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Abstract

When interacting with humans, intelligent agents must be able not only

to understand natural language inputs but also to remember them and link

their content with the contents of their memory of event and object in-

stances. As inputs can come in a variety of forms, linking to memory

can be successful only when paraphrasing relations are established be-

tween the meaning of new input and the content of the agent’s memory.

This paper discusses a variety of types of paraphrases relevant to this task

and describes the way we implement this capability in a virtual patient

application.
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1 Overview of and Rationale for Studying Paraphrase

Paraphrase, under any of its many definitions, is ubiquitous in language use. It could

be likened to reference, both in function and in the complexity of its detection and

resolution. Indeed, there are many ways to express a given idea in language: one

can use a canonical word/phrase (dog), a synonymous terse locution (mutt, pooch,

canine, man’s best friend), or an explanatory description that can be of any length and

include one or more specific salient features (a pet that barks; one of the two most

common four-legged domesticated mammals in the USA that is not a cat). Although

these locutions are not semantically identical, they are functionally equivalent in many

contexts, meaning that they can permit a person or intelligent agent to carry out the

same types of reasoning.

No matter which of the above locutions is used to express the idea of dog, a person

or an artificial intelligent agent should be able resolve it to the concept DOG in his/its

world model. Such resolution, or “anchoring”, permits other knowledge about the

entity to be leveraged for reasoning: for example, the sentence Our pooch has a long

tail should be construed as perfectly normal, whereas Our pooch wrote a grocery list

should be understood as impossible in its direct sense since dogs cannot be agents of

writing. Such incongruence should, in turn, suggest either a non-real world or the use

of pooch as a nickname for some person or intelligent agent, like an automatic grocery

list writing system.

1.1 Work by Others

Paraphrase is a difficult problem: at its deepest, it centrally involves semantics, which,

due to its inherent complexity, can be addressed only in limited ways in current NLP

work. As a result, most contributions devoted to paraphrase can be described as syn-

tactic or “light semantic.” In some contributions, processing semantics is constrained

to finding synonyms, hyponyms, etc., in a manually constructed word net, like Word-

Net or any of its progeny. Some others do not rely on a manually constructed knowl-

edge resource but, rather, aim to determine distributional clustering of similar words

in corpora (see, e.g. Pereira et al. (1993) or Lin (2001)). A few approaches to dealing

with paraphrase actually go beyond the detection and use of synonyms. For exam-

ple, Lapata (2001) seeks to interpret the meanings of contextually elastic adjectives

(such as fast, which means different things in fast highway and fast eater) by semi-

automatically constructing paraphrases for phrases that include such adjectives. These

paraphrases use the original noun and the adjective (or any of its synonyms, taken from

a hand-constructed list) in its adverbial form and add a corpus-derived candidate verb

intended to explain the meaning of the adjective. Results are evaluated by human

judgments of whether a paraphrase (e.g., highway travel quickly) is appropriate as an

explanation of the meaning of fast in fast highway.

Ibrahim et al. (2003) pursue the more immediate goal of supporting a question-

answering system. Creating paraphrases for questions helps to expand the queries

to the textual resources that are mined for answers. In an early version of this sys-

tem, such paraphrase rules — which included a combination of lexical and syntactic

transformations — were created by hand (Katz and Levin, 1988). The new approach

follows the methodology of Lin and Pantel (2001) for dynamically determining para-

phrases in a corpus by measuring the similarity of paths between nodes in syntactic de-
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pendency trees. This method was applied to pairs of sentences from different English

translations of the same text. (The idea of using a monolingual “sentence-aligned”

corpus is due to Barzilay and McKeown (2001).) Ibrahim et al. (2003) then suggest

a set of heuristics for the subsentential-level matching of nouns and pronouns which

leads to the specification of paraphrases in terms of rules such as X became a state

in Y ↔ X was admitted to the Union in Y. The reported precision of the process is

about 41%, while the upper bound is given at about 65%.1 Ibrahim et al. state that

“question answering should be performed at the level of ‘key relations’ in addition

to keywords.” We believe that it is even better to use key word senses rather than

key words, and to include key relations of a semantic and pragmatic nature — though

syntactic information should be retained as a valuable source of heuristics for spec-

ifying semantic relations. We believe that we have developed enabling technologies

and resources that allow us, at this time, to process paraphrase by relying on meaning

representations rather than just syntactic dependencies and text-level relations.

