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Abstract

Data-to-text generation systems tend to
be knowledge-based and manually built,
which limits their reusability and makes
them time and cost-intensive to create
and maintain. Methods for automating
(part of) the system building process ex-
ist, but do such methods risk a loss in
output quality? In this paper, we inves-
tigate the cost/quality trade-off in gen-
eration system building. We compare
four new data-to-text systems which were
created by predominantly automatic tech-
niques against six existing systems for the
same domain which were created by pre-
dominantly manual techniques. We eval-
uate the ten systems using intrinsic au-
tomatic metrics and human quality rat-
ings. We find that increasing the degree to
which system building is automated does
not necessarily result in a reduction in out-
put quality. We find furthermore that stan-
dard automatic evaluation metrics under-
estimate the quality of handcrafted sys-
tems and over-estimate the quality of au-
tomatically created systems.

1 Introduction

Traditional Natural Language Generation (NLG)
systems tend to be handcrafted knowledge-based
systems. Such systems tend to be brittle, expen-
sive to create and hard to adapt to new domains
or applications. Over the last decade or so, in
particular following Knight and Langkilde’s work
on n-gram-based generate-and-select surface real-
isation (Knight and Langkilde, 1998; Langkilde,
2000),NLG researchers have become increasingly
interested in systems that are automatically train-
able from data. Systems that have a trainable com-
ponent tend to be easier to adapt to new domains

and applications, and increased automation is of-
ten taken as self-evidently a good thing. The ques-
tion is, however, whether reduced system building
cost and increased adaptability are achieved at the
price of a reduction in output quality, and if so,
how great the price is. This in turn raises the ques-
tion of how to evaluate output quality so that a po-
tential decrease can be detected and quantified.

In this paper we set about trying to find answers
to these questions. We start, in the following sec-
tion, we briefly describing the SUMTIME corpus
of weather forecasts which we used in our experi-
ments. In the next section (Section 2), we outline
four different approaches to building data-to-text
generation systems which involve different combi-
nations of manual and automatic techniques. Next
(Section 4) we describe ten systems in the four cat-
egories that generate weather forecast texts in the
SUMTIME domain. In Section 5 we describe the
human-assessed and automatically computed eval-
uation methods we used to comparatively evalu-
ate the quality of the outputs of the ten systems.
We then present the evaluation results and discuss
implications of discrepancies we found between
the results of the human and automatic evaluations
(Section 6).

2 Data

The SUMTIME-METEO corpus was created by the
SUMTIME project team in collaboration withWNI

Oceanroutes (Sripada et al., 2002). The corpus
was collected byWNI Oceanroutes from the com-
mercial output of five different (human) forecast-
ers, and each instance in the corpus consists of nu-
merical data files paired with a weather forecast.
The experiments in this paper focussed on the part
of the forecasts that predicts wind characteristics
for the next 15 hours.

Figure 1 shows an example data file and Fig-
ure 2 shows the corresponding wind forecast writ-
ten by one of the meteorologists. In Figure 1, the
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Oil1/Oil2/Oil3_FIELDS
05-10-00

05/06 SSW 18 22 27 3.0 4.8 SSW 2.59
05/09 S 16 20 25 2.7 4.3 SSW 2.39
05/12 S 14 17 21 2.5 4.0 SSW 2.29
05/15 S 14 17 21 2.3 3.7 SSW 2.28
05/18 SSE 12 15 18 2.4 3.8 SSW 2.38
05/21 SSE 10 12 15 2.4 3.8 SSW 2.48
06/00 VAR 6 7 8 2.4 3.8 SSW 2.48
...

Figure 1: Meteorological data file for 05-10-2000,
a.m. (names of oil fields anonymised).

FORECAST FOR:-
Oil1/Oil2/Oil3 FIELDS
...

