
Proceedings of the EACL 2009 Workshop on Computational Linguistic Aspects of Grammatical Inference, pages 58–65,
Athens, Greece, 30 March 2009. c©2009 Association for Computational Linguistics

Upper Bounds for Unsupervised Parsing with Unambiguous
Non-Terminally Separated Grammars

Franco M. Luque and Gabriel Infante-Lopez
Grupo de Procesamiento de Lenguaje Natural

Universidad Nacional de Córdoba & CONICET
Argentina

{francolq|gabriel}@famaf.unc.edu.ar

Abstract

Unambiguous Non-Terminally Separated
(UNTS) grammars have properties that
make them attractive for grammatical in-
ference. However, these properties do not
state the maximal performance they can
achieve when they are evaluated against a
gold treebank that is not produced by an
UNTS grammar. In this paper we inves-
tigate such an upper bound. We develop
a method to find an upper bound for the
unlabeledF1 performance that any UNTS
grammar can achieve over a given tree-
bank. Our strategy is to characterize all
possible versions of the gold treebank that
UNTS grammars can produce and to find
the one that optimizes a metric we define.
We show a way to translate this score into
an upper bound for theF1. In particular,
we show that theF1 parsing score of any
UNTS grammar can not be beyond82.2%
when the gold treebank is the WSJ10 cor-
pus.

1 Introduction

Unsupervised learning of natural language has re-
ceived a lot of attention in the last years, e.g., Klein
and Manning (2004), Bod (2006a) and Seginer
(2007). Most of them use sentences from a tree-
bank for training and trees from the same treebank
for evaluation. As such, the best model for un-
supervised parsing is the one that reports the best
performance.

Unambiguous Non-Terminally Separated
(UNTS) grammars have properties that make
them attractive for grammatical inference. These
grammars have been shown to be PAC-learnable
in polynomial time (Clark, 2006), meaning that
under certain circumstances, the underlying
grammar can be learned from a sample of the

underlying language. Moreover, UNTS grammars
have been successfully used to induce grammars
from unannotated corpora in competitions of
learnability of formal languages (Clark, 2007).

UNTS grammars can be used for modeling nat-
ural language. They can be induced using any
training material, the induced models can be eval-
uated using trees from a treebank, and their per-
formance can be compared against state-of-the-
art unsupervised models. Different learning al-
gorithms might produce different grammars and,
consequently, different scores. The fact that the
class of UNTS grammars is PAC learnable does
not convey any information on the possible scores
that different UNTS grammars might produce.
From a performance oriented perspective it might
be possible to have an upper bound over the set
of possible scores of UNTS grammars. Knowing
an upper bound is complementary to knowing that
the class of UNTS grammars is PAC learnable.

Such upper bound has to be defined specifically
for UNTS grammars and has to take into account
the treebank used as test set. The key question
is how to compute it. Suppose that we want to
evaluate the performance of a given UNTS gram-
mar using a treebank. The candidate grammar pro-
duces a tree for each sentence and those trees are
compared to the original treebank. We can think
that the candidate grammar has produced a new
version of the treebank, and that the score of the
grammar is a measure of the closeness of the new
treebank to the original treebank. Finding the best
upper bound is equivalent to finding the closest
UNTS version of the treebank to the original one.

Such bounds are difficult to find for most classes
of languages because the search space is the
set of all possible versions of the treebank that
might have been produced by any grammar in the
class under study. In order to make the problem
tractable, we need the formalism to have an easy
way to characterize all the versions of a treebank

58

it might produce. UNTS grammars have a special
characterization that makes the search space easy
to define but whose exploration is NP-hard.

In this paper we present a way to characterize
UNTS grammars and a metric function to mea-
sure the closeness between two different version
of a treebank. We show that the problem of find-
ing the closest UNTS version of the treebank can
be described as Maximum Weight Independent Set
(MWIS) problem, a well known NP-hard problem
(Karp, 1972). The exploration algorithm returns
a version of the treebank that is the closest to the
gold standard in terms of our own metric.