One system that has an application area similar to ours is the one developed by

Boonthum (2004). Boonthum is developing an automatic tutoring application that

will be enhanced by paraphrase recognition. To process paraphrase, she automatically

converts natural language sentences into Conceptual Graphs (Sowa, 1983) and com-

pares the graphs of two candidate paraphrases using various metrics. This system,

unlike ours, works at the level of strings (not concepts), does not automatically carry

out disambiguation, and cannot handle complex sentences or long spans of text.

Since paraphrase recognition, when viewed broadly, is a very challenging task,

some developers choose to focus on a narrow application area. One such system,

reported in Brun and Hagège (2003), detects paraphrases in texts about toxic prod-

ucts. Developers hand create rules using lexical and structural information, and sys-

tem output is logical structures like PHYS_FORM(acetone,liquid), which means that

the physical form of acetone is liquid. The approach taken in this work seems very

appropriate for this narrow domain of interest.

1.2 Our research methodology

The research methodology we adopt has the following features, which will serve to

orient it in the landscape of work by others. This methodology:

• addresses paraphrase within an application;

• takes into account the needs of question answering and — more broadly speak-

ing — dialog processing;

• integrates paraphrasing due to different types of agent perception: the percep-

tion of language and the perception of non-linguistic inputs, like interoception

(sensitivity to stimuli originating in the body, e.g., symptoms of a disease);

• uses an agent’s memories as both the source of paraphrase detection and as the

target to which new memories are linked; and

1We believe that the low upper bound is due to the way the problem was framed. In cases where

the semantic differences among candidate paraphrases are important (not “benign”), the inter-respondent

agreement, we believe, will be higher.
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• has provisions for including conceptual paraphrases, which are different ways

of describing the same object or event that must be interpreted using the onto-

logical knowledge available to specific agents.

The initial experimentation that we are reporting covers a relatively narrow domain

but we hypothesize that the same methodology can be used in other domains, with

certain modifications related to ontological and lexical coverage.

1.3 Maryland Virtual Patient (MVP)

The application that drives our current research is Maryland Virtual Patient (MVP),

which is an agent-oriented simulation and tutoring system. In MVP, a human user

plays the role of a physician in training who must diagnose and treat open-ended sim-

ulations of patients, with or without the help of a virtual mentor agent (e.g. McShane

et al., 2007). The virtual patient is, itself, a “double” agent, comprised of: (a) a physio-

logical agent that lives over time and responds in realistic ways to disease progression

and interventions, and (b) a cognitive agent that experiences symptoms, decides when

to consult a physician, makes decisions about its lifestyle, treatment options, etc., and

communicates with a human user using natural language. The system currently covers

six diseases of the esophagus, so many of our examples will come from this subdo-

main of medicine.

As should be clear even from this brief overview, MVP is a reasoning-intensive

application. Both physiological simulation and NLP are supported by hand-crafted,

ontologically grounded knowledge that includes:

1. a general purpose ontology with broad and deep coverage of medical concepts,

including ontological scripts describing disease progression and treatment, the

plans and goals of patients and physicians, clinical best practices, medical in-

terviews and dialog in general

2. a lexicon whose entries include a syntactic structure, a semantic structure (linked

to the ontology), and calls to procedural semantic routines (e.g., to provide for

the reference resolution of pronouns and other deictics)

3. a fact repository, which is a memory of assertions, as contrasted with the ontol-

ogy, which covers knowledge of types.

All knowledge in the MVP environment is recorded using the metalanguage of

description of Ontological Semantics (Nirenburg and Raskin, 2004). The MVP ap-

plication will serve as a concrete example for the discussion of paraphrase processing

in applications that include intelligent agents. However, the analysis is readily gen-

eralizable and could be applied to any system that would benefit from paraphrase

understanding.