2. FORECAST 06-24 GMT, THURSDAY, 05-Oct 2000

=====WARNINGS: RISK THUNDERSTORM. =======

WIND(KTS) CONFIDENCE: HIGH
10M: SSW 16-20 GRADUALLY BACKING SSE THEN

FALLING VARIABLE 04-08 BY LATE EVENING
50M: SSW 20-26 GRADUALLY BACKING SSE THEN

FALLING VARIABLE 08-12 BY LATE EVENING
...

Figure 2: Wind forecast for 05-10-2000, a.m.
(names of oil fields anonymised).

first column is the day/hour time stamp, the second
the wind direction predicted for the corresponding
time period; the third the wind speed at 10m above
the ground; the fourth the gust speed at 10m; and
the fifth the gust speed at 50m. The remaining
columns contain wave data.

We used a version of the corpus reported pre-
viously (Belz, 2008) which contains pairs of wind
statements and the wind data that is actually in-
cluded in the statement, e.g.:
Data: 1 SSW 16 20 - - 0600 2 SSE - - - -

NOTIME 3 VAR 04 08 - - 2400

Text: SSW 16-20 GRADUALLY BACKING SSE THEN
FALLING VARIABLE 4-8 BY LATE EVENING

The input vector represents a sequence of 7-
tuples〈i, d, smin, smax, gmin, gmax, t〉 where i is
the tuple’s ID, d is the wind direction, smin

and smax are the minimum and maximum wind
speeds,gmin andgmax are the minimum and max-
imum gust speeds, andt is a time stamp (indicat-
ing for what time of the day the data is valid). The
corpus consists of 2,123 instances, corresponding
to a total of 22,985 words.

3 Four Ways to Build an NLG Systems

In this section, we describe four approaches
to building language generators involving differ-
ent combinations of automatic and manual tech-
niques: traditional handcrafted systems (Sec-
tion 3.1); handcrafted but trainable probabilis-

tic context-free grammar (PCFG) generators (Sec-
tion 3.2); partly automatically constructed and
trainable probabilistic synchronous context-free
grammar (PSCFG) generators; and generators au-
tomatically built with phrase-based statistical ma-
chine translation (PBSMT) methods (Section 3.4).
In Section 4 we explain how we used these tech-
niques to build the ten systems in our evaluation.

3.1 Rule-based NLG

Traditional NLG systems are handcrafted as rule-
based deterministic decision-makers that make de-
cisions locally, at each step in the generation pro-
cess. Decisions are encoded as generation rules
with conditions for rule application (often in the
form of if-then rules or rules with parameters to be
matched), usually on the basis of corpus analysis
and expert consultation. Reiter and Dale’s influen-
tial paper (1997) recommended thatNLG systems
be built largely “by careful analysis of the target
text corpus, and by talking to domain experts” (p.
74, and reiterated on pp. 58, 61, 72 and 73).

Handcrafted generation tools have always
formed the mainstay ofNLG research, a situation
virtually unchanged by the statistical revolution
that swept through otherNLP fields in the 1990s.
Well-known examples include the surface realis-
ers Penman,FUF/SURGE and RealPro, the re-
ferring expression generation components created
by Dale, Reiter, Horacek and van Deemter, and
content-to-text generators built in thePLANDoc
andM-PIRO projects, to name but a very few.

3.2 PCFG generation

Context-free grammars are non-directional, and
can be used for generation as well as for analy-
sis (parsing). One approach that usesCFGs for
generation is Probabilistic Context-free Represen-
tationally Underspecified (pCRU) language gener-
ation (Belz, 2008). As mentioned above, tradi-
tional NLG systems tend to be composed of gen-
eration rules that apply transformations to rep-
resentations. The basic idea inpCRU is that as
long as the generation rules are all of the form
relation(arg1, ...argn) → relation1(arg1, ...argp) ...

relationm(arg1, ...argq), m ≥ 1, n, p, q ≥ 0, then the
set of all generation rules can be seen as defining
a context-free language and a single probabilistic
model can be estimated from raw or annotated text
to guide generation processes.

