
Coling 2008

22nd International Conference on
Computational Linguistics

Proceedings of the workshop on
Grammar Engineering Across

Frameworks

Workshop chairs:
Stephen Clark and Tracy Holloway King

24 August 2008
Manchester, UK

c©2008 The Coling 2008 Organizing Committee

Licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Nonported license
http://creativecommons.org/licenses/by-nc-sa/3.0/

Some rights reserved

Order copies of this and other Coling proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-905593-54-5

Design by Chimney Design, Brighton, UK
Production and manufacture by One Digital, Brighton, UK

ii

Introduction

The GEAF workshop aims to bring together grammar engineers from different frameworks to compare
research and methodologies, particularly around the themes of evaluation, modularity, maintainability,
relevance to theoretical and computational linguistics, and applications of “deep” grammars to real-
world domains and NLP tasks.

Recent years have seen the development of techniques and resources to support robust, deep
grammatical analysis of natural language in real-world domains and applications. The demands of
these types of tasks have resulted in significant advances in areas such as parser efficiency, hybrid
statistical/symbolic approaches to disambiguation, and the acquisition of large-scale lexicons. The
effective acquisition, development, maintenance and enhancement of grammars is a central issue in
such efforts, and the size and complexity of realistic grammars makes these tasks extremely challenging;
indeed, these tasks are often tackled in ways that have much in common with software engineering. This
workshop aims to bring together grammar engineers from different frameworks — for example LFG,
HPSG, TAG, CCG, dependency grammar — to compare their research and methodologies.

We would like to thank the program committee Jason Baldridge, Emily Bender, Miriam Butt, Aoife
Cahill, John Carroll, Ann Copestake, Berthold Crysmann, Mary Dalrymple, Stefanie Dipper, Dan
Flickinger, Josef van Genabith, Ron Kaplan, Montserrat Marimon, Yusuke Miyao, Owen Rambow,
and Jesse Tseng for their detailed reviews of all of the submitted papers, and Prof. Jun’ichi Tsujii for
agreeing to give the invited talk.

In addition, we would like to thank Mark Stevenson for helping with general COLING workshop
organization and Roger Evans for helping create these proceedings.

iii

Organizers:

Stephen Clark, Oxford University
Tracy Holloway King, Palo Alto Research Center

Programme Committee:

Jason Baldridge, University of Texas at Austin
Emily Bender, University of Washington
Miriam Butt, Universitat Konstanz
Aoife Cahill, Universitat Stuttgart
John Carroll, University of Sussex
Ann Copestake, Cambridge University
Berthold Crysmann, Bonn
Mary Dalrymple, Oxford University
Stefanie Dipper, Ruhr-Universitat Bochum
Dan Flickinger, Stanford University
Josef van Genabith, Dublin City University
Ron Kaplan, Powerset
Montserrat Marimon, Universitat Pompeu Fabra
Yusuke Miyao, University of Tokyo
Owen Rambow, Columbia University
Jesse Tseng, CNRS

Invited Speaker:

Jun’ichi Tsujii, Univerity of Tokyo and University of Manchester

v

Table of Contents

TuLiPA: Towards a Multi-Formalism Parsing Environment for Grammar Engineering
Laura Kallmeyer, Timm Lichte, Wolfgang Maier, Yannick Parmentier, Johannes Dellert and Kilian

Evang . 1

Making Speech Look Like Text in the Regulus Development Environment
Elisabeth Kron, Manny Rayner, Marianne Santaholma, Pierrette Bouillon and Agnes Lisowska . . 9

A More Precise Analysis of Punctuation for Broad-Coverage Surface Realization with CCG
Michael White and Rajakrishnan Rajkumar. .17

Multilingual Grammar Resources in Multilingual Application Development
Marianne Santaholma . 25

Speeding up LFG Parsing Using C-Structure Pruning
Aoife Cahill, John T. Maxwell III, Paul Meurer, Christian Rohrer and Victoria Rosén 33

From Grammar-Independent Construction Enumeration to Lexical Types in Computational Grammars
Lars Hellan . 41

Designing Testsuites for Grammar-based Systems in Applications
Valeria de Paiva and Tracy Holloway King . 49

Towards Domain-Independent Deep Linguistic Processing: Ensuring Portability and Re-Usability of
Lexicalised Grammars

Kostadin Cholakov, Valia Kordoni and Yi Zhang . 57

vii

Conference Programme

Sunday, August 24, 2008

9:00–9:15 Opening Remarks

9:15–10:30 Invited Talk by Jun’ichi Tsujii

10:30–11:00 Break

11:00–11:30 TuLiPA: Towards a Multi-Formalism Parsing Environment for Grammar Engineering
Laura Kallmeyer, Timm Lichte, Wolfgang Maier, Yannick Parmentier, Johannes
Dellert and Kilian Evang

11:30–12:00 Making Speech Look Like Text in the Regulus Development Environment
Elisabeth Kron, Manny Rayner, Marianne Santaholma, Pierrette Bouillon and Agnes
Lisowska

12:00–12:30 A More Precise Analysis of Punctuation for Broad-Coverage Surface Realization
with CCG
Michael White and Rajakrishnan Rajkumar

12:30-14:00 Lunch

14:00–14:30 Multilingual Grammar Resources in Multilingual Application Development
Marianne Santaholma

14:30–15:00 Speeding up LFG Parsing Using C-Structure Pruning
Aoife Cahill, John T. Maxwell III, Paul Meurer, Christian Rohrer and Victoria Rosén

15:00–15:30 From Grammar-Independent Construction Enumeration to Lexical Types in Compu-
tational Grammars
Lars Hellan

15:30–16:30 Demo Session with break

TuLiPA: Towards a Multi-Formalism Parsing Environment for Grammar Engineer-
ing (Laura Kallmeyer, Timm Lichte, Wolfgang Maier, Yannick Parmentier, Johannes
Dellert and Kilian Evang)

Natural Language Entailment Using Implicit Information: An XLE Implementation
(Daniel G. Bobrow, Bob Cheslow, Cleo Condoravdi, Lauri Karttunen, Tracy Hol-
loway King, Charlotte Price and Annie Zaenen)

The Regulus Development Environment (Elisabeth Kron, Manny Rayner, Pierrette
Bouillon, Marianne Santaholma and Agnes Lisowska)

ix

Sunday, August 24, 2008 (continued)

MedSLT: Rule-based Medical Speech Translation System (Pierrette Bouillon, Manny
Rayner, Sonia Halimi, Beth Ann Hockey, Hitoshi Isahara, Kyoko Kanzaki, Yukie
Nakao, Marianne Santaholma, Marianne Starlander and Nikos Tsourakis)

Grammar and Output Representations in the C&C CCG Parser (Laura Rimell and
Stephen Clark)

Developing a Modular Parsing System for Semantic Analysis of Japanese: the Verb
Phrase Module (Yukiko Sasaki Alam)

The Checkpoint System: Hybrid Processing for Grammar and Style Checking (Tina
Klüwer, Peter Adolphs and Berthold Crysmann)

Cognitive Grammar-based Linguistic Processor for Knowledge Extraction from Rus-
sian and English Texts (Igor Kuznetsov and Elena Kozerenko)

Defining and Viewing a Cross-linguistic Ontology of Verb Constructions (Lars
Helan)

16:30–17:00 Designing Testsuites for Grammar-based Systems in Applications
Valeria de Paiva and Tracy Holloway King

17:00–17:30 Towards Domain-Independent Deep Linguistic Processing: Ensuring Portability and
Re-Usability of Lexicalised Grammars
Kostadin Cholakov, Valia Kordoni and Yi Zhang

x

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 1–8
Manchester, August 2008

TuLiPA: Towards a Multi-Formalism Parsing Environment for
Grammar Engineering

Laura Kallmeyer
SFB 441

Universität Tübingen
D-72074, Tübingen, Germany
lk@sfs.uni-tuebingen.de

Yannick Parmentier
CNRS - LORIA
Nancy Université

F-54506, Vandœuvre, France
parmenti@loria.fr

Timm Lichte
SFB 441

Universität Tübingen
D-72074, Tübingen, Germany

timm.lichte@uni-tuebingen.de

Johannes Dellert
SFB 441 - SfS

Universität Tübingen
D-72074, Tübingen, Germany

{jdellert,kevang }@sfs.uni-tuebingen.de

Wolfgang Maier
SFB 441

Universität Tübingen
D-72074, Tübingen, Germany

wo.maier@uni-tuebingen.de

Kilian Evang
SFB 441 - SfS

Universität Tübingen
D-72074, Tübingen, Germany

Abstract

In this paper, we present an open-source
parsing environment (Tübingen Linguistic
Parsing Architecture, TuLiPA) which uses
Range Concatenation Grammar (RCG)
as a pivot formalism, thus opening the
way to the parsing of several mildly
context-sensitive formalisms. This en-
vironment currently supports tree-based
grammars (namely Tree-Adjoining Gram-
mars (TAG) and Multi-Component Tree-
Adjoining Grammars with Tree Tuples
(TT-MCTAG)) and allows computation not
only of syntactic structures, but also of the
corresponding semantic representations. It
is used for the development of a tree-based
grammar for German.

1 Introduction

Grammars and lexicons represent important lin-
guistic resources for many NLP applications,
among which one may cite dialog systems, auto-
matic summarization or machine translation. De-
veloping such resources is known to be a complex
task that needs useful tools such as parsers and
generators (Erbach, 1992).

Furthermore, there is a lack of a common frame-
work allowing for multi-formalism grammar engi-
neering. Thus, many formalisms have been pro-
posed to model natural language, each coming
with specific implementations. Having a com-
mon framework would facilitate the comparison

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

between formalisms (e.g., in terms of parsing com-
plexity in practice), and would allow for a better
sharing of resources (e.g., having a common lex-
icon, from which different features would be ex-
tracted depending on the target formalism).

In this context, we present a parsing environ-
ment relying on a general architecture that can
be used for parsing with mildly context-sensitive
(MCS) formalisms1 (Joshi, 1987). Its underly-
ing idea is to use Range Concatenation Grammar
(RCG) as a pivot formalism, for RCG has been
shown to strictly include MCS languages while be-
ing parsable in polynomial time (Boullier, 2000).

Currently, this architecture supports tree-based
grammars (Tree-Adjoining Grammars and Multi-
Component Tree-Adjoining Grammars with Tree
Tuples (Lichte, 2007)). More precisely, tree-
based grammars are first converted into equivalent
RCGs, which are then used for parsing. The result
of RCG parsing is finally interpreted to extract a
derivation structure for the input grammar, as well
as to perform additional processings (e.g., seman-
tic calculus, extraction of dependency views).

The paper is structured as follows. In section 2,
we present the architecture of the TuLiPA parsing
environment and show how the use of RCG as a
pivot formalism makes it easier to design a modu-
lar system that can be extended to support several
dimensions (syntax, semantics) and/or formalisms.
In section 3, we give some desiderata for gram-
mar engineering and present TuLiPA’s current state

1A formalism is said to be mildly context sensitive (MCS)
iff (i) it generates limited cross-serial dependencies, (ii) it is
polynomially parsable, and (iii) the string languages gener-
ated by the formalism have the constant growth property (e.g.,
{a2n |n ≥ 0} does not have this property). Examples of MCS
formalisms include Tree-Adjoining Grammars, Combinatory
Categorial Grammars and Linear Indexed Grammars.

1

with respect to these. In section 4, we compare
this system with existing approaches for parsing
and more generally for grammar engineering. Fi-
nally, in section 5, we conclude by presenting fu-
ture work.

2 Range Concatenation Grammar as a
pivot formalism

The main idea underlying TuLiPA is to use RCG
as a pivot formalism for RCG has appealing for-
mal properties (e.g., a generative capacity lying be-
yond Linear Context Free Rewriting Systems and
a polynomial parsing complexity) and there ex-
ist efficient algorithms, for RCG parsing (Boullier,
2000) and for grammar transformation into RCG
(Boullier, 1998; Boullier, 1999).

Parsing with TuLiPA is thus a 3-step process:

1. The input tree-based grammar is converted
into an RCG (using the algorithm of
Kallmeyer and Parmentier (2008) when deal-
ing with TT-MCTAG).

2. The resulting RCG is used for parsing the in-
put string using an extension of the parsing
algorithm of Boullier (2000).

3. The RCG derivation structure is interpreted to
extract the derivation and derived trees with
respect to the input grammar.

The use of RCG as a pivot formalism, and thus
of an RCG parser as a core component of the sys-
tem, leads to a modular architecture. In turns, this
makes TuLiPA more easily extensible, either in
terms of functionalities, or in terms of formalisms.

2.1 Adding functionalities to the parsing
environment

As an illustration of TuLiPA’s extensibility, one
may consider two extensions applied to the system
recently.

First, a semantic calculus using the syn-
tax/semantics interface for TAG proposed by Gar-
dent and Kallmeyer (2003) has been added. This
interface associates each tree with flat semantic
formulas. The arguments of these formulas are
unification variables, which are co-indexed with
features labelling the nodes of the syntactic tree.
During classical TAG derivation, trees are com-
bined, triggering unifications of the feature struc-
tures labelling nodes. As a result of these unifica-
tions, the arguments of the semantic formulas are
unified (see Fig. 1).

S

NP↓x VP

NPj V NP↓y NPm

John loves Mary

name(j,john) love(x,y) name(m,mary)

; love(j,m),name(j,john),name(m,mary)

Figure 1: Semantic calculus in Feature-Based
TAG.

In our system, the semantic support has been in-
tegrated by (i) extending the internal tree objects to
include semantic formulas (the RCG-conversion is
kept unchanged), and (ii) extending the construc-
tion of the derived tree (step 3) so that during the
interpretation of the RCG derivation in terms of
tree combinations, the semantic formulas are car-
ried and updated with respect to the feature unifi-
cations performed.

Secondly, let us consider lexical disambigua-
tion. Because of the high redundancy lying within
lexicalized formalisms such as lexicalized TAG,
it is common to consider tree schemata having a
frontier node marked foranchoring (i.e., lexical-
ization). At parsing time, the tree schemata are
anchored according to the input string. This an-
choring selects a subgrammar supposed to cover
the input string. Unfortunately, this subgrammar
may contain many trees that either do not lead to
a parse or for which we knowa priori that they
cannot be combined within the same derivation
(so we should not predict a derivation from one
of these trees to another during parsing). As a re-
sult, the parser could have poor performance be-
cause of the many derivation paths that have to
be explored. Bonfante et al. (2004) proposed to
polarize the structures of the grammar, and to ap-
ply an automaton-based filtering of the compatible
structures. The idea is the following. One compute
polarities representing the needs/resources brought
by a given tree (or tree tuple for TT-MCTAG).
A substitution or foot node with category NP re-
flects a need for an NP (written NP-). In the same
way, an NP root node reflects a resource of type
NP (written NP+). Then you build an automaton
whose edges correspond to trees, and states to po-
larities brought by trees along the path. The au-
tomaton is then traversed to extract all paths lead-
ing to a final state with a neutral polarity for each
category and +1 for the axiom (see Fig. 2, the state

2

7 is the only valid state and{proper., trans., det.,
noun.} the only compatible set of trees).

0 John1 1 eats2 2 a 3 3 cake4

0 1

NP+

2

S+

3

S+ NP-

4

S+

5

S+ NP-

6

S+ NP+

7

S+

proper.

intrans.

trans.

det.

det.

noun.

noun.

Figure 2: Polarity-based lexical disambiguation.

In our context, this polarity filtering has been
added before step 1, leaving untouched the core
RCG conversion and parsing steps. The idea is
to compute the sets of compatible trees (or tree
tuples for TT-MCTAG) and to convert these sets
separately. Indeed the RCG has to encode only
valid adjunctions/substitutions. Thanks to this
automaton-based “clustering” of the compatible
tree (or tree tuples), we avoid predicting incompat-
ible derivations. Note that the time saved by using
a polarity-based filter is not negligible, especially
when parsing long sentences.2

2.2 Adding formalisms to the parsing
environment

Of course, the two extensions introduced in the
previous section may have been added to other
modular architectures as well. The main gain
brought by RCG is the possibility to parse not
only tree-based grammars, but other formalisms
provided they can be encoded into RCG. In our
system, only TAG and TT-MCTAG have been
considered so far. Nonetheless, Boullier (1998)
and Søgaard (2007) have defined transformations
into RCG for other mildly context-sensitive for-
malisms.3

To sum up, the idea would be to keep the core
RCG parser, and to extend TuLiPA with a specific
conversion module for each targeted formalism.
On top of these conversion modules, one should
also provide interpretation modules allowing to de-
code the RCG derivation forest in terms of the in-
put formalism (see Fig. 3).

2An evaluation of the gain brought by this technique when
using Interaction Grammar is given by Bonfante et al. (2004).

3These include Multi-Component Tree-Adjoining Gram-
mar, Linear Indexed Grammar, Head Grammar, Coupled
Context Free Grammar, Right Linear Unification Grammar
and Synchronous Unification Grammar.

Figure 3: Towards a multi-formalism parsing envi-
ronment.

An important point remains to be discussed. It
concerns the role of lexicalization with respect to
the formalism used. Indeed, the tree-based gram-
mar formalisms currently supported (TAG and TT-
MCTAG) both share the same lexicalization pro-
cess (i.e., treeanchoring). Thus the lexicon format
is common to these formalisms. As we will see
below, it corresponds to a 2-layer lexicon made of
inflected forms and lemma respectively, the latter
selecting specific grammatical structures. When
parsing other formalisms, it is still unclear whether
one can use the same lexicon format, and if not
what kind of general lexicon management module
should be added to the parser (in particular to deal
with morphology).

3 Towards a complete grammar
engineering environment

So far, we have seen how to use a generic parsing
architecture relying on RCG to parse different for-
malisms. In this section, we adopt a broader view
and enumerate some requirements for a linguistic
resource development environment. We also see
to what extent these requirements are fulfilled (or
partially fulfilled) within the TuLiPA system.

3.1 Grammar engineering with TuLiPA

As advocated by Erbach (1992), grammar en-
gineering needs“tools for testing the grammar
with respect to consistency, coverage, overgener-
ation and accuracy”. These characteristics may
be taken into account by different interacting soft-
ware. Thus, consistency can be checked by a semi-
automatic grammar production device, such as the
XMG system of Duchier et al. (2004). Overgen-
eration is mainly checked by a generator (or by
a parser with adequate test suites), and coverage
and accuracy by a parser. In our case, the TuLiPA
system provides an entry point for using a gram-
mar production system (and a lexicon conversion

3

tool introduced below), while including a parser.
Note that TuLiPA does not include any generator,
nonetheless it uses the same lexicon format as the
GenI surface realizer for TAG4.

TuLiPA’s input grammar is designed using
XMG, which is ametagrammarcompiler for tree-
based formalisms. In other terms, the linguist de-
fines a factorized description of the grammar (the
so-called metagrammar) in the XMG language.
Briefly, an XMG metagrammar consists of (i) ele-
mentary tree fragments represented as tree descrip-
tion logic formulas, and (ii) conjunctive and dis-
junctive combinations of these tree fragments to
describe actual TAG tree schemata.5 This meta-
grammar is then compiled by the XMG system to
produce a tree grammar in an XML format. Note
that the resulting grammar contains tree schemata
(i.e., unlexicalized trees). To lexicalize these, the
linguist defines a lexicon mapping words with cor-
responding sets of trees. Following XTAG (2001),
this lexicon is a 2-layer lexicon made of morpho-
logical and lemma specifications. The motivation
of this 2-layer format is (i) to express linguistic
generalizations at the lexicon level, and (ii) to al-
low the parser to only select a subgrammar accord-
ing to a given sentence, thus reducing parsing com-
plexity. TuLiPA comes with a lexicon conversion
tool (namely lexConverter) allowing to write a lex-
icon in a user-friendly text format and to convert it
into XML. An example of an entry of such a lexi-
con is given in Fig. 4.

The morphological specification consists of a
word, the corresponding lemma and morphologi-
cal features. The main pieces of information con-
tained in the lemma specification are the∗ENTRY
field, which refers to the lemma, the∗CAT field
referring to the syntactic category of the anchor
node, the∗SEM field containing some semantic in-
formation allowing for semantic instantiation, the
∗FAM field, which contains the name of the tree
family to be anchored, the∗FILTERS field which
consists of a feature structure constraining by uni-
fication the trees of a given family that can be
anchored by the given lemma (used for instance
for non-passivable verbs), the∗EQUATIONS field
allowing for the definition of equations targeting
named nodes of the trees, and the∗COANCHORS
field, which allows for the specification of co-
anchors (such asby in the verbto come by).

4http://trac.loria.fr/˜geni
5See (Crabbé, 2005) for a presentation on how to use the

XMG formalism for describing a core TAG for French.

Morphological specification:
vergisst vergessen [pos=v,num=sg,per=3]

Lemma specification:
∗ENTRY: vergessen
∗CAT: v
∗SEM: BinaryRel[pred=vergessen]
∗ACC: 1
∗FAM: Vnp2
∗FILTERS: []
∗EX:
∗EQUATIONS:
NParg1→ cas = nom
NParg2→ cas = acc
∗COANCHORS:

Figure 4: Morphological and lemma specification
of vergisst.

From these XML resources, TuLiPA parses a
string, corresponding either to a sentence or a con-
stituent (noun phrase, prepositional phrase,etc.),
and computes several output pieces of informa-
tion, namely (for TAG and TT-MCTAG): deriva-
tion/derived trees, semantic representations (com-
puted from underspecified representations using
the utool software6, or dependency views of the
derivation trees (using the DTool software7).

3.2 Grammar debugging

The engineering process introduced in the preced-
ing section belongs to a development cycle, where
one first designs a grammar and corresponding
lexicons using XMG, then checks these with the
parser, fixes them, parses again, and so on.

To facilitate grammar debugging, TuLiPA in-
cludes both a verbose and a robust mode allow-
ing respectively to (i) produce a log of the RCG-
conversion, RCG-parsing and RCG-derivation in-
terpretation, and (ii) display mismatching features
leading to incomplete derivations. More precisely,
in robust mode, the parser displays derivations step
by step, highlighting feature unification failures.

TuLiPA’s options can be activated via an intu-
itive Graphical User Interface (see Fig. 5).

6See http://www.coli.uni-saarland.de/
projects/chorus/utool/ , with courtesy of Alexander
Koller.

7With courtesy of Marco Kuhlmann.

4

Figure 5: TuLiPA’s Graphical User Interface.

3.3 Towards a functional common interface

Unfortunately, as mentioned above, the linguist
has to move back-and-forth from the gram-
mar/lexicon descriptions to the parser, i.e., each
time the parser reports grammar errors, the linguist
fixes these and then recomputes the XML files and
then parses again. To avoid this tedious task of re-
sources re-compilation, we started developing an
Eclipse8 plug-in for the TuLiPA system. Thus, the
linguist will be able to manage all these resources,
and to call the parser, the metagrammar compiler,
and the lexConverter from a common interface (see
Fig. 6).

Figure 6: TuLiPA’s eclipse plug-in.

The motivation for this plug-in comes from
the observation that designing electronic gram-
mars is a task comparable to designing source

8Seehttp://www.eclipse.org

code. A powerful grammar engineering environ-
ment should thus come with development facili-
ties such as precise debugging information, syntax
highlighting, etc. Using the Eclipse open-source
development platform allows for reusing several
components inherited from the software develop-
ment community, such as plug-ins for version con-
trol, editors coupled with explorers,etc.

Eventually, one point worth considering in the
context of grammar development concerns data en-
coding. To our knowledge, only few environments
provide support for UTF-8 encoding, thus guaran-
tying the coverage of a wide set of charsets and
languages. In TuLiPA, we added an UTF-8 sup-
port (in the lexConverter), thus allowing to design
a TAG for Korean (work in progress).

3.4 Usability of the TuLiPA system

As mentioned above, the TuLiPA system is made
of several interacting components, that one cur-
rently has to install separately. Nonetheless, much
attention has been paid to make this installation
process as easy as possible and compatible with
all major platforms.9

XMG and lexConverter can be installed by com-
piling their sources (using amake command).
TuLiPA is developed in Java and released as an ex-
ecutable jar. No compilation is needed for it, the
only requirement is the Gecode/GecodeJ library10

(available as a binary package for many platforms).
Finally, the TuLiPA eclipse plug-in can be installed
easily from eclipse itself. All these tools are re-
leased under Free software licenses (either GNU
GPL or Eclipse Public License).

This environment is being used (i) at the Univer-
sity of Tübingen, in the context of the development
of a TT-MCTAG for German describing both syn-
tax and semantics, and (ii) at LORIA Nancy, in the
development of an XTAG-based metagrammar for
English. The German grammar, called GerTT (for
German Tree Tuples), is released under a LGPL li-
cense for Linguistic Resources11 and is presented
in (Kallmeyer et al., 2008). The test-suite cur-
rently used to check the grammar is hand-crafted.
A more systematic evaluation of the grammar is in
preparation, using the Test Suite for Natural Lan-
guage Processing (Lehmann et al., 1996).

9Seehttp://sourcesup.cru.fr/tulipa .
10Seehttp://www.gecode.org/gecodej .
11See http://infolingu.univ-mlv.

fr/DonneesLinguistiques/
Lexiques-Grammaires/lgpllr.html

5

4 Comparison with existing approaches

4.1 Engineering environments for tree-based
grammar formalisms

To our knowledge, there is currently no available
parsing environment for multi-component TAG.

Existing grammar engineering environments for
TAG include the DyALog system12 described in
Villemonte de la Clergerie (2005). DyALog is a
compiler for a logic programming language using
tabulation and dynamic programming techniques.
This compiler has been used to implement efficient
parsing algorithms for several formalisms, includ-
ing TAG and RCG. Unfortunately, it does not in-
clude any built-in GUI and requires a good know-
ledge of the GNU build tools to compile parsers.
This makes it relatively difficult to use. DyALog’s
main quality lies in its efficiency in terms of pars-
ing time and its capacity to handle very large re-
sources. Unlike TuLiPA, it does not compute se-
mantic representations.

The closest approach to TuLiPA corresponds to
the SemTAG system13, which extends TAG parsers
compiled with DyALog with a semantic calculus
module (Gardent and Parmentier, 2007). Unlike
TuLiPA, this system only supports TAG, and does
not provide any graphical output allowing to easily
check the result of parsing.

Note that, for grammar designers mainly inter-
ested in TAG, SemTAG and TuLiPA can be seen
as complementary tools. Indeed, one may use
TuLiPA to develop the grammar and check spe-
cific syntactic structures thanks to its intuitive pars-
ing environment. Once the grammar is stable, one
may use SemTAG in batch processing to parse
corpuses and build semantic representations using
large grammars. This combination of these 2 sys-
tems is made easier by the fact that both use the
same input formats (a metagrammar in the XMG
language and a text-based lexicon). This approach
is the one being adopted for the development of a
French TAG equipped with semantics.

For Interaction Grammar (Perrier, 2000), there
exists an engineering environment gathering the
XMG metagrammar compiler and an eLEtrOstatic
PARser (LEOPAR).14 This environment is be-
ing used to develop an Interaction Grammar for
French. TuLiPA’s lexical disambiguation module

12Seehttp://dyalog.gforge.inria.fr
13Seehttp://trac.loria.fr/˜semconst
14See http://www.loria.fr/equipes/

calligramme/leopar/

reuses techniques introduced by LEOPAR. Unlike
TuLiPA, LEOPAR does not currently support se-
mantic information.

4.2 Engineering environments for other
grammar formalisms

For other formalisms, there exist state-of-the-art
grammar engineering environments that have been
used for many years to design large deep grammars
for several languages.

For Lexical Functional Grammar, one may cite
the Xerox Linguistic Environment (XLE).15 For
Head-driven Phrase Structure Grammar, the main
available systems are the Linguistic Knowledge
Base (LKB)16 and the TRALE system.17 For
Combinatory Categorial Grammar, one may cite
the OpenCCG library18 and the C&C parser.19

These environments have been used to develop
broad-coverage resources equipped with semantics
and include both a generator and a parser. Un-
like TuLiPA, they represent advanced projects, that
have been used for dialog and machine translation
applications. They are mainly tailored for a spe-
cific formalism.20

5 Future work

In this section, we give some prospective views
concerning engineering environments in general,
and TuLiPA in particular. We first distinguish be-
tween 2 main usages of grammar engineering en-
vironments, namely a pedagogical usage and an
application-oriented usage, and finally give some
comments about multi-formalism.

5.1 Pedagogical usage

Developing grammars in a pedagogical context
needs facilities allowing for inspection of the struc-
tures of the grammar, step-by-step parsing (or gen-
eration), along with an intuitive interface. The idea
is to abstract away from technical aspects related to
implementation (intermediate data structures, opti-
mizations, etc.).

15See http://www2.parc.com/isl/groups/
nltt/xle/

16Seehttp://wiki.delph-in.net/moin
17See http://milca.sfs.uni-tuebingen.de/

A4/Course/trale/
18Seehttp://openccg.sourceforge.net/
19Seehttp://svn.ask.it.usyd.edu.au/trac/

candc/wiki
20Nonetheless, Beavers (2002) encoded a CCG in the

LKB’s Type Description Language.