This paper will not discuss all types of paraphrase and how OntoSem (the imple-

mentation of the theory of Ontological Semantics) handles them, even though one

of the core contributions of OntoSem is the robust handling of lexical and syntactic

paraphrase by automatically deriving identical meaning representations for inputs that

contain such paraphrases (for discussion see Nirenburg and Raskin, 2004, Chapter 8).

Here we focus on just a few of the more “compositional-semantic” types of paraphrase

and our theoretical and implementation-oriented solutions to treating them.



Resolving Paraphrases to Support Modeling Language Perception 183

2 Paraphrase-Oriented Eventualities

Each agent in MVP is supplied with its own ontology, lexicon and fact repository

(i.e., memory), which can be enriched on the fly in various ways based on the agent’s

activities — be they linguistic, interoceptive, or other. In order for the language-

endowed agents (on whom we focus here) to operate intelligently — as when answer-

ing questions posed by the human user or learning new facts he presents to them —

they must be able to interpret language input, remember the content of that input,

and attempt to match/link that content with memories already stored in their fact

repository. Linking new information to old memories is a standing goal of all intel-

ligent agents, and in MVP it is triggered automatically for each new input. A core

capability enabling such linking is the recognition and resolution of paraphrase.

We will show how various types of paraphrase are handled as part of agent memory

management in the OntoSem environment. More specifically, we focus on creating

and linking new knowledge from linguistic input, not on the use of this knowledge for

reasoning. Memory management (e.g., modeling forgetting and generalizing) is also

a key enabling technology, but one whose description lies outside of the scope of this

paper.

Having generated a meaning representation (MR) for a textual input, the intelligent

agent must consider the following eventualities in deciding on how to remember the

content of this input. The eventualities in boldface (numbers 5, 6 and 7) are those that

we will be discussing in some detail below.

1. The newly input MR is identical to a stored memory

2. The newly input MR is identical to a stored memory except for metadata values:

the identity of the speaker, the time stamp, etc. This can be viewed as type

coreference. For example, in the MVP environment, if the agent coughs every

day, is every cough a new instance or is it better remembered as a generalized

action with a given periodicity? The answer here depends in a large part on

the event generalization capabilities of an agent (a component of its memory

management capabilities): indeed, even in real life one cannot be immune from

the failure to realize that a certain sequence of events is actually better viewed

as a single periodic event.

3. The newly input MR contains a subset or a superset of properties of a stored

memory. For example, the new input can describe only the location of a symp-

tom but not its severity, whereas remembered instances of this same symptom

may overtly list its severity and various other properties. Note that the informa-

tion about which properties are applicable to a particular concept is stored in the

ontology; the memory (fact repository) contains information about those of the

properties that were overtly perceived by the agent.

4. The new input is similar to a stored memory but one or more properties has

a different value. For example, an input could specify one level of symptom

severity while stored instances of the symptom may specify different values of

this property.
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5. The newly input MR (or a component of it) is related to a stored memory

via ontological subsumption, meronymy or location.

6. The newly input MR is related to a stored memory as the latter’s precondi-

tion or effect.

7. The newly input MR is related to a stored memory via “ontological para-

phrase.”

8. The new input is not related to any stored memory because different concepts

are used, there are conflicting property values, etc. For example, a symptom

experienced by somebody other than the given agent may be known to the agent,

but the agent will certainly not interpret it as coreferential with knowledge about

its own symptoms.

For case 1, the new information is interpreted as confirmation of the existing mem-

ory, it is not stored as a separate memory. For case 2, the choice of storing instances

individually or grouping them into a recurring event is determined by the agent’s mem-

ory management activities. For cases 3-8 reasoning must be carried out to determine

if there is a match or not. In our current implementation, if a stored MR unifies with

the newly input MR, the two MRs are judged to be paraphrases. With respect to case

4, this is a simplification because significant differences in values of properties in the

two MRs under comparison should be used as heuristics voting against declaring the

two MRs paraphrases. However, this level of analysis requires the establishment of

a scale of relevancy on all the properties of a given concept, a task that we defer to

future system releases. For case 8, the new information should be stored as a new

memory. Let us consider eventualities 5-7 in more detail.