In this approach, aCFG is created by hand that
encodes the space of all possible generation pro-
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Input [[1,SSW,16,20,-,-,0600],[2,SSE,-,-,-,-,NOTIME],[3,VAR,04,08,-,-,2400]]

Corpus SSW 16-20 GRADUALLY BACKING SSE THEN FALLING VARIABLE 4-8 BY LATE EVENING

SUMTIME-Hybrid SSW 16-20 GRADUALLY BACKING SSE THEN BECOMING VARIABLE 10 OR LESS BY MIDNIGHT

PCFG-greedy SSW 16-20 BACKING SSE FOR A TIME THEN FALLING VARIABLE 4-8 BY LATE EVENING

PCFG-roulette SSW 16-20 GRADUALLY BACKING SSE AND VARIABLE 4-8

PCFG-viterbi SSW 16-20 BACKING SSE VARIABLE 4-8 LATER

PCFG-2gram SSW 16-20 BACKING SSE VARIABLE 4-8 LATER

PCFG-random SSW 16-20 AT FIRST FROM MIDDAY BECOMING SSE DURING THE AFTERNOON THEN VARIABLE 4-8

PSCFG-semantic SSW 16-20 BACKING SSE THEN FALLING VARIABLE 04-08 BY LATE EVENING

PSCFG-unstructured SSW 16-20 GRADUALLY BACKING SSE THEN FALLING VARIABLE 04-08 BY LATE EVENING

PBSMT-unstructured LESS SSW 16-20 SOON BACKING SSE BY END OF THEN FALLING VARIABLE 04-08 BY LATE EVENING

PBSMT-structured GUSTS SSW 16-20 BY EVENING STEADILY LESS GUSTS GRADUALLY BACKING SSE BY LATE EVENING

MINONE BY MIDDAY THEN AND FALLING UNKNOWN VARIABLE 04-08 LATER GUSTS

Table 1: Example input with corresponding outputs by all systems and from the corpus (for 5 Oct 2000).

cesses from inputs to outputs, and has no decision-
making ability. A probability distribution over this
baseCFG is estimated from a corpus, and this is
what enables decisions between alternative gener-
ation rules to be made. ThepCRU package permits
this distribution to be used in one of the follow-
ing three modes to drive generation processes: (i)
greedy – apply only the most likely rule at each
choice point; (ii) Viterbi – apply all expansion
rules to each nonterminal to create the generation
forest for the input, then do a Viterbi search of the
generation forest; (iii) greedy roulette-wheel – se-
lect a rule to expand a nonterminal according to
a non-uniform random distribution proportional to
the likelihoods of expansion rules.

In addition there are two baseline modes: (i)
random – where generation rules are randomly
selected at each choice point; and (ii) n-gram –
where all alternatives are generated and the most
likely is selected according to ann-gram language
model (as inHALOGEN).

For the simple SUMTIME domain,pCRU gen-
erators trained on raw corpora have been shown
to perform well (Belz, 2008), but for more com-
plex domains it is likely that manually annotated
corpora will be needed for training theCFG base
generator. As this is in addition to the manually
constructedCFG base generator, the manual com-
ponent inPCFG generator building is potentially
substantial.

3.3 PSCFG generation

Synchronous context-free grammars (SCFGs) are
used in machine translation (Chiang, 2006), but
have also been used for simple concept-to-text
generation (Wong and Mooney, 2007). The sim-
plest form ofSCFGcan be viewed as a pair ofCFGs
G1, G2 with paired production rules such that for

each rule inG1 there is a rule inG2 with the same
left-hand side, and the same non-terminals in the
right-hand side. The order of non-terminals on the
RHSs may differ, and eachRHS may additionally
contain any terminals in any order.SCFGs can
be trained from aligned corpora to produce proba-
bilistic (or ‘weighted’)SCFGs.