We show that theF1-measure is related to our
measure and that it is possible to find and upper
bound of theF1-performance for all UNTS gram-
mars. Moreover, we compute this upper bound for
the WSJ10, a subset of the Penn Treebank (Mar-
cus et al., 1994) using POS tags as the alphabet.
The upper bound we found is82.2% for the F1
measure. Our result suggest that UNTS grammars
are a formalism that has the potential to achieve
state-of-the-art unsupervised parsing performance
but does not guarantee that there exists a grammar
that can actually achieve the82.2%.

To the best of our knowledge, there is no pre-
vious research on finding upper bounds for perfor-
mance over a concrete class of grammars. In Klein
and Manning (2004), the authors compute an up-
per bound for parsing with binary trees a gold tree-
bank that is not binary. This upper bound, that is
88.1% for the WSJ10, is for any parser that returns
binary trees, including the concrete models devel-
oped in the same work. But their upper bound does
not use any specific information of the concrete
models that may help them to find better ones.

The rest of the paper is organized as follows.
Section 2 presents our characterization of UNTS
grammars. Section 3 introduces the metric we op-
timized and explains how the closest version of the
treebank is found. Section 4 explains how the up-
per bound for our metric is translated to an up-
per bound of theF1 score. Section 5 presents our
bound for UNTS grammars using the WSJ10 and
finally Section 6 concludes the paper.

2 UNTS Grammars and Languages

Formally, a context free grammarG =
(Σ, N, S, P) is said to be Non-Terminally Sepa-
rated (NTS) if, for allX, Y ∈ N andα, β, γ ∈
(Σ ∪ N)∗ such thatX

∗
⇒ αβγ andY

∗
⇒ β, we

have thatX
∗
⇒ αY γ (Clark, 2007). Unambiguous

NTS (UNTS) grammars are those NTS grammars
that parses unambiguously every instance of the
language.

Given any grammarG, a substrings of r ∈
L(G) is called aconstituent of r if and only if there
is anX in N such thatS

∗
⇒ uXv

∗
⇒ usv = r.

In contrast, a strings is called a non-constituent or
distituent of r ∈ L(G) if s is not a constituent ofr.
We say thats is a constituent of a languageL(G)
if for every r that containss, s is a constituent of
r. In contrast,s is a distituent ofL(G) if for every
r wheres occurs,s is a distituent ofr.

An interesting characterization of finite UNTS
grammars is that every substring that appear in
some string of the language is always a constituent
or always a distituent. In other words, if there is a
stringr in L(G) for which s is a constituent, then
s is a constituent ofL(G). By means of this prop-
erty, if we ignore the non-terminal labels, a finite
UNTS language is fully determined by its set of
constituentsC. We can show this property for fi-
nite UNTS languages. We believe that it can also
be shown for non-finite cases, but for our purposes
the finite cases suffices, because we use grammars
to parse finite sets of sentences, specifically, the
sentences of test treebanks. We know that for ev-
ery finite subset of an infinite language produced
by a UNTS grammarG, there is a UNTS gram-
mar G′ whose language is finite and that parses
the finite subset asG. If we look for the upper
bound among the grammars that produce a finite
language, this upper bound is also an upper bound
for the class of infinite UNTS grammars.

The UNTS characterization plays a very im-
portant role in the way we look for the upper
bound. Our method focuses on how to determine
which of the constituents that appear in the gold
are actually the constituents that produce the up-
per bound. Suppose that a given gold treebank
contains two stringsα andβ such that theyoccur
overlapped. That is, there exist non-empty strings
α′, γ, β′ such thatα = α′γ and β = γβ′ and
α′γβ′ occurs in the treebank. IfC is the set of
constituents of a UNTS grammar it can not have
bothα andβ. It might have one or the other, but
if both belong toC the resulting language can not
be UNTS. In order to find the closest UNTS gram-
mar we design a procedure that looks for the sub-
set of all substrings that occur in the sentences of
the gold treebank that can be the constituent setC

59

of a grammar. We do not explicitly build a UNTS
grammar, but find the setC that produces the best
score.