2.1 The newly input MR (or a component of it) is related to a stored memory

via ontological subsumption, meronymy or location

There is much variability in the use of language, which can result from lack of knowl-

edge of more precise terminology or from a person’s understanding that certain kinds

of underspecificity are entirely acceptable. For example, one can say Let’s eat at your

place rather than specifying whether we mean a house, a condominium or a studio

apartment; and one can say Does your arm hurt? rather than asking Does the broken

bone in your arm hurt or, even more specifically, Does your ulna hurt?

When attempting to match new textual input with a stored memory, the question is,

how close do the compared MRs have to be in order to be considered a match? An

important consideration when making this judgment is the application. In the dialog

application we are developing, the notion of sincerity conditions plays an important

role. That is, the VP expects the physician to ask it questions that it can answer; there-

fore, it should try hard — and search broadly, if necessary — to come up with the clos-

est memories that will permit it to generate a response. In McShane et al. (2008) we

suggest an algorithm that determines when two closely related MRs are close enough

to be considered identical. The algorithm involves following three types of ontological

links — subsumption, meronymy and location; if a match is found within the “lower”

(i.e., domain-specific) ontology, then the related elements are considered a paraphrase.

Let us show how this paraphrase processing works using a concrete example.



Resolving Paraphrases to Support Modeling Language Perception 185

The physician asks the virtual patient, Do you have any discomfort in your esoph-

agus? The MR for that question is as follows.

(REQUEST-INFO-1

(THEME MODALITY-1.VALUE))

(MODALITY-1

(TYPE EPISTEMIC)

(SCOPE DISCOMFORT-1))

(DISCOMFORT-1

(EXPERIENCER HUMAN-1)

(LOCATION ESOPHAGUS-1))

(ESOPHAGUS-1

(PART-OF-OBJECT HUMAN-1))

The interrogative mood gives rise to the instance of request-info, whose theme is the

value of epistemic modality that scopes over the proposition headed by DISCOMFORT-

1. (If the event actually happened, then the value of epistemic modality is 1; if it did

not happen, then the value is 0).

The event DISCOMFORT is experienced by HUMAN-1, which will be linked to a

specific human (the interlocutor) via reference resolution (reference resolution is car-

ried out on every referring expression in OntoSem). The LOCATION of the DISCOM-

FORT is the ESOPHAGUS of that HUMAN.

If we extract the core meaning of this question, abstracting away from the interrog-

ative elements, we have:

(DISCOMFORT-1

(EXPERIENCER HUMAN-1)

(LOCATION ESOPHAGUS-1))

(ESOPHAGUS-1

(PART-OF-OBJECT HUMAN-1))

Let us assume that the patient has stored memories about its discomfort in a differ-

ent way, as an undifferentiated symptom in its chest:

(SYMPTOM-1

(EXPERIENCER HUMAN-1)

(LOCATION CHEST-1))

(CHEST-1

(PART-OF-OBJECT HUMAN-1))

Note that the patient stores memories of interoception directly, translating the out-

put of its physiological agent into a memory that is in keeping with its own ontology.

This translation is necessary because the agent’s own ontology is a “lay” ontology —

one lacking highly specified medical subtrees. The ontology available to the phys-

iological agent, by contrast, is an “expert” ontology that is rich enough in medical

knowledge to support disease simulation and treatment (see McShane et al., 2008).
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The MR components in boldface are the ones that must be matched. DISCOMFORT

is a child of SYMPTOM, forming a subsumption link of only one jump. ESOPHAGUS

has a LOCATION of CHEST, and they are both PART-OF-OBJECT the human in ques-

tion. Therefore, according to our matching algorithm — in conjunction with the fact

that the VP assumes sincerity conditions in its conversations with the physician — the

VP’s memory of this event sufficiently matches the physician’s question and the VP

can respond affirmatively to the question: i.e., the VP has a memory of the symptom

the physician is asking about.

