
Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 9–16
Manchester, August 2008

Making Speech Look Like Text
in the Regulus Development Environment

Elisabeth Kron
3 St Margarets Road, Cambridge CB3 0LT, England

elisabethkron@yahoo.co.uk

Manny Rayner, Marianne Santaholma, Pierrette Bouillon, Agnes Lisowska
University of Geneva, TIM/ISSCO, 40 bvd du Pont-d’Arve

CH-1211 Geneva 4, Switzerland
Emmanuel.Rayner@issco.unige.ch

Marianne.Santaholma@eti.unige.ch
Pierrette.Bouillon@issco.unige.ch

Agnes.Lisowska@issco.unige.ch

Abstract

We present an overview of the de-
velopment environment for Regulus, an
Open Source platform for construction of
grammar-based speech-enabled systems,
focussing on recent work whose goal has
been to introduce uniformity between text
and speech views of Regulus-based appli-
cations. We argue the advantages of be-
ing able to switch quickly between text and
speech modalities in interactive and offline
testing, and describe how the new func-
tionalities enable rapid prototyping of spo-
ken dialogue systems and speech transla-
tors.

1 Introduction

Sex is not love, as Madonna points out at the be-
ginning of her 1992 bookSex, and love is not
sex. None the less, even people who agree with
Madonna often find it convenient to pretend that
these two concepts are synonymous, or at least
closely related. Similarly, although text is not
speech, and speech is not text, it is often conve-
nient to pretend that they are both just different as-
pects of the same thing.

In this paper, we will explore the similarities and
differences between text and speech, in the con-
crete setting of Regulus, a development environ-
ment for grammar based spoken dialogue systems.
Our basic goal will be to make text and speech
processing as similar as possible from the point
of view of the developer. Specifically, we arrange

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

things so that the developer is able to develop her
system using a text view; she will write text-based
rules, and initially test the system using text in-
put and output. At any point, she will be able to
switch to a speech view, compiling the text-based
processing rules into corresponding speech-based
versions, and test the resulting speech-based sys-
tem using speech input and output.

Paradoxically, the reason why it is so important
to be able to switch seamlessly between text and
speech viewpoints is that text and speech are in
fact not the same. For example, a pervasive prob-
lem in speech recognition is that of easily confus-
able pairs of words. This type of problem is of-
ten apparent after just a few minutes when running
the system in speech mode (the recogniser keeps
recognising one word as the other), but is invis-
ible in text mode. More subtly, some grammar
problems can be obvious in text mode, but hard
to see in speech mode. For instance, articles like
“the” and “a” are short, and usually pronounced
unstressed, which means that recognisers can be
reasonably forgiving about whether or not to hy-
pothesise them when they are required or not re-
quired by the recognition grammar. In text mode, it
will immediately be clear if the grammar requires
an article in a given NP context: incorrect vari-
ants will fail to parse. In speech mode, the symp-
toms are far less obvious, and typically amount to
no more than a degradation in recognition perfor-
mance.

The rest of the paper is structured as follows.
Sections 2 and 3 provide background on the Reg-
ulus platform and development cycle respectively.
Section 4 describes speech and text support in the
interactive development environment, and 5 de-
scribes how the framework simplifies the task of

9



switching between modalities in regression testing.
Section 6 concludes.

2 The Regulus platform

The Regulus platform is a comprehensive toolkit
for developing grammar-based speech-enabled
systems that can be run on the commercially avail-
able Nuance recognition environment. The plat-
form has been developed by an Open Source con-
sortium, the main partners of which have been
NASA Ames Research Center and Geneva Univer-
sity, and is freely available for download from the
SourceForge website1. In terms of ideas (though
not code), Regulus is a descendent of SRI Inter-
national’s CLE and Gemini platforms (Alshawi,
1992; Dowding et al., 1993); other related systems
are LKB (Copestake, 2002), XLE (Crouch et al.,
2008) and UNIANCE (Bos, 2002).

Regulus has already been used to build sev-
eral large applications. Prominent examples
are Geneva University’s MedSLT medical speech
translator (Bouillon et al., 2005), NASA’s Clarissa
procedure browser (Rayner et al., 2005) and Ford
Research’s experimental SDS in-car spoken dia-
logue system, which was awarded first prize at
the 2007 Ford internal demo fair. Regulus is de-
scribed at length in (Rayner et al., 2006), the first
half of which consists of an extended tutorial in-
troduction. The release includes a command-line
development environment, extensive online docu-
mentation, and several example applications.