6

The question whether to provide graphical or
text-based editors can be discussed. As advo-
cated by Baldridge et al. (2007), a low-level text-
based specification can offer more flexibility and
bring less frustration to the grammar designer, es-
pecially when such a specification can be graph-
ically interpreted. This is the approach chosen
by XMG, where the grammar is defined via an
(advanced or not) editor such as gedit or emacs.
Within TuLiPA, we chose to go further by using
the Eclipse platform. Currently, it allows for dis-
playing a summary of the content of a metagram-
mar or lexicon on a side panel, while editing these
on a middle panel. These two panels are linked
via a jump functionality. The next steps concern
(i) the plugging of a graphical viewer to display
the (meta)grammar structures independently from
a given parse, and (ii) the extension of the eclipse
plug-in so that one can easily consistently modify
entries of the metagrammar or lexicon (especially
when these are split over several files).

5.2 Application-oriented usage

When dealing with applications, one may demand
more from the grammar engineering environment,
especially in terms of efficiency and robustness
(support for larger resources, partial parsing, etc.).

Efficiency needs optimizations in the parsing
engine making it possible to support grammars
containing several thousands of structures. One
interesting question concerns the compilation of a
grammar either off-line or on-line. In DyALog’s
approach, the grammar is compiled off-line into
a logical automaton encoding all possible deriva-
tions. This off-line compilation can take some
minutes with a TAG having 6000 trees, but the re-
sulting parser can parse sentences within a second.

In TuLiPA’s approach, the grammar is compiled
into an RCG on-line. While giving satisfactory re-
sults on reduced resources21, it may lead to trou-
bles when scaling up. This is especially true for
TAG (the TT-MCTAG formalism is by definition a
factorized formalism compared with TAG). In the
future, it would be useful to look for a way to pre-
compile a TAG into an RCG off-line, thus saving
the conversion time.

Another important feature of grammar engineer-
ing environments consists of its debugging func-

21For a TT-MCTAG counting about 300 sets of trees and an
and-crafted lexicon made of about 300 of words, a 10-word
sentence is parsed (and a semantic representation computed)
within seconds.

tionalities. Among these, one may cite unit and
integration testing. It would be useful to extend
the TuLiPA system to provide a module for gen-
erating test-suites for a given grammar. The idea
would be to record the coverage and analyses of
a grammar at a given time. Once the grammar is
further developed, these snapshots would allow for
regression testing.

5.3 About multi-formalism

We already mentioned that TuLiPA was opening
a way towards multi-formalism by relying on an
RCG core. It is worth noticing that the XMG
system was also designed to be further extensi-
ble. Indeed, a metagrammar in XMG corresponds
to the combination of elementary structures. One
may think of designing a library of such structures,
these would be dependent on the target gram-
mar formalism. The combinations may represent
general linguistic concepts and would be shared
by different grammar implementations, following
ideas presented by Bender et al. (2005).

6 Conclusion

In this paper, we have presented a multi-formalism
parsing architecture using RCG as a pivot formal-
ism to parse mildly context-sensitive formalisms
(currently TAG and TT-MCTAG). This system has
been designed to facilitate grammar development
by providing user-friendly interfaces, along with
several functionalities (e.g., dependency extrac-
tion, derivation/derived tree display and semantic
calculus). It is currently used for developing a core
grammar for German.

At the moment, we are working on the extension
of this architecture to include a fully functional
Eclipse plug-in. Other current tasks concern op-
timizations to support large scale parsing and the
extension of the syntactic and semantic coverage
of the German grammar under development.

In a near future, we plan to evaluate the parser
and the German grammar (parsing time, correction
of syntactic and semantic outputs) with respect to
a standard test-suite such as the TSNLP (Lehmann
et al., 1996).

Acknowledgments

This work has been supported by the Deutsche
Forschungsgemeinschaft (DFG) and the Deutscher
Akademischer Austausch Dienst (DAAD, grant

7

A/06/71039). We are grateful to three anonymous
reviewers for valuable comments on this work.

References

Baldridge, Jason, Sudipta Chatterjee, Alexis Palmer,
and Ben Wing. 2007. DotCCG and VisCCG: Wiki
and programming paradigms for improved grammar
engineering with OpenCCG. In King, Tracy Hol-
loway and Emily M. Bender, editors,Proceedings of
the GEAF07 workshop, pages 5–25, Stanford, CA.
CSLI.

Beavers, John. 2002. Documentation: A CCG Imple-
mentation for the LKB. LinGO Working Paper No.
2002-08, CSLI, Stanford University, Stanford, CA.

Bender, Emily, Dan Flickinger, Frederik Fouvry, and
Melanie Siegel. 2005. Shared representation in mul-
tilingual grammar engineering.Research on Lan-
guage & Computation, 3(2):131–138.

Bonfante, Guillaume, Bruno Guillaume, and Guy Per-
rier. 2004. Polarization and abstraction of grammat-
ical formalisms as methods for lexical disambigua-
tion. InProceedings of the International Conference
on Computational Linguistics (CoLing 2004), pages
303–309, Geneva, Switzerland.

Boullier, Pierre. 1998. Proposal for a natural lan-
guage processing syntactic backbone. Rapport de
Recherche 3342, INRIA.

Boullier, Pierre. 1999. On TAG and Multicomponent
TAG Parsing. Rapport de Recherche 3668, INRIA.

Boullier, Pierre. 2000. Range concatenation gram-
mars. InProceedings of the International Workshop
on Parsing Technologies (IWPT 2000), pages 53–64,
Trento, Italy.

Crabbé, Benoit. 2005. Grammatical development with
XMG. In Proceedings of the conference on Logical
Aspects of Computational Linguistics 2005 (LACL
05), pages 84–100, Bordeaux, France.

Duchier, Denys, Joseph Le Roux, and Yannick Parmen-
tier. 2004. The Metagrammar Compiler: An NLP
Application with a Multi-paradigm Architecture. In
Proceedings of the 2nd International Mozart/Oz
Conference (MOZ’2004), pages 175–187, Charleroi,
Belgium.

Erbach, Gregor. 1992. Tools for grammar engineer-
ing. In 3rd Conference on Applied Natural Lan-
guage Processing, pages 243–244, Trento, Italy.

Gardent, Claire and Laura Kallmeyer. 2003. Semantic
Construction in FTAG. InProceedings of the Con-
ference of the European chapter of the Association
for Computational Linguistics (EACL 2003), pages
123–130, Budapest, Hungary.

Gardent, Claire and Yannick Parmentier. 2007. Sem-
tag: a platform for specifying tree adjoining gram-
mars and performing tag-based semantic construc-
tion. In Proceedings of the International Confer-
ence of the Association for Computational Linguis-
tics (ACL 2007), Companion Volume Proceedings of
the Demo and Poster Sessions, pages 13–16, Prague,
Czech Republic.

Joshi, Aravind K. 1987. An introduction to Tree Ad-
joining Grammars. In Manaster-Ramer, A., editor,
Mathematics of Language, pages 87–114. John Ben-
jamins, Amsterdam.

Kallmeyer, Laura and Yannick Parmentier. 2008. On
the relation between Multicomponent Tree Adjoin-
ing Grammars with Tree Tuples (TT-MCTAG) and
Range Concatenation Grammars (RCG). InPro-
ceedings of the 2nd International Conference on
Language and Automata Theories and Applications
(LATA 2008), pages 277–288, Tarragona, Spain.

Kallmeyer, Laura, Timm Lichte, Wolfgang Maier, Yan-
nick Parmentier, and Johannes Dellert. 2008. De-
velopping an MCTAG for German with an RCG-
based Parser. InProceedings of the Language, Re-
source and Evaluation Conference (LREC 2008),
Marrakech, Morocco.

Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique Esti-
val, Eva Dauphin, Hervé Compagnion, Judith Baur,
Lorna Balkan, and Doug Arnold. 1996.TSNLP —
Test Suites for Natural Language Processing. InPro-
ceedings of the International Conference on Compu-
tational Linguistics (Coling 1996), volume 2, pages
711–716, Copenhagen, Denmark.

Lichte, Timm. 2007. An MCTAG with tuples for co-
herent constructions in German. InProceedings of
the 12th Conference on Formal Grammar, Dublin,
Ireland.

Perrier, Guy. 2000. Interaction grammars. InPro-
ceedings of the International Conference on Compu-
tational Linguistics (CoLing 2000), pages 600–606,
Saarbruecken, Germany.

Søgaard, Anders. 2007.Complexity, expressivity and
logic of linguistic theories. Ph.D. thesis, University
of Copenhagen, Copenhagen, Denmark.

Villemonte de la Clergerie,́Eric. 2005. DyALog: a
tabular logic programming based environment for
NLP. In Proceedings of the workshop on Constraint
Satisfaction for Language Processing (CSLP 2005),
pages 18–33, Barcelona, Spain.

XTAG-Research-Group. 2001. A lexicalized tree
adjoining grammar for english. Technical Re-
port IRCS-01-03, IRCS, University of Pennsylva-
nia. Available athttp://www.cis.upenn.
edu/˜xtag/gramrelease.html .

8

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 9–16
Manchester, August 2008

Making Speech Look Like Text
in the Regulus Development Environment

Elisabeth Kron
3 St Margarets Road, Cambridge CB3 0LT, England

elisabethkron@yahoo.co.uk

Manny Rayner, Marianne Santaholma, Pierrette Bouillon, Agnes Lisowska
University of Geneva, TIM/ISSCO, 40 bvd du Pont-d’Arve

CH-1211 Geneva 4, Switzerland
Emmanuel.Rayner@issco.unige.ch

Marianne.Santaholma@eti.unige.ch
Pierrette.Bouillon@issco.unige.ch

Agnes.Lisowska@issco.unige.ch

Abstract

We present an overview of the de-
velopment environment for Regulus, an
Open Source platform for construction of
grammar-based speech-enabled systems,
focussing on recent work whose goal has
been to introduce uniformity between text
and speech views of Regulus-based appli-
cations. We argue the advantages of be-
ing able to switch quickly between text and
speech modalities in interactive and offline
testing, and describe how the new func-
tionalities enable rapid prototyping of spo-
ken dialogue systems and speech transla-
tors.

1 Introduction

Sex is not love, as Madonna points out at the be-
ginning of her 1992 bookSex, and love is not
sex. None the less, even people who agree with
Madonna often find it convenient to pretend that
these two concepts are synonymous, or at least
closely related. Similarly, although text is not
speech, and speech is not text, it is often conve-
nient to pretend that they are both just different as-
pects of the same thing.

In this paper, we will explore the similarities and
differences between text and speech, in the con-
crete setting of Regulus, a development environ-
ment for grammar based spoken dialogue systems.
Our basic goal will be to make text and speech
processing as similar as possible from the point
of view of the developer. Specifically, we arrange

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

things so that the developer is able to develop her
system using a text view; she will write text-based
rules, and initially test the system using text in-
put and output. At any point, she will be able to
switch to a speech view, compiling the text-based
processing rules into corresponding speech-based
versions, and test the resulting speech-based sys-
tem using speech input and output.

Paradoxically, the reason why it is so important
to be able to switch seamlessly between text and
speech viewpoints is that text and speech are in
fact not the same. For example, a pervasive prob-
lem in speech recognition is that of easily confus-
able pairs of words. This type of problem is of-
ten apparent after just a few minutes when running
the system in speech mode (the recogniser keeps
recognising one word as the other), but is invis-
ible in text mode. More subtly, some grammar
problems can be obvious in text mode, but hard
to see in speech mode. For instance, articles like
“the” and “a” are short, and usually pronounced
unstressed, which means that recognisers can be
reasonably forgiving about whether or not to hy-
pothesise them when they are required or not re-
quired by the recognition grammar. In text mode, it
will immediately be clear if the grammar requires
an article in a given NP context: incorrect vari-
ants will fail to parse. In speech mode, the symp-
toms are far less obvious, and typically amount to
no more than a degradation in recognition perfor-
mance.

The rest of the paper is structured as follows.
Sections 2 and 3 provide background on the Reg-
ulus platform and development cycle respectively.
Section 4 describes speech and text support in the
interactive development environment, and 5 de-
scribes how the framework simplifies the task of

9

switching between modalities in regression testing.
Section 6 concludes.

2 The Regulus platform

The Regulus platform is a comprehensive toolkit
for developing grammar-based speech-enabled
systems that can be run on the commercially avail-
able Nuance recognition environment. The plat-
form has been developed by an Open Source con-
sortium, the main partners of which have been
NASA Ames Research Center and Geneva Univer-
sity, and is freely available for download from the
SourceForge website1. In terms of ideas (though
not code), Regulus is a descendent of SRI Inter-
national’s CLE and Gemini platforms (Alshawi,
1992; Dowding et al., 1993); other related systems
are LKB (Copestake, 2002), XLE (Crouch et al.,
2008) and UNIANCE (Bos, 2002).

Regulus has already been used to build sev-
eral large applications. Prominent examples
are Geneva University’s MedSLT medical speech
translator (Bouillon et al., 2005), NASA’s Clarissa
procedure browser (Rayner et al., 2005) and Ford
Research’s experimental SDS in-car spoken dia-
logue system, which was awarded first prize at
the 2007 Ford internal demo fair. Regulus is de-
scribed at length in (Rayner et al., 2006), the first
half of which consists of an extended tutorial in-
troduction. The release includes a command-line
development environment, extensive online docu-
mentation, and several example applications.

The core functionality offered by Regulus is
compilation of typed unification grammars into
parsers, generators, and Nuance-formatted CFG
language models, and hence also into Nuance
recognition packages. These recognition packages
produced by Regulus can be invoked through the
Regulus SpeechServer (“Regserver”), which pro-
vides an interface to the underlying Nuance recog-
nition engine. The value added by the Regserver
is to provide a view of the recognition process
based on the Regulus unification grammar frame-
work. In particular, recognition results, originally
produced in the Nuance recognition platform’s in-
ternal format, are reformatted into the semantic no-
tation used by the Regulus grammar formalism.

There is extensive support within the Regulus
toolkit for development of both speech translation
and spoken dialogue applications. Spoken dia-

1http://sourceforge.net/projects/
regulus/

logue applications (Rayner et al., 2006, Chapter 5)
use a rule-based side-effect free state update model
similar in spirit to that described in (Larsson and
Traum, 2000). Very briefly, there are three types of
rules: state update rules, input management rules,
and output management rules. State update rules
take as input the current state, and a “dialogue
move”; they produce as output a new state, and an
“abstract action”. Dialogue moves are abstract rep-
resentations of system inputs; these inputs can ei-
ther be logical forms produced by the grammar, or
non-speech inputs (for example, mouse-clicks in a
GUI). Similarly, abstract actions are, as the name
suggests, abstract representations of the concrete
actions the dialogue system will perform, for ex-
ample speaking or updating a visual display. Input
management rules map system inputs to dialogue
moves; output management rules map abstract ac-
tions to system outputs.

Speech translation applications are also rule-
based, using an interlingua model (Rayner et al.,
2006, Chapter 6). The developer writes a second
grammar for the target language, using Regulus
tools to compile it into a generator; mappings from
source representation to interlingua, and from in-
terlingua to target representation, are defined by
sets of translation rules. The interlingua itself is
specified using a third Regulus grammar (Bouillon
et al., 2008).

To summarise, the core of a Regulus application
consists of several different linguistically oriented
rule-sets, some of which can be interpreted in ei-
ther a text or a speech modality, and all of which
need to interact correctly together. In the next sec-
tion, we describe how this determines the nature of
the Regulus development cycle.

3 The Regulus development cycle

Small unification grammars can be compiled di-
rectly into executable forms. The central idea
of Regulus, however, is to base as much of
the development work as possible on large,
domain-independent, linguistically motivated re-
source grammars. A resource grammar for En-
glish is available from the Regulus website; similar
grammars for several other languages have been
developed under the MedSLT project at Geneva
University, and can be downloaded from the Med-
SLT SourceForge website2. Regulus contains

2http://sourceforge.net/projects/
medslt

10

an extensive set of tools that permit specialised
domain-specific grammars to be extracted from the
larger resource grammars, using example-based
methods driven by small corpora (Rayner et al.,
2006, Chapter 7). At the beginning of a project,
these corpora can consist of just a few dozen exam-
ples; for a mature application, they will typically
have grown to something between a few hundred
and a couple of thousand sentences. Specialised
grammars can be compiled by Regulus into effi-
cient recognisers and generators.

As should be apparent from the preceding de-
scription, the Regulus architecture is designed to
empower linguists to the maximum possible ex-
tent, in terms of increasing their ability directly
to build speech enabled systems; the greater part
of the core development teams in the large Reg-
ulus projects mentioned in Section 1 have indeed
come from linguistics backgrounds. Experience
with Regulus has however shown that linguists are
not quite as autonomous as they are meant to be,
and in particular are reluctant to work directly with
the speech view of the application. There are sev-
eral reasons.

First, non-toy Regulus projects require a range
of competences, including both software engineer-
ing and linguistics. In practice, linguist rule-
writers have not been able to test their rules in
the speech view without writing glue code, scripts,
and other infrastructure required to tie together the
various generated components. These are not nec-
essarily things that they want to spend their time
doing. The consequence can easily be that the lin-
guists end up working exclusively in the text view,
and over-refine the text versions of the rule-sets.
From a project management viewpoint, this results
in bad prioritisation decisions, since there are more
pressing issues to address in the speech view.

A second reason why linguist rule-writers have
been unhappy working in the speech view is the
lack of reproducibility associated with speech in-
put. One can type “John loves Mary” into a text-
processing system any number of times, and ex-
pect to get the same result. It is much less reason-
able to expect to get the same result each time if
onesays “John loves Mary” to a speech recogniser.
Often, anomalous results occur, but cannot be de-
bugged in a systematic fashion, leading to general
frustration. The result, once again, is that linguists
have preferred to stick with the text view, where
they feel at home.

Yet another reason why rule-writers tend to
limit themselves to the text view is simply the
large number of top-level commands and inter-
mediate compilation results. The current Regulus
command-line environment includes over 110 dif-
ferent commands, and compilation from the initial
resource grammar to the final Nuance recognition
package involves creating a sequence of five com-
pilation steps, each of which requires the output
created by the preceding one. This makes it diffi-
cult for novice users to get their bearings, and in-
creases their cognitive load. Additionally, once the
commands for the text view have been mastered,
there is a certain temptation to consider that these
are enough, since the text and speech views can
reasonably be perceived as fairly similar.

In the next two sections, we describe an en-
hanced development environment for Regulus,
which addresses the key problems we have just
sketched. From the point of view of the linguist
rule-writer, we want speech-based development to
feel more like text-based development.

4 Speech and text in the online
development environment

The Regulus GUI (Kron et al., 2007) is intended
as a complete redesign of the development envi-
ronment, which simultaneously attacks all of the
central issues. Commands are organised in a struc-
tured set of functionality-based windows, each of
which has an appropriate set of drop-down menus.
Following normal GUI design practice (Dix et al.,
1998, Chapters 3 and 4); (Jacko and Sears, 2003,
Chapter 13), only currently meaningful commands
are executable in each menu, with the others shown
greyed out.

Both compile-time and run-time speech-related
functionality can be invoked directly from the
command menus, with no need for external scripts,
Makefiles or glue code. Focussing for the moment
on the specific case of developing a speech transla-
tion application, the rule-writer will initially write
and debug her rules in text mode. She will be able
to manipulate grammar rules and derivation trees
using the Stepper window (Figure 1; cf. also (Kron
et al., 2007)), and load and test translation rules
in the Translate window (Figure 2). As soon as
the grammar is consistent, it can at any point be
compiled into a Nuance recognition package us-
ing the command menus. The resulting recogniser,
together with other speech resources (license man-

11

Figure 1: Using the Stepper window to browse trees in the Toy1grammar from (Rayner et al., 2006,
Chapter 4). The upper left window shows the analysis tree for“switch on the light in the kitchen”; the
lower left window shows one of the subtrees created by cutting the first tree at the higher NP node. Cut
subtrees can be recombined for debugging purposes (Kron et al., 2007).

Figure 2: Using the Translate window to test the toy English→ French translation application from
(Rayner et al., 2006, Chapter 6). The to- and from-interlingua rules used in the example are shown in the
two pop-up windows at the top of the figure.

12

regulus_config(regulus_grammar,
[toy1_grammars(toy1_declarations),
toy1_grammars(toy1_rules),
toy1_grammars(toy1_lexicon)]).

regulus_config(top_level_cat, ’.MAIN’).
regulus_config(nuance_grammar, toy1_runtime(recogniser)).

regulus_config(to_interlingua_rules,
toy1_prolog(’eng_to_interlingua.pl’)).

regulus_config(from_interlingua_rules,
toy1_prolog(’interlingua_to_fre.pl’)).

regulus_config(generation_rules, toy1_runtime(’generator.pl’)).

regulus_config(nuance_language_pack,
’English.America’).

regulus_config(nuance_compile_params, [’-auto_pron’, ’-dont_flatten’]).
regulus_config(translation_rec_params,

[package=toy1_runtime(recogniser), grammar=’.MAIN’]).
regulus_config(tts_command,

’vocalizer -num_channels 1 -voice juliedeschamps -voices_from_disk’).

Figure 3: Config file for a toy English→ French speech translation application, showing items relevant
to the speech view. Some declarations have been omitted for expositional reasons.

ager, TTS engine etc), can then be started using a
single menu command.

In accordance with the usual Regulus design
philosophy of declaring all the resources associ-
ated with a given application in its config file, the
speech resources are also specified here. Figure 3
shows part of the config file for a toy translation
application, in particular listing all the declara-
tions relevant to the speech view. If we needed to
change the speech resources, this would be done
just by modifying the last four lines. For example,
the config file as shown specifies construction of
a recogniser using acoustic models appropriate to
American English. We could change this to British
English by replacing the entry
regulus_config(nuance_language_pack,

’English.America’).

with
regulus_config(nuance_language_pack,

’English.UK’).

When the speech resources have been loaded,
the Translate window can take input equally easily
in text or speech mode; the Translate button pro-
cesses written text from the input pane, while the
Recognise button asks for spoken input. In each
case, the input is passed through the same process-
ing stages of source-to-interlingua and interlingua-
to-target translation, followed by target-language
generation. If a TTS engine or a set of recorded
target language wavfiles is specified, they are used
to realise the final result in spoken form (Figure 4).

Every spoken utterance submitted to recognition
is logged as a SPHERE-headed wavfile, in a time-
stamped directory started at the beginning of the
current session; this directory also contains a meta-
data file, which associates each recorded wavfile

with the recognition result it produced. The Trans-
late window’s History menu is constructed using
the meta-data file, and allows the user to select any
recorded utterance, and re-run it through the sys-
tem as though it were a new speech input. The
consequence is that speech input becomes just as
reproducible as text, with corresponding gains for
interactive debugging in speech mode.

5 Speech and text in regression testing

In earlier versions of the Regulus development
environment (Rayner et al., 2006,§6.6), regres-
sion testing in speech mode was all based on
Nuance’sbatchrec utility, which permits of-
fline recognition of a set of recorded wavfiles.
A test suite for spoken regression testing conse-
quently consisted of a list of wavfiles. These
were first passed throughbatchrec; outputs
were then post-processed into Regulus form, and
finally passed through Regulus speech understand-
ing modules, such as translation or dialogue man-
agement.

As Regulus applications grow in complexity,
this model has become increasingly inadequate,
since system input is very frequently not just a
list of monolingual speech events. In a multi-
modal dialogue system, input can consist of either
speech or screen events (text/mouse-clicks); con-
text is generally important, and the events have to
be processed in the order in which they occurred.
Dialogue systems which control real or simulated
robots, like the Wheelchair application of (Hockey

13

Figure 4: Speech to speech translation from the GUI, using a Japanese to Arabic translator built from
MedSLT components (Bouillon et al., 2008). The user pressesthe Recognise button (top right), speaks in
Japanese, and receives a spoken translation in Arabic together with screen display of various processing
results. The application is defined by a config file which combines a Japanese recogniser and analy-
sis grammar, Japanese to Interlingua and Interlingua to Arabic translation rules, an Arabic generation
grammar, and recorded Arabic wavfiles used to construct a spoken result.

and Miller, 2007) will also receive asynchronous
inputs from the robot control and monitoring pro-
cess; once again, all inputs have to be processed in
the appropriate temporal order. A third example is
contextual bidirectional speech translation (Bouil-
lon et al., 2007). Here, the problem is slightly
different — we have only speech inputs, but they
are for two different languages. The basic issue,
however, remains the same, since inputs have to be
processed in the right order to maintain the correct
context at each point.

With examples like these in mind, we have also
effected a complete redesign of the Regulus envi-
ronment’s regression testing facilities. A test suite
is now allowed to consist of a list of items of any
type — text, wavfile, or non-speech input — in any
order. Instead of trying to fit processing into the
constraints imposed by thebatchrec utility, of-
fline processing now starts up speech resources in
the same way as the interactive environment, and
submits each item for appropriate processing in the
order in which it occurs. By adhering to the prin-
ciple that text and speech should be treated uni-
formly, we arrive at a framework which is simpler,
less error-prone (the underlying code is less frag-

ile) and above all much more flexible.

6 Summary and conclusions

The new functionality offered by the redesigned
Regulus top-level is not strikingly deep. In the
context of any given application, it could all
have been duplicated by reasonably simple scripts,
which linked together existing Regulus compo-
nents. Indeed, much of this new functionality is
implemented using code derived precisely from
such scripts. Our observation, however, has been
that few developers have actually taken the time
to write these scripts, and that when they have
been developed inside one project they have usu-
ally not migrated to other ones. One of the things
we have done, essentially, is to generalise previ-
ously ad hoc application-dependent functionality,
and make it part of the top-level development en-
vironment. The other main achievements of the
new Regulus top-level are to organise the existing
functionality in a more systematic way, so that it is
easier to find commands, and to package it all as a
normal-looking Swing-based GUI.

Although none of these items sound dramatic,
they make a large difference to the platform’s over-

14

all usability, and to the development cycle it sup-
ports. In effect, the Regulus top-level becomes
a generic speech-enabled application, into which
developers can plug their grammars, rule-sets and
derived components. Applications can be tested in
the speech view much earlier, giving a correspond-
ingly better chance of catching bad design deci-
sions before they become entrenched. The mecha-
nisms used to enable this functionality do not de-
pend on any special properties of Regulus, and
could readily be implemented in other grammar-
based development platforms, such as Gemini and
UNIANCE, which support compilation of feature
grammars into grammar-based language models.

At risk of stating the obvious, it is also worth
pointing out that many users, particularly younger
ones who have grown up using Windows and Mac
environments, expect as a matter of course that de-
velopment platforms will be GUI-based rather than
command-line. Addressing this issue, and sim-
plifying the transition between text- and speech-
based, views has the pleasant consequence of im-
proving Regulus as a vehicle for introducing lin-
guistics students to speech technology. An initial
Regulus-based course at the University of Santa
Cruz, focussing on spoken dialogue systems, is de-
scribed in (Hockey and Christian, 2008); a similar
one, but oriented towards speech translation and
using the new top-level described here, is currently
under way at the University of Geneva. We expect
to present this in detail in a later paper.

References

Alshawi, H., editor. 1992.The Core Language Engine.
MIT Press, Cambridge, Massachusetts.

Bos, J. 2002. Compilation of unification grammars
with compositional semantics to speech recognition
packages. InProceedings of the 19th International
Conference on Computational Linguistics, Taipei,
Taiwan.

Bouillon, P., M. Rayner, N. Chatzichrisafis, B.A.
Hockey, M. Santaholma, M. Starlander, Y. Nakao,
K. Kanzaki, and H. Isahara. 2005. A generic multi-
lingual open source platform for limited-domain
medical speech translation. InProceedings of the
10th Conference of the European Association for
Machine Translation (EAMT), pages 50–58, Bu-
dapest, Hungary.

Bouillon, P., G. Flores, M. Starlander,
N. Chatzichrisafis, M. Santaholma, N. Tsourakis,
M. Rayner, and B.A. Hockey. 2007. A bidirectional

grammar-based medical speech translator. InPro-
ceedings of the ACL Workshop on Grammar-based
Approaches to Spoken Language Processing, pages
41–48, Prague, Czech Republic.

Bouillon, P., S. Halimi, Y. Nakao, K. Kanzaki, H. Isa-
hara, N. Tsourakis, M. Starlander, B.A. Hockey, and
M. Rayner. 2008. Developing non-european trans-
lation pairs in a medium-vocabulary medical speech
translation system. InProceedings of LREC 2008,
Marrakesh, Morocco.

Copestake, A. 2002. Implementing Typed Feature
Structure Grammars. CSLI Press, Chicago.

Crouch, R., M. Dalrymple, R. Kaplan, T. King,
J. Maxwell, and P. Newman, 2008.XLE Documenta-
tion. http://www2.parc.com/isl/groups/nltt/xle/doc.
As of 29 Apr 2008.