In discussing the next two paraphrase-oriented phenomena we will shift to a dif-

ferent application area not because the medical domain lacks examples, but because

understanding them would require too much background knowledge. The application

area we will posit is an agent that is a personal companion, with the agent’s job being

to uphold its end of an open-ended conversation.

2.2 The newly input MR is related to a stored memory as the latter’s

precondition or effect

Consider the following dialog snippet between an elderly woman, Anne, and an intel-

ligent agent that serves as her “conversational companion”:

Anne: You know, my husband and I went to Rome for our honeymoon.

Agent: Is that so?

Anne: Yes. We ate such great artichokes in Trastevere!

As the agent participates in this conversation, it creates and stores memories of the

meaning of Anne’s utterances. In analyzing Anne’s final utterance, the agent should

create a link between Anne and her husband being in Trastevere, and Anne and her

husband traveling to Rome.

OntoSem produces the following core meaning representation for the statement

about traveling to Rome:

(TRAVEL-EVENT-1

(AGENT SET-1)

(DESTINATION ROME)

(TIME (< find-anchor-time)))

(SET-1

(MEMBERS HUMAN-1 HUMAN-2))

Some details are omitted in the above structure, as they are not relevant to our

exposition here. Find-anchor-time is a meaning procedure that triggers a search in

the metadata or in the text itself for the time of the event, which is before the time of

speech. The above meaning representation will be stored by the agent in its memory.

The meaning representation (again, omitting some details) for the statement about

eating in Trastevere will be:

(INGEST

(AGENT SET-1) ; coreferential with SET-1 above

(THEME ARTICHOKE-1)

(LOCATION TRASTEVERE)
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(TIME (< find-anchor-time)))

(MODALITY-1

(TYPE EVALUATIVE)

(SCOPE ARTICHOKE-1)

(VALUE 1)

(ATTRIBUTED-TO HUMAN-1))

At this point the agent must check whether the above MR should be linked in the

agent’s memory to the memory of the travel event processed earlier. In this case, a

match is found — that is, the agent can establish that a precondition of the second

event is among the effects of the first one. Specifically, the linking occurs because:

1. the agent’s ontology contains the description of a complex event (a script)

TRAVEL-EVENT, where it is listed that an ef fect of traveling to X is being in X;

2. the agent’s ontology contains the knowledge that a precondition for an INGEST

event taking place at LOCATION Y with AGENT X is that X is at LOCATION Y;

3. the agent’s fact repository contains the knowledge that Trastevere is a neighbor-

hood in Rome.

2.3 The newly input MR is related to a stored memory via ontological

paraphrase

The third source of paraphrase we will discuss is what we call ontological paraphrase.

This occurs when more than one metalanguage representation means the same thing.

In an environment with only artificial agents, where communication can be carried out

without resorting to natural language, such paraphrase should be excluded to the extent

possible. However, in environments (like MVP) where meaning representations can

be generated from natural language, this eventuality is more difficult to avoid. This is

because a) basic meaning representations are produced on the basis of lexicon entries

for words and phrases appearing in the sentence; and b) a word or phrase can be used

in a particular sentence to render a narrower or broader meaning than it has in general.

Now, in creating basic meaning representations, OntoSem uses concepts that are listed

in the lexicon entries for the appropriate senses of the input words (in this paper we

do not describe OntoSem’s approach to word sense disambiguation and determination

of semantic dependencies), and these concepts cannot reflect broadening or narrowing

usages of the word. A good example of this phenomenon is the following: One can

say (a) go to London by plane or (b) fly to London, and these inputs will generate

different MRs:

(a) (MOTION-EVENT-7 (DESTINATION London) (INSTRUMENT AIRPLANE))

(b) (AERIAL-MOTION-EVENT-19 (DESTINATION London)).