We say that two stringsα andβ arecompatible
in a languageL if they do not occur overlapped
in L, and hence they both can be members ofC.
If we think of L as a subset of an infinite lan-
guage, it is not possible to check that two overlap-
ping strings do not appear overlapped in the “real”
language and hence that they are actually com-
patible. Nevertheless, we can guarantee compat-
ibility between two stringsα, β by requiring that
they do not overlap at all, this is, that there are
no non-empty stringsα′, γ, β′ such thatα = α′γ

andβ = γβ′. We call this type of compatibility
strong compatibility. Strong compatibility ensures
that two strings can belong toC regardless ofL.
In our experiments we focus on finding the best set
C of compatible strings.

Any set of compatible stringsC extracted from
the gold treebank can be used to produce a new
version of the treebank. For example, Figure 1
shows two trees from the WSJ Penn Treebank.
The string “in the dark” occurs as a constituent in
(a) and as a distituent in (b). IfC contains “in the
dark”, it can not contain “the dark clouds” given
that they overlap in the yield of (b). As a con-
sequence, the new treebank correctly contains the
subtree in (a) but not the one in (b). Instead, the
yield of (b) is described as in (c) in the new tree-
bank.

C defines a new version of the treebank that sat-
isfies the UNTS property. Our goal is to obtain a
treebankT ′ such that (a)T ′ andT are treebanks
over the same set of sentences, (b)T ′ is UNTS,
and (c)T ′ is the closest treebank toT in terms of
performance. The three of them imply that any
other UNTS grammar is not as similar as the one
we found.

3 Finding the Best UNTS Grammar

As our goal is to find the closest grammar in terms
of performance, we need to define first a weight
for each possible grammar and second, an algo-
rithm that searches for the grammar with the best
weight. Ideally, the weight of a candidate gram-
mar should be in terms ofF1, but we can show
that optimization of this particular metric is com-
putationally hard. Instead of definingF1 as their
score, we introduce a new metric that is easier to
optimize, we find the best grammar for this met-

ric, and we show that the possible values ofF1
can be bounded by a function that takes this score
as argument. In this section we present our metric
and the technique we use to find a grammar that
reports the best value for our metric.

If the original treebankT is not produced by any
UNTS grammar, then there are strings inT that
are constituents in some sentences and that are dis-
tituents in some other sentences. For each one of
them we need a procedure to decide whether they
are members ofC or not. If a stringα appears a
significant number of times more as a constituent
than as a distituent the procedure may choose to
include it inC at the price of being wrong a few
times. That is, the new version ofT has all occur-
rences ofα either as constituents or as distituents.
The treebank that has all of its occurrences as con-
stituents differs from the original in that there are
some occurrences ofα that were originally dis-
tituents and are marked as constituents. Similarly,
if α is marked as distituent in the new treebank, it
has occurrences ofα that were constituents inT .

The decision procedure becomes harder when
all the substrings that appear in the treebank are
considered. The increase in complexity is a con-
sequence of the number of decisions the procedure
needs to take and the way these decisions interfere
one with another. We show that the problem of
determining the setC is naturally embedded in a
graph NP-hard problem. We define a way to look
for the optimal grammars by translating our prob-
lem to a well known graph problem. LetL be the
the set of sentences in a treebank, and letS(L) be
all the possible non-empty proper substrings ofL.
We build a weighted undirected graphG in terms
of the treebank as follows. Nodes inG correspond
to strings inS(L). The weight of a node is a func-
tion w(s) that models our interest of havings se-
lected as a constituent;w(s) is defined in terms of
some information derived from the gold treebank
T and we discuss it later in this section. Finally,
two nodesa andb are connected by an edge if their
two corresponding strings conflict in a sentence of
T (i.e., they are not compatible inL).