Dix, A., J.E. Finlay, G.D. Abowd, and R. Beale, edi-
tors. 1998. Human Computer Interaction. Second
ed. Prentice Hall, England.

Dowding, J., M. Gawron, D. Appelt, L. Cherny,
R. Moore, and D. Moran. 1993. Gemini: A natural
language system for spoken language understanding.
In Proceedings of the Thirty-First Annual Meeting of
the Association for Computational Linguistics.

Hockey, B.A. and G. Christian. 2008. Zero to spoken
dialogue system in one quarter: Teaching computa-
tional linguistics to linguists using regulus. InPro-
ceedings of the Third ACL Workshop on Teaching
Computational Linguistics (TeachCL-08), Colum-
bus, OH.

Hockey, B.A. and D. Miller. 2007. A demonstration of
a conversationally guided smart wheelchair. InPro-
ceedings of the 9th international ACM SIGACCESS
conference on Computers and accessibility, pages
243–244, Denver, CO.

Jacko, J.A. and A. Sears, editors. 2003.The
human-computer interaction handbook: Fundamen-
tals, evolving technologies and emerging applica-
tions. Lawerence Erlbaum Associates, Mahwah,
New Jersey.

Kron, E., M. Rayner, P. Bouillon, and M. Santa-
holma. 2007. A development environment for build-
ing grammar-based speech-enabled applications. In
Proceedings of the ACL Workshop on Grammar-
based Approaches to Spoken Language Processing,
pages 49–52, Prague, Czech Republic.

Larsson, S. and D. Traum. 2000. Information state and
dialogue management in the TRINDI dialogue move
engine toolkit.Natural Language Engineering, Spe-
cial Issue on Best Practice in Spoken Language Di-
alogue Systems Engineering, pages 323–340.

Rayner, M., B.A. Hockey, J.M. Renders,
N. Chatzichrisafis, and K. Farrell. 2005. A
voice enabled procedure browser for the interna-
tional space station. InProceedings of the 43rd

15

Annual Meeting of the Association for Compu-
tational Linguistics (interactive poster and demo
track), Ann Arbor, MI.

Rayner, M., B.A. Hockey, and P. Bouillon. 2006.
Putting Linguistics into Speech Recognition: The
Regulus Grammar Compiler. CSLI Press, Chicago.

16

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 17–24
Manchester, August 2008

A More Precise Analysis of Punctuation for
Broad-Coverage Surface Realization with CCG

Michael White and Rajakrishnan Rajkumar
Department of Linguistics
The Ohio State University

Columbus, OH, USA
{mwhite,raja}@ling.osu.edu

Abstract

This paper describes a more precise anal-
ysis of punctuation for a bi-directional,
broad coverage English grammar extracted
from the CCGbank (Hockenmaier and
Steedman, 2007). We discuss various ap-
proaches which have been proposed in
the literature to constrain overgeneration
with punctuation, and illustrate how as-
pects of Briscoe’s (1994) influential ap-
proach, which relies on syntactic features
to constrain the appearance of balanced
and unbalanced commas and dashes to ap-
propriate sentential contexts, is unattrac-
tive for CCG. As an interim solution
to constrain overgeneration, we propose
a rule-based filter which bars illicit se-
quences of punctuation and cases of im-
properly unbalanced apposition. Using
the OpenCCG toolkit, we demonstrate
that our punctuation-augmented grammar
yields substantial increases in surface re-
alization coverage and quality, helping to
achieve state-of-the-art BLEU scores.

1 Introduction

In his pioneering monograph, Nunberg (1990) ar-
gues that punctuation is a systematic module of the
grammar of written text and is governed by princi-
ples and constraints like other sub-systems such as
syntax or phonology. Since then, others including
Briscoe (1994) and Doran (1998) have explored
ways of including rules and representations for
punctuation marks in broad coverage grammars. In

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

computational systems, punctuation provides dis-
ambiguation cues which can help parsers arrive at
the correct parse. From a natural language gener-
ation standpoint, text without punctuation can be
difficult to comprehend, or even misleading.

In this paper, we describe a more precise analy-
sis of punctuation for a bi-directional, broad cover-
age English grammar extracted from the CCGbank
(Hockenmaier and Steedman, 2007). In contrast to
previous work, which has been primarily oriented
towards parsing, our goal has been to develop an
analysis of punctuation that is well suited for both
parsing and surface realization. In addition, while
Briscoe and Doran have simply included punctu-
ation rules in their manually written grammars,
our approach has been to revise the CCGbank it-
self with punctuation categories and more precise
linguistic analyses, and then to extract a grammar
from the enhanced corpus.

In developing our analysis, we illustrate how as-
pects of Briscoe’s (1994) approach, which relies
on syntactic features to constrain the appearance
of balanced and unbalanced commas and dashes to
appropriate sentential contexts, is unattractive for
CCG, with its more flexible handling of word or-
der. Consequently, as an interim solution, we have
chosen to identify and filter undesirable configu-
rations when scoring alternative realizations. We
also point to other ways in which punctuation con-
straints could be incorporated into the grammar,
for exploration in future work.

Using the OpenCCG toolkit, we demonstrate
that our punctuation-enhanced grammar yields
substantial increases in surface realization quality,
helping to achieve state-of-the-art BLEU scores.
We use non-blind testing to evaluate the efficacy
of the grammar, and blind-testing to evaluate its
performance on unseen data. The baseline models

17

are (1) a grammar which has lexicalized punctu-
ation categories only for conjunction and apposi-
tion, and (2) one which has punctuation categories
corresponding to the existing treatment of punctua-
tion in the corpus. Non-blind testing results shown
a nearly 9-point increase in BLEU scores com-
pared to the best baseline model using oracle n-
grams, as well as a 40% increase in exact matches.
Blind testing results show a more than 5.5-point
increase in BLEU scores, contributing to an all-
sentences score of 0.7323 on Section 23 with over
96% coverage.

2 Background

CCG (Steedman, 2000) is a unification-based cat-
egorial grammar formalism which is defined al-
most entirely in terms of lexical entries that encode
sub-categorization information as well as syntactic
feature information (e.g. number and agreement).
Complementing function application as the stan-
dard means of combining a head with its argument,
type-raising and composition support transparent
analyses for a wide range of phenomena, includ-
ing right-node raising and long distance dependen-
cies. Semantic composition happens in parallel
with syntactic composition, which makes it attrac-
tive for generation.

OpenCCG is a parsing/generation library which
works by combining lexical categories for words
using CCG rules and multi-modal extensions on
rules (Baldridge, 2002) to produce derivations.
Surface realization is the process by which logical
forms are transduced to strings. OpenCCG uses
a hybrid symbolic-statistical chart realizer (White,
2006) which takes logical forms as input and pro-
duces sentences by using CCG combinators to
combine signs. Alternative realizations are ranked
using integrated n-gram scoring.

To illustrate the input to OpenCCG, consider
the semantic dependency graph in Figure 1. In
the graph, each node has a lexical predication
(e.g. make.03) and a set of semantic features (e.g.
〈NUM〉sg); nodes are connected via dependency
relations (e.g. 〈ARG0〉). Internally, such graphs
are represented using Hybrid Logic Dependency
Semantics (HLDS), a dependency-based approach
to representing linguistic meaning (Baldridge and
Kruijff, 2002). In HLDS, each semantic head (cor-
responding to a node in the graph) is associated
with a nominal that identifies its discourse referent,
and relations between heads and their dependents

he
h2

aa1

he
h3

<Det>

<Arg0>
<Arg1>

<TENSE>pres

<NUM>sg

<Arg0>

w1
want.01

m1

<Arg1>

<GenRel>

<Arg1>

<TENSE>pres

p1point

h1
have.03

make.03

<Arg0>

Figure 1: Semantic dependency graph from the
CCGbank for He has a point he wants to make
[. . .]

are modeled as modal relations.

3 The need for an OpenCCG analysis of
punctuation

The linguistic analysis aims to make a broad cover-
age OpenCCG grammar extracted from the CCG-
bank (White et al., 2007) more precise by adding
lexicalized punctuation categories to deal with
constructions involving punctuation. The origi-
nal CCGbank corpus does not have lexical cate-
gories for punctuation; instead, punctuation marks
carry categories derived from their part of speech
tags and form part of a binary rule. It is as-
sumed that there are no dependencies between
words and punctuation marks and that the re-
sult of punctuation rules is the same as the non-
punctuation category. OpenCCG does not support
non-combinatory binary rules, as they can be re-
placed by equivalent lexicalized categories with
application-only slashes. For example, a binary
rule of the form , s ⇒ s can be replaced by the
equivalent category s〈1〉/?s〈1〉 for the comma. In
fact, this would work reasonably well for parsing,
but is inadequate for generation. To illustrate, con-
sider (1):

(1) Despite recent declines in yields, in-
vestors continue to pour cash into
money funds. (wsj 0004.10)

A comma category like the one shown above
would end up overgenerating, as sentences and

18

sentential complements would be generated with
a comma preceding them. Also, the result of the
above function application rule could act as its own
argument, producing a string of commas. More
generally, binary rules miss out on many linguis-
tic generalizations, such as the presence of manda-
tory balancing marks in sentence-medial comma
or dash adjuncts.

The literature discusses various means to ad-
dress the issue of overgeneration: absorption rules
(Nunberg, 1990), syntactic features (Doran, 1998)
and (Briscoe, 1994) and semantic features (White,
2006). Section 5 explains these approaches in de-
tail, and considers a possible system of syntactic
features for a multi-modal CCG grammar imple-
mentation. We show how such a system is inade-
quate to constrain all possible cases of overgener-
ation, motivating our decision to employ semantic
features in our bi-directional grammar.

4 Integrating an analysis of punctuation
into the grammar

As our starting point, we used an XML repre-
sentation of an enhanced version of the CCGbank
with Propbank roles projected onto it (Boxwell and
White, 2008). Contexts and constructions in which
punctuation marks occur were isolated and the cor-
pus was then restructured by inserting new cate-
gories and modified derivations using XSL trans-
forms. In many cases this also involved modify-
ing the gold standard derivations substantially and
adding semantic representations to syntactic cat-
egories using logical form templates. Currently,
the algorithm succeeds in creating logical forms
for 98.01% of the sentences in the development
section (Sect. 00) of the converted CCGbank, and
96.46% of the sentences in the test section (Sect.
23). Of these, 92.10% of the development LFs
are semantic dependency graphs with a single root,
while 92.12% of the test LFs have a single root.
The remaining cases, with multiple roots, are miss-
ing one or more dependencies required to form a
fully connected graph. These missing dependen-
cies usually reflect inadequacies in the current log-
ical form templates. In Section 00, 89 punctuation
categories were created (66 commas, 14 dashes
and 3 each for the rest) out of 54 classes of binary
rules (37 comma, 8 dash, 3 apiece of colon, paren-
thesis and dots). Three high frequency comma cat-
egories are explained below.

4.1 Sentential Adjuncts
The comma in example (1) has been analysed
as selecting a sentential modifier to its left,
Despite recent declines in yields, to result in a
sentential modifier which then selects the rest of
the sentence. This results in the following lexical
category and semantics for the comma category:

(2) , ` s〈1〉ind=X1 ,mod=M /s〈1〉\?(s〈1〉/s〈1〉)
: @M (〈EMPH-INTRO〉+)

Syntactic categories and their semantics are linked
by index variables in the feature structures of cat-
egories. Index variables for semantic heads (e.g.
X1) are conventionally named X plus the number
of the feature structure. To support modifier modi-
fiers, as in (2), semantic heads of modifiers are also
made available through a modifier index feature,
with a variable conventionally named M .1 Here,
the effect of combining the comma with the phrase
headed by despite is to add the 〈EMPH-INTRO〉+
feature to the despite-phrase’s semantics. Follow-
ing (Bayraktar et al., 1998), this feature indicates
that the comma has the discourse function of em-
phasizing an introductory clause or phrase. Dur-
ing realization, the feature triggers the look-up of
the category in (2), and prevents the re-application
of the category to its own output (as the feature
should only be realized once).

The category in (2) illustrates our approach,
which is to assign to every punctuation mark (other
than balancing marks) a category whose LF in-
cludes a feature or relation which represents its
discourse semantic function in broad-brush terms
such as emphasis, elaboration and apposition.

4.2 Verbs of reported speech
In (3), the comma which follows Neverthless and
sets off the phrase headed by said has the category
in (4):

(3) Nevertheless, said Brenda Malizia Ne-
gus, editor of Money Fund Report,
yields may blip up again before they
blip down because of recent rises in
short-term interest rates. (wsj 0004.8)

(4) , ` s〈2〉/s〈2〉/?punct[,]/?(s〈1〉dcl\s〈2〉dcl)
: @X2(〈ELABREL〉 ∧X1)

1A limited form of default unification is used in the im-
plementation to keep multiple modifiers from conflicting. As
the names of index variables are entirely predictable, they are
suppressed in the remainder of the paper.

19

In the genre of newswire text, this construction
occurs frequently with verbs of reported speech.
The CCGbank derivation of (3) assigns the cate-
gory s〈1〉dcl\s〈2〉dcl to the phrase headed by said,
the same category that is used when the phrase
follows the missing sentential complement. The
comma category in (4) selects for this category
and a balancing comma and then converts it to
a pre-sentential modifier, s〈2〉/s〈2〉. Semantically,
an elaboration relation is added between the main
clause and the reported speech phrase.

Category (4) overgenerates to some extent in
that it will allow a comma at the beginning of the
sentence. To prevent this, an alternative would be
to make the comma explicitly select for lexical ma-
terial to its left (in this case for the category of Nev-
erthless). Another possibility would be to follow
Doran (1998) in analyzing the above construction
by using the verb itself to select for the comma.
However, since our method involves changing the
gold standard derivations, and since making the
verb select extra commas or having the comma se-
lect leftward material would entail substantial fur-
ther changes to the derivations, we have opted to
go with (4), balancing adequacy and convenience.

4.3 NP appositives
Neither the Penn Tree Bank nor the CCGbank
distinguishes between NP appositives and NP
conjunctions. We wrote a set of simple heuristic
rules to enforce this distinction, which is vital
to generation. Appositives can occur sentence
medially or finally. The conventions of writing
mandate that sentence medial appositives should
be balanced—i.e., the appositive NP should
be surrounded by commas or dashes on both
sides—while sentence final appositives should
be unbalanced—i.e., they should only have one
preceding comma or dash. The categories and
semantics for unbalanced and balanced appositive
commas are, respectively:

(5) a. , ` np〈1〉\np〈1〉/?np〈3〉
: @X1(〈APPOSREL〉 ∧X3)

b. , ` np〈1〉\np〈1〉/?punct[,]/?np〈3〉
: @X1(〈APPOSREL〉 ∧X3)

Here, the unbalanced appositive has a category
where the comma selects as argument the apposi-
tive NP and converts it to a nominal modifier. For
balanced appositives, the comma selects the ap-
positive NP and the balancing comma to form a

nominal modifier (examples are given in the next
section).

5 Constraining overgeneration in
bi-directional grammars

A complex issue that arises in the design of bi-
directional grammars is ensuring the proper pre-
sentation of punctuation. Among other things, this
involves the task of ensuring the correct realization
of commas introducing noun phrase appositives—
in our case, choosing when to use (5a) vs. (5b). In
this section, we consider and ultimately reject a so-
lution that follows Briscoe (1994) in using syntac-
tic features. As an alternative, interim solution, we
then describe a rule-based filter which bars illicit
punctuation sequences and improperly unbalanced
apposition. The paradigm below helps illustrate
the issues:

(6) John, CEO of ABC, loves Mary.

(7) * John, CEO of ABC loves Mary.

(8) Mary loves John, CEO of ABC.

(9) * Mary loves John, CEO of ABC,.

(10) Mary loves John, CEO of ABC, madly.

(11) * Mary loves John, CEO of ABC madly.

5.1 Absorption vs. syntactic features

Nunberg (1990) argues that text adjuncts intro-
duced by punctuation marks have an underlying
representation where these adjuncts have marks on
either side. They attain their surface form when
a set of presentation rules are applied. This ap-
proach ensures that all sentence medial cases like
(6) and (10) above are generated correctly, while
unacceptable examples (7) and (11) would not be
generated at all. Example (8) would at first be
generated as (9): to deal with such sentences,
where two points happen to coincide, Nunberg
posits an implicit point which is absorbed by the
adjacent point. Absorption occurs according to
the “strength” of the two points. Strength is de-
termined according to the Point Absorption Hi-
erarchy, which ranks commas lower than dashes,
semi-colons, colons and periods. As White (1995)
observes, from a generation-only perspective, it
makes sense to generate text adjuncts which are
always balanced and post-process the output to
delete lower ranked points, as absorption uses rel-
atively simple rules that operate independently of

20

the hierarchy of the constituents. However, us-
ing this approach for parsing would involve a pre-
processing step which inserts commas into possi-
ble edges of possible constituents, as described in
(Forst and Kaplan, 2006). To avoid this consider-
able complication, Briscoe (1994) has argued for
developing declarative approaches involving syn-
tactic features, with no deletions or insertions of
punctuation marks.

5.2 Features for punctuation in CCG?

Unfortunately, the feature-based approach appears
to be inadequate for dealing with the class of ex-
amples presented above in CCG. This approach in-
volves the incorporation of syntactic features for
punctuation into atomic categories so that certain
combinations are blocked. To ensure proper ap-
positive balancing sentence finally, the rightmost
element in the sentence should transmit a relevant
feature to the clause level, which the sentence-final
period can then check for the presence of right-
edge punctuation. Possible categories for a tran-
sitive verb and the full stop appear below:

(12) loves ` s〈1〉bal=BAL,end=PE\np〈2〉bal=+

/np〈3〉bal=BAL,end=PE

(13) . ` sent\?send=nil

Here the feature variables BAL and PE of the right-
most argument of the verb would unify with the
corresponding result category feature values to re-
alize the main clauses of (8) and (9) with the fol-
lowing feature values:

(14) Mary loves John, CEO of ABC `
s〈1〉bal=−,end=nil

(15) Mary loves John, CEO of ABC, `
s〈1〉bal=+,end=comma

Thus, in (15), the sentence-final period would not
combine with s〈1〉bal=+,end=comma and the deriva-
tion would be blocked.2

5.2.1 Issue: Extraction cases
The solution sketched above is not adequate to
deal with extraction involving ditransitive verbs in
cases like (16) and (17):

2It is worth noting than an n-gram scorer would highly
disprefer example (9), as a comma period sequence would not
be attested in the training data. However, an n-gram model
cannot be relied upon to eliminate examples like (11), which
would likely be favored as they are shorter than their balanced
counterparts.

(16) Mary loves a book that John gave Bill,
his brother.

(17) * Mary loves a book that John gave Bill,
his brother,.

As Figure 2 shows, an unacceptable case like (17)
is not blocked. Even when the sentence final NP is
balanced, the end=comma value is not propagated
to the root level. This is because the end feature
for the relative clause should depend on the first
(indirect) object of gave, rather than the second
(direct) object as in a full ditransitive clause. A
possible solution would be to introduce more fea-
tures which record the presence of punctuation in
the leftward and rightward arguments of complex
categories; this would be rather baroque, however.

5.2.2 Issue: Crossing composition
Another issue is how crossing composition, used
with adverbs in heavy NP shift contructions, inter-
acts with appositives, as in the following examples:

(18) Mary loves madly John, CEO of ABC.

(19) * Mary loves madly John, CEO of ABC,.

For examples (10) and (11), which do not involve
crossing composition, the category for the adverb
should be the one in (20):

(20) madly ` s〈1〉end=nil\np〈2〉\
(s〈1〉bal=+\np〈2〉)

Here the bal=+ feature on the argument of the ad-
verb madly ensures that the direct object of the
verb is balanced, as in (10); otherwise, the deriva-
tion fails, as in (11). Irrespective of the value
of the end feature of the argument, the result of
the adverb has the feature end=nil as the post-
modifier is lexical material which occurs after the
VP. With crossing composition, however, category
(20) would licence an erroneous derivation for ex-
ample (19), as the end=nil feature on the result of
the adverb category would prevent the percolation
of the end feature at the edge of the phrase to the
clausal root, as Figure 3 shows.

To block such derivations, one might consider
giving the adverb another category for use with
crossing composition:

(21) madly ` s〈1〉\np〈2〉\×(s〈1〉\np〈2〉)

The use of the non-associative, permutative modal-
ity × on the main slash allows the crossing com-
position rule to be applied, and feature inheritance

21

that John gave Bill, his brother,
(nend=PE\n)/(send=PE/np) np send=PE\np/npend=PE/np npend=comma

>T >
s/(s\np) send=PE\np/npend=PE

>B
send=PE/npend=PE

>
nend=PE\n

Figure 2: Object extraction

Mary loves madly John, CEO, .
np send=PE\np/npend=PE s 1end=nil\np 1\(s 1bal=+\np 1) npbal=+,end=comma sent\?send=nil

<B×
send=nil\np/npend=PE

>
send=nil\np

<send=nil
<

sent

Figure 3: Crossing composition

ensures that the end feature from the verb loves
is also copied over. Thus, in example (19), the
punctuation at the edge of the phrase would be
percolated to the clausal root, where the sentence-
final period would block the derivation. However,
in the slash modality inheritance hierarchy pro-
posed by Baldridge (2002), the × modality inher-
its the properties of function application. Conse-
quently, this category could also lead to the erro-
neous derivation of example (11). In such a deriva-
tion, category (21) will not require the direct ob-
ject to have a balanced appositive; meanwhile, the
end=nil feature on the direct object will propagate
to the clausal root, where it will happily combine
with the category for the full stop. Finally, having
two distinct categories for the adverb would off-
set the advantage of multi-modal categorial gram-
mar in dealing with word order variation, where it
is possible to use one category in situations where
otherwise several categories would be required.

5.3 A rule-based filter to constrain
overgeneration

For the reasons discussed in the preceding section,
we decided not to use syntactic features to con-
strain overgeneration. Instead, we have employed
semantic features in the logical form together with
a rule-based filter, as an interim solution. Dur-
ing realization, the generated output is examined
and fragments where two marks appear in a row
are eliminated. Additionally, to handle improp-
erly unbalanced punctuation, we modified the re-
sult categories of unbalanced appositive commas
and dashes to include a feature marking unbal-

anced punctuation, as follows:

(22) , ` np〈1〉unbal=comma\?np〈1〉/?np〈2〉

Then, during realization, a filter on derivations
looks for categories such as npunbal=comma , and
checks to make sure this NP is followed by a an-
other punctuation mark in the string. We report on
the effects of the filter in our results section.

6 Evaluation

We extracted a grammar from the restructured cor-
pus and created testbeds of logical forms under the
following conditions:

1. Baseline 1: A CCGbank version which has no
lexicalized categories corresponding to any
of the punctuation marks except sentence fi-
nal marks and commas which conjoin ele-
ments or introduce NP appositives. Conjunc-
tion and apposition are frequent in the corpus
and if excluded, logical forms for many sen-
tences are not produced, weakening the base-
line considerably.

2. Baseline 2: A CCGbank version where
all punctuation marks (except conjunc-
tion/apposition commas and sentence-final
marks, which have proper categories) have
lexicalized MMCCG categories with no se-
mantics, corresponding to binary rules in the
original CCGbank.

3. The CCGbank augmented with punctuation
categories.

22

Testing was done under four conditions:

1. Non-blind testing with oracle n-gram scoring.
This condition tests the grammar most di-
rectly, as it avoids the issue of lexical smooth-
ing and keeps the combinatorial search man-
ageable. A grammar extracted from the de-
velopment section (Section 00) of the CCG-
bank was applied to the LF testbed of that
section, using oracle n-gram scoring (along
with FLMs, see next) to generate the sen-
tences back. For each logical form, the gener-
ated output sentence was compared with the
actual gold standard sentence corresponding
to that logical form.

2. Blind testing with factored language mod-
els (FLM) and lexical smoothing, following
(White et al., 2007). Blind testing naturally
provides a more realistic test of performance
on unseen data. Here logical forms of Sec-
tions 00 and 23 were created using gram-
mars of those sections respectively and then
a grammar was extracted from the standard
training sections (02-21). This grammar was
used to generate from the LFs of the develop-
ment and test sections; for space reasons, we
only report the results on the test section.

3. Blind testing with hypertagging. Hypertag-
ging (Espinosa et al., 2008) is supertagging
for surface realization; it improves realizer
speed and coverage with large grammars by
predicting lexical category assignments with
a maximum entropy model.

4. The punctuation-enhanced grammars were
tested in the three conditions above with and
without the balanced punctuation filter.

7 Results

Non-blind testing results in Table 1 indicate that
both exact match figures as well BLEU scores in-
crease substantially in comparison to the baselines
when a punctuation augmented grammar is used.
The difference is especially notable when oracle
n-gram scoring is used. The punctuation filter im-
proves performance as exact matches increase by
1.66% and BLEU scores also show a slight in-
crease. Complete realizations are slightly worse
for the augmented grammar than Baseline 1, but
the coverage of the baseline grammar is lower.

Table 1: Non-blind testing on Section 00 (Gram-
mar coverage: Baseline 1, 95.8%; Baseline 2,
95.03%; Punct grammar, 98.0%)

N-grams Grammar Exact Complete BLEU
Oracle Baseline 1 35.8% 86.2% 0.8613

Baseline 2 39.10% 53.58% 0.8053
Punct 75.9% 85.3% 0.9503

FLM w/o Baseline 1 17.7% 83.0% 0.7293
filter Baseline 2 5.72% 4.18% 0.4470

Punct 29.7% 80.6% 0.7984
FLM w/ filt. Punct 31.3% 80.6% 0.8062

Table 2: Blind testing on Section 23 with FLM
(Grammar coverage: Baseline 1, 94.8%; Base-
line 2, 95.06%; Punct grammar, 96.5%)

Hyp., Filt. Grammar Exact Complete BLEU
no, w/o Baseline 1 11.1% 46.4% 0.6297

Baseline 2 2.97% 3.97% 0.3104
Punct 18.0% 43.2% 0.6815

no, w/ Punct 19.3% 43.3% 0.6868
yes, w/o Punct 20.4% 61.5% 0.7270
yes, w/ Punct 21.6% 61.5% 0.7323

Blind testing results shown in Table 2 also demon-
strate that the augmented grammar does better than
the baseline in terms of BLEU scores and ex-
act matches, with the hypertagger further boosting
BLEU scores and the number of complete realiza-
tions. The use of the filter yields a further 1.2–
1.3% increase in exact match figures as well as a
half a BLEU point improvement; a planned col-
lection of human judgments may reveal that these
improvements are more meaningful than the scores
would indicate.

Baseline 2, which models all punctuation, per-
forms very badly with FLM scoring though it does
better than the minimal punctuation Baseline 1
with oracle scoring. The main reason for this is
that, without any semantic or syntactic features to
constrain punctuation categories, they tend to re-
apply to their own output, clogging up the chart.
This results in a low number of complete realiza-
tions as well as exact matches.

While direct comparisons cannot really be made
across grammar frameworks, as inputs vary in
their semantic depth and specificity, we observe
that our all-sentences BLEU score of 0.7323 ex-
ceeds that of Hogan et al. (2007), who report a
top score of 0.6882 including special treatment of
multi-word units (though their coverage is near
100%). Nakanishi et al. (2005) and Langkilde-

23

Geary (2002) report scores several points higher,
though the former is limited to sentences of length
20 or less, and the latter’s coverage is much lower.

8 Conclusion

We have shown that incorporating a more pre-
cise analysis of punctuation into a broad-coverage
reversible grammar extracted from the CCGbank
yields substantial increases in the number of ex-
act matches and BLEU scores when performing
surface realization with OpenCCG, contributing to
state-of-the-art results. Our discussion has also
highlighted the inadequacy of using syntactic fea-
tures to control punctuation placement in CCG,
leading us to develop a filter to ensure appro-
priately balanced commas and dashes. In fu-
ture work, we plan to investigate a more satisfac-
tory grammatical treatment involving constraints
in independent orthographic derivations, perhaps
along the lines of the autonomous prosodic deriva-
tions which Steedman and Prevost (1994) discuss.
An evaluation of parsing side performance is also
planned.

Acknowledgments

We thank the anonymous reviewers, Detmar Meur-
ers and the Clippers and Synners groups at OSU
for helpful comments and discussion.

References
Baldridge, Jason and Geert-Jan Kruijff. 2002. Cou-

pling CCG and Hybrid Logic Dependency Seman-
tics. In Proc. ACL-02.

Baldridge, Jason. 2002. Lexically Specified Deriva-
tional Control in Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Bayraktar, Murat, Bilge Say, and Varol Akman. 1998.
An Analysis of English Punctuation: The Special
Case of Comma. International Journal of Corpus
Linguistics, 3(1):33–58.

Boxwell, Stephen and Michael White. 2008. Pro-
jecting Propbank roles onto the CCGbank. In Proc.
LREC-08. To appear.

