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Abstract

With increasing opportunities to learn on-
line, the problem of positioning learners
in an educational network of content of-
fers new possibilities for the utilisation of
geometry-based natural language process-
ing techniques.

In this article, the adoption of latent se-
mantic analysis (LSA) for guiding learners
in their conceptual development is investi-
gated. We propose five new algorithmic
derivations of LSA and test their validity
for positioning in an experiment in order to
draw back conclusions on the suitability of
machine learning from previously accred-
ited evidence. Special attention is thereby
directed towards the role of distractors and
the calculation of thresholds when using
similarities as a proxy for assessing con-
ceptual closeness.

Results indicate that learning improves po-
sitioning. Distractors are of low value and
seem to be replaceable by generic noise
to improve threshold calculation. Fur-
thermore, new ways to flexibly calculate
thresholds could be identified.

1 Introduction

The path to new content-rich competencies is
paved by the acquisition of new and the reorgani-
sation of already known concepts. Learners will-
ing to take this journey, however, are imposed with
the problem of positioning themselves to that point
in a learning network of content, where they leave
their known trails and step into the unknown – and
to receive guidance in subsequent further concep-
tual development.

More precisely, positioning requires to map
characteristics from a learner’s individual epis-
temic history (including both achievements and

shortcomings) to the characteristics of the avail-
able learning materials and to recommend reme-
dial action on how to achieve selected conceptual
development goals (Van Bruggen et al., 2006).

The conceptual starting points of learners nec-
essary to guide the positioning process is reflected
in the texts they are writing. Through structure
and word choice, most notably the application of
professional language, arrangement and meaning
of these texts give cues about the level of compe-
tency1 development.

As learning activities increasingly leave digital
traces as evidence for prior learning, positioning
support systems can be built that reduce this prob-
lem to developing efficient and effective match-
making procedures.

Latent semantic analysis (LSA) (Deerwester et
al., 1990) as one technology in the family of
geometry-based natural language models could in
principle provide a technological basis for the po-
sitioning aims outlined above. The assumption un-
derlying this is that the similarity to and of learn-
ing materials can be used as a proxy for similar-
ity in learning outcomes, i.e. the developmental
change in conceptual coverage and organisation
caused by learning.

In particular, LSA utilises threshold values for
the involved semantic similarity judgements. Tra-
ditionally the threshold is obtained by calculat-
ing the average similarity between texts that cor-
respond to the same category. This procedure can
be inaccurate if a representative set of documents
for each category is not available. Furthermore,
similarity values tend to decrease with increasing
corpora and vocabulary sizes. Also, the role of
distractors in this context, i.e. negative evidence
as reference material to sharpen classification for
positioning, is largely unknown.

With the following experiment, we intend to
1See (Smith, 1996) for a clarification of the difference of

competence and competency
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validate that geometrical models (particularly la-
tent semantic analysis) can produce near human
results regarding their propositions on how to ac-
count written learner evidence for prior learning
and positioning these learners to where the best-
suiting starting points are. We will show that latent
semantic analysis works for positioning and that it
can provide effective positioning.

The main focus of this contribution is to inves-
tigate whether machine learning proves useful for
the positioning classifiers, whether distractors im-
prove results, and what the role of thresholds for
the classifiers is.

The rest of this paper is structured as follows.
At first, positioning with LSA and related work
are explained. This is followed by an outline of
our own approach to positioning. Subsequently,
a validation experiment for the set of new algo-
rithms is outlined with which new light is shed on
the utilisation of LSA for positioning. The results
of this experiment are analysed in the following
section in oder to, finally, yield conclusions and
an outlook.

2 Positioning with LSA

According to (Kalz et al., 2007), positioning “is
a process that assists learners in finding a start-
ing point and an efficient route through the [learn-
ing] network that will foster competence build-
ing”. Often, the framework within which this
competence development takes places is a formal
curriculum offered by an educational provider.

Not only when considering a lifelong learner,
for whom the borders between formal and infor-
mal learning are absolutely permeable, recogni-
tion of prior learning turns out to be crucial for po-
sitioning: each individual background differs and
prior learning needs to be respected or even ac-
credited before taking up new learning activities –
especially before enrolling in a curriculum.