An SCFG can equivalently be seen as a single
grammarG encoding a set of pairs of strings. A
probabilisticSCFG is defined by the 6-tupleG =
〈N ,Te,Tf , L, S, λ〉, whereN is a finite set of non-
terminals,Te, Tf are finite sets of terminal sym-
bols, L is a set of paired production rules,S is a
start symbol∈ N , andλ is a set of parameters that
define a probability distribution of derivations un-
derG. Each rule inL has the formA → 〈α;β〉,
whereA ∈ N , α ∈ N ∪ Te

+, β ∈ N ∪ Tf
+, and

N ⊆ N .

In MT the twoCFGs that make up anSCFG are
used to encode (the structure of) the two languages
which theMT system translates between. Trans-
lation with an SCFG then consists of (i) parsing
the input string with the source languageCFG to
produce a derivation tree, and then (ii) generating
along the same derivation tree, but using the target
languageCFG to produce the output string.

When usingSCFGs for content-to-text genera-
tion one of the pairedCFGs encodes the meaning
representation language, and the other the (natu-
ral) language in which text is supposed to be gen-
erated. A generation process then consists in (i)
‘parsing’ the meaning representation (MR) into its
constituent structure, and, in the opposite direc-
tion, (ii) assembling strings of words correspond-
ing to constituent parts of the inputMR into a sen-
tence or text that realises the entireMR.

We used theWASP−1 method (Wong and
Mooney, 2006; Wong and Mooney, 2007) which

18



provides a way in which a probabilisticSCFGcan
be constructed for the most part automatically.
The training process requires two resources as in-
put: a CFG of MRs and a set of sentences paired
with their MRs. As output, it produces a proba-
bilistic SCFG. The training process works in two
phases, producing a (non-probabilistic)SCFG in
the ‘lexical acquisition phase’, and associating the
rules with probabilities in the ‘parameter estima-
tion phase’.

The lexical acquisition phase uses theGIZA++
word-alignment tool, an implementation (Och and
Ney, 2003) ofIBM Model 5 (Brown et al., 1993)
to construct an alignment ofMRs with NL strings.
An SCFGis then constructed by using theMR CFG

as a skeleton and inferring theNL grammar from
the alignment.

For the parameter estimation phase,WASP−1

uses a log-linear model from Koehn et al. (2003)
which defines a conditional probability distribu-
tion over derivationsd given an inputMR f as

Pr
λ

(d|f) ∝ Pr(e(d))λ1

∏

d∈d

wλ(r(d))

wherewλ(r(d)) is the weight an individual rule
used in a derivation, defined as

wλ(A → 〈e, f〉) =

P (f |e)λ2P (e|f)λ3Pw(f |e)λ4Pw(e|f)λ5exp(−|α|)λ6

whereP (β|α) and P (α|β) are the relative fre-
quencies ofβ andα, Pw(β|α) andPw(α|β) are
lexical weights, andexp(−|α|) is a word penalty
to control output sentence length. The model pa-
rametersλi are trained using minimum error rate
training.

Compared to probabilisticCFGs, WASP−1-
trained probabilisticSCFGs have a much reduced
manual component in system building. In the lat-
ter, theNL grammar for the output language, the
mapping fromMRs to word strings and the rule
probabilities are all created automatically, more-
over from raw corpora, whereas inPCFGs, only
the rule probabilities are created automatically.

3.4 SMT methods

A Statistical Machine Translation (SMT) system is
essentially composed of a translation model and
a language model, where the former translates
source language substrings into target language
substrings, and the language model determines

the most likely linearisation of the translated sub-
strings. The currently most popular phrase-based
SMT (PBSMT) approach translates phrases (an ar-
bitrary sequence of words, rather than the lin-
guistic sense), whereas the original ‘IBM models’
translated words. DifferentPBSMT methods differ
in how they construct the phrase translation table.