Briscoe, Ted. 1994. Parsing (with) punctuation. Tech-
nical report, Xerox, Grenoble, France.

Doran, Christine. 1998. Incorporating Punctuation
into the Sentence Grammar: A Lexicalized Tree Ad-
joining Grammar Perspective. Ph.D. thesis, Univer-
sity of Pennsylvania.

Espinosa, Dominic, Michael White, and Dennis Mehay.
2008. Hypertagging: Supertagging for surface real-
ization with CCG. In Proc. ACL-08:HLT. To appear.

Forst, Martin and Ronald M. Kaplan. 2006. The im-
portance of precise tokenizing for deep grammars.
In Proc. LREC-06.

Hockenmaier, Julia and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank.
Computational Linguistics, 33(3):355–396.

Hogan, Deirdre, Conor Cafferkey, Aoife Cahill, and
Josef van Genabith. 2007. Exploiting multi-word
units in history-based probabilistic generation. In
Proc. EMNLP-CoNLL-07.

Langkilde-Geary, Irene. 2002. An empirical veri-
fication of coverage and correctness for a general-
purpose sentence generator. In Proc. INLG-02.

Nakanishi, Hiroko, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic methods for disambiguation of
an HPSG-based chart generator. In Proc. IWPT-05.

Nunberg, Geoffrey. 1990. The Linguistics of Punctua-
tion. CSLI Publications, Stanford, CA.

Steedman, Mark and S. Prevost. 1994. Specifying in-
tonation from context for speech synthesis. Speech
Communication, 15(1–2):139–153.

Steedman, Mark. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

White, Michael, Rajakrishnan Rajkumar, and Scott
Martin. 2007. Towards broad coverage surface re-
alization with CCG. In Proc. of the Workshop on
Using Corpora for NLG: Language Generation and
Machine Translation (UCNLG+MT).

White, Michael. 1995. Presenting punctuation. In Pro-
ceedings of the Fifth European Workshop on Natural
Language Generation, pages 107–125.

White, Michael. 2006. Efficient realization of coordi-
nate structures in combinatory categorial grammar.
Research on Language and Computation, 4(1):39–
75.

24

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 25–32
Manchester, August 2008

Multilingual Grammar Resources in Multilingual Application
Development

Marianne Santaholma

Geneva University, ETI/TIM/ISSCO

40, bvd du Pont-d’Arve

1211 Geneva 4, Switzerland

Marianne.Santaholma@eti.unige.ch

Abstract

Grammar development makes up a large

part of the multilingual rule-based appli-

cation development cycle. One way to

decrease the required grammar develop-

ment efforts is to base the systems on

multilingual grammar resources. This pa-

per presents a detailed description of a

parametrization mechanism used for build-

ing multilingual grammar rules. We show

how these rules, which had originally been

designed and developed for typologically

different languages (English, Japanese and

Finnish) are applied to a new language

(Greek). The developed shared grammar

system has been implemented for a do-

main specific speech-to-speech translation

application. A majority of these rules

(54%) are shared amongst the four lan-

guages, 75% of the rules are shared for at

least two languages. The main benefit of

the described approach is shorter develop-

ment cycles for new system languages.

1 Introduction

Most of grammar based applications are built on

monolingual grammars. However, it is not unusual

that the same application is deployed for more

than one language. For these types of systems the

monolingual grammar approach is clearly not the

best choice, since similar grammar rules are writ-

ten several times, which increases overall develop-

ment efforts and makes maintenance laborious.

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

One way to decrease these efforts is to share al-

ready developed linguistic resources between sys-

tem languages. Common approaches for shar-

ing information include grammar adaptation and

grammar sharing. Grammar adaptation is the tech-

nique of modifying an already existing grammar to

cover a new language as implemented among oth-

ers by Alshawi et al. 1992; Kim et al. 2003; and

Santaholma, 2005.

In grammar sharing, existing grammar rules are

directly shared between languages rather than just

being recycled as they are in grammar adapta-

tion. Compared to both the monolingual grammar

approach and the grammar adaptation approach,

grammar sharing reduces the amount of code that

needs to be written as the central rules are writ-

ten only once. This automatically leads to coher-

ence between language descriptions for different

languages, which improves grammar maintainabil-

ity, and eliminates the duplication effort that other-

wise occurs when monolingual grammars are used.

Multilingual grammars can share resources be-

tween languages in various ways. Ranta (2007)

has developed an abstract syntax that defines a

common semantic representation in a multilingual

grammar.

Another type of approach is implemented in

the LinGO Grammar Matrix project (Bender et al.

2005; Bender, 2007). The Grammar Matrix con-

sists of a core grammar that contains the types and

constraints that are regarded as cross-linguistically

useful. This core is further linked to phenomenon-

specific libraries. These consist of rule reperto-

ries based on typological categories. The neces-

sary modules are put together like building blocks

according to language characteristics to form the

final grammar of a language.

The work described in this paper implements

25

a grammar sharing approach that is based on

language-independent parameterized rules that are

complemented with necessary language-specific

rules and features. These shared rules have been

implemented for MedSLT, a multilingual spoken

language translation system (Bouillon et al., 2005).

All of the central language processing compo-

nents of MedSLT, including the speech recog-

nizer, parser and generator, are derived from hand-

crafted general grammars of a language. The

biggest effort in adding a new language to the ex-

isting spoken language translation framework is

the grammar development cycle. As more lan-

guages are added to the existing spoken language

translation framework, the necessity for multilin-

gual grammar rules grows.

(Bouillon et al., 2006) first developed shared

MedSLT grammar rules for the Romance lan-

guages French, Spanish and Catalan. Compared

to the monolingual grammar system, the shared

grammar-based system facilitated application de-

velopment without degrading the performance of

any of its components (speech recognition, trans-

lation) on these languages.

We took this approach further and implemented

parameterized grammar rules for typologically dif-

ferent languages - English, Finnish and Japanese.

Experiments have shown that these shared rules

perform equally well on all three languages (San-

taholma, 2007). As these grammars had been de-

veloped in parallel, it was not clear how flexi-

ble the parameterized grammar approach would

be for new a language, which was not included

in the original development process. We thus ex-

tended the grammar to cover Modern Greek as a

new language. The paper describes the methodol-

ogy of adding this new language and evaluates the

parametrization mechanism.

The rest of the paper is structured as follows.

Section 2 describes the Regulus toolkit (Rayner

et al., 2006) and MedSLT, which form the devel-

opment environment and application framework

on which this work is based. Section 3 de-

scribes the parameterized multilingual grammar

and parametrization mechanism. Section 4 sum-

marizes techniques used to adding Modern Greek

to the shared grammar system. Section 5 con-

cludes.

2 Regulus Development environment and

MedSLT application

2.1 Regulus features

The Regulus grammar framework has been de-

signed for spoken language grammars, and thus

differs from popular grammar frameworks like

Lexical Functional Grammar (LFG) (Bresnan and

Kaplan, 1985) and Head-driven Phrase Structure

Grammar (HSPG) (Pollard and Sag, 1994). Reg-

ulus grammars are written with a feature-grammar

formalism that can easily be compiled into context

free grammars (CFG). These are required for com-

pilation of grammar-based language models used

in speech recognition. Characteristic for Regulus

grammars are finite valued features and exclusion

of complex feature-value structures. Consequently

the resulting rule-sets are perhaps more repeti-

tive and less elegant than the equivalent LFGs or

HPSGs. This design, however, enables compila-

tion of non-trivial feature-grammars to CFG.

Another Regulus feature that enables CFG com-

pilation is grammar specialization that reduces the

extent of the grammar. Grammar specialization

is performed by explanation-based learning (EBL)
1. Multilingual grammar development can profit

from grammar specialization in various ways. The

general grammar of a language can be specialized

to specific domains based on domain specific in-

formation2. Thus the specialization serves as a

way to limit the ambiguities typical for general

grammars. Furthermore, the procedure is used to

specialize the grammars for different tasks. Ideally

a grammar should recognize variant forms but gen-

erate only one. This variation can be controlled by

specializing the Regulus grammars for these tasks.

Finally the multilingual Regulus grammar can be

specialized for specific languages by automatically

removing the unnecessary rules.

2.2 MedSLT

Most large-scale machine translation systems are

currently based on statistical language processing.

MedSLT, however, has been implemented with lin-

guistically motivated grammars mainly for the fol-

lowing reasons: (1) necessary data for inducing

the grammars and training the statistical language

1The method is described in detail in (Rayner et al., 2006),
Chapter 10.

2These include domain specific corpus, lexica and oper-
ationality criteria that control the granularity of specialized
grammar. Details provided by (Rayner et al., 2006).

26

models were not available for the required domain

and languages. (2) the medical domain demands

accurate translation performance, which can be

more easily guaranteed with rule based systems.

MedSLT is an unidirectional3 speech-to-speech

translation system that has been designed to help

in emergency situations where a common lan-

guage between the physician and the patient does

not exist. In addition to influencing the system

architecture, this communication goal also sig-

nificantly influences system coverage, and con-

sequently the grammars. The typical utterances

MedSLT translates consist of physician’s questions

about the intensity, location, duration and qual-

ity of pain, factors that increase and decrease the

pain, therapeutic processes and the family history

of the patient. These include yes-no questions like

“Does it hurt in the morning?”, “Is the pain stub-

bing?” and “Do you have fever when you have

the headaches?”. Other frequent type of questions

include wh-questions followed by elliptical utter-

ance, like “Where is the pain?”, “In the front of the

head?”, “On both sides of the head?”. Currently

MedSLT translates between Arabic, Catalan, En-

glish, Finnish, French, Japanese, and Spanish. The

translation is interlingua based.

The following sections describe the implemen-

tation of the shared parameterized grammar rules

for this specific application using the Regulus plat-

form.

3 Parameterized grammar rules

The parameterized grammar rules assemble the

common foundations of linguistic phenomena in

different languages. The framework for the

language-independent rules presented here was de-

veloped and tested with English, Japanese and

Finnish. These languages represent different types

of languages and hence express the same linguistic

phenomena in different ways. Consequently they

provided a good starting point for framework de-

sign.

The Regulus multilingual grammar is modular

and organized hierarchically. Parameterized rules

are stored in the “language-independent core”

module. This is the most generic level and as such

is shared between all languages. The “lower lev-

els” include the language-family specific modules

3Bidirectional MedSLT exists currently for English-
Spanish language pair. Details are provided in (Bouillon et
al., 2007).

and the language-specific modules. The modules

for related languages decrease redundancy as re-

lated languages commonly share characteristics at

least to some extent. 4 The information in this

modular structure is inherited top-down from the

most generic to language specific.

The first language to which we applied the pa-

rameterized rules and which had not been part of

the original shared grammar framework develop-

ment is Modern Greek.

In the following we first describe the parameter-

ized grammar rules. Then we focus on how these

rules are applied for Greek.

3.1 Coverage

The parameterized grammar currently covers basic

linguistic phenomena by focusing on the structures

required to process MedSLT system coverage. The

current coverage is summarized in Table 1.

Phenomena Construction

Sentence types declarative, yn-question,

wh-question, ellipsis

subordinate when clause

Tense present, past(imperfect)

Voice active, passive

Aspect continuous,

present perfect,

past perfect

Verb transitive, intransitive,

subcategorization predicative (be+adj),

existential (there+be+np)

Determiners article, number,

quantifier

Adpositional prepositional,

modifiers postpositional

Adverbial modifiers verb and sentence

modifying adverbs,

comparison adverbs

Pronouns personal, possessive,

dummy pronouns

Adjective modifiers predicative, attributive,

comparison

Table 1: Linguistic phenomena covered by the

shared grammar.

The general difficulty of spoken language for

grammar development is frequent ungrammatical

4However, as identical constructions and features also ex-
ist in unrelated languages the advantage of language family
modules is finally not so significant.

27

and non-standard use of language. This includes

for example incorrect use of case inflections in

Finnish and missing particles in spoken Japanese.

3.2 Parametrization - abstracting away from

language specific details

The parametrization aims to generalize the cross-

linguistic variation in grammar rules. English

yes-no questions require an auxiliary and in-

verted word order, in Finnish yes-no questions the

subject-verb inversion is combined with a certain

form of the main verb; in Finnish noun heads and

the modifying adjective agree in case and number,

in Greek they additionally agree in gender, and so

forth. The way of expressing the same linguistic

phenomena or constructions varies from one lan-

guage to another. Hence, shared grammar rules

need to abstract away from these kinds of details.

The multilingual Regulus rules are parameter-

ized using macro declarations. Macros are a stan-

dard tool in many development environments. In

Regulus grammars they are extensively used to

catch generalizations in the rules, and in partic-

ular in lexica. In multilingual grammar rules the

macros serve as “links” towards language-specific

information.

The shared rules have a language-neutral sur-

face representation where macros invoke the re-

quired language-specific information. The macro

reference of a language-independent rule is re-

placed by the information contained in the macro

definition. The context of the macro reference de-

termines how the macro definition combines with

other parts of the description. The mechanism is

similar to LFG ‘templates’, which encode linguis-

tic generalizations in a language description (Dal-

rymple et al., 2004).

The macro mechanism itself is rather simple.

The crucial is that the macros are defined in a trans-

parent and coherent way. Otherwise the grammar

developer will spend more time learning to how

to use the parameterized rule set than she would

spend to develop a new grammar from scratch.

When the macros are well defined, sharing the

rules for a new language is just a matter of defining

the language-specific macro definitions.

In the following we present some concrete ex-

amples of how cross-linguistic variation can be pa-

rameterized in a multilingual Regulus grammar us-

ing macros.

3.2.1 Parameterizing features

The following example shows how we param-

eterize the previously mentioned agreement fea-

tures required in different languages. In Regu-

lus grammars, like in other constraint-based gram-

mars, this fine-grained information is encoded in

feature-value pairs. We encode a basic declara-

tive sentence rule (s) that consists of a noun phrase

(np) and a verb phrase (vp):

s:[sem=concat(Np, Vp)] -->

np:[sem=Np, sem_np_type=T,

@noun_head_features(Head)],

vp:[sem=Vp, subj_sem_np_type=T,

@verb_head_features(Head)].

In Finnish sentences the subject and the main

verb agree in person and number. Japanese doesn’t

make use of these agreement features in this con-

text. Consequently, the common rules have to ex-

press the agreement in a parameterized way. For

this reason in the np we introduce a macro called

noun_head_features(Head) and in the vp

the macro verb_head_features(Head). 5

These macro declarations unify but don’t say any-

thing explicit about the unifying features them-

selves at this common level. The macros thus

“neutralize” the language-specific variation and

only point further down to language-specific infor-

mation.

In Finnish, the noun_head_features and

verb_head_featuresmacros invoke the lan-

guage specific features ‘number’ and ‘person’:

macro

(noun_head_features([P, N]),

[person=P, number=N]).

macro

(verb_head_features(([P, N]),

[person=P, number=N]).

The macro references are replaced by these fea-

tures in the final Finnish declarative sentence rule

which takes the form:

s:[sem=concat(Np, Vp)] -->

np:[sem=Np, sem_np_type=T,

person=P, number=N],

vp:[sem=Vp, subj_sem_np_type=T,

person=P, number=N].

5The Regulus macro declaration is preceded by ’@’.

28

As Japanese does not apply either ‘number’ or

‘person’ features the macro definition consists of

an empty value:

macro(noun_head_features([]),

[]).

The final Japanese sentence rule takes after the

macro replacement the form:

s:[sem=concat(Np, Vp)] -->

np:[sem=Np, sem_np_type=T],

vp:[sem=Vp, subj_sem_np_type=T].

Similarly we can parameterize the value of

a specific feature. A vp could include a

verb_form feature that in English could take as

its value “gerundive” and in Finnish “infinite” in

that particular context. We can parameterize the

vp rule with a macro vform which invokes the

language-specific macro definition and replaces it

with the corresponding language-specific feature-

value pairs:

vp:[sem=concat(Aux, Vp)] -->

aux:[sem=Aux,@aux_features(Head)],

vp:[sem=Vp,

@vform(Vform),

@verb_head_features(Head)].

The English macro definition would be:

macro(vform(Vform),

[verb_form=gerund,

verb_form=Vform]).

The Finnish equivalent:

macro(vform(Vform),

[verb_form=finite,

verb_form=Vform]).

Macros can furthermore refer to other macro

definitions and in this way represent inclu-

sion relations between different features. This

forms a multilevel macro hierarchy. The macro

noun_head_features(Head) included in

np rule (1) could contain a macro arg (2), that

would further be defined by (3):

1)

np:[sem=Np, sem_np_type=SemType,

@noun_head_features(Head)].

2)

macro(noun_head_features([Agr,Case]),

[@agr(Agr), case=Case]).

3)

macro(agr([Case, Number]),

[case=Case, number=Number]).

3.2.2 Parameterizing the constituent order

The constituent order is defined by concate-

nation of linguistic categories in the wanted or-

der (vp:[sem=concat(Verb, NP)]). This

order can, similarly to features, also be parameter-

ized by using macros. We show here as an example

of how the order of a transitive main verb (verb)

and direct object (np) is parameterized in a verb

phrase:

vp:[sem=concat(Verb, NP)] -->

verb:[sem=Verb, subcat=transitive,

obj_sem_np_type=ObjType],

np:[sem=NP, sem_np_type=ObjType]).

In English the direct object follows the verb,

whereas in Japanese it precedes the verb. The

order of these constituents can be parame-

terized by introducing into the rule a macro

that in the example rule is represented by

‘verb_transitive_np’:

vp:[sem=concat(Verb, NP)] -->

@verb_transitive_np(

verb:[sem=Verb, subcat=transitive,

obj_sem_np_type=ObjType],

np:[sem=NP, sem_np_type=ObjType]).

This macro invokes the language-specific rules that

define the order of the semantic values of cate-

gories required in a specific language. The seman-

tic value of the category verb is sem=Verb and

of noun sem=Noun. Consequently the English-

specific macro definition would be:

macro(verb_transitive_np

(Verb, Noun),(Verb, Noun)).

This rule specifies that when there is a seman-

tic value ‘Verb’ followed by a semantic value

‘Noun’ these should be processed in the order

‘Verb’, ‘Noun’. The order of constituents re-

mains unchanged.

The equivalent Japanese macro definition would

be:

macro(verb_transitive_np

(Verb, Noun),(Noun, Verb)).

29

Contrary to the English rule this rule specifies that

when there is a semantic value ‘Verb’ followed

by a semantic value ‘Noun’ these should be pro-

cessed in the order ‘Noun’, ‘Verb’. This changes

the order the of constituents. Details of Regulus

semantic processing are available in Rayner et al.,

2006.

3.2.3 Ignoring rules/features and using empty

values

There exist several ways to ignore rules and

features or to introduce empty values in Regulus

grammars. These have proven practical in rule

parametrization. In the following we present some

frequent examples.

Features that are irrelevant for a particular lan-

guage (in a particular context) can take ‘empty’

([]) as their value. This can be encoded in sev-

eral ways.

• Macro takes an empty value. This is encoded

by ‘[]’

Example:

macro(noun_head_features([]),

[]).

• Feature takes an empty value. This is encoded

by ‘_’:

Example:

macro(premod_case(Case),

[case=_]).

Rules that are applied to only one language are

organized in the language-specific modules. How-

ever most of the rules are necessary for two or

more languages. The rules that are used for groups

of specific languages can be ‘tagged’ using macro

declarations. For example a rule or feature that

is valid for English and Japanese could be simply

tagged with an identifier macro ‘eng jap’:

@eng_jap

(‘rule_body_here’).

The English and Japanese rules would call the rule

body by macro definition:

macro(eng_jap(Body), (Body).

The Finnish language-specific macro definition

would call an empty category that we call here

‘dummy cat’ and the rule would be ignored:

macro(eng_jap(Body),

(dummy_cat:[] --> dummy)).

Specialization of a grammar for a specific lan-

guage and into domain-specific form checks which

rules are necessary for processing the domain

specific-coverage in that particular language. Con-

sequently empty features of the general grammar

are automatically ignored and the language pro-

cessing remains efficient.

4 Processing Modern Greek with shared

parameterized grammar rules

Cross-linguistic comparison shows that the Greek

that belongs to the Indo-European language family

does not only share some features with English but

also with Japanese and Finnish. Common with En-

glish is, for example, the use of prepositions and

articles, and with Finnish and Japanese the pro-

drop.

The development of Greek grammar cover-

age equivalent to those of English, Japanese and

Finnish coverage in MedSLT took about two

weeks. For most part only the language-specific

macro definitions needed to be specified. Five new

rules were developed from scratch. The most sig-

nificant part of the development consisted of build-

ing the Greek lexicon and verifying that the anal-

yses produced by the shared grammar rules were

correct.

In the following we summarize Greek-specific

rules, features and macros.

4.1 Greek rules and features

In general, Greek word order is flexible, es-

pecially in spoken language. All permutations

of ordering of subject, object, and verb can be

found, though the language shows a preference

for Subject-Verb-Object ordering in neutral con-

texts. New parametrized constituent orders were

the most significant additions to the multilingual

grammar. These are listed below.

1. Yes-no questions, which are a central part of

the MedSLT application’s coverage, can be

expressed by both direct and indirect con-

stituent order in Greek. As these are both

common in spoken language, the Japanese

question rule (direct constituent order + ques-

tion particle ’ka’) was parameterized for

Greek.

30

2. The order of possessive pronoun and head

noun required parametrization. Until now

the shared grammar contained only the order

where a head noun is preceded by the pos-

sessive. In Greek the opposite order is used,

with the possessive following the head noun.

The existing rule was parameterized by a new

macro.

3. Similar parameterization was performed for

verb phrases including an indirect object. The

Greek constituent order is reversed relative to

English order. That is, the pronoun goes be-

fore the verb. A new macro was introduced to

parameterize the rule.

One main area of difference compared to En-

glish/Finnish/Japanese, is in the placement of

weak pronouns, generally referred to as ‘clitics’.

Their position in Greek is relative to the verb.

In standard language they are placed before finite

verbs and after infinite verbs. Thus these weak pro-

nouns can occur in sentence-initial position. New

rules were developed to process these clitics as

well as the Greek genitive post-modifier structure.

Greek could mainly use the existing grammar

features. The difference, compared to the origi-

nal three languages, was in the extensive use of the

‘gender’ feature (possible values: feminine, mas-

culine and neuter). For example, Greek articles

agree with the head noun in gender, number, and

case. Furthermore, prepositions agree with the fol-

lowing nouns in gender, number and case.

4.2 Summary of multilingual rules

Table 2 summarizes current use of the multilingual

rules. The grammar includes a total of 80 rules

for English, Finnish, Japanese and Greek. 54%

of the rules are shared between all four languages

and 75% of the rules are shared between two or

more languages. Not everything can be parameter-

ized, and some language-specific rules are neces-

sary. The language-specific rules cover 25% of all

rules.

5 Conclusions

We have described a shared grammar approach

for multilingual application development. The de-

scribed approach is based on parametrization of

Regulus grammar rules using macros. We have

shown that these parameterized rules can with

comparably little effort be used for a new system

Languages N. of rules % of total

Eng + Fin + Jap + Gre 43 54%

Eng + Fin + Jap 0

Eng + Fin + Gre 4

Eng + Jap + Gre 0

Fin + Jap + Gre 6

TOTAL 10 12.5%

Fin + Jap 3

Eng + Fin 1

Eng + Jap 1

Gre + Eng 1

Gre + Jap 1

Gre + Fin 0

TOTAL 7 8.75%

Eng 9

Fin 0

Jap 6

Gre 5

TOTAL 20 25%

TOTAL 80 100%

Table 2: Grammar rules in total

language in a multilingual limited-domain appli-

cation. A majority of rules were shared between

all implemented languages and 75% of rules by at

least two languages. The deployment of a new lan-

guage was mainly based on already existing rules.

The shared grammar approach promotes consis-

tency across all system languages, effectively in-

creasing maintainability.

Acknowledgement

I would like to thank Pierrette Bouillon and Manny

Rayner for their advise, and Agnes Lisowska and

Nikos Chatzichrisafis for their suggestions and En-

glish corrections.

References

Bender, Emily and Dan Flickinger. 2005. Rapid Pro-
totyping of Scalable Grammars: Towards Modular-
ity in Extensions to a Language-Independent Core.
In: Proceedings of the 2nd International Joint Con-
ference on Natural Language Processing IJCNLP-05
(Posters/Demos), Jeju Island, Korea.

Bender, Emily. 2007. Combining Research and
Pedagogy in the Development of a Crosslinguis-
tic Grammar Resource. In: Proceedings of the
workshop Grammar Engineering across Frameworks
2007, Stanford University.

31

Bouillon, Pierrette, Manny Rayner, Nikos
Chatzichrisafis, Beth Ann Hockey, Marianne
Santaholma, Marianne Starlander, Yukie Nakao,
Kyoko Kanzaki, Hitoshi Isahara. 2005. A generic
multilingual open source platform for limited-
domain medical speech translation. In: Proceedings
of the 10th Conference of the European Associa-
tion for Machine Translation, EAMT, Budapest,
Hungary.

Bouillon, Pierrette, Manny Rayner, Bruna Novellas
Vall, Marianne Starlander, Marianne Santaholma,
Nikos Chatzichrisafis. 2007. Une grammaire
partage multi-tache pour le traitement de la parole
: application aux langues romanes. TAL (Traitement
Automatique des Langues), Volume 47, 2006/3.

Bouillon, Pierrette, Glenn Flores, Marianne Starlan-
der, Nikos Chatzichrisafis, Marianne Santaholma,
Nikos Tsourakis, Manny Rayner, Beth Ann Hockey.
2007. A Bidirectional Grammar-Based Medical
Speech Translator. In: Proceedings of workshop on
Grammar-based approaches to spoken language pro-
cessing, ACL 2007, June 29, Prague, Czech Repub-
lic.

Bresnan, Joan and Ronald Kaplan. 1985. The mental
representation of grammatical relations. MIT Press,
Cambridge, MA.

Butt, Miriam , Helge Dyvik, Tracy Holloway King, Hi-
roshi Masuichi, and Christian Rohrer. 2002. The
Parallel Grammar Project. In: Proceedings of
COLING-2002 Workshop on Grammar Engineering
and Evaluation.

Dalrymple, Mary, Ron Kaplan, and Tracy Holloway
King. 2004. Linguistics Generalizations over De-
scriptions. In M. Butt and T.H. King (ed.) Proceed-
ings of the LFG04 Conference.

Kim, Roger, Mary Dalrymple, Ronald M. Kaplan,
Tracy Holloway King, Hiroshi Masuichi, Tomoko
Ohkuma. 2003. Language Multilingual Grammar
Development via Grammar Porting. In: Proceedings
of the ESSLLI Workshop on Ideas and Strategies for
Multilingual Grammar Development, Vienna, Aus-
tria.

Pollard, Carl and Ivan Sag. 1994. Head Driven Phrase
Structure Grammar. University of Chicago Press,
Chicago.

Ranta, Aarne. 2007. Modular Grammar Engineering in
GF. Research on Language and Computation, Vol-
ume 5, 2/2007, 133–158.

Rayner, Manny, Beth Ann Hockey, Pierrette Bouillon.
2006. Regulus-Putting linguistics into speech recog-
nition. CSLI publications, California, USA.

Santaholma, Marianne. 2005. Linguistic representa-
tion of Finnish in a limited domain speech-to-speech
translation system. In: Proceedings of the 10th Con-
ference on European Association of Machine Trans-
lation, Budapest, Hungary.

Santaholma, Marianne. 2007. Grammar sharing tech-
niques for rule-based multilingual NLP systems. In:
Proceedings of NODALIDA 2007, the 16th Nordic
Conference of Computational Linguistics, Tartu, Es-
tonia.

32

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 33–40
Manchester, August 2008

Speeding up LFG Parsing Using C-Structure Pruning

Aoife Cahill‡ John T. Maxwell III † Paul Meurer§ Christian Rohrer ‡ Victoria Rosén¶

‡IMS, University of Stuttgart, Germany,{cahillae, rohrer}@ims.uni-stuttgart.de
†Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto,CA 94304,maxwell@parc.com

§Unifob Aksis, Bergen, Norway,paul.meurer@aksis.uib.no
¶Unifob Aksis and University of Bergen, Norway,victoria@uib.no

Abstract

In this paper we present a method for
greatly reducing parse times in LFG pars-
ing, while at the same time maintaining
parse accuracy. We evaluate the method-
ology on data from English, German and
Norwegian and show that the same pat-
terns hold across languages. We achieve
a speedup of 67% on the English data and
49% on the German data. On a small
amount of data for Norwegian, we achieve
a speedup of 40%, although with more
training data we expect this figure to in-
crease.