Typically, the necessary evidence of prior learn-
ing (i.e., traces of activities and their outcomes)
are gathered in a learner’s portfolio. This portfolio
is then analysed to identify both starting points and
a first navigation path by mapping evidence onto
the development plans available within the learn-
ing network.

The educational background represented in the
portfolio can be of formal nature (e.g. certi-
fied exams) in which case standard admission
and exemption procedures may apply. In other

cases such standard procedures are not available,
therefore assessors need to intellectually evaluate
learner knowledge on specific topics. In proce-
dures for accreditation of prior learning (APL), as-
sessors decide whether evidence brought forward
may lead to exemptions from one or more courses.

For supporting the positioning process (as e.g.
needed for APL) with technology, three different
computational classes of approaches can be distin-
guished: mapping procedures based on the analy-
sis of informal descriptions with textmining tech-
nologies, meta-data based positioning, and posi-
tioning based on ontology mappings (Kalz et al.,
2007). Latent semantic analysis is one of many
possible techniques that can be facilitated to sup-
port or even partially automate the analysis of in-
formal portfolios.

2.1 LSA

LSA is an algorithm applied to approximate the
meaning of texts, thereby exposing semantic struc-
ture to computation. LSA combines the classi-
cal vector-space model with a singular value de-
composition (SVD), a two-mode factor analysis.
Thus, bag-of-words representations of texts can be
mapped into a modified vector space that is as-
sumed to reflect semantic structure.

The basic idea behind LSA is that the colloca-
tion of terms of a given document-term-space re-
flects a higher-order – latent semantic – structure,
which is obscured by word usage (e.g. by syn-
onyms or ambiguities). By using conceptual in-
dices that are derived statistically via a truncated
SVD, this variability problem is believed to be
overcome.

In a typical LSA process, first a document-term
matrix is constructed from a given text base of n
documents containing m terms. This matrix M
of the size m × n is then resolved by the SVD
into the term vector matrix T (constituting the left
singular vectors), the document vector matrix D
(constituting the right singular vectors) being both
orthonormal and the diagonal matrix S.

Multiplying the truncated matrices Tk, Sk and
Dk results in a new matrix Mk (see Figure 1)
which is the least-squares best fit approximation
of M with k singular values (Berry et al., 1994).

2.2 Related Work

LSA has been widely used in learning applications
such as automatic assessment of essays, provision
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Figure 1: Reconstructing a textmatrix from the
lower-order latent-semantic space.

of feedback, and selection of suitable materials ac-
cording to the learner’s degree of expertise in spe-
cific domains.

The Intelligent Essay Assessor (IEA) is an ex-
ample of the first type of applications where the
semantic space is build from materials on the topic
to be evaluated. In (Foltz et al., 1999) the finding is
reported that the IEA rating performance is close
to the one of human raters.

In (van Bruggen et al., 2004) authors report that
LSA-based positioning requires creating a latent-
semantic space from text documents that model
learners’ and public knowledge on a specific sub-
ject. Those texts include written material of learn-
ers’ own production, materials that the learner has
studied and learned in the past, and descriptions of
learning activities that the learner has completed
in the past. Public knowledge on the specific sub-
ject includes educational materials of all kind (e.g.
textbooks or articles).

In this case the description of the activity needs
to be rich in the sense of terminology related to
the domain of application. LSA relies on the use
of rich terminology to characterize the meaning.

Following the traditional LSA procedure, the
similarity (e.g. cosine) between LSA vector mod-
els of the private and public knowledge is then cal-
culated to obtain the learner position with respect
to the public knowledge.

3 Learning Algorithms for Positioning

In the following, we design an experiment, con-
duct it, and evaluate the results to shed new light
on the use of LSA for positioning.

The basic idea of the experiment is to investi-
gate whether LSA works for advising assessors on
acceptance (or rejection) of documents presented
by the learner as evidence of previous conceptual
knowledge on specific subjects covered by the cur-
riculum. The assessment is in all cases done by
comparing a set of learning materials (model solu-

tions plus previously accepted/rejected reference
material) to the documents from learners’ portfo-
lios using cosines as a proxy for their semantic
similarity.

In this comparison, thresholds for the cosine
measure’s values have to be defined above which
two documents are considered to be similar. De-
pending on how exactly the model solutions and
additional reference material are utilised, different
assessment algorithms can be developed.

