5We triedZ values from 10 to 100 in steps of 10 and ob-
served very similar results. We report results forZ = 100.
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Figure 2: Number of t-words for t = 5 in samples selected
by CMM runs with different values of the threshold pa-
rameter t and in a randomly selected sample.CMM with
t = 5 is significantly higher. All the lines except for the
line for t = 5 are unified. For clarity, we do not show all t
values: their curves are also similar to thet 6= 5 lines.

Method 86% 86.5% 87% 87.5% 88%
TE 16.9% 27.1% 26.9% 14.8% 15.8%

(152K) (183K) (258K) (414K) (563 K)
CBS 19.6% 16.8% 19% 21.1% 9%

(147K) (210K) (286K) (382K) (610K)
CMM 9% 10.4% 8.9% 10.3% 14%

(167K) (226K) (312K) (433K) (574K)

Table 1: Reduction in annotation cost inTC terms com-
pared to the random baseline for tree entropy (TE), syn-
tactic clustering (CBS) andCMM. The compared samples
are the smallest samples selected by each of the methods
that achieve certain f-score levels. Reduction is calcu-
lated by:100− 100× (TCmethod/TCrandom).

ber of words occurring at least 5 times in the se-
lected sample. We followed the same experimen-
tal protocol as in Section 5. The graph shows that
the number of words occurring at least 5 times in a
sample selected by our algorithm whent = 5 is sig-
nificantly higher (by about a 1000) than the number
of such words in a randomly selected sample and in
samples selected by our algorithm with othert pa-
rameter values. We got the same pattern of results
when counting words occurring at leastt times for
the other values of thet parameter – only the run of
the algorithm with the correspondingt value created
a sample with significantly higher number of words
not below threshold. The other runs and random se-
lection resulted in samples containing significantly
lower number of words not below threshold.

In Section 5 we show that the parser performance
when it is trained with a sample selected byCMM

is significantly better than when it is trained with a
randomly selected sample. Improvement is similar
across thet parameter values.
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86% 87% 88%
Method TNSK TNSK ANSK ANSK TNSK TNSK ANSK ANSK TNSK TNSK ANSK ANSK

(1-6) (7-22) (1-6) (7-22) (1-6) (7-22) (1-6) (7-22) (1-6) (7-22) (1-6) (7-22)
TE 34.9% 3.6% - 8.9% - 61.3% 42.2% 14.4% - 9.9% - 62.7% 25% 8.1% - 6.3% - 30%
CBS 21.3% 18.6% - 0.5% - 3.5% 19.6% 24.2% - 0.3% - 1.8% 8.9% 8.6 % 0% - 0.3%
CMM 10.18% 8.87% -0.82% -3.39% 11% 16.22% -0.34% -1.8% 14.65% 14.11% -0.02% - 0.08%

Table 2: Annotation cost reduction inTNSK andANSK compared to the random baseline for tree entropy (TE), syntactic
clustering (CBS) andCMM. The compared samples are the smallest selected by each of the methods that achieve certain
f-score levels. Each column represents the reduction in total or average number of structures of degree 1–6 or 7–22.
Reduction for each measure is calculated by:100− 100× (measuremethod/measurerandom). Negative reduction
is an addition. Samples with a higher reduction in a certain measure are better in terms of that measure.
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Figure 3: Left to right: First: The difference between the number of nested structures of degreeK of CMM andTE and
of CBS andTE. The curves are unified. The0 curve is given for reference. Samples selected byCMM andCBS have
more nested structures of degrees 1–6 and less nested structures of degrees 7–22. Results are presented for the smallest
samples required for achieving f-score of 88. Similar patterns are observed for other f-score values. Second: Average
number of nested structures of degreeK as a function ofK for the smallest sample required for achieving f-score of
88. Results for each of the methods are normalized by the average number of nested structures of degreeK in the
smallest randomly selected sample required for achieving f-score of 88. The sentences inCMM andCBS samples are
not more complex than sentences in a randomly selected sample. In TE samples sentences are more complex. Third:
Average number of constituents (AC) for the smallest sample of each of the methods that is required for achieving a
given f-score.CMM andCBS samples contain sentences with a smaller number of constituents. Fourth:AC values for
the samples created by the methods (normalized byAC values of a randomly selected sample). The sentences inTE

samples, but not inCMM andCBS samples, are more complex than sentences in a randomly selected sample.

5 Results

Experimental setup. We used Bikel’s reimplemen-
tation of Collins’ parsing model 2 (Bikel, 2004).
Sections 02-21 and 23 of the WSJ were stripped
from their annotation. Sections 2-21 (39832 sen-
tences, about 800K constituents) were used for train-
ing, Section 23 (2416 sentences) for testing. No
development set was used. We used the gold stan-
dard POS tags in two cases: in the test section (23)
in all experiments, and in Sections 02-21 in the
CBS method when these sections are to be parsed
in the process of vector creation. In active learn-
ing methods the unlabelled pool is parsed in each
iteration and thus should be tagged with POS tags.
Hwa (2004) (to whom we compare our results) used
the gold standard POS tags for the same sections
in her work6. We implemented a random baseline

6Personal communication with Hwa. Collins’ parser uses an

where sentences are uniformly selected from the un-
labelled pool for annotation. For reliability we re-
peated each experiment with the algorithms and the
random baseline 10 times, each time with different
random selections (M sentences for creating syntac-
tic tagging and k-means initialization forCBS, sen-
tence order inCMM), and averaged the results.