We used the phrase-based translation model
proposed by Koehn et al. (2003) and implemented
in theMOSEStoolkit (Koehn et al., 2007) which is
based on the noisy channel model, where Bayes’s
rule is used to reformulate the task of translat-
ing a source language stringf into a target lan-
guage stringe as finding the sentencee∗ such that
e
∗ = argmaxe Pr(e) Pr(f |e).
The translation model (which givesPr(f |e)) is

obtained from a parallel corpus of source and tar-
get language texts, where the first step is automatic
alignment using theGIZA++ word-level aligner.
Word-level alignments are used to obtain phrase
translation pairs using a set of heuristics.

A 3-gram language model (which givesPr(e))
for the target language is trained either on the
same or a different corpus. For full details refer
to Koehn et al. (2003; 2007).

PBSMT offers a completely automatic method
for constructing generators, where all that is re-
quired as input to the system building process is a
corpus of pairedMRs and realisations, on the basis
of which thePBSMT approach constructs a map-
ping fromMSRs to realisations.

4 Ten Weather Forecast Text Generators

4.1 SUMTIME-Hybrid

We included the original SUMTIME system (Re-
iter et al., 2005) in our evaluations. This
rule-based system has two modules: a content-
determination module and a microplanning and
realisation module. It can be run without the
content-determination module, taking content rep-
resentations (tuple sequence as described in Sec-
tion 2) as inputs, and is then called SUMTIME-
Hybrid. SUMTIME-Hybrid is a traditional deter-
ministic rule-based generation system, and took
about one year to build.1 Table 1 shows an ex-
ample forecast from the SUMTIME system (and
corresponding outputs from the other systems, de-
scribed below).

1Belz (2008), estimated on the basis of personal commu-
nication with E. Reiter and S. Sripada.
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4.2 PCFG generators

We also included fivepCRU generators for
the SUMTIME domain created previously (Belz,
2008). ThepCRU base generator for SUMTIME

is a set of generation rules with atomic arguments
that convert an input into a set ofNL forecasts.
To create inputs to thepCRU generators, the in-
put vectors as they appear in the corpus (see Sec-
tion 2) are augmented and converted into sequence
of nonterminals: First, information is added to
each of the 7-tuples in an automatic preprocessing
phase encoding whether the change in wind direc-
tion compared to the preceding 7-tuple was clock-
wise or anti-clockwise; whether change in wind
speed was an increase or a decrease; and whether
a 7-tuple was the last in the vector. Then, the aug-
mented tuples are converted into a representation
of nonterminals with 7 arguments.

A probability distribution over the base genera-
tor was obtained by the multi-treebanking method
(Belz, 2008) from the un-annotated SUMTIME

corpus. This method first parses the corpus with
the baseCFGand then obtains rule-application fre-
quency counts from the parsed corpus which are
used to obtain a probability distribution by straigh-
forward maximum likelihood estimation. If there
is more than one parse for a sentence then the fre-
quency count increment is equally split over rules
in alternative parses.

4.3 PSCFG generators

We created two probabilistic synchronousCFG

(PSCFG) generators for the SUMTIME domain us-
ing WASP−1. The main task here was to create
a CFG for wind data representations. We used
two different grammars (resulting in two different
generators). The ‘unstructured’ grammar encodes
raw corpus input vectors augmented as described
in Section 4.2, whereas the ‘semantic’ grammar
encodes representations with recursive predicate-
argument structure that more resemble semantic
forms. These were produced automatically from
the raw input vectors.

Both the PSCFG-unstructured and thePSCFG-
semantic generators were built in the same way,
by feeding theCFG for wind data representations
and the corpus of paired wind data representations
and forecasts toWASP−1 which then created prob-
abilistic SCFGs from it.

System BLEU Homogeneous subsets
corpus 1.00 A
PCFG-greedy .65 B
PSCFG-sem .637 B
PSCFG-unstr .617 B C
PCFG-viterbi .57 C D
PCFG-2gram .561 D
PCFG-roule .516 D E
PBSMT-unstr .500 E
SUMTIME .437 F
PBSMT-struc .338 G
PCFG-rand .269 H

Table 2: Mean forecast-levelBLEU scores and ho-
mogeneous subsets (TukeyHSD, alpha = .05) for
SUMTIME test sets.