To validate the proposed positioning services
elaborated below, we compare the automatic rec-
ommendations for each text presented as evidence
with expert recommendations over the same text
(external validation).

To train the thresholds and as a method for as-
sessing the provided evidence, we propose to use
the following five different unsupervised and su-
pervised positioning rules. These configurations
differ in the way how their similarity threshold
is calculated and against which selection of doc-
uments (model solutions and previously expert-
evaluated reference material) the ‘incoming’ docu-
ments are compared. We will subsequently run the
experiment to investigate their effectiveness and
compare the results obtained with them.

Figure 2: The five rules.

The visualisation in Figure 2 depicts the work-
ing principle of the rules described below. In each
panel, a vector space is shown. Circles depict ra-
dial cosine similarity. The document representa-
tives labelled with gn are documents with positive
evidence (‘good’ documents), the ones labelled
with bn are those with negative. The test docu-
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ments carry the labels en (‘essay’).
Best of Golden: The threshold is computed by

averaging the similarity of all three golden stan-
dard essays to each other. The similarity of the
investigated essay is compared to the best three
golden standard essays (=machine score). If the
machine score correlates above the threshold with
the human judgement, the test essay is stated cor-
rect. This rule assumes that the gold standards
have some variation in the correlation among each
other and that using the average correlation among
the gold standards as a threshold is taking that into
account.

Best of Good: Best essays of the humanly
judged good ones. The assumption behind this is
that with more positive examples to evaluate an in-
vestigated essay against, the precision of the eval-
uation should rise. The threshold is the average of
the positive evidence essays among each other.

Average to Good > Average among Good: Tests
if the similarity to the ‘good’ examples is higher
than the average similarity of the humanly judged
good ones. Assumption is that the good evi-
dence gathered circumscribes that area in the la-
tent semantic space which is representative of the
abstract model solution and that any new essay
should be within the boundaries characterised by
this positive evidence thus having a higher correla-
tion to the positive examples then they have among
each other.

Best of Good > Best of Bad: Tests whether the
maximum similarity to the good essays is higher
than the maximum similarity to bad essays. If a
tested essay correlates higher to the best of the
good than to the best of the bad, then it is clas-
sified as accepted.

Average of Good > average of Bad: The same
with average of good > average of bad. Assump-
tion behind this is again that both bad and good
evidence circumscribe an area and that the incom-
ing essay is in either the one or the other class.

4 Corpus and Space Construction

The corpus for building the latent semantic space
is constructed with 2/3 German language corpus
(newspaper articles) and 1/3 domain-specific (a
textbook split into smaller units enhanced by a col-
lection of topic related documents which Google
threw up among the first hits). The corpus has a
size of 444k words (59.719 terms, 2444 textual
units), the mean document length is 181 words

with a standard deviation of 156. The term fre-
quencies have a mean of 7.4 with a standard devi-
ation of 120.

The latent semantic space is constructed over
this corpus deploying the lsa package for R (Wild,
2008; Wild and Stahl, 2007) using dimcalc share
as the calculation method to estimate a good num-
ber of singular values to be kept and the standard
settings of textmatrix() to pre-process the raw
texts. The resulting space utilises 534 dimensions.

For the experiment, 94 essays scored by a hu-
man evaluator on a scale from 0 to 4 points where
used. The essays have a mean document length
of 22.75 terms with a standard deviation of 12.41
(about one paragraph).

To estimate the quality of the latent semantic
space, the learner writings were folded into the
semantic space using fold in(). Comparing the
non-partitioned (i.e. 0 to 4 in steps of .5) human
scores with the machine scores (average similar-
ity to the three initial model solutions), a highly
significant trend can be seen that is far from be-
ing perfect but still only slightly below what two
human raters typically show.

Figure 3: Human vs. Machine Scores.

Figure 3 shows the qualitative human expert
judgements versus the machine grade distribution
using the non-partitioned human scores (from 0 to
4 points in .5 intervals) against the rounded aver-
age cosine similarity to the initial three model so-
lutions. These machine scores are rounded such
that they – again – create the same amount of in-
tervals. As can be seen in the figure, the extreme
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of each score level is displayed in the upper and
lower whisker. Additionally, the lower and upper
‘hinge’ and the median are shown. The overall
Spearman’s rank correlation of the human versus
the (continuous) machine scores suggests a with
.51 medium effect being highly significant on a
level with the p-value below .001. Comparing this
to untrained human raters, who typically correlate
around .6, this is in a similar area, though the ma-
chine differences can be expected to be different
in nature.