Each experiment contained 38 runs. In each run
a different desired sample size was selected, from
1700 onwards, in steps of 1000. Parsing perfor-
mance is measured in terms of f-score

Results. We compare the performance of our
CBS andCMM algorithms to theTE method (Hwa,
2004)7, which is the only sample selection work ad-

input POS tag only if it cannot tag its word using the statistics
learned from the training set.

7Hwa has kindly sent us the samples selected by herTE. We
evaluated these samples withTC and the new measures. TheTC

of the minimal sample she sent us needed for achieving f-score
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dressing our experimental setup. Unless otherwise
stated, we report the reduction in annotation cost:
100− 100× (measuremethod/measurerandom).
CMM results are very similar fort ∈ {2, 3, . . . , 14},
and presented fort = 8.

Table 1 presents reduction in annotation cost in
TC terms. CBS achieves greater reduction forf =
86, 87.5, TE for f = 86.5, 87, 88. For f = 88, TE

andCMM performance are almost similar. Examin-
ing the f-score vs.TC sample size over the whole
constituents range (not shown due to space con-
straints) reveals thatCBS, CMM andTE outperform
random selection over the whole range.CBS and
TE performance are quite similar withTE being bet-
ter in the ranges of 170–300K and 520–650K con-
stituents (42% of the 620K constituents compared)
andCBSbeing better in the ranges of 130–170K and
300–520K constituents (44% of the range).CMM

performance is worse thanCBS and TE until 540K
constituents. From 650K constituents on, where
the parser achieves its best performance, the perfor-
mance ofCMM andTE methods are similar, outper-
forming CBS.

Table 2 shows the annotation cost reduction in
ANSK and TNSK terms. TE achieves remarkable
reduction in the total number of relatively shallow
structures (TNSK K = 1–6). Our methods, in con-
trast, achieve remarkable reduction in the number of
deep structures (TNSK K = 7–22)8. This is true for
all f-score values. Moreover, the average number of
nested structures per sentence, for every degreeK
(ANSK for everyK) in TE sentences is much higher
than in sentences of a randomly selected sample. In
samples selected by our methods, theANSK values
are very close to theANSK values of randomly se-
lected samples. Thus, sentences inTE samples are
much more complex than inCBSandCMM samples.

The two leftmost graphs in Figure 3 demonstrate
(for the minimal samples required for f-score of 88)
that these reductions hold for eachK value (ANSK)
and for eachK ∈ [7, 22] (TNSK) not just on the av-

of 88 is different from the number reported in (Hwa, 2004). We
compare ourTC results with theTC result in the sample sent us
by Hwa.

8We present results where the border between shallow and
deep structures is set to beKborder = 6. For everyKborder ∈
{7, 8, . . . , 22} TNSK reductions withCBS andCMM are much
more impressive than withTE for structures whose degree is
K ∈ [Kborder, 22].

erage over theseK values. We observed similar re-
sults for other f-score values.

The two rightmost graphs of Figure 3 demon-
stratesAC results. The left of them shows that for
every f-score value, theAC measure of the minimal
TE sample required to achieve that f-score is higher
than theAC value of PBS samples (which are very
similar to theAC values of randomly selected sam-
ples). The right graph demonstrates that for every
sample size, theAC value of TE samples is higher
than that of PBS samples.

All AL based previous work (includingTE) is it-
erative. In each iteration thousands of sentences
are parsed, while PBS algorithms perform a single
iteration. Consequently, PBS computational com-
plexity is dramatically lower. Empirically, using a
Pentium 4 2.4GHz machine,CMM requires about an
hour andCBSabout 16.5 hours, while theTE parsing
steps alone take 662 hours (27.58 days).

6 Discussion and Future Work

We introduced novel evaluation measures:AC,
TNSK and ANSK for the task of sample selection
for statistical parsers. Based on the psycholinguis-
tic literature we argue that these measures reflect as-
pects of the cognitive efforts of the human annota-
tor that are not reflected by the traditionalTC mea-
sure. We introduced the parameter based sample se-
lection (PBS) approach and itsCMM andCBS algo-
rithms that do not deliberately select difficult sen-
tences. Therefore, our intuition was that they should
select a sample that leads to an accurate parameter
estimation but does not contain a high number of
complex structures. We demonstrated thatCMM and
CBSachieve results that are similar to the state of the
art TE method inTC terms and outperform it when
the cognitively driven measures are considered.

The measures we suggest do not provide a full
and accurate description of human annotator efforts.
In future work we intend to extend and refine our
measures and to revise our algorithms accordingly.

We also intend to design stopping criteria for the
PBS methods. These are criteria that decide when
the selected sample suffices for the parser best per-
formance and further annotation is not needed.

10
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