4.4 PBSMT generators

We also created two SUMTIME generators with
the MOSES toolkit. The main question here was
how to represent the ‘source language’ inputs.
While SMT methods are often applied with no lin-
guistic knowledge at all (and are therefore blind as
to whether paired inputs and outputs areNL strings
or something else), it was not clear how well
they would cope with the task of mapping from
number/symbol vectors toNL strings. We tested
two different input representations, one of which
was simply the augmented corpus input vectors
as described above (PBSMT-unstructured), and an-
other in which the individual 7-tuples of which
the vectors are composed are explicitly marked by
predicate-argument structure (PBSMT-structured).
For comparability with Wong & Mooney (2007)
the structure markers were treated as tokens.

We built two different generators by feeding
the two different versions of the paired corpus to
MOSES. We did not use a factored translation
model (the words used in weather forecasts did not
vary sufficiently), or tuning.

5 Evaluation Methods

5.1 Automatic evaluation methods

The two automatic metrics used in the evaluations,
NIST2 and BLEU3, have been shown to correlate
well with expert judgments (Pearson’sr = 0.82
and 0.79 respectively) in the SUMTIME domain
(Belz and Reiter, 2006).

2http://cio.nist.gov/esd/emaildir/
lists/mt_list/bin00000.bin

3ftp://jaguar.ncsl.nist.gov/mt/
resources/mteval-v11b.pl
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BLEU-x is an n-gram based string comparison
measure, originally proposed by Papineni et al.
(2001) for evaluation ofMT systems. It computes
the proportion of word n-grams of lengthx and
less that a system output shares with several refer-
ence outputs. Settingx = 4 (i.e. considering all n-
grams of length≤ 4) is standard.NIST (Dodding-
ton, 2002) is a version ofBLEU, but whereBLEU

gives equal weight to all n-grams,NIST gives more
importance to less frequent (hence more informa-
tive) n-grams, and the range ofNIST scores de-
pends on the size of the test set. Some research has
shown NIST to correlate with human judgments
more highly thanBLEU (Doddington, 2002; Rie-
zler and Maxwell, 2005; Belz and Reiter, 2006).

5.2 Human evaluation

We designed an experiment in which participants
were asked to rate forecast texts for Clarity and
Readability on scales of 1–7. Clarity was ex-
plained as indicating how understandable a fore-
cast was, and Readability as indicating how flu-
ent and readable it was. After an introduction and
detailed explanations, participants carried out the
evaluations over the web. They were able to inter-
rupt and resume the evaluation at any time.

We randomly selected 22 forecast dates and
used outputs from all 10 systems for those dates
(as well as the corresponding forecasts in the cor-
pus) in the evaluation, i.e. a total of 242 forecast
texts. We used a repeated Latin squares design
where each combination of forecast date and sys-
tem is assigned two trials. As there were 2 eval-
uation criteria, there were 968 individual ratings
in this experiment. An evaluation session started
with three training examples; the real trials were
then presented in random order.

We recruited 22 participants from among our
university colleagues whose first language was
English and who had no experience ofNLP. We
did not try to recruit master mariners as in earlier
experiments reported by Reiter and Belz (2006),
because these experiments also demonstrated that
the correlation between the ratings by such ex-
pert evaluators and lay-people is very strong in the
SUMTIME domain (Pearson’sr = 0.845).

6 Results

For each evaluation method, we carried out a one-
way ANOVA with ‘System’ as the fixed factor, and
the evaluation measure as the dependent variable.