Not all elements ofL are inS(L). We did not
includeL in S(L) for two practical reasons. The
first one is that to requireL in S(L) is too re-
strictive. It states that all strings inL are in fact
constituents. If two stringab and bc of L oc-
cur overlapped in a third stringabc then there is
no UNTS grammar capable of having the three of

60

(a)

PRP

we

VBP

’re
IN

in
DT

the

JJ

dark

(b)
IN

in DT

the

JJ

dark

NNS

clouds

(c)

IN

in

DT

the

JJ

dark

NNS

clouds

Figure 1: (a) and (b) are two subtrees that show “in the dark” as a constituent and as a distituent respec-
tively. (c) shows the result of choosing “in the dark” as a constituent.

them as constituents. The second one is that in-
cluding them produces graphs that are too sparse.
If they are included in the graph, we know that
any solution should contain them, consequently,
all their neighbors do not belong to any solution
and they can be removed from the graph. Our ex-
periments show that the graph that results from re-
moving nodes related to nodes representing strings
in L are too small to produce any interesting result.

By means of representing the treebank as a
graph, selecting a set of constituentsC ⊆ S(L)
is equivalent to selecting an independent set of
nodes in the graph. Anindependent set is a sub-
set of the set of nodes that do not have any pair
of nodes connected by an edge. Clearly, there are
exponentially many possible ways to select an in-
dependent set, and each of these sets represents a
set of constituents. But, since we are interested in
the best set of constituents, we associate to each
independent setC the weightW (C) defined as
∑

s∈C w(s). Our aim is then to find a setCmax

that maximizes this weight. This problem is a well
known problem of graph theory known in the lit-
erature as the Maximum Weight Independent Set
(MWIS) problem. This problem is also known to
be NP-hard (Karp, 1972).

We still have to choose a definition forw(s).
We want to find the grammar that maximizesF1.
Unfortunately,F1 can not be expressed in terms of
a sum of weights. Maximization ofF1 is beyond
the expressiveness of our model, but our strategy
is to define a measure that correlates withF1 and
that can be expressed as a sum of weights.

In order to introduce our measure, we first de-
fine c(s) andd(s) as the number of times a string
s appears in the gold treebankT as a constituent
and as a distituent respectively. Observe that if
we choose to includes as a constituent ofC, the
resulting treebankT ′ contains all thec(s) + d(s)
occurrences ofs as a constituent.c(s) of thes oc-
currences inT ′ are constituents as they are inT

andd(s) of the occurrences are constituents inT ′

but are in fact distituents inT . We want to max-

imize c(s) and minimized(s) at the same time.
This can be done by defining the contribution of a
strings to the overall score as

w(s) = c(s) − d(s).

With this definition ofw, the weightW (C) =
∑

s∈C w(s) becomes the number of constituents
of T ′ that are inT minus the number of con-
stituents that do not. If we define the number of
hits to beH(C) =

∑

s∈C c(s) and the number of
misses to beM(C) =

∑

s∈C d(s) we have that

W (C) = H(C) − M(C). (1)

As we confirm in Section 5, graphs tend to be
very big. In order to reduce the size of the graphs,
if a string s hasw(s) ≤ 0, we do not include its
corresponding node in the graph. An independent
set that does not includes has an equal or higher
W than the same set includings.

For example, letT be the treebank in Fig-
ure 2 (a). The sets of substrings such that
w(c) ≥ 0 is {da, cd, bc, cda, ab, bch}. The
graph that corresponds to this set of strings is
given in Figure 3. Nodes corresponding to
strings {dabch, bcda, abe, abf, abg, bci, daj} are
not shown in the figure because the strings do
not belong toS(L). The figure also shows the
weights associated to the substrings according to
their counts in Figure 2 (a). The shadowed nodes
correspond to the independent set that maximizes
W . The trees in the Figure 2 (b) are the sentences
of the treebank parsed according the optimal inde-
pendent set.