1 Introduction

Efficient parsing of large amounts of natural lan-
guage is extremely important for any real-world
application. The XLE Parsing System is a large-
scale, hand-crafted, deep, unification-based sys-
tem that processes raw text and produces both
constituent structures (phrase structure trees) and
feature structures (dependency attribute-value ma-
trices). A typical breakdown of parsing time
of XLE components with the English grammar
is Morphology (1.6%), Chart (5.8%) and Unifier
(92.6%). It is clear that the major bottleneck in
processing is in unification. Cahill et al. (2007)
carried out a preliminary experiment to test the
theory that if fewer c-structures were passed to
the unifier, overall parsing times would improve,
while the accuracy of parsing would remain sta-
ble. Their experiments used state-of-the-art prob-
abilistic treebank-based parsers to automatically

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

mark certain constituents on the input sentences,
limiting the number of c-structures the XLE pars-
ing system would build. They achieved an 18%
speedup in parse times, while maintaining the ac-
curacy of the output f-structures. The experiments
presented in Cahill et al. (2007) used the XLE sys-
tem as a black box and did not make any changes to
it. However, the results were encouraging enough
for a c-structure pruning mechanism to be fully in-
tegrated into the XLE system.

The paper is structured as follows: we present
the pruning model that has been integrated into the
XLE system (Section 2), and how it can be ap-
plied successfully to more than one language. We
present experiments for English (Section 3), Ger-
man (Section 4) and Norwegian (Section 5) show-
ing that for both German and English, a significant
improvement in speed is achieved, while the qual-
ity of the f-structures remains stable. For Norwe-
gian a speedup is also achieved, but more training
data is required to sustain the accuracy of the f-
structures. In Section 7 we present an error anal-
ysis on the German data. We then relate the work
presented in this paper to similar efficient parsing
strategies (Section 8) before concluding in Section
9.

2 XLE and the C-Structure Pruning
Mechanism

The XLE system is designed to deal with large
amounts of data in a robust manner. There are
several mechanisms which facilitate this, including
fragmenting and skimming. Fragmenting is called
when the grammar is unable to provide a complete
parse for the input sentence, and a fragment anal-
ysis of largest possible chunks is built. Skimming
is called when too much time or memory has been
used by XLE. Any constituents that have not been

33

fully processed are “skimmed”, which means that
the amount of work carried out in processing the
constituent is limited. This guarantees that XLE
will finish processing the sentence in polynomial
time.

XLE uses a chart-based mechanism for build-
ing parses, and has been complemented with a c-
structure pruning mechanism to speed up parsing
time. During pruning, subtrees at a particular cell
in the chart are pruned if their probabilities are not
higher than a certain threshold. The chart pruner
uses a simple stochastic CFG model. The proba-
bility of a tree is the product of the probabilities
of each of the rules used to form the tree, includ-
ing the rules that lead to lexical items (such as N
→ dog). The probability of a rule is basically the
number of times that that particular form of the
rule occurs in the training data divided by the num-
ber of times the rule’s category occurs in the train-
ing data, plus a smoothing term. This is similar
to the pruning described in Charniak and Johnson
(2005) where edges in a coarse-grained parse for-
est are pruned to allow full evaluation with fine-
grained categories.

The pruner prunes at the level of individual con-
stituents in the chart. It calculates the probabil-
ities of each of the subtrees of a constituent and
compares them. The probability of each subtree
is compared with the best subtree probability for
that constituent. If a subtree’s probability is lower
than the best probability by a given factor, then the
subtree is pruned. In practice, the threshold is the
natural logarithm of the factor used. So a value of
5 means that a subtree will be pruned if its prob-
ability is about a factor of 150 less than the best
probability.

If two different subtrees have different num-
bers of morphemes under them, then the proba-
bility model is biased towards the subtree that has
fewer morphemes (since there are fewer probabil-
ities multiplied together). XLE counteracts this by
normalizing the probabilities based on the differ-
ence in length.

To illustrate how this works, we give the follow-
ing example. The stringFruit flies like bananashas
two different analyses. Figures 1 and 2 give their
analyses along with hypothetical probabilities for
each rule.

These two analyses come together at the S con-
stituent that spans the whole sentence. The proba-
bility of the first analysis is 8.4375E-14. The prob-

S

NP

N

Fruit

N

flies

VP

V

like

NP

N

bananas
S → NP VP 0.5000
NP → N N 0.1500
N → Fruit 0.0010
N → flies 0.0015
VP → V NP 0.2000
V → like 0.0050
NP → N 0.5000
N → bananas 0.0015

8.4375E-14

Figure 1: Analysis (1) for the stringFruit flies like
bananaswith hypothetical probabilities

S

NP

N

Fruit

VP

V

flies

PP

P

like

NP

N

bananas
S → NP VP 0.5000
NP → N 0.5000
N → Fruit 0.0010
V → flies 0.0025
VP → V PP 0.1000
P → like 0.0500
PP → P NP 0.9000
NP → bananas 0.0015

4.21875E-12

Figure 2: Analysis (2) for the stringFruit flies like
bananaswith hypothetical probabilities

ability of the second analysis is 4.21875E-12. This
means that the probability of the second analysis
is 50 times higher than the probability of the first
analysis. If the threshold is less than the natural
logarithm of 50 (about 3.9), then the subtree of the
first analysis will be pruned from the S constituent.

3 Experiments on English

We carried out a number of parsing experiments to
test the effect of c-structure pruning, both in terms
of time and accuracy. We trained the c-structure
pruning algorithm on the standard sections of Penn
Treebank Wall Street Journal Text (Marcus et al.,
1994). The training data consists of the original
WSJ strings, marked up with some of the Penn

34

Treebank constituent information. We marked up
NPs and SBARs as well as adjective and verbal
POS categories. This is meant to guide the train-
ing process, so that it does learn from parses that
are not compatible with the original treebank anal-
ysis. We evaluated against the PARC 700 Depen-
dency Bank (King et al., 2003), splitting it into 140
sentences as development data and the remaining
unseen 560 for final testing (as in Kaplan et al.
(2004)). We experimented with different values
of the pruning cutoff on the development set; the
results are given in Table 1.

The results show that the lower the cutoff value,
the quicker the sentences can be parsed. Using
a cutoff of 4, the development sentences can be
parsed in 100 CPU seconds, while with a cutoff
of 10, the same experiment takes 182 seconds.
With no cutoff, the experiment takes 288 CPU sec-
onds. However, this increase in speed comes at a
price. The number of fragment parses increases,
i.e. there are more sentences that fail to be analyzed
with a complete spanning parse. With no pruning,
the number of fragment parses is 23, while with
the most aggressive pruning factor of 4, there are
39 fragment parses. There are also many more
skimmed sentences with no c-structure pruning,
which impacts negatively on the results. The ora-
cle f-score with no pruning is 83.07, but with prun-
ing (at all thresholds) the oracle f-score is higher.
This is due to less skimming when pruning is acti-
vated, since the more subtrees that are pruned, the
less likely the XLE system is to run over the time
or memory limits needed to trigger skimming.

Having established that a cutoff of 5 performs
best on the development data, we carried out the
final evaluation on the 560-sentence test set using
this cutoff. The results are given in Table 2. There
is a 67% speedup in parsing the 560 sentences, and
the most probable f-score increases significantly
from 79.93 to 82.83. The oracle f-score also in-
creases, while there is a decrease in the random f-
score. This shows that we are throwing away good
solutions during pruning, but that overall the re-
sults improve. Part of this again is due to the fact
that with no pruning, skimming is triggered much
more often. With a pruning factor of 5, there are
no skimmed sentences. There is also one sentence
that timed out with no pruning, which also lowers
the most probable and oracle f-scores.

Pruning Level None 5
Total Time 1204 392
Most Probable F-Score 79.93 82.83
Oracle F-Score 84.75 87.79
Random F-Score 75.47 74.31
Fragment Parses 96 91
Time Outs 1 0
Skimmed Sents 33 0

Table 2: Results of c-structure pruning experi-
ments on English test data

4 Experiments on German

We carried out a similar set of experiments on
German data to test whether the methodology de-
scribed above ported to a language other than En-
glish. In the case of German, the typical time of
XLE components is: Morphology (22.5%), Chart
(3.5%) and Unifier (74%). As training data we
used the TIGER corpus (Brants et al., 2002). Set-
ting aside 2000 sentences for development and
testing, we used the remaining 48,474 sentences as
training data. In order to create the partially brack-
eted input required for training, we converted the
original TIGER graphs into Penn-style trees with
empty nodes and retained bracketed constituents of
the type NP, S, PN and AP. The training data was
parsed by the German ParGram LFG (Rohrer and
Forst, 2006). This resulted in 25,677 full parses,
21,279 fragmented parses and 1,518 parse fail-
ures.1 There are 52,959 features in the final prun-
ing model.

To establish the optimal pruning settings for
German, we split the 2,000 saved sentences into
371 development sentences and 1495 test sen-
tences for final evaluation. We evaluated against
the TiGer Dependency Bank (Forst et al., 2004)
(TiGerDB), a dependency-based gold standard for
German parsers that encodes grammatical rela-
tions similar to, though more fine-grained than,
the ones in the TIGER Treebank as well as mor-
phosyntactic features. We experimented with the
same pruning levels as in the English experiments.
The results are given in Table 3.

The results on the development set show a sim-
ilar trend to the English results. A cutoff of 4 re-
sults in the fastest system, however at the expense

1The reason there are more fragment parses than, for ex-
ample, the results reported in Rohrer and Forst (2006) is that
the bracketed input constrains the parser to only return parses
compatible with the bracketed input. If there is no solution
compatible with the brackets, then a fragment parse is re-
turned.

35

Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 83.07 84.50 85.47 85.75 85.57 85.57 85.02 84.10
Time (CPU seconds) 288 100 109 123 132 151 156 182
Time Outs 0 0 0 0 0 0 0
Fragments 23 39 36 31 29 27 27 24
Skimmed Sents 8 0 0 1 1 1 1 3

Table 1: Results of c-structure pruning experiments on English development data

Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 83.69 83.45 84.02 82.86 82.82 82.95 83.03 82.81
Time (CPU seconds) 1313 331 465 871 962 1151 1168 1163
Time Outs 6 0 0 5 5 5 5 6
Fragments 65 104 93 81 74 73 73 68

Table 3: Results of c-structure pruning experiments on German development data

Pruning Level None 5
Total Time 3300 1655
Most Probable F-Score 82.63 82.73
Oracle F-Score 84.96 84.79
Random F-Score 73.58 73.72
Fragment Parses 324 381
Time Outs 2 2

Table 4: Results of c-structure pruning experi-
ments on German test data

of accuracy. A cutoff of 5 seems to provide the
best tradeoff between time and accuracy. Again,
most of the gain in oracle f-score is due to fewer
timeouts, rather than improved f-structures. In the
German development set, a cutoff of 5 leads to a
speedup of over 64% and a small increase in or-
acle f-score of 0.33 points. Therefore, for the fi-
nal evaluation on the unseen test-set, we choose a
cutoff of 5. The results are given in Table 4. We
achieve a speedup of 49% and a non-significant in-
crease in most probable f-score of 0.094. The time
spent by the system on morphology is much higher
for German than for English. If we only take the
unification stage of the process into account, the
German experiments show a speedup of 65.5%.

5 Experiments on Norwegian

As there is no treebank currently available for Nor-
wegian, we were unable to train the c-structure
pruning mechanism for Norwegian in the same
way as was done for English and German. There
is, however, some LFG-parsed data that has been
completely disambiguated using the techniques
described in Rosén et al. (2006). In total there
are 937 sentences from various text genres includ-
ing Norwegian hiking guides, Sophie’s World and
the Norwegian Wikipedia. We also use this dis-

ambiguated data as a gold standard for evaluation.
The typical time of XLE components with the Nor-
wegian grammar is: Morphology (1.6%), Chart
(11.2%) and Unifier (87.2%).

From the disambiguated text, we can automati-
cally extract partially bracketed sentences as input
to the c-structure pruning training method. We can
also extract sentences for training that are partially
disambiguated, but these cannot be used as part of
the test data. To do this, we extract the bracketed
string for each solution. If all the solutions pro-
duce the same bracketed string, then this is added
to the training data. This results in an average of
4556 features. As the data set is small, we do not
split it into development, training and test sections
as was done for English and German. Instead we
carry out a 10-fold cross validation over the entire
set. The results for each pruning level are given in
Table 5.

The results in Table 5 show that the pattern that
held for English and German does not quite hold
for Norwegian. While, as expected, the time taken
to parse the test set is greatly reduced when using
c-structure pruning, there is also a negative impact
on the quality of the f-structures. One reason for
this is that there are now sentences that could pre-
viously be parsed, and that now no longer can be
parsed, even with a fragment grammar.2 With c-
structure pruning, the number of fragment parses
increases for all thresholds, apart from 10. It is
also difficult to compare the Norwegian experi-
ment to the English and German, since the gold
standard is constrained to only consist of sentences
that can be parsed by the grammar. Theoretically
the oracle f-score for the experiment with no prun-

2With an extended fragment grammar, this would not hap-
pen.

36

Pruning Level None 4 5 6 7 8 9 10
Oracle F-Score 98.76 94.45 95.60 96.40 96.90 97.52 98.00 98.33
Time (CPU seconds) 218.8 106.2 107.4 109.3 112 116.2 124 130.7
Time Outs 0 0 0 0 0 0 0 0
Parse Failures 0.2 5.7 3.9 2 3.2 4.2 4.6 4.2
Fragments 1.3 7.7 6.5 4.7 2.8 1.8 1.5 1.2

Table 5: Results of c-structure pruning 10-fold cross validation experiments on Norwegian data

55

60

65

70

75

80

85

90

95

None 4 5 6 7 8 9 10

Figure 3: The lower-bound results for each of the
10 cross validation runs across the thresholds

ing should be 100. The slight drop is due to a
slightly different morphological analyzer used in
the final experiments that treats compound nouns
differently. A threshold of 10 gives the best results,
with a speedup of 40% and a drop in f-score of 0.43
points. It is difficult to choose the “best” thresh-
old, as the amount of training data is probably not
enough to get an accurate picture of the data. For
example, Figure 3 shows the lower-bound results
for each of the 10 runs. It is difficult to see a clear
pattern for all the runs, indicating that the amount
of training data is probably not enough for a reli-
able experiment.

6 Size of Training Data Corpus

The size of the Norwegian training corpus is con-
siderably smaller than the training corpora for En-
glish or German, so the question remains how
much training data we need in order for the c-
structure pruning to deliver reliable results. In or-
der to establish a rough estimate for the size of
training corpus required, we carried out an experi-
ment on the German TIGER training corpus.

We randomly divided the TIGER training cor-
pus into sets of 500 sentences. We plot the learn-
ing curve of the c-structure pruning mechanism in
Figure 4, examining the effect of increasing the
size of the training corpus on the oracle f-score on
the development set of 371 sentences. The curve
shows that, for the German data, the highest oracle
f-score of 84.98 was achieved with a training cor-
pus of 32,000 sentences. Although the curve fluc-

tuates, the general trend is that the more training
data, the better the oracle f-score.3

7 Error Analysis

Given that we are removing some subtrees during
parsing, it can sometimes happen that the desired
analysis gets pruned. We will take German as an
example, and look at some of these cases.

7.1 Separable particles vs pronominal
adverbs

The worddagegen(“against it”) can be a separable
prefix (VPART) or a pronominal adverb (PADV).
The verbprotestieren(“to protest”) does not take
dagegenas separable prefix. The verbstimmen
(“to agree”) however does. If we parse the sen-
tence in (1) with the verbprotestierenand activate
pruning, we do not get a complete parse. If we
parse the same sentence withstimmenas in (2) we
do get a complete parse. If we replacedagegen
by dafür, which in the current version of the Ger-
man LFG can only be a pronominal adverb, the
sentence in (3) gets a parse. We also notice that
if we parse a sentence, as in (4), wheredagegen
occurs in a position where our grammar does not
allow separable prefixes to occur, we get a com-
plete parse for the sentence. These examples show
that the pruning mechanism has learned to prune
the separable prefix reading of words that can be
both separable prefixes and pronominal adverbs.

(1) Sie
they

protestieren
protest

dagegen.
against-it

‘They protest against it.’

(2) Sie
they

stimmen
vote

dagegen.
against-it

‘They vote against it.’

3Unexpectedly, the curve begins to decline after 32,000
sentences. However, the differences in f-score are not statis-
tically significant (using the approximate randomization test).
Running the same experiment with a different random seed
results in a similarly shaped graph, but any decline in f-score
when training on more data was not statistically significantat
the 99% level.

37

32000, 84.97698

84

84.1

84.2

84.3

84.4

84.5

84.6

84.7

84.8

84.9

85

50
0

20
00

35
00

50
00

65
00

80
00

95
00

11
00

0

12
50

0

14
00

0

15
50

0

17
00

0

18
50

0

20
00

0

21
50

0

23
00

0

24
50

0

26
00

0

27
50

0

29
00

0

30
50

0

32
00

0

33
50

0

35
00

0

36
50

0

38
00

0

39
50

0

41
00

0

42
50

0

44
00

0

45
50

0

47
00

0

48
50

0

Number of Training Sentences

F
-S

co
re

Figure 4: The effect of increasing the size of the training data on the oracle f-score

(3) Er
he

protestiert
protests

dafür.
for-it

‘He protests in favour of it.’

(4) Dagegen
against-it

protestiert
protests

er.
he

‘Against it, he protests.’

7.2 Derived nominal vs non-derived nominal

The wordMordencan be the dative plural of the
nounMord (“murder”) or the nominalized form of
the verbmorden(“to murder”). With c-structure
pruning activated (at level 5), the nominalized
reading, as in (6), gets pruned, whereas the dative
plural reading is not (5). At pruning level 6, both
readings are assigned a full parse. We see simi-
lar pruning of nominalized readings as in (7). If
we look in more detail at the raw counts for re-
lated subtrees gathered from the training data, we
see that the common noun reading forMordenoc-
curs 156 times, while the nominalized reading only
occurs three times. With more training data, the c-
structure pruning mechanism could possibly learn
when to prune correctly in such cases.

(5) Er
he

redet
speaks

von
of

Morden.
murders

‘He speaks of murders.’

(6) Das
the

Morden
murdering

will
wants

nicht
not

enden.
end

‘The murdering does not want to end.’

(7) Das
the

Arbeiten
working

endet.
ends

‘The operation ends.’

7.3 Personal pronouns which also function as
determiners

There are a number of words in German that can
function both as personal pronouns and determin-
ers. If we take, for example, the wordihr, which
can mean “her”, “their”, “to-her”, “you-pl” etc.,
the reading as a determiner gets pruned as well as
some occurrences as a pronoun. In example (8),
we get a complete parse for the sentence with the
dative pronoun reading ofihr. However, in ex-
ample (9), the determiner reading is pruned and
we fail to get a complete parse. In example (10),
we also fail to get a complete parse, but in exam-
ple (11), we do get a complete parse. There is a
parameter we can set that sets a confidence value
in certain tags. So, for example, we set the con-
fidence value ofINFL-F BASE[det] (the tag given
to the determiner reading of personal pronouns) to
be 0.5, which says that we are 50% confident that
the tagINFL-F BASE[det] is correct. This results in

38

examples 8, 9 and 11 receiving a complete parse,
with the pruning threshold set to 5.

(8) Er
he

gibt
gives

es
it

ihr.
her

‘He gives it to her.’

(9) Ihr
her/their

Auto
car

fährt.
drives

‘Her/Their car drives.

(10) Ihr
you(pl)

kommt.
come

‘You come.’

(11) Er
he

vertraut
trusts

ihr.
her

‘He trusts her.’

7.4 Coordination of Proper Nouns

Training the German c-structure pruning mecha-
nism on the TIGER treebank resulted in a pecu-
liar phenomenon when parsing coordinated proper
nouns. If we parse four coordinated proper nouns
with c-structure pruning activated as in (12), we
get a complete parse. However, as soon as we add
a fifth proper noun as in (13), we get a fragment
parse. This is only the case with proper nouns,
since the sentence in (14) which coordinates com-
mon nouns gets a complete parse. Interestingly, if
we coordinaten proper nouns plus one common
noun, we also get a complete parse. The reason for
this is that proper noun coordination is less com-
mon than common noun coordination in our train-
ing set.

(12) Hans, Fritz, Emil und Maria singen.
‘Hans, Fritz, Emil and Maria sing.’

(13) Hans, Fritz, Emil, Walter und Maria sin-
gen.
‘Hans, Fritz, Emil, Walter and Maria sing.’

(14) Hunde, Katzen, Esel, Pferde und Affen
kommen.
‘Dogs, cats, donkeys, horses and apes
come.’

(15) Hans, Fritz, Emil, Walter, Maria und
Kinder singen.
‘Hans, Fritz, Emil, Walter, Maria and chil-
dren sing.’

We ran a further experiment to test what effect
adding targeted training data had on c-structure

pruning. We automatically extracted a specialized
corpus of 31,845 sentences from the Huge Ger-
man Corpus. This corpus is a collection of 200
million words of newspaper and other text. The
sentences we extracted all contained examples of
proper noun coordination and had been automati-
cally chunked. Training on this sub-corpus as well
as the original TIGER training data did have the
desired effect of now parsing example (13) with
c-structure pruning activated.

8 Related Work

Ninomiya et al. (2005) investigate beam threshold-
ing based on the local width to improve the speed
of a probabilistic HPSG parser. In each cell of a
CYK chart, the method keeps only a portion of the
edges which have higher figure of merits compared
to the other edges in the same cell. In particular,
each cell keeps the edges whose figure of merit is
greater thanαmax - δ, whereαmax is the high-
est figure of merit among the edges in the chart.
The term “beam thresholding” is a little confusing,
since a beam search is not necessary – instead, the
CYK chart is pruned directly. For this reason, we
prefer the term “chart pruning” instead.

Clark and Curran (2007) describe the use of
a supertagger with a CCG parser. A supertag-
ger is like a tagger but with subcategorization in-
formation included. Chart pruners and supertag-
gers are conceptually complementary, since chart
pruners prune edges with the same span and the
same category, whereas supertaggers prune (lexi-
cal) edges with the same span and different cate-
gories. Ninomiya et al. (2005) showed that com-
bining a chunk parser with beam thresholding pro-
duced better results than either technique alone. So
adding a supertagger should improve the results
described in this paper.

Zhang et al. (2007) describe a technique to
selectively unpack an HPSG parse forest to ap-
ply maximum entropy features and get the n-best
parses. XLE already does something similar when
it applies maximum entropy features to get the
n-best feature structures after having obtained a
packed representation of all of the valid feature
structures. The current paper shows that pruning
the c-structure chart before doing (packed) unifica-
tion speeds up the process of getting a packed rep-
resentation of all the valid feature structures (ex-
cept the ones that may have been pruned).

39

9 Conclusions

In this paper we have presented a c-structure prun-
ing mechanism which has been integrated into the
XLE LFG parsing system. By pruning the number
of c-structures built in the chart, the next stage of
processing, the unifier, has considerably less work
to do. This results in a speedup of 67% for En-
glish, 49% for German and 40% for Norwegian.
The amount of training data for Norwegian was
much less than that for English or German, there-
fore further work is required to fully investigate
the effect of c-structure pruning. However, the re-
sults, even from the small training data, were en-
couraging and show the same general patterns as
English and German. We showed that for the Ger-
man training data, 32,000 sentences was the opti-
mal number in order to achieve the highest oracle
f-score. There remains some work to be done in
tuning the parameters for the c-structure pruning,
as our error analysis shows. Of course, with sta-
tistical methods one can never be guaranteed that
the correct parse will be produced; however we can
adjust the parameters to account for known prob-
lems. We have shown that the c-structure pruning
mechanism described is an efficient way of reduc-
ing parse times, while maintaining the accuracy of
the overall system.

Acknowledgements

The work presented in this paper was supported
by the COINS project as part of the linguistic
Collaborative Research Centre (SFB 732) at the
University of Stuttgart and by the Norwegian Re-
search Council through the LOGON and TREPIL
projects.

References

Brants, Sabine, Stefanie Dipper, Silvia Hansen, Wolf-
gang Lezius, and George Smith. 2002. The TIGER
Treebank. InProceedings of the Workshop on Tree-
banks and Linguistic Theories, Sozopol, Bulgaria.

Cahill, Aoife, Tracy Holloway King, and John T.
Maxwell III. 2007. Pruning the Search Space of
a Hand-Crafted Parsing System with a Probabilistic
Parser. InACL 2007 Workshop on Deep Linguistic
Processing, pages 65–72, Prague, Czech Republic,
June. Association for Computational Linguistics.

Charniak, Eugene and Mark Johnson. 2005. Coarse-
to-Fine n-Best Parsing and MaxEnt Discriminative
Reranking. InProceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-

tics (ACL’05), pages 173–180, Ann Arbor, Michi-
gan, June. Association for Computational Linguis-
tics.

Clark, Stephen and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG and
Log-Linear Models. Computational Linguistics,
33(4):493–552.

Forst, Martin, Núria Bertomeu, Berthold Crysmann,
Frederik Fouvry, Silvia Hansen-Schirra, and Valia
Kordoni. 2004. Towards a dependency-based gold
standard for German parsers – The TiGer Depen-
dency Bank. InProceedings of the COLING Work-
shop on Linguistically Interpreted Corpora (LINC
’04), Geneva, Switzerland.

Kaplan, Ronald M., John T. Maxwell, Tracy H. King,
and Richard Crouch. 2004. Integrating Finite-state
Technology with Deep LFG Grammars. InPro-
ceedings of the ESSLLI 2004 Workshop on Combin-
ing Shallow and Deep Processing for NLP, Nancy,
France.

King, Tracy Holloway, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC 700 Dependency Bank. InProceedings of the
EACL Workshop on Linguistically Interpreted Cor-
pora (LINC ’03), Budapest, Hungary.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a Large Annotated
Corpus of English: The Penn Treebank.Computa-
tional Linguistics, 19(2):313–330.

Ninomiya, Takashi, Yoshimasa Tsuruoka, Yusuke
Miyao, and Jun’ichi Tsujii. 2005. Efficacy of Beam
Thresholding, Unification Filtering and Hybrid Pars-
ing in Probabilistic HPSG Parsing. InProceed-
ings of the Ninth International Workshop on Pars-
ing Technology, pages 103–114, Vancouver, British
Columbia, October. Association for Computational
Linguistics.

Rohrer, Christian and Martin Forst. 2006. Improving
Coverage and Parsing Quality of a Large-scale LFG
for German. InProceedings of the Language Re-
sources and Evaluation Conference (LREC-2006),
Genoa, Italy.

Rosén, Victoria, Paul Meurer, and Koenraad de Smedt.
2006. Towards a Toolkit Linking Treebanking and
Grammar Development. In Hajic, Jan and Joakim
Nivre, editors,Proceedings of the Fifth Workshop
on Treebanks and Linguistic Theories, pages 55–66,
December.

Zhang, Yi, Stephan Oepen, and John Carroll. 2007.
Efficiency in Unification-Based N-Best Parsing. In
Proceedings of the Tenth International Conference
on Parsing Technologies, pages 48–59, Prague,
Czech Republic, June. Association for Computa-
tional Linguistics.

40

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 41–48
Manchester, August 2008

 From Grammar-Independent Construction Enumeration to
Lexical Types in Computational Grammars

 Lars Hellan
NTNU

N-7491 Trondheim
Norway

lars.hellan@hf.ntnu.no

Abstract

The paper presents a code for enumerat-
ing verb-construction templates, from
which lexical type inventories of compu-
tational grammars can be derived, and
test suites can be systematically devel-
oped. The templates also serve for de-
scriptive and typological research. The
code is string-based, with divisions into
slots providing modularity and flexibility
of specification.

1 Introduction

This paper presents a code for enumerating verb-
construction templates. The code is string-based,
with divisions into slots providing modularity
and flexibility of specification. The templates
provide slots for specifying, relative to a con-
struction

- part of speech (POS) of the head
- grammatical relations exposed
- valence bound items
- thematic roles expressed
- situation type
- aspect (Aktionsart)
- part of speech of valence-bound items.

(These parameters altogether cover what is com-
monly referred to as 'argument structure' relative
to the main predicate.) The code is outlined in
sections 2-5, and 8.

From the verb construction templates, lexical
type inventories of computational grammars can

 © 2008. Licensed under the Creative Commons Attri-
bution-Noncommercial-Share Alike 3.0 Unported
license (http://creativecommons.org/licenses/by-nc-
sa/3.0/). Some rights reserved.

be derived (section 6). The design offers a sys-
tematic way of organizing test suites, and here-
with improved means of defining intra- and
cross-framework reference points of coverage
and depth of analysis. The template code also
lends itself for descriptive and typological re-
search (section 7).

The design is not geared to any particular
framework of computational grammar or linguis-
tics. Examples will be offered relative to HPSG-
and LFG- grammars, and the actual conversions
from templates to lexical types so far developed
relate to HPSG grammars using the LKB plat-
form (cf. (Copestake 2002)), based on the 'HPSG
Grammar Matrix' design ((Bender et al. 2002)).
Our exposition will be based on the design as it
relates to the LKB-grammar NorSource (cf.
(Beermann and Hellan 2004)) and a Verb-
Construction enumeration for Norwegian.