System NIST Homogeneous subsets
corpus 4.062 A
PCFG-greedy 3.361 B
PSCFG-sem 3.303 B
PSCFG-unstr 3.191 B C
PCFG-roule 3.033 C D
PBSMT-unstr 2.924 D
PCFG-viterbi 2.854 D E
PCFG-2gram 2.854 D E
SUMTIME 2.707 E F
PCFG-rand 2.540 F
PBSMT-struc 2.331 G

Table 3: Mean forecast-levelNIST scores and ho-
mogeneous subsets (TukeyHSD, alpha = .05) for
SUMTIME test sets.

In each case we report the main effect of System
on the measure and (if it is significant) we also
report significant differences between pairs of sys-
tems in the form of homogeneous subsets obtained
with a post-hoc TukeyHSD analysis.

Tables 2 and 3 display the results for theBLEU

and NIST evaluations, where scores were cal-
culated on test data sets, using a 5-fold cross-
validation set-up. System names (in abbrevi-
ated form) are shown in the first column, mean
forecast-level scores in the second, and the re-
maining columns indicate significant differences
between systems. The way to read the homoge-
neous subsets is that two systems which do not
have a letter in common are significantly different
with p < .05.

For theBLEU evaluation, the main effect of Sys-
tem on BLEU score wasF = 248.274, at p <

.001. PCFG-greedy,PSCFG-semantic andPSCFG-
unstructured come out top, although only the first
two are significantly better than all other systems.
SUMTIME-Hybrid, PBSMT-structured andPCFG-
random bring up the rear, with the remaining sys-
tems distributed over the middle ground. A strik-
ing result is that the handcrafted SUMTIME sys-
tem comes out near the bottom, being signifi-
cantly worse than all other systems exceptPCFG-
structured andPBSMT-random.

For theNIST evaluation, the main effect of Sys-
tem on BLEU score wasF = 108.086, at p <

.001. The systems were ranked in the same way
as in theBLEU evaluation except for the systems
in the D subset. The correlation between theNIST

andBLEU scores is Pearson’sr = .739, p < .001,
Spearman’sρ = .748, p < .001.
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Scores on data from human evaluation
Clarity Readability NIST BLEU

SUMTIME 6.06 6.18 5.71 0.52
PSCFG-semantic 5.79 5.70 6.76 0.65
corpus 5.79 5.93 8.45 1
PCFG-greedy 5.79 5.63 6.73 0.67
PSCFG-unstruc 5.72 5.84 6.61 0.64
PCFG-roulette 5.29 5.56 6.07 0.52
PCFG-2gram 5.29 5.29 5.23 0.52
PCFG-viterbi 4.90 5.34 5.15 0.51
PCFG-random 4.43 4.52 4.52 0.25
PBSMT-unstruc 3.70 3.93 5.38 0.49
PBSMT-struc 2.79 2.77 4.21 0.33

Table 4: Mean Clarity and Readability ratings
from human evaluation; NIST and BLEU scores
on same 22 forecasts as used in human evaluation.

The main results from the automatic evalua-
tions are that the twoPSCFGsystems and thePCFG

system with the greedy generation algorithm are
best overall. However, the human evaluations pro-
duced rather different results.

Figure 3 is a series of bar charts representing
the results of the human evaluation for Clarity. For
each system (indicated by the labels on the x-axis),
there are 7 bars, showing how many ratings of 1,
2, 3, 4, 5, 6 and 7 (7 being the best) a system was
given. So the left-most bar for a system shows
how many ratings of 1 a system was given, the
second bar how many ratings of 2, etc. Systems
are shown in descending order of mode (the value
of the most frequently assigned rating, e.g. 7 for
PSCFG-unstructured on the left, and 1 forPBSMT-
structured on the right). ThePSCFG-unstructured
and SUMTIME systems come out top in this eval-
uation, with PSCFG-semantic,PCFG-roulette and
PCFG-greedy close behind. Conversely,PBSMT-
structured clearly came out worst, with no ratings
of 7 and a mode of 1 (=completely unclear).