A test with 250 singular values was conducted
resulting in a considerately lower Spearman cor-
relation of non-partitioned human and machine
scores.

Both background and test corpus have deliber-
ately been chosen from a set of nine real life cases
to serve as a prototypical example.

For the experiment, the essay collection was
split by half into training (46) and test (48) set
for the validation. Each set has been partitioned
into roughly an equal number of accepted (scores
< 2, 22 essays in training set, 25 in test) and re-
jected essays (scores >= 2, 24 essays in training,
23 in test). All four subsets, – test and training
partitioned into accepted and rejected –, include a
similarly big number of texts.

In order to cross validate, the training and test
sets were random sampled ten times to get rid of
influences on the algorithms from the sort order of
the essays. Both test and training sets were folded
into the latent semantic space. Then, random sub
samples (see below) of the training set were used
to train the algorithms, whereas the test set of 48
test essays in each run was deployed to measure
precision, recall, and the f-measure to analyse the
effectiveness of the rules proposed.

Similarity is used as a proxy within the al-
gorithms to determine whether a student writing
should be accepted for this concept or rejected. As
similarity measure, the cosine similarity cosine()
was used.

In each randomisation loop, the share of ac-
cepted and rejected essays to learn from was var-
ied in a second loop of seven iterations: Always
half of the training set essays were used and the
amount of accepted essays was decreased from 9
to 2 while the number of rejected essays was in-
creased from 2 to 9. This way, the influence of the
number of positive (and negative) examples could
be investigated.

This mixture of accepted and rejected evidence
to learn from was diversified to investigate the
influence of learning from changing shares and
rising or decreasing numbers of positive and/or
negative reference documents – as well as to
analyse the influence of recalculated thresholds.
While varying these training documents, the hu-
man judgements were given to the machine in or-
der to model learning from previous human asses-
sor acceptance and rejection.

5 Findings

5.1 Precision versus Recall

The experiments where run with the five different
algorithms and with the sampling procedures de-
scribed above. For each experiment precision and
recall where measured to find out if an algorithm
can learn from previous inputs and if it is better or
worse compared to the others.

As mentioned above, the following diagrammes
depict from left to right a decreasing number of ac-
cepted essays available for training (9 down to 2)
while the number of rejected essays made avail-
able for training is increased (from 2 to 9).

Rule 1 to 3 do not use these negative samples,
rule 1 does not even use the positive samples but
just three additional model solutions not contained
in the training material of the others. The curves
show the average precision, recall, and f-measure2

of the ten randomisations necessary for the cross
validation. The size of the circles along the curves
symbolises the share of accepted essays in the
training set.

Figure 4: Rule 1: Best of Three Golden

2F = 2 · precision·recall
precision+recall
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Figure 4 shows that recall and precision stay sta-
ble as there are no changes to the reference ma-
terial taken into account: all essays are evaluated
using three fixed ‘gold standard’ texts. This rule
serves as a baseline benchmark for the other re-
sults.

Figure 5: Rule 2: Best of Good

Figure 5 depicts a falling recall when having
less positively judged essays in the training sam-
ple. In most cases, the recall is visibly higher than
in the first rule, ‘Best of Gold’, especially when
given enough good examples to learn from. Preci-
sion is rather stable. We interpret that the falling
recall can be led back to the problem of too few
examples that are then not able to model the target
area of the latent semantic space.

Figure 6: Rule 3: Avg of Good > Avg among
Good

Figure 6 displays that the recall worsens and is
very volatile3. Precision, however, is very stable

3We analysed the recall in two more randomisations of the

and slightly higher than in the previous rule, es-
pecially with rising numbers of positive examples.
It seems that the recall is very dependant on the
positive examples whether they are able to char-
acterise representative boundaries: seeing recall
change with varying amounts of positive exam-
ples, this indicates that the boundaries are not very
well chosen. We assume that this is related to con-
taining ’just pass’ essays that were scored with 2.0
or 2.5 points and distort the boundaries of the tar-
get area in the latent semantic concept space.