The enterprise here presented has lines going
back at least to the mid and late 80ies, both re-
garding test suite development (e.g., (Flickinger
et al. 1987), (Lehmann et al. 1996)) and argu-
ment frame inventories ((Hellan et al. 1889)).

2 Code for Template Enumeration

By a template for a verb construction we under-
stand a standardized way of exposing selected
features of the construction. Exposed features are
classificatory features, and in this respect, a tem-
plate may be regarded as a type.

A system for enumerating templates should
be designed such that they are, internal to a given
language, complete and transparent, and across
languages, comparable both in templates shared
and in templates distinct. Technologically they
should be as low level as possible, and platform
independent, and be equally accessible to practis-
ing field linguists as to NLP researchers in com-
putational settings. With such desiderata in mind,

41

we develop a code residing simply in strings of
symbols with a minimum of internal syntax.

The basic structural parts of such strings are
referred to as slots. In the slot specification, the
following conventions are observed:
* Slots are interconnected by '-' (hyphen).
* Distinct items inside a slot are interconnected
by '_' (underline).
* An item label containing neither ‘-‘ nor ‘_’ is
an uninterrupted string of letters. Internal com-
position is indicated by alternation between small
and capital letters.

The format can be applied also to non-verbal
constructions, but we here focus exclusively on
verbal ones. These have a template structure with
five slots:
Slot 1: POS of the head, and diathesis informa-
tion.
Slot 2: Valency, or transitivity specification (e.g.,
intr, tr, ditr,...).
Slot 3: Dependents' specification (syntactic and
referential properties of arguments).
Slot 4: Participant roles.
Slot 5: Situation type (written in SMALL CAPS).

Slots 1 and 2 are always filled, the others need
not be. A slot not specified is not displayed as
empty; however, the sets of labels defined for the
various slots are disjoint. Likewise, no labels are
distinguished in terms of capital letter vs. not. (1)
illustrates the composition, for a type instantiated
by the clause Mary throws the ball:

(1) v-tr-obDir-suAg_obEjct-EJECTION

Slot 1 here says the head is Verb, slot 2 says that
the construction is transitive, slot 3 says that the
object har a directional function, slot 4 says that
the thematic roles are 'agent', expressed by the
subject, and 'ejected', expressed by the object,
and slot 5 says that the situation type is one char-
acterizable as 'ejection'.

We start with a survey of the labels used for
slot 2, valence information. First, for the use of
the notions intr, tr, ditr, the following defi-
nitions apply. By a direct syntactic argument of a
verb, we understand a nominal constituent syn-
tactically related to the verb as subject-of, direct
object-of, or indirect object-of, and any clausal
constituent with either of these functions. (This
includes expletive subjects and objects, and ex-
cludes clausal constituents in extraposed posi-
tion; it also excludes any NP or clause governed
by a preposition or another relation-item.) An
intransitive construction is then one with only
SUBJECT as a direct syntactic argument, a transi-

tive construction has a SUBJECT and one OB-
JECT as direct syntactic arguments, and a ditran-
sitive construction has a SUBJECT and two OB-
JECTs as direct syntactic arguments. Any va-
lence-bound item other than those now described
is represented by an extension of the above tran-
sitivity-strings, for instance, in the strings in-
trObl and trObl, Obl means 'oblique', that is,
in addition to the number of arguments repre-
sented by intr/tr, there is a PP with 'selected'
status.

The valence slot includes information as to
referential status of the arguments. We say that a
direct syntactic argument is standardly linked
when it has referential content and has a seman-
tic argument function relative to the verb. This
excludes expletive subjects and expletive objects,
as well as 'raised' full NPs. The following sub-
strings in slot 2 indicate the presence of items
that are not standardly linked:
Impers ('impersonal'), Presentational, Epon
('extraposition'), Nrf ('non-referential'), Rais
('item raised, i.e., non-argument'), Nrg ('non-
argument' - used in slot 3)).

Specifications are sought to be non-redundant.
For instance, the string intrEpon occurring in
slot 2 entails that there is an expletive subject,
and when used for a langauge like English, there
is no need to say elsewhere that the subject is
expletive. Since what is redundant relative to one
language may not be so relative to another, ques-
tions of language-parametrized interpretation of
code may arise; however, we do not have a basis
yet for suggesting whether and how this would
be accommodated.

3 Valency labels

The slot for valency, slot 2, has around 45 possi-
ble specifications relevant to Norwegian, and we
state those in full, to give an impression of what
may be the expected scope of this slot; an exam-
ple illustrates each type:

intr = intransitive, i.e., with only SUBJECT as
direct syntactic argument.
intrImpers = impersonal intransitive, i.e.,
SUBJECT is an expletive not linked to any other
item in the clause. (Ex.: det regner 'it rains')
intrImpersPrtcl = impersonal intransitive
with an aspectual particle. (Ex.: det klarner opp
'it clears up')
intrImpersObl = impersonal intransitive with
an oblique argument. (Ex.: det synger i fjellene

42

 'it sings in the mountains')
intrPresentational = intransitive with a
presentational structure, i.e., an expletive subject
and an indefinite NP.
intrDirPresentational = intrPresenta-
tional where the presented NP has a directional
function. (Ex.: det springer en mann 'there runs a
man')
intrPresentationalLoc = intrPresenta-
tional with a locative constituent. (Ex.: det sitter
en mann i stolen 'there sits a man in the chair')
intrDir = intransitive where the subject has a
directional function. (Ex.: gutten løper 'the boy
runs')
intrAdv = intransitive with an obligatory ad-
verb. (Ex.: han fungerer godt 'he functions well')
intrPrtcl = intransitive with an aspectual par-
ticle. (Ex.: regnet varer ved 'the rain lasts')
intrObl = intransitive with an oblique argu-
ment. (Ex.: jeg snakker om Ola 'I talk about Ola')
intrOblRais = intransitive with an oblique
argument from which an NP has been 'raised'.
(Ex.: han later til å komme 'he appears [to] to come')
intrScpr = intransitive with a secondary predi-
cate (Small Clause predicate). (Ex.: gutten virker
syk 'the boy seems sick')
intrEpon = intransitive with an 'extraposed'
clause. (Ex.: det hender at han kommer 'it happens
that he comes')
intrPrtclEpon = intransitive with an 'extra-
posed' clause and an advparticle. (Ex.: det hører
med at han kommer Mock Eng: "it hears along that
he comes")
intrOblEpon = intransitive with an 'extraposed'
clause and an oblique argument. (Ex.: det haster
med å rydde Mock Eng: "it urges with to tiden up")
intrPrtclOblEpon = intransitive with an 'ex-
traposed' clause, an oblique argument, and an
advparticle. (Ex.: det ser ut til at han kommer Mock
Eng: "it looks out to that he comes")
intrPrtclOblRais = intransitive with an
oblique argument from which an NP has been
'raised', and an advparticle. (Ex.: han ser ut til å
komme Mock Eng: "he looks out to to come")
intrImplicobjObl = intransitive with implicit
object, followed by PP (Ex.: han sølte på seg 'he
spilled on himself')
tr = transitive, i.e., with SUBJECT and one OB-
JECT.
trDir = transitive, where the subject is under-
stood in a directional function. (Ex.: Kari når top-
pen 'Kari reaches the top')
trPrtcl = transitive with an advparticle. (Ex.:
Kari fant ut svaret 'Kari found out the answer')

trPresentational = presentational structure
with an NP preceding the 'presented' NP. (Ex.: det
venter ham en ulykke 'there awaits him an accident')
trObl = transitive with an oblique. (Ex.: jeg
sparker Ola i baken 'I kick Ola in the butt')
trEponSu = transitive with an extraposed clause
correlated with the subject, and an argument ob-
ject. (Ex.: det bekymrer meg at han kommer 'it wor-
ries me that he comes')
trEponOb = transitive with an extraposed clause
correlated with the object, and an argument sub-
ject.. (Ex.: vi muliggjorde det at han fikk innreisetil-
latelse 'we possible-made it that he got entrance visa')
trScpr = transitive with a secondary predicate
(Small Clause predicate). (Ex.: han sparket ballen
flat 'he kicked the ball flat')
trNrf = transitive whose object is non-
referential. (Ex.: Kari skammer seg "Kari shamess
herself" - 'Kari is ashamed')
ditr = ditransitive, i.e., with SUBJECT and two
OBJECTs (here referred to by the traditional
terms 'indirect' ('iob') and 'direct' object, when
distinction is necessary).
ditrObl = ditransitive with oblique. (Ex.: jeg
kaster Ola kakestykker i ansiktet "I throw Ola cakes
in the face" - 'I throw cakes in the face of Ola')
ditrNrf = ditransitive whose indirect object is
non-referential. (Ex.: han foresetter seg å komme
'he [foresetter] himself to come)
copAdj = predicative copular construction with
adjectival predicative. (Ex.: han er snill 'he is
kind'). (Similarly: copN. (Ex.: han er bonde 'he is
peasant'); copPP (Ex.: forestillingen var under
enhver kritikk 'the perforrmance was below critique');
copPredprtcl (Ex.: Ola er som en gud 'Ola is
like a god'))
copIdN = identity copular construction with
nominal predicative. (Ex.: dette er mannen 'this is
the man'.) (Similarly: copIdAbsinf (Ex.:
oppgaven er å spise silden 'the task is to eat the her-
ring'.); copIdDECL (Ex.: problemet er at han spiser
silden 'the problem is that he eats the herring'.);
copIdYN (Ex.: problemet er om han spiser silden
'the problem is whether he eats the herring'.);
copIdWH (Ex.: spørsmålet er hvem som spiser silden
'the question is who eats the herring'.))
copEponAdj = predicative copular construction
with adjectival predicative and the 'logical sub-
ject' extraposed. (Ex.: det er uvisst hvem som kom-
mer 'it is uncertain who that comes'.) Similarly: co-
pEponN (Ex.: det er et spørsmål hvem som kommer
'it is a question who comes'.); copEponPP (Ex.: det
er hinsides diskusjon at han kommer 'it is beyond dis-
cussion that he comes'.); copEponPredprtcl

43

(Ex.: det var som bestilt at han tapte igjen 'it was like
booked that he lost again'.))

4 Dependents' labels

The slot for dependents, slot 3, has around 40
labels relevant for Norwegian. Each is built up
with a first part indicating the grammatical func-
tion of the item specified (su, ob, iob, obl,
sc, epon), and the remainder providing the
specification, possibly also with some internal
structure. The following lists most of them:
suExpl = subject is an expletive.
suDECL = subject is a declarative clause. (Simi-
larly: suYN = subject is a yes-no-interrogative
clause; suWH = subject is a wh-interrogative
clause; suAbsinf = subject is an infinitival
clause with non-controlled interpretation.)
suNrg = subject is a non-argument.
obDir = object is understood in a directional
capacity.
obRefl = object is a reflexive.
obReflExpl = object is an expletive reflexive.
obDECL = object is a declarative clause. (Simi-
larly: obYN, obWH, obAbsInf)
obEqInf = object is an infinitive equi-controlled
by the only available possible controller.
obEqSuInf = object is an infinitive equi-
controlled by subject.
obEqIobInf = object is an infinitive equi-
controlled by indirect object.
obEqSuBareinf = object is a bare infinitive
equi-controlled by subject.
obEqIobBareinf = object is a bare infinitive
equi-controlled by indirect object.
iobRefl = indirect object is a reflexive.
iobReflExpl = indirect object is an expletive
reflexive.
oblEqSuInf = the governee of the oblique is an
infinitive equi-controlled by subject.
oblEqObInf = the governee of the oblique is an
infinitive equi-controlled by object.
oblRaisInf = the governee of the oblique is an
infinitive which is raising-controlled by the sub-
ject.
oblRefl = the governee of the oblique is a re-
flexive.
oblDECL = the governee of the oblique is a de-
clarative clause. (Similarly: oblYN, oblWH,
oblAbsinf)
oblPRTOFsubj = the referent of the governee of
the oblique is interpreted as part-of the referent

of the subject. (Ex.: jeg fryser på ryggen 'I freeze on
the back' - I'm cold on my back')
oblPRTOFobj = the referent of the governee of
the oblique is interpreted as part-of the referent
of the object. . (Ex.: jeg sparker Ola i baken 'I kick
Ola in the butt')
oblPRTOFiobj = the referent of the governee
of the oblique is interpreted as part-of the refer-
ent of the indirect object. (Ex.: jeg kaster Ola
kakestykker i ansiktet "I throw Ola cakes in the face"
- 'I throw cakes in the face of Ola')
oblEponAbsinf = extraposed is a non-
controlled infinitive occurring as governee of an
oblique.
oblEponDECL = extraposed is a declarative
clause occurring as governee of an oblique.
scSuNrg = the secondary predicate is predicated
of a non-argument subject (i.e., a subject not
serving as semantic argument of the matrix verb -
i.e., a 'raising to subject' subject).
scObNrg = the secondary predicate is predicated
of a non-argument object (i.e., an object not serv-
ing as semantic argument of the matrix verb - i.e.,
a 'raising to object' object).
scAdj = the secondary predicate is headed by an
adjective. (Similarly: scN, scPP,
scPredprtcl, scInf, scBareinf)
eponDECL = extraposed is a declarative clause.
(Similarly: eponYN, eponWH, eponCOND, epon-
EqInf, eponAbsinf)

We illustrate with a use of the 'small clause'
specification scSuNrg. One of the construction
types it serves to qualify is exemplified by

han synes syk 'he seems sick',
which is a raising construction of the logical form
'seem (he sick)', where the subject han does not
have a semantic argument function relative to the
verb. The label specifying this type is
 v-intrScpr-scSuNrg_scAdj
where intrScpr states that the only constituents
syntactically present are a subject and a secon-
dary predicate, scSuNrg states that the subject
lacks semantic argument status relative to the
verb, and scAdj states that the secondary predi-
cate is headed by an adjective. The circumstance
that the latter two specifications concern depend-
ents rather than over-all valence, is marked by an
underscore interrelating them.

A transitive counterpart to this type is exem-
plified by han synes meg syk 'he seems me sick',
of the logical form 'seem-to-me (he sick)', where
the subject han still does not have a semantic

44

argument function relative to the verb. The label
specifying this type is
 v-trScpr-scSuNrg_scAdj
where trScpr states that the constituents syn-
tactically present are a subject, an object and a
secondary predicate, and the other specifications
serve as in the previous example.

With utilization of the slot 2 and slot 3 deter-
minants, around 200 templates have been defined
for Norwegian (these can be viewed at the site
typecraft.org (research/research projects).

Deciding what is to go in slot 2 and what in
slot 3 is in most cases starightforward, but not
always. For instance, it will be noted that in the
copula valence labels entered at the end of the
list in section 3, specifications like 'YN'. 'DECL'
etc are used which are otherwise used mainly in
dependents' specifications. For one thing, in a
case where an adverb or a PP is obligatory, and
there is no relational 'super-term' available for
specifying its presence, one will refer to the con-
stituent by head property directly, as in in-
trAdv. In the case of the copulas, one might
have entered 'YN' etc tied to a grammatical rela-
tion 'identifier' for the identity copula, and 'predi-
cative' for predicative copula, giving, e.g., v-
copPred-predAdj instead of v-copAdj for the
predicative adjectival copula construction, and
v-copID-idN instead of v-copIdN for the
identity construction. Here it is essentially length
of labels, and sparsity concerns concerning
grammatical relations notions, which have
counted in favor of the latter options - either op-
tion is in principle possible.

Conversely, instead of writing 'trScpr-
scSuNrg_scAdj' in the example discussed, one
could have written 'trScprAdj-scSuNrg', or
'trScpr-scSuNrgAdj' - against the former is a
wish to generally have POS of dependents being
stated in the dependents' slot, and against the lat-
ter counts the circumstance that the secondary
predicate specifications are in general rather
complex already; this point will be further illus-
trated in section 8 below.

5 Thematic roles and situation types

In specifying semantic roles and situation types,
classifications available are less robust than they
are for the factors covered above, and for that
reason, the notational system will not insist that
they should be provided. Closest to practical
consensus are core semantic role labels such as
'agent', 'patient' and the like, and aspectual speci-

fications; much less established is a set of situa-
tion types covering the full range of construc-
tions in a language. In this section we do not
provide any tentative list of values to be used,
but comment only on how they are expressed.

As exemplified in (1), each semantic role label
is built up with a first part indicating the gram-
matical function of the item specified, and the
remainder providing the specification - thus,
suAg, obEjct.. Unlike the case with dependents'
labels, the remaining part has no internal struc-
ture.

Situation types may in principle cover any-
thing between Aktionsart and detailed situational
specification, like in a FrameNet label (cf.
http://framenet.icsi.berkeley.edu/). In the system
currently implemented, the level of specification
is somewhere between these two: Sitaution type
labels can be decomposed into standard aspectual
notions (like those proposed in Smith 1991,
1997) and specifications uniquely identifying
each type. An example is the possible situation
label CAUSATION_WITH_CAUSINGEVENT,
which means "causation where the cause is itself
an event and its event type is linguistically iden-
tified", and which implies certain aspectual no-
tions, such as 'dynamic' and 'telic'.

We illustrate the full specification of the ex-
ample han synes meg syk 'he seems me sick' dis-
cussed above, which is:

(2)
v-trScpr-scSuNrg_scAdj-
obCog_scThSit-PROPOSITIONALATTITUDE

'obCog' here means that the object expresses a
'cognizer', and 'scThSit' that the secondary
predication expresses a 'situational theme'. It will
be noted that, consistent with the non-argument
status of the subject, there is no thematic role tied
to the subject.

With utilization of the slot 4 and slot 5 deter-
minants, around 280 templates are currently de-
fined for Norwegian.

Slots 3 and 4 are both 'constituent oriented',
and may provide specifications of one and the
same item. For instance, in (2) all of scSuNrg,
scAdj (slot 3), and scThSit (slot 4) define the
secondary predicate. In principle it would be
possible to draw these different specifications
together into a unitary, but more complex, speci-
fication. This was done, e.g., in the TROLL sys-
tem (cf. (Hellan et al. 1989)), where arguments
were specified as triples of (i) head's POS, (ii)

45

grammatical function, and (iii) thematic role (in-
cluding possible non-argument status). Among
possible advantages of the current system are that
it better profiles 'global' properties of the con-
struction, that it better displays the profile of par-
ticipant roles, when entered, and makes omission
of them practically more easy. Cf. (Lehmann et
al. 1996) for further discussion.

6 From Templates to Grammars

The information encoded in the first three slots
attains the same depth of argument structure de-
scription as is modeled in standard Matrix-HPSG
grammars, and approximately as in standard
LFG-Pargram grammars (cf. (Butt et al. 1999)).
Argument structure being what is generally en-
coded in lexical entries for verbs in such gram-
mars, we now address how the template system
can be used as lexical types or macros.

Minimally, templates could be imported as 'en
bloc' type- or macro labels into computational
grammars. However, the hyphenation and under-
score structure of the templates suggest more
modular strategies, as we will now show for a
typed feature structure design.

For instance, for the template in (2) -
v-trScpr-scSuNrg_scAdj-
obCog_scThSit-PROPOSITIONALATTITUDE
one could see this as equivalent to a unification
of syntactic types representing, resp., 'verb-
headed', 'transitive with a secondary predicate',
'secondary predicate predicated of raised subject',
and 'secondary predicate headed by an adjective',
and the semantic types 'cognizer, as role of ob-
ject', and 'situational theme', as role of secondary
predicate. In the tdl notation used in LKB gram-
mars, this would suggest (3) as one of its type
definitions (ignoring the situation type label for
now):

(3)
v-trScpr-scSuNrg_scAdj-obCog_scThSit :=
v & trScpr & scSuNrg & scAdj & obCog &
scThSit.

Here, the type in line 1 is defined as the unifica-
tion of the types inter-connected with '&'. Me-
chanically speaking, in going from template to
grammatical type, one simply replaces each hy-
phen or underline in the template label by a type
unification symbol. As individual types (as is
customary, mention of such types is done with
italics) v, trScpr, scSuNrg, scAdj, obCog and
scThSit will all be at 'sign' level. That is: when,

in an LKB-like grammar, these types are to unify
with each other, they must belong to a common
supertype, and given that what they are compos-
ing together is the type of a verb lexeme, this is,
in a Matrix-type grammar, an instance of the type
sign. For instance, the type definition for scAdj,
relative to NorSource, is (with PREDIC being an
attribute introducing secondary predicates, and
QVAL introducing grammatical relations in a
non-list fashion, à la LFG):

(4) scAdj := sign &
[SYNSEM | LOCAL | CAT | QVAL | PREDIC | LO-
CAL | CAT | HEAD adj].

In what part of the over-all grammar will these
types be introduced? A first question is if 'con-
struction' is a type of entity to be assumed among
the building blocks of the grammar. In standard
HPSG and LFG design, the tendency is to project
construction types into the inventory of lexical
types, so that verb-construction types enter the
grammar through the subcategorization frames
associated with verbs. On this view, a definition
like (3) will be in an inventory of lexical type
definitions.

How do lexical items, in this case verbs, relate
to these types? If we consider the more standard
design in HPSG and LFG grammars, where a
verb has as many entries as there are construction
frames in which it can enter, most verbs can en-
ter more than one constructional environment.1
Thus, in the typical case, a verb will be associ-
ated with a subset of the totality of types deriv-
able from the template collection, and thus have
entries each one defined by one of these types.

Some points of useful flexibility in this map-
ping may be noted, illustrated with the choice of
head in secondary predicate constructions (cf.
(4)): in constructions like those discussed, eligi-
ble such heads are in principle adjectives, ad-
verbs, prepositions, predicative particles and in-
finitivals. For a given verb, the full range of op-
tions need not be open, hence in defining the
general verb type corresponding to the template
v-trScpr-scSuNrg_scAdj-obCog_scThSit
one may want to leave the sc-head open, and
rather have a way of appending that information
for each individual verb. By separating out the

1 We here ignore possible designs which might, for each
verb, represent it with one single entry, and account for its
many frames of occurrence either through a network of
lexical rules, or through underspecifying each entry to yield,
for each verb, exactly the range of environments it can oc-
cur in.

46

relevant part (_scAdj, _scAdv...,), and defining v-
trScpr-sSubNrg_scAdj, v-trScpr-scSuNrg_scAdv,
etc. as subtypes of v-trScpr-sSubNrg, one can in
an LKB grammar enter each verb in the lexicon
with the appropriate last part provided (and leave
them out when the verb actually can combine
with all options). In such an approach one has to
define all constellations in the relevant type file,
the gain lies in the flexibility one has in the lexi-
cal entry specifications. The same advantages
apply with regard to specification of semantic
roles.

7 Uses of the template inventories

A first possible usage of a template inventory is
that one can employ a set of example sentences
illustrating the various templates as a test suite
for the grammar. Given the systematic design of
the template list, one is assured to have a system-
atic test suite in the respects covered by the tem-
plates.

A second benefit of the design is as a basis for
building cross-linguistically matching test-suites,
to the extent that templates coincide cross-
linguistically.

For linguistic typology, once one has template
lists developed for many languages, comparison
and systematization of differences can be facili-
tated.

For linguistic description and grammar crea-
tion, having established template lists for related
languages may enhance efficiency, in providing
'check-list' starting and reference points.

All of these points will presuppose that one
can reach a commonly approved standard of no-
tation. (In principle, with different types of nota-
tion, but a one-to-one correlation between nota-
tions, similar effects may be gained, although
there is then an extra step of identifying correla-
tions.)

Currently, such a combined initiative of nota-
tion development and typological investigation is
being pursued for a group of Ghanaian languages
in consonance with the Norwegian system; cf.
(Dakubu, 2008). (For both systems, full template
and example lists can be viewed at the site type-
craft.org mentioned above.)

As still another enterprise connected to the
present template inventory may be mentioned a
partial ontology of verb construction types devel-
oped with the LKB platform (in principle export-
able also to OWL), representing all of the tem-
plates in the Norwegian inventory and some

more. For a partial description, see (Hellan
2007).

Relative to the present system, a verb class
can be identified as a set of verbs which are ac-
commodated by the same set of construction
types. (This notion of 'verb class' is related to
that employed in (Levin 1993), which is based
on alternations between construction types. An
alternation, such as the 'spray-load alternation',
can be viewed as a pair of construction types in
which a number of verbs can participate, typi-
cally with rather similar semantics, highlighting
– by a ‘minimal pair’ technique - semantic prop-
erties of the constructions chosen.)

8 More complex types

In its current version, the system does not in-
clude 'derived' constructions, of which in Nor-
wegian passive constructions would be the main
instance. As a prerequisite for a notational sys-
tem for derivation, systems will first be made for
selected Bantu and Ethio-Semitic languages (rep-
resenting future development)

Possibly also of a derivational nature, but here
treated as basic patterns, are 'Secondary predi-
cate' constructions, a few of which were dis-
cussed above. To indicate where the Norwegian
label inventory probably reaches its peak of
complexity, we give a brief resymé of the pa-
rameters involved in these constructions, and the
more complex labels employed.

The secondary predicate (henceforth: secpred)
can relate to the main predicate either as the con-
tent of a propositional attitude or perception, or
as concurring in time, or as the causee of a causa-
tion. In the latter case, either an event is por-
trayed as the cause (indicated by the substring
….Cse), or an entity. In the former case, the
causing event can have from zero to two partici-
pants, and when one or two, one can be implicit.
What can never be implicit is the entity of which
the secpred is predicated: it may occur as subject
or object, and in either case either realizing this
grammatical function by itself (in which case the
function is 'non-argument'), or sharing it with a
participant of the causing event (in which case
the function has 'argument' status). The following
slot 3 labels serve to encode the various possi-
bilities:

scObArgConcurr (he drank the coffee

warm)

47

scObNrgRes (he made me sick): Of the
causing event, only the participant denoted
by the subject is specified.
scSuArgCse (kaffen koker bort 'the coffee

boils away'): The matrix verb (together with
its argument subject) expresses part of the
description of the causing event.
scObArgCse (han sparket ballen flat 'he

kicked the ball flat'): The secondary predi-
cate is predicated of an argument object,
and the matrix verb (together with its ob-
ject) expresses part of the causing event.
scSuNrgCse (landsbyen snør ned 'the vil-

lage snows down'): The secondary predicate
is predicated of a non-argument subject,
and the matrix verb expresses part of the
causing event.
scObNrgCse (han sang rommet tomt 'he

sang the room empty'): The secondary predi-
cate is predicated of a non-argument ob-
ject, and the matrix verb (together with its
subject) expresses part of the causing
event.

In dealing with typologically different lan-
guages, it is not a priori given what construc-
tional template options may present them-
selves (see Dakubu op.cit. for discussion of
some Volta Basin languages). Whatever these
additional types may be, in designing labels,
one probably should not exceed the complex-
ity of the labels just presented.

9 Conclusion

With an encoding of a construction type's argu-
ment structure and semantics which is probably
representative of what one may want to expose,
each template in the system presented here is by
itself as compressed as can be, which gives the
template structure some interest by itself. How-
ever, it is through the totality of templates, and
through the design by which they can be easily
enumerated, compared and computed, that the
system presented may be a contribution to
grammar engineering and language typology
alike. While the system reflects such ambitions,
it is still in an initial state of deployment both in
grammar engineering and typology, and its po-
tential value will reside in the extent to which it
will be used, and receive feedback for usability.

References
Beermann, Dorothee and Lars Hellan. 2004. A treat-

ment of directionals in two implemented HPSG
grammars. In St. Müller (ed) Proceedings of the
HPSG04 Conference, CSLI Publications
/http://csli-publications.stanford.edu/

Bender, Emily M., Dan Flickinger, and Stephan
Oepen. 2002. The Grammar Matrix: An open-
source starter kit for the rapid development of
cross-linguistically consistent broad-coverage pre-
cision grammars. In Proceedings of the Workshop
on Grammar Engineering and Evaluation, Coling
2002, Taipei.

Butt, Miriam, Tracy Holloway King, Maria-Eugenia
Nini and Frederique Segond. 1999. A Grammar-
writer's Cookbook. Stanford: CSLI Publications.

Copestake, Ann. 2002. Implementing Typed Feature
Structure Grammars. CSLI Publications, Stanford.

Dakubu, Mary E. K. 2008. The Construction label
project: a tool for typological study. Presented at
West African Languages Congress (WALC), Win-
neba, July 2008.

Flickinger, Daniel, John Nerbonne, Ivan A. Sag, and
Thomas Wassow. 1987. Toward Evaluation of
NLP Systems. Technical report. Hewlett-Packard
Laboratories. Distributed at the 24th Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL).