The core functionality offered by Regulus is
compilation of typed unification grammars into
parsers, generators, and Nuance-formatted CFG
language models, and hence also into Nuance
recognition packages. These recognition packages
produced by Regulus can be invoked through the
Regulus SpeechServer (“Regserver”), which pro-
vides an interface to the underlying Nuance recog-
nition engine. The value added by the Regserver
is to provide a view of the recognition process
based on the Regulus unification grammar frame-
work. In particular, recognition results, originally
produced in the Nuance recognition platform’s in-
ternal format, are reformatted into the semantic no-
tation used by the Regulus grammar formalism.

There is extensive support within the Regulus
toolkit for development of both speech translation
and spoken dialogue applications. Spoken dia-

1http://sourceforge.net/projects/
regulus/

logue applications (Rayner et al., 2006, Chapter 5)
use a rule-based side-effect free state update model
similar in spirit to that described in (Larsson and
Traum, 2000). Very briefly, there are three types of
rules: state update rules, input management rules,
and output management rules. State update rules
take as input the current state, and a “dialogue
move”; they produce as output a new state, and an
“abstract action”. Dialogue moves are abstract rep-
resentations of system inputs; these inputs can ei-
ther be logical forms produced by the grammar, or
non-speech inputs (for example, mouse-clicks in a
GUI). Similarly, abstract actions are, as the name
suggests, abstract representations of the concrete
actions the dialogue system will perform, for ex-
ample speaking or updating a visual display. Input
management rules map system inputs to dialogue
moves; output management rules map abstract ac-
tions to system outputs.

Speech translation applications are also rule-
based, using an interlingua model (Rayner et al.,
2006, Chapter 6). The developer writes a second
grammar for the target language, using Regulus
tools to compile it into a generator; mappings from
source representation to interlingua, and from in-
terlingua to target representation, are defined by
sets of translation rules. The interlingua itself is
specified using a third Regulus grammar (Bouillon
et al., 2008).

To summarise, the core of a Regulus application
consists of several different linguistically oriented
rule-sets, some of which can be interpreted in ei-
ther a text or a speech modality, and all of which
need to interact correctly together. In the next sec-
tion, we describe how this determines the nature of
the Regulus development cycle.

3 The Regulus development cycle

Small unification grammars can be compiled di-
rectly into executable forms. The central idea
of Regulus, however, is to base as much of
the development work as possible on large,
domain-independent, linguistically motivated re-
source grammars. A resource grammar for En-
glish is available from the Regulus website; similar
grammars for several other languages have been
developed under the MedSLT project at Geneva
University, and can be downloaded from the Med-
SLT SourceForge website2. Regulus contains

2http://sourceforge.net/projects/
medslt

10



an extensive set of tools that permit specialised
domain-specific grammars to be extracted from the
larger resource grammars, using example-based
methods driven by small corpora (Rayner et al.,
2006, Chapter 7). At the beginning of a project,
these corpora can consist of just a few dozen exam-
ples; for a mature application, they will typically
have grown to something between a few hundred
and a couple of thousand sentences. Specialised
grammars can be compiled by Regulus into effi-
cient recognisers and generators.

As should be apparent from the preceding de-
scription, the Regulus architecture is designed to
empower linguists to the maximum possible ex-
tent, in terms of increasing their ability directly
to build speech enabled systems; the greater part
of the core development teams in the large Reg-
ulus projects mentioned in Section 1 have indeed
come from linguistics backgrounds. Experience
with Regulus has however shown that linguists are
not quite as autonomous as they are meant to be,
and in particular are reluctant to work directly with
the speech view of the application. There are sev-
eral reasons.

First, non-toy Regulus projects require a range
of competences, including both software engineer-
ing and linguistics. In practice, linguist rule-
writers have not been able to test their rules in
the speech view without writing glue code, scripts,
and other infrastructure required to tie together the
various generated components. These are not nec-
essarily things that they want to spend their time
doing. The consequence can easily be that the lin-
guists end up working exclusively in the text view,
and over-refine the text versions of the rule-sets.
From a project management viewpoint, this results
in bad prioritisation decisions, since there are more
pressing issues to address in the speech view.

A second reason why linguist rule-writers have
been unhappy working in the speech view is the
lack of reproducibility associated with speech in-
put. One can type “John loves Mary” into a text-
processing system any number of times, and ex-
pect to get the same result. It is much less reason-
able to expect to get the same result each time if
onesays “John loves Mary” to a speech recogniser.
Often, anomalous results occur, but cannot be de-
bugged in a systematic fashion, leading to general
frustration. The result, once again, is that linguists
have preferred to stick with the text view, where
they feel at home.