4 An Upper Bound for F1

Even though finding the independent set that max-
imizes W is an NP-Hard problem, there are in-
stances where it can be effectively computed, as
we show in the next section. The setCmax max-
imizes W for the WSJ10 and we know that all
othersC produces a lower value ofW . In other
words, the setCmax produce a treebankTmax that

61

(a)

d a
b c h

(da)((bc)h)

b
c d a

b((cd)a)

a b e

(ab)e
a b f

(ab)f
a b g

(ab)g
b c i

(bc)i
d a j

(da)j

(b)

d a b c h

d(ab)ch

b
c d a

b((cd)a)

a b e

(ab)e
a b f

(ab)f
a b g

(ab)g
b c i
bci

d a j
daj

Figure 2: (a) A gold treebank. (b) The treebank generated by the grammar C = L ∪ {cd, ab, cda}.

Figure 3: Graph for the treebank of Figure 2.

is the closest UNTS version to the WSJ10 in terms
of W . We can compute the precision, recall and
F1 for Cmax but there is no warranty that theF1
score is the best for all the UNTS grammars. This
is the case becauseF1 andW do not define the
same ordering over the family of candidate con-
stituent setsC: there are gold treebanksT (used
for computing the metrics), and setsC1, C2 such
that F1(C1) < F1(C2) andW (C1) > W (C2).
For example, consider the gold treebankT in Fig-
ure 4 (a). The table in Figure 4 (b) displays two
setsC1 andC2, the treebanks they produce, and
their values ofF1 andW . Note thatC2 is the re-
sult of adding the stringef to C1, also note that
c(ef) = 1 andd(ef) = 2. This improves theF1
score but produces a lowerW .

The F1 measure we work with is the one de-
fined in the recent literature of unsupervised pars-
ing (Klein and Manning, 2004).F1 is defined in
terms of Precision and Recall as usual, and the last
two measures are micro-averaged measures that
include full-span brackets, and that ignore both
unary branches and brackets of span one. For sim-
plicity, the previous example does not count the
full-span brackets.

As the example shows, the upper bound forW

might not be an upper bound ofF1, but it is pos-
sible to find a way to define an upper bound of
F1 using the upper bound ofW . In this section
we define a functionf with the following prop-
erty. LetX andY be the sets ofW -weights and

F1-weights for all possible UNTS grammars re-
spectively. Then, ifw is an upper bound ofX,
thenf(w) is an upper bound ofY . The functionf
is defined as follows:

f(w) = F1

(

1

2 − w
K

, 1

)

(2)

whereF1(p, r) = 2pr
p+r

, andK =
∑

s∈ST
c(s) is

the total number of constituents in the gold tree-
bank T . From it, we can also derive values for
precision and recall: precision1

2− w

K

and recall1.

A recall of 1 is clearly an upper bound for all the
possible values of recall, but the value given for
precision is not necessarily an upper bound for all
the possible values of precision. It might exist a
grammar having a higher value of precision but
whoseF1 has to be below our upper bound.

The rest of section shows thatf(W) is an up-
per bound forF1, the reader not interested in the
technicalities can skip it.

The key insight for the proof is that both metrics
F1 andW can be written in terms of precision and
recall. LetT be the treebank that is used to com-
pute all the metrics. And letT ′ be the treebank
produced by a given constituent setC. If a string
s belongs toC, then itsc(s) + d(s) occurrences
in T ′ are marked as constituents. Moreover,s is
correctly tagged ac(s) number of times while it
is incorrectly tagged ad(s) number of times. Us-
ing this,P , R andF1 can be computed forC as
follows:

P (C) =
P

s∈C
c(s)

P

s∈C
c(s)+d(s)

= H(C)
H(C)+M(C) (3)