Figure 4 consists of the same kind of bar charts,
for the Readability ratings. Here the SUMTIME

system is the clear winner, with no ratings of 1
and 2 and 22 ratings of 7 (=excellent, all parts
read well). It is closely followed byPSCFG-
unstructured, the corpus forecasts andPSCFG-
semantic. Again,PBSMT-structured is clearly
worst with no ratings of 7, although this time the
mode is 3 (=fairly bad).

We also looked at the means of the ratings, and
these are shown in the second and third columns
of Table 4. The means have to be treated with

some caution, because ratings are ordinal data
and it is not clear how meaningful it is to com-
pute means. However, it is a simple way of ob-
taining a system ranking for comparison with the
two automatic scores (shown in the remaining two
columns of Table 4, for the 22 dates in the human
evaluation only). In terms of means, SUMTIME

comes out top for both Clarity and Readability.
In Clarity, it is followed by the twoPSCFGsys-
tems, the corpus files (the only forecasts actually
written by humans), andPCFG-greedy which have
virtually the same means. For Readability, cor-
pus andPSCFG-unstructured are ahead ofPSCFG-
semantic andPCFG-greedy (in this order). Bring-
ing up the rear for both Clarity and Readability, as
in theNIST evaluations, isPBSMT-structured, with
PCFG-random and andPBSMT-unstructured faring
somewhat better.

There are some striking differences between
the automatic and human evaluations. For one,
the human evaluators rank the SUMTIME system
very high, whereas both automatic metrics rank
it very low, just abovePCFG-random andPBSMT-
structured. Furthermore, the metrics rankPBSMT-
unstructured more highly than the human evalua-
tors, placing it above the SUMTIME system and
in the case ofNIST, also above two of thePCFG

systems (Table 3). The human and the automatic
evaluations agree only that thePSCFGsystems and
PCFG-greedy are equally good.

7 Conclusions

Reports of research on automating (part of) system
building often take it as read that such automation
is a good thing. The resulting systems are not of-
ten compared to handcrafted alternatives in terms
of output quality or other quality criteria, and little
is therefore known about the loss of system qual-
ity that results from automation. The existence of
several independently developed systems for the
SUMTIME domain of weather forecasts, to which
we have added four new systems in the research
reported in this paper, provides a unique opportu-
nity to examine the system building cost vs. sys-
tem quality trade-off in data-to-text generation.

We investigated 10 systems which fall into four
categories in terms of the manual work involved in
creating them, ranging from completely manual to
completely automatic system building. We found
that increasing the automatic component in system
building from a handcrafted system to an automat-
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Figure 3: Clarity ratings: Number of times each system was rated 1, 2, 3, 4, 5, 6, and 7 on Clarity.
Systems in descending order of mode (most frequent rating).

ically trained but manually crafted generator led to
a loss of acceptability to human readers, but an im-
provement in terms of n-gram similarity to corpus
texts. Further increasing the automatic component
to the point where only aCFG for meaning repre-
sentations is created manually did not result in a
further reduction in quality in either acceptability
to humans or corpus similarity. However, com-
pletely removing the manual component resulted
in a reduction in quality in both human acceptabil-
ity and corpus similarity (although this is more ap-
parent in the former).

We found striking differences between the re-
sults from tests of human acceptability and mea-
surements of corpus similarity. Compared to the
human ratings, the automatic metrics severely un-
derestimated the quality of the handcrafted SUM-
TIME system, but overestimated the quality of
the automatically constructedSMT systems. This
will not come as a surprise to those familiar with
the machine translation evaluation literature where
this is a major complaint aboutBLEU (Callison-
Burch et al., 2006). From our results it seems clear
that when the quality of diverse types of systems is
compared, automatic metrics such asBLEU do not
give a complete and reliable picture, and carrying
out additional evaluations is crucial.

Increased reusability and adaptability of sys-
tems and components have cost and time bene-
fits, and methods for automatically training sys-
tems from data offer advantages in both these re-

spects. However, careful evaluation is needed to
ensure that these advantages are not achieved at
the price of a reduction in system quality that ren-
ders systems unacceptable to human users.
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