Yet another reason why rule-writers tend to
limit themselves to the text view is simply the
large number of top-level commands and inter-
mediate compilation results. The current Regulus
command-line environment includes over 110 dif-
ferent commands, and compilation from the initial
resource grammar to the final Nuance recognition
package involves creating a sequence of five com-
pilation steps, each of which requires the output
created by the preceding one. This makes it diffi-
cult for novice users to get their bearings, and in-
creases their cognitive load. Additionally, once the
commands for the text view have been mastered,
there is a certain temptation to consider that these
are enough, since the text and speech views can
reasonably be perceived as fairly similar.

In the next two sections, we describe an en-
hanced development environment for Regulus,
which addresses the key problems we have just
sketched. From the point of view of the linguist
rule-writer, we want speech-based development to
feel more like text-based development.

4 Speech and text in the online
development environment

The Regulus GUI (Kron et al., 2007) is intended
as a complete redesign of the development envi-
ronment, which simultaneously attacks all of the
central issues. Commands are organised in a struc-
tured set of functionality-based windows, each of
which has an appropriate set of drop-down menus.
Following normal GUI design practice (Dix et al.,
1998, Chapters 3 and 4); (Jacko and Sears, 2003,
Chapter 13), only currently meaningful commands
are executable in each menu, with the others shown
greyed out.

Both compile-time and run-time speech-related
functionality can be invoked directly from the
command menus, with no need for external scripts,
Makefiles or glue code. Focussing for the moment
on the specific case of developing a speech transla-
tion application, the rule-writer will initially write
and debug her rules in text mode. She will be able
to manipulate grammar rules and derivation trees
using the Stepper window (Figure 1; cf. also (Kron
et al., 2007)), and load and test translation rules
in the Translate window (Figure 2). As soon as
the grammar is consistent, it can at any point be
compiled into a Nuance recognition package us-
ing the command menus. The resulting recogniser,
together with other speech resources (license man-

11



Figure 1: Using the Stepper window to browse trees in the Toy1grammar from (Rayner et al., 2006,
Chapter 4). The upper left window shows the analysis tree for“switch on the light in the kitchen”; the
lower left window shows one of the subtrees created by cutting the first tree at the higher NP node. Cut
subtrees can be recombined for debugging purposes (Kron et al., 2007).

Figure 2: Using the Translate window to test the toy English→ French translation application from
(Rayner et al., 2006, Chapter 6). The to- and from-interlingua rules used in the example are shown in the
two pop-up windows at the top of the figure.

12



regulus_config(regulus_grammar,
[toy1_grammars(toy1_declarations),
toy1_grammars(toy1_rules),
toy1_grammars(toy1_lexicon)]).

regulus_config(top_level_cat, ’.MAIN’).
regulus_config(nuance_grammar, toy1_runtime(recogniser)).

regulus_config(to_interlingua_rules,
toy1_prolog(’eng_to_interlingua.pl’)).

regulus_config(from_interlingua_rules,
toy1_prolog(’interlingua_to_fre.pl’)).

regulus_config(generation_rules, toy1_runtime(’generator.pl’)).

regulus_config(nuance_language_pack,
’English.America’).

regulus_config(nuance_compile_params, [’-auto_pron’, ’-dont_flatten’]).
regulus_config(translation_rec_params,

[package=toy1_runtime(recogniser), grammar=’.MAIN’]).
regulus_config(tts_command,

’vocalizer -num_channels 1 -voice juliedeschamps -voices_from_disk’).

Figure 3: Config file for a toy English→ French speech translation application, showing items relevant
to the speech view. Some declarations have been omitted for expositional reasons.

ager, TTS engine etc), can then be started using a
single menu command.

In accordance with the usual Regulus design
philosophy of declaring all the resources associ-
ated with a given application in its config file, the
speech resources are also specified here. Figure 3
shows part of the config file for a toy translation
application, in particular listing all the declara-
tions relevant to the speech view. If we needed to
change the speech resources, this would be done
just by modifying the last four lines. For example,
the config file as shown specifies construction of
a recogniser using acoustic models appropriate to
American English. We could change this to British
English by replacing the entry
regulus_config(nuance_language_pack,

’English.America’).

with
regulus_config(nuance_language_pack,

’English.UK’).

When the speech resources have been loaded,
the Translate window can take input equally easily
in text or speech mode; the Translate button pro-
cesses written text from the input pane, while the
Recognise button asks for spoken input. In each
case, the input is passed through the same process-
ing stages of source-to-interlingua and interlingua-
to-target translation, followed by target-language
generation. If a TTS engine or a set of recorded
target language wavfiles is specified, they are used
to realise the final result in spoken form (Figure 4).