This is because the semantics of the appropriate sense of go is explained using the

concept MOTION-EVENT, while the semantics of the appropriate sense of fly uses

AERIAL-MOTION-EVENT. In the former structure, the head event instance is more

general than in the latter. In fact, the corresponding ontological concepts stand in a
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direct subsumption relation. If one chooses to use a concept that is higher in the onto-

logical hierarchy, one may have to add further overt constraints to the meaning repre-

sentation (like the one about the INSTRUMENT of the MOTION-EVENT above). If one

chooses the lower-level, narrower ontological concept to start with, such constraints

may be inherent in its definition (as is the case with AERIAL-MOTION-EVENT). This

preference is the inverse of the lexical choice in text generation off of text meaning

representations (for details see Nirenburg and Nirenburg, 1988).

OntoSem can yield either of the above basic text meaning representations. In many

applications — for example, in interlingua-based machine translation — this would

be quite benign. However, it is possible to create extended meaning representations

such that the above variability is eliminated. The method we use for this purpose relies

on the dynamic tightening or relaxation of selectional restrictions and is described in

detail in Mahesh et al. (1997). Note that different paraphrases will still be produced

for inputs that, while referring to the same event instance, describe it with a different

degree of vagueness or underspecificity (see Section 2.1 above).

The fact that the two meaning representations above are paraphrases of one an-

other can be automatically detected using a fairly simple heuristic: the ontological

description of AERIAL-MOTION-EVENT includes the following property-value pairs:

AERIAL-MOTION-EVENT

IS-A MOTION-EVENT

INSTRUMENT AIRPLANE HELICOPTER BALLOON

Since the head of one of the MRs is an ancestor of the other, and the property-value

pairs in the ancestor-based MR unify with the ontological definition of the descendant

(the head of the other MR), these two structures are deemed to be paraphrases.

As we see from this example, world knowledge stored in the ontology is leveraged

to carry out the reasoning needed to detect that the abovementioned formal structures

are paraphrases. Such situations are somewhat similar to “bridging references” in the

literature devoted to reference resolution (e.g. Poesio et al., 2004) because a knowl-

edge bridge is needed to aid in the reference resolution of the entity.

A common source of this type of paraphrase derives from decisions about how to

build the ontology. Ontology building is a complex task with “the lesser of the evils”

decisions to be made at every turn. Two ontologies can be equally valid and yet look

quite different. One of the most difficult aspects of ontology building is deciding when

a new concept is needed. Let us continue with the example of taking a trip. A small

excerpt from the MOTION-EVENT subtree of our ontology is as follows:

MOTION-EVENT

AERIAL-MOTION

LIQUID-CONTACT-MOTION

SURFACE-CONTACT-MOTION

TRAVEL-EVENT

. . .

As we can see, rather than having a single MOTION-EVENT lexically supplemented

by property-value pairs that distinguish between types of motion, we have various
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types of motion being represented as different ontological concepts. This means that

when different kinds of motion are referred to — even if they describe the same real-

world event — they will instantiate different concepts in MR and we will be faced

with the problem of matching at the level of MR. Whereas this matching problem

can be seen as a vote for constraining the number of ontological concepts, there are

practical reasons for not wanting to overdo this: for example, MRs are much harder to

read and evaluate when lexical senses are described using property-value pairs rather

than simply pointing to an iconic ontological concept that holds the description. Of

course, the use of iconic concepts results in lower expressive power of an ontology,

which affects the reasoning capabilities of agents in memory management, goal- and

plan-based reasoning and the more complex cases of language understanding.

2.4 Theoretical Notes

This work derives from the theoretical assumption that in order for agents to show truly

intelligent behavior their memory must be well managed. What is actually stored as a

memory, however, is a complex question. For example, if someone were to describe a

trip to New York and never referred to it as “trip to NY” but rather said that he “was

in NY” (and the interlocutor knows that he doesn’t live there), the interlocutor might

still save the memory as

(TRAVEL-EVENT-1

(AGENT HUMAN-1)

(DESTINATION New York)).