R(C) =
P

s∈C
c(s)

K

= H(C)
K

(4)

F1(C) = 2P (C)R(C)
P (C)+R(C)

= 2H(C)
K+H(C)+M(C)

62

(a)

a b c

(ab)c

a b d
a(bd)

e f g

(ef)g

e f h
efh

e f i
efi

(b)
C T ′

C P R F1 W

C1 = {abc, abd, efg, efh, efi, ab} {(ab)c, (ab)d, efg, efh, efi} 50% 33% 40% 1 − 1 = 0
C2 = {abc, abd, efg, efh, efi, ab, ef} {(ab)c, (ab)d, (ef)g, (ef)h, (ef)i} 40% 67% 50% 2 − 3 = −1

Figure 4: (a) A gold treebank. (b) Two grammars, the treebanks they generate, and their scores.

W can also be written in terms ofP andR as

W (C) = (2 −
1

P (C)
)R(C)K (5)

This formula is proved to be equivalent to Equa-
tion (1) by replacingP (C) andR(C) with equa-
tions (3) and (4) respectively. Using the last two
equations, we can rewriteF1 andW takingp and
r, representing values of precision and recall, as
parameters:

F1(p, r) =
2pr

p + r

W (p, r) = (2 −
1

p
)rK (6)

Using these equations, we can prove thatf

correctly translates upper bounds ofW to upper
bounds ofF1 using calculus. In contrast toF1,
W not necessarily take values between0 and1. In-
stead, it takes values betweenK and−∞. More-
over, it is negative whenp < 1

2 , and goes to−∞
whenp goes to0. Let C be an arbitrary UNTS
grammar, and letpC , rC andwC be its precision,
recall andW -weight respectively. Letw be our
upper bound, so thatwC ≤ w. If f1C is defined
asF1(pC , rC) we need to show thatf1C ≤ f(w).
We boundf1C in two steps. First, we show that

f1C ≤ f(wC)

and second, we show that

f(wC) ≤ f(w).

The first inequality is proved by observing that
f1C andf(wC) are the values of the function

f1(r) = F1

(

1

2 − wC

Kr

, r

)

at the pointsr = rC and r = 1 respectively.
This function corresponds to the line defined by
the F1 values of all possible models that have a

fixed weightW = wC . The function is monoton-
ically increasing inr, so we can apply it to both
sides of the following inequalityrC ≤ 1, which is
trivially true. As result, we getf1C ≤ f(wC) as
required. The second inequality is proved by ob-
serving thatf(w) is monotonically increasing in
w, and by applying it to both sides of the hypothe-
siswc ≤ w.

5 UNTS Bounds for the WSJ10 Treebank

In this section we focus on trying to find real upper
bounds building the graph for a particular treebank
T . We find the best independent set, we build the
UNTS versionTmax of T and we compute the up-
per bound forF1. The treebank we use for exper-
iments is the WSJ10, which consists of the sen-
tences of the WSJ Penn Treebank whose length
is at most 10 words after removing punctuation
marks (Klein and Manning, 2004). We also re-
moved lexical entries transforming POS tags into
our terminal symbols as it is usually done (Klein
and Manning, 2004; Bod, 2006a).

We start by finding the best independent set. To
solve the problem in the practice, we convert it
into an Integer Linear Programming (ILP) prob-
lem. ILP is also NP-hard (Karp, 1972), but there
is software that implements efficient strategies for
solving some of its instances (Achterberg, 2004).