Every spoken utterance submitted to recognition
is logged as a SPHERE-headed wavfile, in a time-
stamped directory started at the beginning of the
current session; this directory also contains a meta-
data file, which associates each recorded wavfile

with the recognition result it produced. The Trans-
late window’s History menu is constructed using
the meta-data file, and allows the user to select any
recorded utterance, and re-run it through the sys-
tem as though it were a new speech input. The
consequence is that speech input becomes just as
reproducible as text, with corresponding gains for
interactive debugging in speech mode.

5 Speech and text in regression testing

In earlier versions of the Regulus development
environment (Rayner et al., 2006,§6.6), regres-
sion testing in speech mode was all based on
Nuance’sbatchrec utility, which permits of-
fline recognition of a set of recorded wavfiles.
A test suite for spoken regression testing conse-
quently consisted of a list of wavfiles. These
were first passed throughbatchrec; outputs
were then post-processed into Regulus form, and
finally passed through Regulus speech understand-
ing modules, such as translation or dialogue man-
agement.

As Regulus applications grow in complexity,
this model has become increasingly inadequate,
since system input is very frequently not just a
list of monolingual speech events. In a multi-
modal dialogue system, input can consist of either
speech or screen events (text/mouse-clicks); con-
text is generally important, and the events have to
be processed in the order in which they occurred.
Dialogue systems which control real or simulated
robots, like the Wheelchair application of (Hockey

13



Figure 4: Speech to speech translation from the GUI, using a Japanese to Arabic translator built from
MedSLT components (Bouillon et al., 2008). The user pressesthe Recognise button (top right), speaks in
Japanese, and receives a spoken translation in Arabic together with screen display of various processing
results. The application is defined by a config file which combines a Japanese recogniser and analy-
sis grammar, Japanese to Interlingua and Interlingua to Arabic translation rules, an Arabic generation
grammar, and recorded Arabic wavfiles used to construct a spoken result.

and Miller, 2007) will also receive asynchronous
inputs from the robot control and monitoring pro-
cess; once again, all inputs have to be processed in
the appropriate temporal order. A third example is
contextual bidirectional speech translation (Bouil-
lon et al., 2007). Here, the problem is slightly
different — we have only speech inputs, but they
are for two different languages. The basic issue,
however, remains the same, since inputs have to be
processed in the right order to maintain the correct
context at each point.

With examples like these in mind, we have also
effected a complete redesign of the Regulus envi-
ronment’s regression testing facilities. A test suite
is now allowed to consist of a list of items of any
type — text, wavfile, or non-speech input — in any
order. Instead of trying to fit processing into the
constraints imposed by thebatchrec utility, of-
fline processing now starts up speech resources in
the same way as the interactive environment, and
submits each item for appropriate processing in the
order in which it occurs. By adhering to the prin-
ciple that text and speech should be treated uni-
formly, we arrive at a framework which is simpler,
less error-prone (the underlying code is less frag-

ile) and above all much more flexible.

6 Summary and conclusions

The new functionality offered by the redesigned
Regulus top-level is not strikingly deep. In the
context of any given application, it could all
have been duplicated by reasonably simple scripts,
which linked together existing Regulus compo-
nents. Indeed, much of this new functionality is
implemented using code derived precisely from
such scripts. Our observation, however, has been
that few developers have actually taken the time
to write these scripts, and that when they have
been developed inside one project they have usu-
ally not migrated to other ones. One of the things
we have done, essentially, is to generalise previ-
ously ad hoc application-dependent functionality,
and make it part of the top-level development en-
vironment. The other main achievements of the
new Regulus top-level are to organise the existing
functionality in a more systematic way, so that it is
easier to find commands, and to package it all as a
normal-looking Swing-based GUI.

Although none of these items sound dramatic,
they make a large difference to the platform’s over-

14



all usability, and to the development cycle it sup-
ports. In effect, the Regulus top-level becomes
a generic speech-enabled application, into which
developers can plug their grammars, rule-sets and
derived components. Applications can be tested in
the speech view much earlier, giving a correspond-
ingly better chance of catching bad design deci-
sions before they become entrenched. The mecha-
nisms used to enable this functionality do not de-
pend on any special properties of Regulus, and
could readily be implemented in other grammar-
based development platforms, such as Gemini and
UNIANCE, which support compilation of feature
grammars into grammar-based language models.