Figure 7: Rule 4: Best of Good > Best of Bad

Figure 7 exhibits a quickly falling recall, though
starting on a very high level, whereas precision
is relatively stable. Having more negative evi-
dence clearly seems to be counter productive and
it seems more important to have positive examples
to learn from. We have two explanations for this:
First, bad examples scatter across the space and it
is likely for a good essay to correlate higher with
a bad one when there is only a low number of pos-
itive examples. Second, bad essays might contain
very few words and thus expose correlation arte-
facts that would in principle be easy to detect, but
not with LSA.

Figure 8 depicts a recall that is generically
higher than in the ‘Best of Gold’ case, while pre-
cision is in the same area. Recall seems not to be
so stable but does not drop with more bad samples
(and less good ones) to learn from such as in the
‘Best of Good’ case. We interpret that noise can be
added to increase recall while still only a low num-
ber of positive examples is available to improve it.

whole experiment; whereas the other rules showed the same
results, the recall of this rule was unstable over the test runs,
but in tendency lower than in the other rules.
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Figure 8: Rule 5: Avg of Good > Avg of Bad

5.2 Clustering
To gain further insight about the location of the
94 essays and three gold standards in the higher
order latent-semantic space, a simple cluster anal-
ysis of their vectors was applied. Therefore, all
document-to-document cosine similarities were
calculated, filtered by a threshold of .65 to capture
only strong associations, and, subsequently, a net-
work plot of this resulting graph was visualised.

Figure 9: Similarity Network (cos >= .65).

As can be seen in the two charts, the humanly
positively judged evidence seems to cluster quite
well in the latent-semantic space when visualised
as a network plot. Through filtering the docu-
ment vectors by the vocabulary used only in the
accepted, rejected, or both classes, an even clearer
picture could be generated, shown in Figure 10.

Both figures clearly depict a big connected com-
ponent consisting mainly out of accepted essays,
whereas the rejected essays mainly spread in the

Figure 10: Network with filtered vocabulary.

unconnected surrounding. The rejected essays are
in general not similar to each other, whereas the
accepted samples are.

The second Figure 10 is even more homoge-
neous than the first due to the use of the restricted
vocabulary (i.e. the terms used in all accepted and
rejected essays).

6 Conclusion and Outlook

Distractors are of low value in the rules tested. It
seems that generic noise can be added to keep re-
call higher when only a low number of positive ex-
amples can be utilised. An explanation for this can
be found therein that there are always a lot more
heterogeneous ways to make an error. Homogene-
ity can only be assumed for the positive evidence,
not for negative evidence.

Noise seems to be useful for the calculation
of thresholds. Though it will need further inves-
tigation whether our new hypothesis works that
bad samples can be virtually anything (that is not
good).

Learning helps. The recall was shown to im-
prove in various cases, while precision stayed at
the more or less same level as the simple baseline
rule. Though the threshold calculation using the
difference to good and bad examples seemed to
bear the potential of increasing precision.

Thresholds and ways how to calculate them are
evidently important. We proposed several well
working ways on how to construct thresholds from
evidence that extend the state of the art. Thresh-
olds usually vary with changing corpus sizes and
the measures proposed can adopt to that.

We plan to investigate the use of support vec-
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tor machines in the latent semantic space in order
to gain more flexible means of characterising the
boundaries of the target area representing a con-
cept.

It should be mentioned that this experiment
demonstrates that conceptual development can be
measured and texts and their similarity can serve
as a proxy for that. Of course the experiment we
have conducted bears the danger to bring results
that are only stable within the topical area chosen.

We were able to demonstrate that textual rep-
resentations work on a granularity level of around
23 words, i.e. with the typical length of a free text
question in an exams.

While additionally using three model solutions
or at least two positive samples, we were able to
show that using a textbook split into paragraph-
sized textual units combined with generic back-
ground material, valid classifiers can be built with
relative ease. Furthermore, reference material to
score against can be collected along the way.

The most prominent open problem is to try and
completely get rid of model solutions as reference
material and to assess the lower level concepts
(terms and term aggregates) directly to further re-
duce corpus construction and reference material
collection. Using clustering techniques, this will
mean to identify useful ways for efficient visuali-
sation and analysis.
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