ILP problems are defined by three parameters.
First, there is a set of variables that can take val-
ues from a finite set. Second, there is an objective
function that has to be maximized, and third, there
is a set of constraints that must be satisfied. In our
case, we define a binary variablexs ∈ {0, 1} for
every nodes in the graph. Its value is 1 or 0, that
respectively determines the presence or absence of
s in the setCmax. The objective function is

∑

s∈S(L)

xsw(s)

The constraints are defined using the edges of the

63

graph. For every edge(s1, s2) in the graph, we
add the following constraint to the problem:

xs1
+ xs2

≤ 1

The 7422 trees of the WSJ10 treebank have a
total of 181476 substrings of length≥ 2, that
form the setS(L) of 68803 different substrings.
The number of substrings inS(L) does not grow
too much with respect to the number of strings in
L because substrings are sequences of POS tags,
meaning that each substring is very frequent in the
corpus. If substrings were made out of words in-
stead of POS tags, the number of substrings would
grow much faster, making the problem harder to
solve. Moreover, removing the stringss such that
w(s) ≤ 0 gives a total of only7029 substrings.
Since there is a node for each substring, the result-
ing graph contains7029 nodes. Recall that there
is an edge between two strings if they occur over-
lapped. Our graph contains1204 edges. The ILP
version has7029 variables,1204 constraints and
the objective function sums over7029 variables.
These numbers are summarized in Table 1.

The solution of the ILP problem is a set of
6583 variables that are set to one. This set corre-
sponds to a setCmax of nodes in our graph of the
same number of elements. UsingCmax we build
a new versionTmax of the WSJ10, and compute
its weightW , precision, recall andF1. Their val-
ues are displayed in Table 2. Since the elements
of L were not introduced inS(L), elements ofL
are not necessarily inCmax, but in order to com-
pute precision and recall, we add them by hand.
Strictly speaking, the set of constituents that we
use for buildingTmax is Cmax plus the full span
brackets.

We can, using equation (2), compute the up-
per bound ofF1 for all the possible scores of all
UNTS grammars that use POS tags as alphabet:

f(wmax) = F1

(

1

2 − wmax

K

, 1

)

= 82.2%

The precision for this upper bound is

P (wmax) =
1

2 − wmax

K

= 69.8%

while its recall isR = 100%. Note from the pre-
vious section thatP (wmax) is not an upper bound
for precision but just the precision associated to
the upper boundf(wmax).

Gold constituents K 35302
Strings |S(L)| 68803
Nodes 7029
Edges 1204

Table 1: Figures for the WSJ10 and its graph.

Hits H 22169
Misses M 2127
Weight W 20042
Precision P 91.2%
Recall R 62.8%
F1 F1 74.4%

Table 2: Summary of the scores forCmax.

Table 3 shows results that allow us to com-
pare the upper bounds with state-of-the-art pars-
ing scores. BestW corresponds to the scores of
Tmax and UBoundF1 is the result of our transla-
tion functionf . From the table we can see that
an unsupervised parser based on UNTS grammars
may reach a sate-of-the-art performance over the
WSJ10. RBranch is a WSJ10 version where all
trees are binary and right branching. DMV, CCM
and DMV+CCM are the results reported in Klein
and Manning (2004). U-DOP and UML-DOP
are the results reported in Bod (2006b) and Bod
(2006a) respectively. Incremental refers to the re-
sults reported in Seginer (2007).

We believe that our upper bound is a generous
one and that it might be difficult to achieve it for
two reasons. First, since the WSJ10 corpus is
a rather flat treebank, from the68803 substrings
only 10% of them are such thatc(s) > d(s). Our
procedure has to decide among this10% which
of the strings are constituents. An unsupervised
method has to choose the set of constituents from
the set of all68803 possible substrings. Second,
we are supposing a recall of100% which is clearly
too optimistic. We believe that we can find a
tighter upper bound by finding an upper bound for
recall, and by rewritingf in equation (2) in terms
of the upper bound for recall.