Hellan, Lars. 2007. On 'Deep Evaluation' for Individ-
ual Computational Grammars and for Cross-
Framework Comparison. In: T.H. King and E. M.
Bender (eds) Proceedings of the GEAF 2007
Workshop. CSLI Studies in Computational Lin-
guistics ONLINE. CSLI Publications. http://csli-
publications.stanford.edu/

Hellan, Lars., Lars Johnsen and Anneliese Pitz. 1989.
TROLL. Ms., NTNU

Lehmann, Sabine., S. Oepen, S. Regier-Prost, K. Net-
ter, V. Lux, J. Klein, K. Falkedal, F. Fouvry, D. Es-
tival, E. Dauphin, H. Compagnion ,J. Baur, L. Bal-
kan, D. Arnold. 1996. Test Suites for Natural Lan-
guage Processing. Proceedings of COLING 16, p.
711-16.

Levin, Beth. 1993. English Verb Classes and Alterna-
tions: A Preliminary Investigation. University of
Chicago Press.

Smith, Carlota. 1991, 1997. The Parameter of Aspect.
Kluwer Publishers, Dordrecht.

48

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 49–56
Manchester, August 2008

Designing Testsuites for Grammar-based Systems in Applications

Valeria de Paiva
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304 USA

valeria.paiva@gmail.com

Tracy Holloway King
Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304 USA
thking@parc.com

Abstract

In complex grammar-based systems, even
small changes may have an unforeseeable
impact on overall system performance. Re-
gression testing of the system and its com-
ponents becomes crucial for the grammar
engineers developing the system. As part
of this regression testing, the testsuites
themselves must be designed to accurately
assess coverage and progress and to help
rapidly identify problems. We describe
a system of passage-query pairs divided
into three types of phenomenon-based test-
suites (sanity, query, basic correct). These
allow for rapid development and for spe-
cific coverage assessment. In addition,
real-world testsuites allow for overall per-
formance and coverage assessment. These
testsuites are used in conjunction with the
more traditional representation-based re-
gression testsuites used by grammar engi-
neers.

1 Introduction

In complex grammar-based systems, even small
changes may have an unforeseeable impact on
overall system performance.1 Systematic regres-
sion testing helps grammar engineers to track
progress, and to recognize and correct shortcom-
ings in linguistic rule sets. It is also an essential tool

c 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1We would like to thank Rowan Nairn for his design and
implementation of the regression platform that runs these test-
suites. We would also like to thank the PARC Natural Lan-
guage Theory and Technology group for their work with these
testsuites and their comments on this paper.

for assessing overall system status in terms of task
and runtime performance.

As discussed in (Chatzichrisafis et al., 2007),
regression testing for grammar-based systems in-
volves two phases. The first includes systematic
testing of the grammar rule sets during their de-
velopment. This is the part of regression testing
that grammar engineers are generally most familiar
with. The second phase involves the deployment
of the grammar in a system and the regression test-
ing of the grammar as a part of the whole system.
This allows the grammar engineer to see whether
changes have any effect on the system, positive or
negative. In addition, the results of regression test-
ing in the system allow a level of abstraction away
from the details of the grammar output, which can
ease maintenance of the regression testsuites so
that the grammar engineers do not need to change
the gold standard annotation every time an interme-
diate level of representation changes.

In this paper, we focus on the design of testsuites
for grammar-based systems, using a question-
answering system as a model. In particular, we are
interested in what types of testsuites allow for rapid
development and efficient debugging.

1.1 The Question-Answering System

To anchor the discussion, we focus on regression
testsuites designed for a grammar-based question-
answering system (Bobrow et al., 2007). The
Bridge system uses the XLE (Crouch et al., 2008)
parser to produce syntactic structures and then the
XLE ordered rewrite system to produce linguistic
semantics (Crouch and King, 2006) and abstract
knowledge representations. Abstract knowledge
representations for passages and queries are pro-
cessed by an entailment and contradiction detec-
tion system which determines whether the query is

49

entailed, contradicted, or neither by the passage.
Entailment and contradiction detection between

passages and queries is a task well suited to regres-
sion testing. There are generally only two or three
possible answers given a passage and a query: en-
tails, contradicts or neither (or in the looser case:
relevant or irrelevant). Wh-questions (section 5.1)
receive a YES answer if an alignment is found be-
tween the wh-word in the query and an appropriate
part of the passage representation; in this case, the
proposed alignment is returned as well as the YES

answer. This is particularly important for who and
what questions where more than one entity in the
passage might align with the wh-word.

From the standpoint of regression testing, two
important aspects of the question-answering appli-
cation are:

(1) The correct answer for a given pair is indepen-
dent of the representations used by the system
and even of which system is used.

(2) The passage-query pairs with answers can be
constructed by someone who does not know
the details of the system.

The first aspect means that even drastic changes in
representation will not result in having to update
the regression suites. This contrasts sharply with
regressions run against representative output which
require either that the gold standard be updated or
that the mapping from the output to that standard be
updated. The second aspect means that externally
developed testsuites (e.g. FraCaS (Cooper et al.,
1996), Pascal RTE (Sekine et al., 2007)) can eas-
ily be incorporated into the regression testing and
that grammar engineers can rapidly add new test-
suites, even if they do not have experience with the
internal structure of the system. These aspects also
mean that such passage-query pairs can be used
for cross-system comparisons of coverage (Bos,
2008).

1.2 Testsuite Types

In the regression testsuites designed for the
question-answering system, the passage-query
pair testsuites are divided into two main types:
those that focus on single phenomena (section 2)
and those that use real-world passages (section
3). The phenomenon-based testsuites allow the
grammar engineer to track the behavior of the
system with respect to a given construction, such
as implicativity, noun-noun compounds, temporal

expressions, or comparatives. In contrast, the
real-world passages allow the grammar engineer
to see how the system will behave when applied
to real data, including data which the system will
encounter in applications. Such sentences tend to
stress the system in terms of basic performance
(e.g. efficiency and memory requirements for
processing of long sentences) and in terms of
interactions of different phenomena (e.g. coordi-
nation ambiguity interacting with implicativity).

In addition to the passage-query pairs, the sys-
tem includes regression over representations at
several levels of analysis (section 4). These are
limited in number, focus only on core phenomena,
and are not gold standard representations but in-
stead the best structure of the ones produced. These
are used to detect whether unintentional changes
were introduced to the representations (e.g. new
features were accidentally created).

2 Phenomenon Sets

Real-world sentences involve analysis of multiple
interacting phenomena. Longer sentences tend to
have more diverse sets of phenomena and hence
a higher chance of containing a construction that
the system does not handle well. This can lead to
frustration for grammar engineers trying to track
progress; fixing a major piece of the system can
have little or no effect on a testsuite of real-world
examples. To alleviate this frustration, we have
extensive sets of hand-crafted test examples that
are focused as much as possible on single phe-
nomenon. These include externally developed test-
suites such as the FraCaS (Cooper et al., 1996) and
HP testsuites (Nerbonne et al., 1988). Focused test-
suites are also good for quickly diagnosing prob-
lems. If all the broken examples are in the deverbal
testsuite, for example, it gives grammar engineers
a good idea of where to look for bugs.

The majority of the testsuites are organized by
syntactic and semantic phenomena and are de-
signed to test all known variants of that phe-
nomenon (see (Cohen et al., 2008) on the need
to use testsuites designed to test system coverage
as well as real-world corpora). For the question-
answering system, these include topics such as
anaphora, appositives, copulars, negation, dever-
bal nouns and adjectives, implicatives and factives,
temporals, cardinality and quantifiers, compara-
tives, possessives, context introducing nouns, and
pertainyms. These categories align with many of

50

those cited by (Bos, 2008) in his discussion of se-
mantic parser coverage. Some example passage-
query pairs for deverbal nouns are shown in (3).

(3) a. P: Ed’s abdication of the throne was wel-
come.
Q: Ed abdicated the throne.
A: YES

b. P: Ed’s abdication was welcome.
Q: Ed abdicated.
A: YES

c. P: Ed is an abdicator.
Q: Ed abdicated.
A: YES

Each of the phenomena has three sets of test-
suites associated with it. Sanity sets (section 2.1)
match a passage against itself. The motivation be-
hind this is that a passage should generally entail
itself and that if the system cannot capture this en-
tailment, something is wrong. Query sets (sec-
tion 2.2) match the passage against query versions
of the passage. The simplest form of this is to
have a polarity question formed from the passage.
More complex versions involve negative polarity
questions, questions with different adjuncts or ar-
gument structures, and questions with synonyms or
antonyms. Basic correct sets (section 2.3) are se-
lected passage-query pairs in which the system is
known to obtain the correct answer for the correct
reason. The idea behind these sets is that they can
be run immediately by the grammar engineer af-
ter making any changes and the results should be
100% correct: any mistakes indicates a problem in-
troduced by the grammar engineer’s changes.

2.1 Sanity Sets

The entailment and contradiction detection part
of the system is tested in isolation by matching
queries against themselves. Some example sanity
pairs from the copula testsuite are shown in (4).

(4) a. P: A boy is tall.
Q: A boy is tall.
A: YES

b. P: A girl was the hero.
Q: A girl was the hero.
A: YES

c. P: The boy is in the garden.
Q: The boy is in the garden.
A: YES

d. P: The boy is not in the garden.
Q: The boy is not in the garden.
A: YES

Note that queries in the question-answering sys-
tem do not have to be syntactically interrogative.
This allows the sanity pairs to be processed by
the same mechanism that processes passage-query
pairs with syntactically interrogative queries.

The sanity check testsuites are largely composed
of simple, hand-crafted examples of all the syntac-
tic and semantic patterns that the system is known
to cover. This minimal check ensures that at least
identical representations trigger an entailment.

2.2 Query Sets

The query sets form the bulk of the regression
sets. The query sets comprise passages of the types
found in the sanity sets, but with more complex
queries. The simplest form of these is to form the
polarity question from the passage, as in (5). More
complex queries can be formed by switching the
polarity from the passage to the query, as in (6).

(5) a. P: A boy is tall.
Q: Is a boy tall?
A: YES

b. P: A girl was the hero.
Q: Was a girl the hero?
A: YES

(6) P: The boy is not in the garden.
Q: Is the boy in the garden?
A: NO

To form more complex pairs, adjuncts and ar-
gument structure can be altered from the passage
to the query. These have to be checked carefully
to ensure that the correct answer is coded for the
pair since entailment relations are highly sensitive
to such changes. Some examples are shown in
(7). Alternations such as those in (7c) are crucial
for testing implicativity, which plays a key role in
question answering.

(7) a. P: An older man hopped.
Q: A man hopped.
A: YES

b. P: John broke the box.
Q: The box broke.
A: YES

51

c. P: Ed admitted that Mary arrived.
Q: Mary arrived.
A: YES

A similar type of alteration of the query is to
substitute synonyms for items in the passage, as in
(8). This is currently done less systematically in the
testsuites but helps determine lexical coverage.

(8) a. P: Some governments ignore historical
facts.
Q: Some governments ignore the facts of
history.
A: YES

b. P: The boys bought some candy.
Q: The boys purchased some candy.
A: YES

In addition to the testsuites created by the
question-answering system developers, the query
sets include externally developed pairs, such as
those created for FraCaS (Cooper et al., 1996).
These testsuites also involve handcrafted passage-
query pairs, but the fact that they were developed
outside of the system helps to detect gaps in sys-
tem coverage. In addition, some of the FraCaS
pairs involve multi-sentence passages. Since the
sentences in these passages are very short, they are
appropriate for inclusion in the phenomenon-based
testsuites. Some externally developed testsuites
such as the HP testsuite (Nerbonne et al., 1988) do
not involve passage-query pairs but the same tech-
niques used by the grammar engineers to create the
sanity and the query sets are applied to these test-
suites as well.

2.3 Basic Correct Sets

A subset of the query sets described above are used
to form a core set of basic correct testsuites. These
testsuites contain passage-query pairs that the de-
velopers have determined the system is answering
correctly for the correct reason.

Since these testsuites are run each time the gram-
mar engineer makes a change to the system be-
fore checking the changes into the version control
repository, it is essential that the basic correct test-
suites can be run quickly. Each pair is processed
rapidly because the query sets are composed of
simple passages that focus on a given phenomenon.
In addition, only one or two representatives of any
given construction is included in the basic correct

set; that is, the sanity sets and query sets may con-
tain many pairs testing copular constructions with
adjectival complements, but only a small subset of
these are included in the basic correct set. In the
question-answering system, 375 passage-query
pairs are in the basic correct sets; it takes less than
six minutes to run the full set on standard machines.
In addition, since the basic correct sets are divided
by phenomena, developers can first run those test-
suites which relate directly to the phenomena they
have been working on.

Examining the basic correct sets gives an
overview of the expected base coverage of the
system. In addition, since all of the pairs are
working for the correct reason when they are
added to the basic correct set, any breakage is a
sign that an error has been introduced into the
system. It is important to fix these immediately so
that grammar engineers working on other parts of
the system can use the basic correct sets to assess
the impact of their changes on the system.

3 Real-world Sets

The ultimate goal of the system is to work on real-
world texts used in the application. So, tests of
those texts are important for assessing progress on
naturally occurring data. These testsuites are cre-
ated by extracting sentences from the corpora ex-
pected to be used in the run-time system, e.g. news-
paper text or the Wikipedia.2 Queries are then cre-
ated by hand for these sentences. Once the system
is being used by non-developers, queries posed by
those users can be incorporated into the testsuites to
ensure that the real-world sets have an appropriate
range of queries. Currently, the system uses a com-
bination of hand-crafted queries and queries from
the RTE data which were hand-crafted, but not by
the question-answering system developers. Some
examples are shown in (9).

(9) a. P: The interest of the automotive industry
increases and the first amplifier project, a
four-channel output module for the Ger-
man car manufacturer, Porsche, is fin-
ished.
Q: Porsche is a German car manufacturer.
A: YES

b. P: The Royal Navy servicemen being held
captive by Iran are expected to be freed to-

2If the application involves corpora containing ungram-
matical input (e.g. email messages), it is important to include
both real-world and phenomenon sets for such data.

52

day.
Q: British servicemen detained
A: YES

c. P: “I guess you have to expect this in
a growing community,” said Mardelle
Kean, who lives across the street from
John Joseph Famalaro, charged in the
death of Denise A. Huber, who was 23
when she disappeared in 1991.
Q: John J. Famalaro is accused of having
killed Denise A. Huber.
A: YES

These real-world passages are not generally use-
ful for debugging during the development cycle.
However, they serve to track progress over time,
to see where remaining gaps may be, and to pro-
vide an indication of system performance in appli-
cations. For example, the passage-query pairs can
be roughly divided as to those using just linguis-
tic meaning, those using logical reasoning, those
requiring plausible reasoning, and finally those re-
quiring world knowledge. Although the bound-
aries between these are not always clear (Sekine et
al., 2007), having a rough division helps in guiding
development.

4 Regression on Representations

There has been significant work on regression test-
ing of a system’s output representations (Nerbonne
et al., 1988; Cooper et al., 1996; Lehmann et al.,
1996; Oepen et al., 1998; Oepen et al., 2002): de-
signing of the testsuites, running and maintaining
them, and tracking the results over time. As men-
tioned in the previous discussion, for a complex
system such as a question-answering system, hav-
ing regression testing that depends on the perfor-
mance of the system rather than on details of the
representations has significant advantages for de-
velopment because the regression testsuites do not
have to be redone whenever there is a change to the
system and because the gold standard items (i.e.,
the passage-query pairs with answers) can be cre-
ated by those less familiar with the details of the
system.

However, having a small but representative set
of banked representations at each major level of
system output has proven useful for detecting un-
intended changes that may not immediately disturb
the passage-query pairs.3 This is especially the case

3In addition to running regression tests against representa-

with the sanity sets and the most basic query sets:
with these the query is identical to or very closely
resembles the passage so that changes to the repre-
sentation on the passage side will also be in the rep-
resentation on the query side and hence may not be
detected as erroneous by the entailment and contra-
diction detection.

For the question-answering system, 1200 sen-
tences covering basic syntactic and semantic types
form a testsuite for representations. The best rep-
resentation currently produced by the system is
stored for the syntax, the linguistic semantics, and
the abstract knowledge representation levels. To
allow for greater stability over time and less sen-
sitivity to minor feature changes in the rule sets, it
is possible to bank only the most important features
in the representations may, e.g. the core predicate-
argument structure. The banked representations
are then compared with the output of the system
after any changes are made. Any differences are
examined to see whether they are intentional. If
they were intended, then new representations need
to be banked for the ones that have changed (see
(Rosén et al., 2005) for ways to speed up this pro-
cess by use of discrimants). If the differences were
not intended, then the developer knows which con-
structions were affected by their changes and can
more easily determine where in the system the er-
ror might have been introduced.

5 Discussion and Conclusions

The testsuites discussed above are continually un-
der development. We believe that the basic ideas
behind these testsuites should be applicable to
other grammar-based systems used in applications.
The passage-query pairs are most applicable to
question-answering and search/retrieval systems,
but aspects of the approach can apply to other sys-
tems.

Some issues that remain for the testsuites dis-
cussed above are extending the use of wh-questions
in passage-query pairs, the division between devel-
opment and test sets, and the incorporation of con-
text into the testing.

5.1 Wh-questions

The testsuites as described have not yet been sys-
tematically extended to wh-questions. The query

tions, the syntax, semantics, and abstract knowledge represen-
tation have type declarations (Crouch and King, 2008) which
help to detect malformed representations.

53

sets can be easily extended to involve some substi-
tution of wh-phrases for arguments and adjuncts in
the passage, as in (10).

(10) a. P: John broke the box.
Q: Who broke the box?

b. P: John broke the box.
Q: What did John break?

c. P: John broke the box.
Q: What broke?

d. P: John broke the box.
Q: What did John do?

e. P: We went to John’s party last night.
Q: Who went to John’s party?

There is a long-standing issue as to how to eval-
uate responses to wh-questions (see (Voorhees and
Tice, 2000a; Voorhees and Tice, 2000b) and the
TREC question-answering task web pages for dis-
cussion and data). For example, in (10a) most peo-
ple would agree that the answer should be John, al-
though there may be less agreement as to whether
John broke the box. is an appropriate answer. In
(10b) and (10c) there is an issue as to whether the
answer should be box or the box and how to assess
partial answers. This becomes more of an issue as
the passages become more complicated, e.g. with
heavily modified nominals that serve as potential
answers. While for (10d) the passage is a good an-
swer to the question, for (10e) presumably the an-
swer should be a list of names, not simply “we”.
Obtaining such lists and deciding how complete
and appropriate they are is challenging. Since most
question-answering systems are not constrained to
polarity questions, it is important to assess per-
formance on wh-questions as the system develops.
Other, even more complicated questions, for exam-
ple how to questions are also currently out of the
scope of our testsuites.

5.2 Development vs. Testing

For development and evaluation of systems, test-
suites are usually divided into development sets,
which the system developers examine in detail, and
test sets, which represent data unseen by the de-
velopers.4 To a limited extent, the real-world sets

4The usual division is between training, development, and
test sets, with the training set generally being much larger than
the development and test sets. For rule based systems, the
training/development distinction is often irrelevant, and so a

serve as a form of test set since they reflect the per-
formance of the system on real data and are of-
ten not examined in detail for why any given pair
fails to parse. However, the testsuites described
above are all treated as development sets. There are
no reserved phenomenon-based testsuites for blind
testing of the system’s performance on each phe-
nomenon, although there are real-world testsuites
reserved as test sets.

If a given testsuite was created all at once, a ran-
dom sampling of it could be held out as a test set.
However, since there are often only a few pairs per
construction or lexical item, it is unclear whether
this approach would give a fair view of system cov-
erage. In addition, for rule-based systems such
as the syntax and semantics used in the question-
answering system, the pairs are often constructed
based on the rules and lexicons as they were being
developed. As such, they more closely match the
coverage of the system than if it were possible to
randomly select such pairs from external sources.

As a system is used in an application, a test set of
unseen, application-specific data becomes increas-
ingly necessary. Such sets can be created from the
use of the application: for example, queries and
returned answers with judgments as to correctness
can provide seeds for test sets, as well as for ex-
tending the phenomenon-based and real-world de-
velopment testsuites.

5.3 Context

The real sentences that a question-answering sys-
tem would use to answer questions appear in a
larger textual and metadata context. This context
provides information as to the resolution of pro-
nouns, temporal expressions such as today and this
morning, ellipsis, etc. The passage-query pairs in
the testsuites do not accurately reflect how well the
system handles the integration of context. Small
two sentence passages can be used to, for example,
test anaphora resolution, as shown in (11).

(11) P: Mary hopped. Then, she skipped.
Q: Did Mary skip?
A: YES

Even in this isolated example, the answer can be
construed as being UNKNOWN since it is possible,
although unlikely, that she resolves to some other
entity. This type of problem is pervasive in using

distinction is made between those sets used in the development
of the system and those unseen sets used to test and evaluate
the system’s performance.

54

simple passage-query pairs for system regression
testing.

A further issue with testing phenomena linked to
context, such as anaphora resolution, is that they
are usually very complex and can result in signifi-
cant ambiguity. When used on real-world texts, ef-
ficiency can be a serious issue which this type of
more isolated testing does not systematically ex-
plore. As a result of this, the anaphora testsuites
must be more carefully constructed to take advan-
tage of isolated, simpler pairs when possible but
to also contain progressively more complicated ex-
amples that eventually become real-world pairs.

5.4 Summary Conclusions

In complex grammar-based systems, even small
changes may have an unforeseeable impact on sys-
tem performance. Regression testing of the system
and its components becomes crucial for the gram-
mar engineers developing the system.

A key part of regression testing is the testsuites
themselves, which must be designed to accurately
assess coverage and progress and to help to rapidly
identify problems. For broad-coverage grammars,
such as those used in open domain applications like
consumer search and question answering, testsuite
design is particularly important to ensure adequate
coverage of basic linguistic (e.g. syntactic and se-
mantic) phenomena as well as application specific
phenomena (e.g. interpretation of markup, incor-
poration of metadata).

We described a system of passage-query pairs
divided into three types of phenomenon-based test-
suites (sanity, query, basic correct). These allow
for rapid development and specific coverage as-
sessment. In addition, real-world testsuites allow
for overall performance and coverage assessment.
More work is needed to find a systematic way to
provide “stepping stones” in terms of complexity
between phenomenon-based and real-world test-
suites.

These testsuites are used in conjunction with the
more traditional representation-based regression
testsuites used by grammar engineers. These
representation-based testsuites use the same
phenomenon-based approach in order to assess
coverage and pinpoint problems as efficiently as
possible.

References

Bobrow, Daniel G., Bob Cheslow, Cleo Condoravdi,

Lauri Karttunen, Tracy Holloway King, Rowan
Nairn, Valeria de Paiva, Charlotte Price, and An-
nie Zaenen. 2007. PARC’s bridge and ques-
tion answering system. In King, Tracy Holloway
and Emily M. Bender, editors, Grammar Engineer-
ing Across Frameworks, pages 46–66. CSLI Publica-
tions.

Bos, Johan. 2008. Let’s not argue about semantics. In
Proceedings of LREC.

Chatzichrisafis, Nikos, Dick Crouch, Tracy Holloway
King, Rowan Nairn, Manny Rayner, and Mari-
anne Santaholma. 2007. Regression testing
for grammar-based systems. In King, Tracy Hol-
loway and Emily M. Bender, editors, Proceedings
of the Grammar Engineering Across Frameworks
(GEAF07) Workshop, pages 128–143. CSLI Publica-
tions.

Cohen, K. Bretonnel, William A. Baumgartner Jr., and
Lawrence Hunter. 2008. Software testing and the
naturally occurring data assumption in natural lan-
guage processing. In Software Engineering, Testing,
and Quality Assurance for Natural Language Pro-
cessing, pages 23–30. Association for Computational
Linguistics.

Cooper, Robin, Dick Crouch, Jan van Eijck, Chris
Fox, Josef van Genabith, Jan Jaspars, Hans Kamp,
David Milward, Manfred Pinkal, Massimo Poesio,
and Steve Pulman. 1996. Using the framework.
FraCas: A Framework for Computational Semantics
(LRE 62-051).

Crouch, Dick and Tracy Holloway King. 2006. Seman-
tics via f-structure rewriting. In Butt, Miriam and
Tracy Holloway King, editors, LFG06 Proceedings,
pages 145–165. CSLI Publications.

Crouch, Dick and Tracy Holloway King. 2008. Type-
checking in formally non-typed systems. In Software
Engineering, Testing, and Quality Assurance for Nat-
ural Language Processing, pages 3–4. Association
for Computational Linguistics.

Crouch, Dick, Mary Dalrymple, Ron Ka-
plan, Tracy King, John Maxwell, and Paula
Newman. 2008. XLE documentation.
http://www2.parc.com/isl/groups/nltt/xle/doc/.

Lehmann, Sabine, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, Veronika Lux, Judith Klein,
Kirsten Falkedal, Frederik Fouvry, Dominique Esti-
val, Eva Dauphin, Hervé Compagnion, Judith Baur,
Lorna Balkan, and Doug Arnold. 1996. TSNLP —
Test Suites for Natural Language Processing. In Pro-
ceedings of COLING 1996.

Nerbonne, John, Dan Flickinger, and Tom Wasow.
1988. The HP Labs natural language evaluation
tool. In Proceedings of the Workshop on Evaluation
of Natural Language Processing Systems.

55

Oepen, Stephan, Klaus Netter, and Judith Klein. 1998.
TSNLP — Test Suites for Natural Language Process-
ing. In Nerbonne, John, editor, Linguistic Databases,
pages 13–36. CSLI.

Oepen, Stephan, Dan Flickinger, Kristina Toutanova,
and Chris D. Manning. 2002. LinGO Redwoods. a
rich and dynamic treebank for HPSG. In Proceed-
ings of The First Workshop on Treebanks and Lin-
guistic Theories, pages 139–149.

Rosén, Victoria, Koenraad de Smedt, Helge Dyvik, and
Paul Meurer. 2005. TREPIL: Developing methods
and tools for multilevel treebank construction. In
Proceedings of The Fourth Workshop on Treebanks
and Linguistic Theories.

Sekine, Satoshi, Kentaro Inui, Ido Dagan, Bill Dolan,
Danilo Giampiccolo, and Bernardo Magnini, editors.
2007. Proceedings of the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing. Association
for Computational Linguistics, Prague, June.

Voorhees, Ellen and Dawn Tice. 2000a. Building a
question answering test collection. In Proceedings
of SIGIR-2000, pages 200–207.

Voorhees, Ellen and Dawn Tice. 2000b. The TREC-8
question answering track evaluation. In Proceedings
8th Text REtrieval Conference (TREC-8), pages 83–
105.

56

Coling 2008: Proceedings of the workshop on Grammar Engineering Across Frameworks, pages 57–64
Manchester, August 2008

Towards Domain-Independent Deep Linguistic Processing:
Ensuring Portability and Re-Usability of Lexicalised Grammars

Kostadin Cholakov†, Valia Kordoni†‡, Yi Zhang†‡

† Department of Computational Linguistics, Saarland University, Germany
‡ LT-Lab, DFKI GmbH, Germany

{kostadin,kordoni,yzhang}@coli.uni-sb.de

Abstract

In this paper we illustrate and underline
the importance of making detailed linguis-
tic information a central part of the pro-
cess of automatic acquisition of large-scale
lexicons as a means for enhancing robust-
ness and at the same time ensuring main-
tainability and re-usability ofdeep lexi-
calised grammars. Using the error mining
techniques proposed in (van Noord, 2004)
we show very convincingly that the main
hindrance to portability ofdeeplexicalised
grammars to domains other than the ones
originally developed in, as well as to ro-
bustness of systems using such grammars
is low lexical coverage. To this effect,
we develop linguistically-driven methods
that use detailed morphosyntactic informa-
tion to automatically enhance the perfor-
mance ofdeeplexicalised grammars main-
taining at the same time their usually al-
ready achieved high linguistic quality.

1 Introduction

We focus on enhancing robustness and ensur-
ing maintainability and re-usability for a large-
scaledeepgrammar of German (GG; (Crysmann,
2003)), developed in the framework of Head-
driven Phrase Structure Grammar (HPSG). Specif-
ically, we show that the incorporation of detailed
linguistic information into the process of auto-
matic extension of the lexicon of such a language
resource enhances its performance and provides
linguistically sound and more informative predic-
tions which bring a bigger benefit for the grammar
when employed in practical real-life applications.

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

In recent years, various techniques and re-
sources have been developed in order to improve
robustness of deep grammars for real-life applica-
tions in various domains. Nevertheless,low cover-
ageof such grammars remains the main hindrance
to their employment in open domain natural lan-
guage processing. (Baldwin et al., 2004), as well
as (van Noord, 2004) and (Zhang and Kordoni,
2006) have clearly shown that the majority of pars-
ing failures with large-scale deep grammars are
caused by missing or wrong entries in the lexicons
accompanying grammars like the aforementioned
ones. Based on these findings, it has become clear
that it is crucial to explore and develop efficient
methods forautomated (Deep) Lexical Acquisition
(henceforward (D)LA), the process of automati-
cally recovering missing entries in the lexicons of
deep grammars.