At risk of stating the obvious, it is also worth
pointing out that many users, particularly younger
ones who have grown up using Windows and Mac
environments, expect as a matter of course that de-
velopment platforms will be GUI-based rather than
command-line. Addressing this issue, and sim-
plifying the transition between text- and speech-
based, views has the pleasant consequence of im-
proving Regulus as a vehicle for introducing lin-
guistics students to speech technology. An initial
Regulus-based course at the University of Santa
Cruz, focussing on spoken dialogue systems, is de-
scribed in (Hockey and Christian, 2008); a similar
one, but oriented towards speech translation and
using the new top-level described here, is currently
under way at the University of Geneva. We expect
to present this in detail in a later paper.

References

Alshawi, H., editor. 1992.The Core Language Engine.
MIT Press, Cambridge, Massachusetts.

Bos, J. 2002. Compilation of unification grammars
with compositional semantics to speech recognition
packages. InProceedings of the 19th International
Conference on Computational Linguistics, Taipei,
Taiwan.

Bouillon, P., M. Rayner, N. Chatzichrisafis, B.A.
Hockey, M. Santaholma, M. Starlander, Y. Nakao,
K. Kanzaki, and H. Isahara. 2005. A generic multi-
lingual open source platform for limited-domain
medical speech translation. InProceedings of the
10th Conference of the European Association for
Machine Translation (EAMT), pages 50–58, Bu-
dapest, Hungary.

Bouillon, P., G. Flores, M. Starlander,
N. Chatzichrisafis, M. Santaholma, N. Tsourakis,
M. Rayner, and B.A. Hockey. 2007. A bidirectional

grammar-based medical speech translator. InPro-
ceedings of the ACL Workshop on Grammar-based
Approaches to Spoken Language Processing, pages
41–48, Prague, Czech Republic.

Bouillon, P., S. Halimi, Y. Nakao, K. Kanzaki, H. Isa-
hara, N. Tsourakis, M. Starlander, B.A. Hockey, and
M. Rayner. 2008. Developing non-european trans-
lation pairs in a medium-vocabulary medical speech
translation system. InProceedings of LREC 2008,
Marrakesh, Morocco.

Copestake, A. 2002. Implementing Typed Feature
Structure Grammars. CSLI Press, Chicago.

Crouch, R., M. Dalrymple, R. Kaplan, T. King,
J. Maxwell, and P. Newman, 2008.XLE Documenta-
tion. http://www2.parc.com/isl/groups/nltt/xle/doc.
As of 29 Apr 2008.

Dix, A., J.E. Finlay, G.D. Abowd, and R. Beale, edi-
tors. 1998. Human Computer Interaction. Second
ed. Prentice Hall, England.

Dowding, J., M. Gawron, D. Appelt, L. Cherny,
R. Moore, and D. Moran. 1993. Gemini: A natural
language system for spoken language understanding.
In Proceedings of the Thirty-First Annual Meeting of
the Association for Computational Linguistics.

Hockey, B.A. and G. Christian. 2008. Zero to spoken
dialogue system in one quarter: Teaching computa-
tional linguistics to linguists using regulus. InPro-
ceedings of the Third ACL Workshop on Teaching
Computational Linguistics (TeachCL-08), Colum-
bus, OH.

Hockey, B.A. and D. Miller. 2007. A demonstration of
a conversationally guided smart wheelchair. InPro-
ceedings of the 9th international ACM SIGACCESS
conference on Computers and accessibility, pages
243–244, Denver, CO.

Jacko, J.A. and A. Sears, editors. 2003.The
human-computer interaction handbook: Fundamen-
tals, evolving technologies and emerging applica-
tions. Lawerence Erlbaum Associates, Mahwah,
New Jersey.

Kron, E., M. Rayner, P. Bouillon, and M. Santa-
holma. 2007. A development environment for build-
ing grammar-based speech-enabled applications. In
Proceedings of the ACL Workshop on Grammar-
based Approaches to Spoken Language Processing,
pages 49–52, Prague, Czech Republic.

Larsson, S. and D. Traum. 2000. Information state and
dialogue management in the TRINDI dialogue move
engine toolkit.Natural Language Engineering, Spe-
cial Issue on Best Practice in Spoken Language Di-
alogue Systems Engineering, pages 323–340.

Rayner, M., B.A. Hockey, J.M. Renders,
N. Chatzichrisafis, and K. Farrell. 2005. A
voice enabled procedure browser for the interna-
tional space station. InProceedings of the 43rd

15



Annual Meeting of the Association for Compu-
tational Linguistics (interactive poster and demo
track), Ann Arbor, MI.

Rayner, M., B.A. Hockey, and P. Bouillon. 2006.
Putting Linguistics into Speech Recognition: The
Regulus Grammar Compiler. CSLI Press, Chicago.

16