So the “grain size” of memories is a compelling and complex problem. However,

we must deflect a deep study of the question What is memory, agreeing with Minsky

(2006) that lingering over definitions that might never be truly precise does not support

practical progress.

Describing this work in broad terms risks conveying the impression that it is trivial,

either conceptually or in terms of implementation. In fact, both of these facets of the

work are quite complex, involving extensive theoretical and practical decision-making

at every step — one of the reasons, perhaps, why it is not being broadly pursued.

The standard counterargument that resource development for such an approach is too

expensive does not hold up when one considers the cost of semantically annotating

corpora and then building machine learning engines to exploit such corpora. Another

criticism of knowledge-based approaches is that they are too narrow in coverage. In-

deed, one cannot cover broad corpora at a deep level all at once; however, the insights

gained in carrying out this kind of work, and its potential to significantly enhance the

current state of the art in NLP, are really quite exciting. And, of course, there are no

a priori preferences for starting with breadth and striving for depth over the opposite

strategy of starting with depth and striving for breadth.

One final point must be mentioned. The OntoSem environment that forms the

substrate for the work described here is used for applications that are much broader

than MVP. Recent applications include question-answering and information extrac-

tion. Thus, the ongoing development of the ontology, lexicon, fact repository and

semantic analyzer benefits a range of application areas.
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3 State of Development

We have developed a complete simulated physiological agent that covers diseases of

the esophagus and is capable of realistic physiological responses to even unexpected

interventions. We have developed a tool for the fast creation of large libraries of

physiological agents that feature different diseases, different genetic and behavioral

predispositions and different realistic disease progressions. We have implemented a

cognitive agent capable of interoception, perception through language, goal- and plan-

based reasoning (within the domain of doctor-patient interaction), memory manage-

ment, (simulated) physical action and (real) verbal action. With respect to interocep-

tion, we have developed a simulation of how the cognitive agent (the cognitive side of

the “double” agent) perceives signals (symptoms) from its physiological agent coun-

terpart. Even though a single knowledge representation substrate is used for modeling

both agents, the interoception simulation process involves paraphrase.

We have developed a set of knowledge resources covering relevant knowledge

about the world (the ontology), past events remembered by the agent (the fact reposi-

tory) and knowledge about language (represented, largely, in the agent’s lexicon).

The operational OntoSem semantic analyzer is used as the basic tool for creating

meaning representations from language inputs. The latter already reflect results of the

resolution of many kinds of paraphrase as a matter of course.

Content specification for the agent’s dialog turns is addressed in the implemented

goal- and plan-based reasoning module of the cognitive agent. Surface generation of

agent dialog turns has, at this point, been implemented in a limited fashion, on the

basis of prefabricated open textual patterns linked to types of text meaning represen-

tations that are output by the content specification module. In the next release of MVP

we intend to incorporate a text realizer such as YAG (McRoy et al., 2003).

Upcoming evaluations will continue to help to debug the system and the underlying

knowledge; and, more importantly for the topic of this paper, data will be collected

for an evaluation of the dialog component of the system.

The quality of the system’s treatment of paraphrase will be judged at two levels.

First, the appropriateness of the agent’s dialog responses will provide a practical,

application-based measure of the quality of paraphrase processing, though blame as-

signment for any miscues will pose a complication. Second, we will be able to directly

inspect the agent’s memory for traces of the resolution of paraphrase against remem-

bered concept instances and judge the appropriateness of these results against human

decisions. To facilitate this, we will provide textual glosses to meaning representa-

tions comprising the agent’s memory. The above regimen is the most economical way

to evaluate our approach because an important prerequisite for evaluating the perfor-

mance of paraphrase resolution algorithms in our environment is the creation of the

fact repository (i.e., the agent’s memory), against which the comparisons and linking

occur. In the proposed testing regimen, this memory will be augmented and man-

aged as a result of the operation of the system itself, so that there will be no need for

creating it just for the purposes of evaluation.
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