It must be clear the scope of the upper bound
we found. First, note that it has been computed
over the WSJ10 treebank using the POS tags as
the alphabet. Any other alphabet we use, like for
example words, or pairs of words and POS tags,
changes the relation of compatibility among the
substrings, making a completely different universe

64

Model UP UR F1

RBranch 55.1 70.0 61.7
DMV 46.6 59.2 52.1
CCM 64.2 81.6 71.9
DMV+CCM 69.3 88.0 77.6
U-DOP 70.8 88.2 78.5
UML-DOP 82.9
Incremental 75.6 76.2 75.9

BestW(UNTS) 91.2 62.8 74.4
UBoundF1(UNTS) 69.8 100.0 82.2

Table 3: Performance on the WSJ10 of the most
recent unsupervised parsers, and our upper bounds
on UNTS.

of UNTS grammars. Second, our computation of
the upper bound was not made for supersets of the
WSJ10. Supersets such as the entire Penn Tree-
bank produce bigger graphs because they contain
longer sentences and various different sequences
of substrings. As the maximization ofW is an
NP-hard problem, the computational cost of solv-
ing bigger instances grows exponentially. A third
limitation that must be clear is about the models
affected by the bound. The upper bound, and in
general the method, is only applicable to the class
of formal UNTS grammars, with only some very
slight variants mentioned in the previous sections.
Just moving to probabilistic or weighted UNTS
grammars invalidates all the presented results.

6 Conclusions

We present a method for assessing the potential of
UNTS grammars as a formalism for unsupervised
parsing of natural language. We assess their po-
tential by finding an upper bound of their perfor-
mance when they are evaluated using the WSJ10
treebank. We show that any UNTS grammars can
achieve at most82.2% of F1 measure, a value
comparable to most state-of-the-art models. In or-
der to compute this upper bound we introduced
a measure that does not define the same ordering
among UNTS grammars as theF1, but that has
the advantage of being computationally easier to
optimize. Our measure can be used, by means of
a translation function, to find an upper bound for
F1. We also showed that the optimization proce-
dure for our metric maps into an NP-Hard prob-
lem, but despite this fact we present experimen-
tal results that compute the upper bound for the
WSJ10 when POS tags are treated as the grammar

alphabet.
From a more abstract perspective, we intro-

duced a different approach to assess the usefulness
of a grammatical formalism. Usually, formalism
are proved to have interesting learnability proper-
ties such as PAC-learnability or convergence of a
probabilistic distribution. We present an approach
that even though it does not provide an effective
way of computing the best grammar in an unsu-
pervised fashion, it states the upper bound of per-
formance for all the class of UNTS grammars.

Acknowledgments

This work was supported in part by grant PICT
2006-00969, ANPCyT, Argentina. We would like
to thank Pablo Rey (UDP, Chile) for his help
with ILP, and Demetrio Martín Vilela (UNC, Ar-
gentina) for his detailed review.

References

Tobias Achterberg. 2004. SCIP - a framework to in-
tegrate Constraint and Mixed Integer Programming.
Technical report.

Rens Bod. 2006a. An all-subtrees approach to unsu-
pervised parsing. InProceedings of COLING-ACL
2006.

Rens Bod. 2006b. Unsupervised parsing with U-DOP.
In Proceedings of CoNLL-X.

Alexander Clark. 2006. PAC-learning unambiguous
NTS languages. InProceedings of ICGI-2006.

Alexander Clark. 2007. Learning deterministic con-
text free grammars: The Omphalos competition.
Machine Learning, 66(1):93–110.

Richard M. Karp. 1972. Reducibility among com-
binatorial problems. In R. E. Miller and J. W.
Thatcher, editors,Complexity of Computer Compu-
tations, pages 85–103. Plenum Press.

Dan Klein and Christopher D. Manning. 2004.
Corpus-based induction of syntactic structure: Mod-
els of dependency and constituency. InProceedings
of ACL 42.

Mitchell P. Marcus, Beatrice Santorini, and Mary A.
Marcinkiewicz. 1994. Building a large annotated
corpus of english: The Penn treebank.Computa-
tional Linguistics, 19(2):313–330.

Yoav Seginer. 2007. Fast unsupervised incremental
parsing. InProceedings of ACL 45.

65