Recently, various high-quality DLA approaches
have been proposed. (Baldwin, 2005), as well
as (Zhang and Kordoni, 2006), (van de Cruys,
2006) and (Nicholson et al., 2008) describe effi-
cient methods towards the task of lexicon acqui-
sition for large-scale deep grammars for English,
Dutch and German. They treat DLA as a classi-
fication task and make use of various robust and
efficient machine learning techniques to perform
the acquisition process.

However, it is our claim that to achieve bet-
ter and more practically useful results, apart from
good learning algorithms, we also need toincorpo-
rate into the learning process fine-grained linguis-
tic information which deep grammars inherently
include and provide for. As we clearly show in
the following, it is not sufficient to only develop
and use good and complicated classification algo-
rithms. We must look at the detailed linguistic in-
formation that is already included and provided for
by the grammar itself and try to capture and make
as much use of it as possible, for this is the infor-
mation we aim at learning when performing DLA.

57

In this way, the learning process is facilitated and
at the same time it is as much as possible ensured
that its outcome be linguistically more informative
and, thus, practically more useful.

We use the GG deep grammar for the work we
present in this paper because German is a language
with rich morphology and free word order, which
exhibits a range of interesting linguistic phenom-
ena, a fair number of which are already analysed in
the GG. Thus, the grammar is a valuable linguistic
resource since it provides linguistically sound and
detailed analyses of these phenomena. Apart from
the interesting syntactic structures, though, the lex-
ical entries in the lexicon of the aforementioned
grammar also exhibit a rich and complicated struc-
ture and contain various important linguistic con-
straints. Based on our claim above, in this pa-
per we show how the information these constraints
provide can be captured and used inlinguistically-
motivatedDLA methods which we propose here.
We then apply our approach on real-life data and
observe the impact it has on the the grammar cov-
erage and its practical application. In this way we
try to prove our assumption that the linguistic in-
formation we incorporate into our DLA methods
is vital for the good performance of the acquisition
process and for the maintainability and re-usability
of the grammar, as well for its successful practical
application.

The remainder of the paper is organised as fol-
lows. In Section 2 we show that low (lexical) cov-
erage is a serious issue for the GG when employed
for open domain natural language processing. Sec-
tion 3 presents the types in the lexical architecture
of the GG that are considered to be relevant for the
purposes of our experiments. Section 4 describes
the extensive linguistic analysis we perform in or-
der to deal with the linguistic information these
types provide and presents the target type inven-
tory for our DLA methods. Section 5 reports on
statistical approaches towards automatic DLA and
shows the importance of a good and linguistically-
motivated feature selection. Section 6 illustrates
the practical usage of the proposed DLA methods
and their impact on grammar coverage. Section 7
concludes the paper.

2 Coverage Test with the GG

We start off adopting the automated error mining
method described in (van Noord, 2004) for iden-
tification of the major type of errors in the GG.

As an HPSG grammar, the GG is based on typed
feature structures. The GG types are strictly de-
fined within a type hierarchy. The GG also con-
tains constructional and lexical rules and a lexicon
with its entries belonging to lexical types which
are themselves defined again within the type hier-
archy. The grammar originates from (Müller and
Kasper, 2000), but continued to improve after the
end of the Verbmobil project (Wahlster, 2000) and
it currently consists of 5K types, 115 rules and the
lexicon contains approximately 35K entries. These
entries belong to 386 distinct lexical types.

In the experiments we report here two corpora
of different kind and size have been used. The
first one has been extracted from the Frankfurter
Rundschau newspaper and contains about 614K
sentences that have between 5 and 20 tokens. The
second corpus is a subset of the German part of the
Wacky project (Kilgarriff and Grefenstette, 2003).
The Wacky project aims at the creation of large
corpora for different languages, including German,
from various web sources, such as online news-
papers and magazines, legal texts, internet fora,
university and science web sites, etc. The Ger-
man part, named deWaC (Web as Corpus), con-
tains about 93M sentences and 1.65 billion tokens.
The subset used in our experiments is extracted
by randomly selecting 2.57M sentences that have
between 4 and 30 tokens. These corpora have
been chosen because it is interesting to observe
the grammar performance on a relatively balanced
newspaper corpus that does not include so many
long sentences and sophisticated linguistic con-
structions and to compare it with the performance
of the grammar on a random open domain text cor-
pus.

The sentences are fed into the PET HPSG parser
(Callmeier, 2000) with the GG loaded. The parser
has been configured with a maximum edge num-
ber limit of 100K and it is running in thebest-only
mode so that it does not exhaustively find all pos-
sible parses. The result of each sentence is marked
as one of the following four cases:

• P means at least one parse is found for the
sentence;

• L means the parser halted after the morpho-
logical analysis and was not able to construct
any lexical item for the input token;

• N means that the parser exhausted the search-
ing and was not able to parse the sentence;

58

• E means the parser reached the maximum
edge number limit and was still not able to
find a parse.

Table 1 shows the results of the experiments
with the two corpora. From these results it can

FR deWaC
Result #Sentences % #Sentences %

P 62,768 10.22% 109,498 4.3%
L 464,112 75.55% 2,328,490 90.5%
N 87,415 14.23% 134,917 5.2%
E 3 – 14 –

Total: 614,298 100% 2,572,919 100%

Table 1: Parsing results with the GG and the test
corpora

be seen that the GG has full lexical span for only
a small portion of the sentences– about 25% and
10% for the Frankfurter Rundschau and the deWaC
corpora, respectively. The output of the error min-
ing confirms our assumption that missing lexical
entries are the main problem when it comes to
robust performance of the GG and illustrates the
need for efficient DLA methods.

3 Atomic Lexical Types

Before describing the proposed DLA algorithm,
we should define what exactly is being learnt.
Most of the so calleddeepgrammars are strongly
lexicalised. As mentioned in the previous section,
the GG employs a type inheritance system and its
lexicon has a flat structure with each lexical entry
mapped onto one type in the inheritance hierarchy.
Normally, the types assigned to the lexical entries
are maximal on the type hierarchy, i.e., they do not
have any subtypes. They provide the most specific
information available for this branch of the hierar-
chy. These maximal types which the lexical entries
are mapped onto are calledatomic lexical types.
Thus, in our experiment setup, we can define the
lexicon of the grammar as being a one-to-one map-
ping from word stems to atomic lexical types. It is
this mapping which must be automatically learnt
(guessed) by the different DLA methods.

We are interested in learning open-class words,
i.e., nouns, adjectives, verbs and adverbs. We as-
sume that the close-class words are already in the
lexicon or the grammar can handle them through
various lexical rules and they are not crucial for
the grammar performance in real life applications.
Thus, for the purposes of our experiments, we con-
sider only the open-class lexical types. Moreover,

we propose aninventory of open-class lexical types
with sufficient type and token frequency. Thetype
frequency of a given lexical type is defined as
the number of lexical entries in the lexicon of the
grammar that belong to this type and thetoken fre-
quency is the number of words in some corpus that
belong to this type.

We use sentences from the Verbmobil corpus
which have been treebanked with the GG in order
to determine the token frequency and to map the
lexemes to their correct entries in the lexicon for
the purposes of the experiment. This set contains
11K sentences and about 73K tokens; this gives an
average of 6.8 words per sentence. The sentences
are taken from spoken dialogues. Hence, they are
not long and most of them do not exhibit interest-
ing linguistic properties which is a clear drawback
but currently there is no other annotated data com-
patible with the GG.

We used a type frequency threshold of 10 entries
in the lexicon and a token frequency threshold of
3 occurrences in the treebanked sentences to form
a list of relevant open-class lexical types. The re-
sulting list contains 38 atomic lexical types with a
total of 32,687 lexical entries.

4 Incorporation of Linguistic Features

However, in the case of the GG this type inventory
is not a sufficient solution. As already mentioned,
in the lexicon of the grammar much of the relevant
linguistic information is encoded not in the type
definition itself but in the form of constraints in the
feature structures of the various types. Moreover,
given that German has a rich morphology, a given
attribute may have many different values among
lexical entries of the same type and it is crucial for
the DLA process to capture all the different com-
binations. That is why we expand the identified
38 atomic lexical type definitions by including the
values of various features into them.

By doing this, we are trying to facilitate the
DLA process because, in that way, it can ‘learn’
to differentiate not only the various lexical types
but also significant morphosyntactic differences
among entries that belong to the same lexical type.
That gives the DLA methods access to much more
linguistic information and they are able to apply
more linguistically fine-tuned classification crite-
ria when deciding which lexical type the unknown
word must be assigned to. Furthermore, we en-
sure that the learning process deliver linguistically

59

Feature Values Meaning

SUBJOPT (subject options)

+ in some cases the article for the noun can be omitted
- the noun always goes with an article
+ raising verb
- non-raising verb

KEYAGR (key agreement)
– case-number-gender information for nouns
c-s-n underspecified-singular-neutral
c-p-g underspecified-plural-underspecified
... ...

(O)COMPAGR ((oblique) a-n-g, d-n-g, etc. case-number-gender information
complement – for (oblique) verb complements
agreement – case-number-gender of the modified noun (for adjectives)
(O)COMPTOPT ((oblique) – verbs can take a different number of complements
complement + the respective (oblique) complement is present
options - the respective (oblique) complement is absent

KEYFORM
– the auxiliary verb used for the formation of perfect tense
haben the auxiliary verb is ‘haben’
sein the auxiliary verb is ‘sein’

Table 2: Relevant features used for type expansion

plausible, precise and more practically useful re-
sults. The more the captured and used linguistic
information is, the better and more useful the DLA
results will be.

However, we have to avoid creating data sparse
problems. We do so by making the assumption
that not every feature could really contribute to the
classification process and by filtering out these fea-
tures that we considerirrelevant for the enhance-
ment of the DLA task. Naturally, the question
which features are to be considered relevant arises.
After performing an extensive linguistic analysis,
we have decided to take the features shown in Ta-
ble 2 into account.

We have thoroughly analysed each of these fea-
tures and selected them on the basis of their lin-
guistic meaning and their significance and contri-
bution to the DLA process. The SUBJOPT fea-
ture can be used to differentiate among nouns that
have a similar morphosyntactic behaviour but dif-
fer only in the usage of articles; 4 out of the consid-
ered 9 noun atomic lexical types do not define this
feature. Furthermore, using this feature, we can
also refine our classification within a single atomic
lexical type. For example, the entry ‘adresse-n’
(address) of the type ‘count-noun-le’1 has ‘-’ for
the SUBJOPT value, whereas the value for the en-
try ‘anbindung-n’ (connection) of the same type is
‘+’:

(1) a. Das
det.NEUT.NOM

Hotel
hotel

hat
have.3PER.SG

gute
good

Anbindung
connection

an
to

die
det.PL.ACC

öffentlichen
public

1count noun lexeme; all lexical entries in the lexicon end
with le which stands for lexeme.

Verkehrsmittel.
transportation means
‘The hotel has a good connection to public
transportation.’

b. Die
det.FEM.NOM

Anbindung
connection

an
to

Rom
Rome

mit
with

dem
det.MASC.DAT

Zug
train

ist
be.3PER.SG

gut.
good

‘The train connection to Rome is good.’

The distinction between raising and non-raising
verbs that this feature expresses is also an impor-
tant contribution to the classification process.

The case-number-gender data the KEYAGR and
(O)COMPAGR features provide allows for a bet-
ter usage of morphosyntactic information for the
purposes of DLA. Based on this data, the classifi-
cation method is able to capture words with sim-
ilar morphosyntactic behaviour and give various
indications for their syntactic nature; for instance,
if the word is a subject, direct or indirect object.
This is especially relevant and useful for languages
with rich morphology and relatively free word or-
der such as German. The same is also valid for
the (O)COMPOPT and KEYFORM features– they
allow the DLA method to successfully learn and
classify verbs with similar syntactic properties.

The values of the features are just attached to the
old type name to form a new type definition. In this
way, we ‘promote’ them and these features are now
part of the type hierarchy of the grammar which
makes them accessible for the DLA process since
this operates on the type level. For example, the
original type of the entry for the noun ‘abenteuer’
(adventure):

abenteuer-n := count-noun-le &
[[--SUBJOPT -,

60

KEYAGR c-n-n,
KEYREL "_abenteuer_n_rel",
KEYSORT situation,
MCLASS nclass-2_-u_-e]].

will becomeabenteuer-n := count-noun-le- c-n-
n when we incorporate the values of the features
SUBJOPT and KEYAGR into the original type
definition. The new expanded type inventory is
shown in Table 3.

Original Expanded
lexicon lexicon

Number of lexical types 386 485
Atomic lexical types 38 137
-nouns 9 72
-verbs 19 53
-adjectives 3 5
-adverbs 7 7

Table 3: Expanded atomic lexical types

The features we have ignored do not contribute
to the learning process and are likely to cre-
ate sparse data problems. The (O)COMPFORM
((oblique) complement form) features which de-
note dependent to verbs prepositions are not con-
sidered to be relevant. An example of OCOMP-
FORM is the lexical entry ‘begründenmit-v’ (jus-
tify with) where the feature has the preposition
‘mit’ (with) as its value. Though for German
prepositions can be considered as case markers, the
DLA has already a reliable access to case informa-
tion through the (O)COMPAGR features. More-
over, a given dependent preposition is distributed
across many types and it does not indicate clearly
which type the respective verb belongs to.

The same is valid for the feature VCOPMFORM
(verb complement form) that denotes the separa-
ble particle (if present) of the verb in question.
An example of this feature is the lexical entry
‘abdecken-v’ (to cover) where VCOMPFORM has
the separable particle ‘ab’ as its value. However,
treating such discontinuous verb-particle combina-
tions as a lexical unit could help for the acquisi-
tion of subcategorizational frames. For example,
anhören(to listen to someone/something) takes an
accusative NP as argument,zuhören (to listen to)
takes a dative NP andaufhören (to stop, to termi-
nate) takes an infinitival complement. Thus, ignor-
ing VCOMPFORM could be a hindrance for the
acquisition of some verb types2.

We have also tried to incorporate some sort of
semantic information into the expanded atomic

2We thank the anonymous reviewer who pointed this out
for us.

lexical type definitions by also attaching the
KEYSORT semantic feature to them. KEYSORT
defines a certain situation semantics category
(‘anything’, ‘action sit’, ‘mental sit’) which the
lexical entry belongs to. However, this has caused
again a sparse data problem because the semantic
classification is too specific and, thus, the number
of possible classes is too large. Moreover, seman-
tic classification is done based on completely dif-
ferent criteria and it cannot be directly linked to the
morphosyntactic features. That is why we have fi-
nally excluded this feature, as well.

Armed with this elaborate target type inventory,
we now proceed with the DLA experiments for the
GG.

5 DLA Experiments with the GG

For our DLA experiments, we adopted the Max-
imum Entropy based model described in (Zhang
and Kordoni, 2006), which has been applied to the
ERG (Copestake and Flickinger, 2000), a wide-
coverage HPSG grammar for English. For the pro-
posed prediction model, the probability of a lexical
type t given an unknown word and its contextc is:

(2) p(t|c) =
exp(

∑
i
Θifi(t,c))∑

t′∈T
exp(

∑
i
Θifi(t′,c))

wherefi(t, c) may encode arbitrary characteristics
of the context andΘi is a weighting factor esti-
mated on a training corpus. Our experiments have
been performed with the feature set shown in Table
4.

Features
the prefix of the unknown word

(length is less or equal 4)
the suffix of the unknown word

(length is less or equal 4)
the 2 words before and after the unknown word
the 2 types before and after the unknown word

Table 4: Features for the DLA experiment

We have also experimented with prefix and suf-
fix lengths up to 3. To evaluate the contribution
of various features and the overall precision of the
ME-based unknown word prediction model, we
have done a 10-fold cross validation on the Verb-
mobil treebanked data. For each fold, words that
do not occur in the training partition are assumed
to be unknown and are temporarily removed from
the lexicon.

For comparison, we have also built a baseline
model that always assigns a majority type to each

61

unknown word according to its POS tag. Specifi-
cally, we tag the input sentence with a small POS
tagset. It is then mapped to a most popular lexi-
cal type for that POS. Table 5 shows the relevant
mappings.

POS Majority lexical type
noun count-noun-le- c-n-f
verb trans-nerg-str-verb-lehaben-auxf
adj adj-non-prd-le
adv intersect-adv-le

Table 5: POS tags to lexical types mapping

Again for comparison, we have built another
simple baseline model using theTnT POS tagger
(Brants, 2000). TnT is a general-purpose HMM-
based trigram tagger. We have trained the tagging
models with all the lexical types as the tagset. The
tagger tags the whole sentence but only the output
tags for the unknown words are taken to generate
lexical entries and to be considered for the eval-
uation. The precisions of the different prediction
models are given in Table 6.

The baseline achieves a precision of about 38%
and the POS tagger outperforms it by nearly 10%.
These results can be explained by the nature of the
Verbmobil data. The vast majority of the adjec-
tives and the adverbs in the sentences belong to
the majority types shown in Table 5 and, thus, the
baseline model assigns the correct lexical types to
almost every adjective and adverb, which brings
up the overall precision. The short sentence length
facilitates the tagger extremely, for TnT, as an
HMM-based tagger, makes predictions based on
the whole sentence. The longer the sentences are,
the more challenging the tagging task for TnT is.
The results of these models clearly show that the
task of unknown word type prediction for deep
grammars is non-trivial.

Our ME-based models give the best results in
terms of precision. However, verbs and adverbs
remain extremely difficult for classification. The
simple morphological features we use in the ME
model are not good enough for making good pre-
dictions for verbs. Morphology cannot capture
such purely syntactic features as subcategoriza-
tional frames, for example.

While the errors for verbs are pretty random,
there is one major type of wrong predictions for
adverbs. Most of them are correctly predicted as
such but they receive the majority type for adverbs,
namely ‘intersect-adv-le’. Since most of the ad-
verbs in the Verbmobil data we are using belong

to the majority adverb type, the predictor is biased
towards assigning it to the unknown words which
have been identified as adverbs.

The results in the top half of the Table 6 show
that morphological features are already very good
for predicting adjectives. In contrast with ad-
verbs, adjectives occur in pretty limited number of
contexts. Moreover, when dealing with morpho-
logically rich languages such as German, adjec-
tives are typically marked by specific affixes cor-
responding to a specific case-number-gender com-
bination. Since we have incorporated this kind of
linguistic information into our target lexical type
definitions, this significantly helps the prediction
process based on morphological features.

Surprisingly, nouns seem to be hard to learn.
Apparently, the vast majority of the wrong pre-
dictions have been made for nouns that belong to
the expanded variants of the lexical type ‘count-
noun-le’ which is also the most common non-
expanded lexical type for nouns in the original lex-
icon. Many nouns have been assigned the right lex-
ical type except for the gender:

(3) Betrieb(business, company, enterprise)
prediction:count-noun-le- c-n-n
correct type:count-noun-le- c-n-m

According to the strictexact-matchevaluate mea-
sure we use, such cases are considered to be errors
because the predicted lexical type does not match
the type of the lexical entry in the lexicon.

The low numbers for verbs and adverbs show
clearly that we also need to incorporate some sort
of syntactic information into the prediction model.
We adopt the method described in (Zhang and Ko-
rdoni, 2006) where the disambiguation model of
the parser is used for this purpose. We also believe
that the kind of detailed morphosyntactic informa-
tion which the learning process now has access
to would facilitate the disambiguation model be-
cause the input to the model is linguistically more
fine-grained. In another DLA experiment we let
PET use the top 3 predictions provided by the lex-
ical type predictor in order to generate sentence
analyses. Then we use the disambiguation model,
trained on the Verbmobil data, to choose the best
one of these analyses and the corresponding lexical
entry is taken to be the final result of the prediction
process.

As shown in the last line of Table 6, we achieve
an increase of 19% which means that in many
cases the correct lexical type has been ranked sec-

62

Model Precision Nouns Adjectives Verbs Adverbs
Baseline 37.89% 27.03% 62.69% 33.57% 67.14%

TnT 47.53% 53.76% 74.52% 26.94% 32.68%
ME(affix length=3) 51.2% 48.25% 75.41% 44.06% 44.13%
ME(affix length=4) 54.63% 53.55% 76.79% 47.10% 43.55%

ME + disamb. 73.54% 75% 88.24% 65.98% 65.90%

Table 6: Precision of unknown word type predictors

ond or third by the predictor. This proves that
the expanded lexical types improve also the perfor-
mance of the disambiguation model and allow for
its successful application for the purposes of DLA.
It also shows, once again, the importance of the
morphology in the case of the GG and proves the
rightness of our decision to expand the type defini-
tions with detailed linguistic information.3

6 Practical Application

Since our main claim in this paper is that for
good andpractically usefulDLA, which at the
same time may facilitate robustness and ensure
maintainability and re-usability ofdeeplexicalised
grammars, we do not only need good machine
learning algorithms but also classification and fea-
ture selection that are based on an extensive lin-
guistic analysis, we apply our DLA methods to real
test data. We believe that due to our expanded lex-
ical type definitions, we provide much more lin-
guistically accurate predictions. With this type of
predictions, we anticipate a bigger improvement of
the grammar coverage and accuracy for the pre-
diction process delivers much morelinguistically
relevantinformation which facilitates parsing with
the GG.

We have conducted experiments with PET and
the two corpora we have used for the error mining
to determine whether we can improve coverage by
using our DLA method to predict the types of un-
known words online. We have trained the predic-
tor on the whole set of treebanked sentences and
extracted a subset of 50K sentences from each cor-
pus. Since lexical types are not available for these
sentences, we have used POS tags instead as fea-
tures for our prediction model. Coverage is mea-
sured as the number of sentences that received at
least one parse and accuracy is measured as the
number of sentences that received acorrectanaly-
sis. The results are shown in Table 7.

The coverage for FR improves with more than
12% and the accuracy number remains almost the

3Another reason for this high result is the short average
length of the treebanked sentences which facilitates the dis-
ambiguation model of the parser.

Parsed Corpus Coverage Accuracy
FR with the vanilla version GG 8.89% 85%

FR with the GG + DLA 21.08% 83%
deWaC with the vanilla version GG 7.46% –

deWaC with the GG + DLA 16.95% –

Table 7: Coverage results

same. Thus, with our linguistically-oriented DLA
method, we have managed to increase parsing cov-
erage and at the same time to preserve the high
accuracy of the grammar. It is also interesting to
note the increase in coverage for the deWaC cor-
pus. It is about 10%, and given the fact that deWaC
is an open and unbalanced corpus, this is a clear
improvement. However, we do not measure ac-
curacy on the deWaC corpus because many sen-
tences are not well formed and the corpus itself
contains much ‘noise’. Still, these results show
that the incorporation of detailed linguistic infor-
mation in the prediction process contributed to the
parser performance and the robustness of the gram-
mar without harming the quality of the delivered
analyses.

7 Conclusion

In this paper, we have tackled from a more
linguistically-oriented point of view the lexicon
acquisition problem for a large-scale deep gram-
mar for German, developed in HPSG. We have
shown clearly that missing lexical entries are the
main cause for parsing failures and, thus, illus-
trated the importance of increasing the lexical cov-
erage of the grammar. The target type inventory
for the learning process has been developed in a
linguistically motivated way in an attempt to cap-
ture significant morphosyntactic information and,
thus, achieve a better performance and more prac-
tically useful results.

With the proposed DLA approach and our elab-
orate target type inventory we have achieved nearly
75% precision and this way we have illustrated the
importance of fine-grained linguistic information
for the lexical prediction process. In the end, we
have shown that with our linguistically motivated
DLA methods, the parsing coverage of the afore-

63

mentioned deep grammar improves significantly
while its linguistic quality remains intact.

The conclusion, therefore, is that it is vital to
be able to capture linguistic information and suc-
cessfully incorporate it in DLA processes, for it
facilitates deep grammars and makes processing
with them much more robust for applications. At
the same time, the almost self-evident portability
to new domains and the re-usability of the gram-
mar for open domain natural language processing
is significantly enhanced.

The DLA method we propose can be used as
an external module that can help the grammar be
ported and operate on different domains. Thus,
specifically in the case of HPSG, DLA can also
be seen as a way for achieving more modular-
ity in the grammar. Moreover, in a future re-
search, the proposed kind of DLA might also be
used in order to facilitate the division and transi-
tion from a core deep grammarwith a core lex-
icon towardssubgrammarswith domain specific
lexicons/lexical constraintsin a linguistically mo-
tivated way. The use of both these divisions nat-
urally leads to a highly modular structure of the
grammar and the system using the grammar, which
at the same time helps in controlling its complex-
ity.

Our linguistically motivated approach provides
fine-grained results that can be used in a number
of different ways. It is a valuable linguistic tool
and it is up to the grammar developer to choose
how to use the many opportunities it provides.

References
Baldwin, Timothy, Emily M. Bender, Dan Flickinger, Ara

Kim, and Stephan Oepen. 2004. Road-testing the English
Resource Grammar over the British National Corpus. In
Proceedings of the Fourth Internation Conference on Lan-
guage Resources and Evaluation (LREC 2004), Lisbon,
Portugal.

Baldwin, Timothy. 2005. Bootstrapping deep lexical re-
sources: Resources for courses. InProceedings of the
ACL-SIGLEX 2005 Workshop on Deep Lexical Acquisi-
tion, pages 67–76, Ann Arbor, USA.

Brants, Thorsten. 2000. TnT- a statistical part-of-speechtag-
ger. In Proceedings of the Sixth Conference on Applied
Natural Language Processing ANLP-2000, Seattle, WA,
USA.

Callmeier, Ulrich. 2000. PET- a platform for experimenta-
tion with efficient HPSG processing techniques. InJour-
nal of Natural Language Engineering, volume 6(1), pages
99–108.

Copestake, Ann and Dan Flickinger. 2000. An open-sourse
grammar development environment and broad-coverage

English grammar using HPSG. InProceedings of the Sec-
ond conference on Language Resources and Evaluation
(LREC 2000), Athens, Greece.

Crysmann, Berthold. 2003. On the efficient implementation
of German verb placement in HPSG. InProceedings of
RANLP 2003, pages 112–116, Borovets, Bulgaria.

Kilgarriff, Adam and G Grefenstette. 2003. Introduction to
the special issue on the web as corpus.Computational Lin-
guistics, 29:333–347.

Müller, Stephan and Walter Kasper. 2000. HPSG analysis of
German. In Wahlster, Wolfgang, editor,Verbmobil: Foun-
dations of Speech-to-Speech Translation, pages 238–253.
Springer-Verlag.

Nicholson, Jeremy, Valia Kordoni, Yi Zhang, Timothy Bald-
win, and Rebecca Dridan. 2008. Evaluating and extend-
ing the coverage of HPSG grammars. InIn proceedings of
LREC, Marrakesh, Marocco.

van de Cruys, Tim. 2006. Automatically extending the lexi-
con for parsing. In Huitink, Janneke and Sophia Katrenko,
editors,Proceedings of the Student Session of the Euro-
pean Summer School in Logic, Language and Information
(ESSLLI), pages 180–191, Malaga, Spain.

van Noord, Gertjan. 2004. Error mining for wide coverage
grammar engineering. InProceedings of the 42nd Meeting
of the Assiciation for Computational Linguistics (ACL’04),
Main Volume, pages 446–453, Barcelona, Spain.

Wahlster, Wolfgang, editor. 2000.Verbmobil: Foundations
of Speech-to-Speech Translation. Artificial Intelligence.
Springer.

Zhang, Yi and Valia Kordoni. 2006. Automated deep lexical
acquisition for robust open text processing. InProceed-
ings of the Fifth International Conference on Language
Resourses and Evaluation (LREC 2006), Genoa, Italy.

64

Author Index

Bouillon, Pierrette, 9

Cahill, Aoife, 33
Cholakov, Kostadin, 57

de Paiva, Valeria, 49
Dellert, Johannes, 1

Evang, Kilian, 1

Hellan, Lars, 41

Kallmeyer, Laura, 1
King, Tracy Holloway, 49
Kordoni, Valia, 57
Kron, Elisabeth, 9

Lichte, Timm, 1
Lisowska, Agnes, 9

Maier, Wolfgang, 1
Maxwell III, John T., 33
Meurer, Paul, 33

Parmentier, Yannick, 1

Rajkumar, Rajakrishnan, 17
Rayner, Manny, 9
Rohrer, Christian, 33
Rosén, Victoria, 33

Santaholma, Marianne, 9, 25

White, Michael, 17

Zhang, Yi, 57

65

	Programme
	TuLiPA: Towards a Multi-Formalism Parsing Environment for Grammar Engineering
	Making Speech Look Like Text in the Regulus Development Environment
	A More Precise Analysis of Punctuation for Broad-Coverage Surface Realization with CCG
	Multilingual Grammar Resources in Multilingual Application Development
	Speeding up LFG Parsing Using C-Structure Pruning
	From Grammar-Independent Construction Enumeration to Lexical Types in Computational Grammars
	Designing Testsuites for Grammar-based Systems in Applications
	Towards Domain-Independent Deep Linguistic Processing: Ensuring Portability and Re-Usability of Lexicalised Grammars

