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Abstract

While the effect of domain variation on Penn-
treebank-trained probabilistic parsers has been
investigated in previous work, we study its ef-
fect on a Penn-Treebank-trained probabilistic
generator. We show that applying the gener-
ator to data from the British National Corpus
results in a performance drop (from a BLEU
score of 0.66 on the standard WSJ test set to a
BLEU score of 0.54 on our BNC test set). We
develop a generator retraining method where
the domain-specific training data is automat-
ically produced using state-of-the-art parser
output. The retraining method recovers a sub-
stantial portion of the performance drop, re-
sulting in a generator which achieves a BLEU
score of 0.61 on our BNC test data.

1 Introduction

Grammars extracted from the Wall Street Journal
(WSJ) section of the Penn Treebank have been suc-
cessfully applied to natural language parsing, and
more recently, to natural language generation. It is
clear that high-quality grammars can be extracted
for the WSJ domain but it is not so clear how
these grammars scale to other text genres. Gildea
(2001), for example, has shown that WSJ-trained
parsers suffer a drop in performance when applied
to the more varied sentences of the Brown Cor-
pus. We investigate the effect of domain variation in
treebank-grammar-based generation by applying a
WSJ-trained generator to sentences from the British
National Corpus (BNC).

As with probabilistic parsing, probabilistic gener-
ation aims to produce the most likely output(s) given

the input. We can distinguish three types of prob-
abilistic generators, based on the type of probabil-
ity model used to select the most likely sentence.
The first type uses an n-gram language model, e.g.
(Langkilde, 2000), the second type uses a proba-
bility model defined over trees or feature-structure-
annotated trees, e.g. (Cahill and van Genabith,
2006), and the third type is a mixture of the first
and second type, employing n-gram and grammar-
based features, e.g. (Velldal and Oepen, 2005). The
generator used in our experiments is an instance of
the second type, using a probability model defined
over Lexical Functional Grammar c-structure and
f-structure annotations (Cahill and van Genabith,
2006; Hogan et al., 2007).

In an initial evaluation, we apply our probabilistic
WSJ-trained generator to BNC material, and show
that the generator suffers a substantial performance
degradation, with a drop in BLEU score from 0.66
to 0.54. We then turn our attention to the problem
of adapting the generator so that it can more accu-
rately generate the 1,000 sentences in our BNC test
set. The problem of adapting any NLP system to a
domain different from the domain upon which it has
been trained and for which no gold standard train-
ing material is available is a very real one, and one
which has been the focus of much recent research in
parsing. Some success has been achieved by training
a parser, not on gold standard hand-corrected trees,
but on parser output trees. These parser output trees
can by produced by a second parser in a co-training
scenario (Steedman et al., 2003), or by the same
parser with a reranking component in a type of self-
training scenario (McClosky et al., 2006). We tackle
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the problem of domain adaptation in generation in
a similar way, by training the generator on domain
specific parser output trees instead of manually cor-
rected gold standard trees. This experiment achieves
promising results, with an increase in BLEU score
from 0.54 to 0.61. The method is generic and can be
applied to other probabilistic generators (for which
suitable training material can be automatically pro-
duced).

2 Background

The natural language generator used in our experi-
ments is the WSJ-trained system described in Cahill
and van Genabith (2006) and Hogan et al. (2007).
Sentences are generated from Lexical Functional
Grammar (LFG) f-structures (Kaplan and Bresnan,
1982). The f-structures are created automatically
by annotating nodes in the gold standard WSJ trees
with LFG functional equations and then passing
these equations through a constraint solver (Cahill
et al., 2004). The generation algorithm is a chart-
based one which works by finding the most proba-
ble tree associated with the input f-structure. The
yield of the most probable tree is the output sen-
tence. An annotated PCFG, in which the non-
terminal symbols are decorated with functional in-
formation, is used to generate the most probable tree
from an f-structure. Cahill and van Genabith (2006)
attain 98.2% coverage and a BLEU score of 0.6652
on the standard WSJ test set (Section 23). Hogan
et al. (2007) describe an extension to the system
which replaces the annotated PCFG selection model
with a more sophisticated history-based probabilis-
tic model. Instead of conditioning the righthand side
of a rule on the lefthand non-terminal and its asso-
ciated functional information alone, the new model
includes non-local conditioning information in the
form of functional information associated with an-
cestor nodes of the lefthand side category. This sys-
tem achieves a BLEU score of 0.6724 and 99.9%
coverage.

Other WSJ-trained generation systems include
Nakanishi et al. (2005) and White et al. (2007).
Nakanishi et al. (2005) describe a generator trained
on a HPSG grammar derived from the WSJ Section
of the Penn Treebank. On sentences of ≤ 20 words
in length, their system attains coverage of 90.75%

and a BLEU score of 0.7733. White et al. (2007)
describe a CCG-based realisation system which has
been trained on logical forms derived from CCG-
Bank (Hockenmaier and Steedman, 2005), achiev-
ing 94.3% coverage and a BLEU score of 0.5768 on
WSJ23 for all sentence lengths. The input structures
upon which these systems are trained vary in form
and specificity, but what the systems have in com-
mon is that their various input structures are derived
from Penn Treebank trees.

3 The BNC Test Data

The new English test set consists of 1,000 sentences
taken from the British National Corpus (Burnard,
2000). The BNC is a one hundred million word bal-
anced corpus of British English from the late twenti-
eth century. Ninety per cent of it is written text, and
the remaining 10% consists of transcribed sponta-
neous and scripted spoken language. The BNC sen-
tences in the test set are not chosen completely at
random. Each sentence in the test set has the prop-
erty of containing a word which appears as a verb
in the BNC but not in the usual training sections of
the Wall Street Journal section of the Penn Treebank
(WSJ02-21). Sentences were chosen in this way so
that the resulting test set would be a difficult one
for WSJ-trained systems. In order to produce in-
put f-structures for the generator, the test sentences
were manually parsed by one annotator, using as
references the Penn Treebank trees themselves and
the Penn Treebank bracketing guidelines (Bies et
al., 1995). When the two references did not agree,
the guidelines took precedence over the Penn Tree-
bank trees. Difficult parsing decisions were docu-
mented. Due to time constraints, the annotator did
not mark functional tags or traces. The context-free
gold standard parse trees were transformed into f-
structures using the automatic procedure of Cahill et
al. (2004).

4 Experiments

Experimental Setup In our first experiment, we
apply the original WSJ-trained generator to our
BNC test set. The gold standard trees for our BNC
test set differ from the gold standard Wall Street
Journal trees, in that they do not contain Penn-II
traces or functional tags. The process which pro-
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duces f-structures from trees makes use of trace and
functional tag information, if available. Thus, to en-
sure that the training and test input f-structures are
created in the same way, we use a version of the
generator which is trained using gold standard WSJ
trees without functional tag or trace information.
When we test this system on the WSJ23 f-structures
(produced in the same way as the WSJ training ma-
terial), the BLEU score decreases slightly from 0.67
to 0.66. This is our baseline system.

In a further experiment, we attempt to adapt
the generator to BNC data by using BNC trees as
training material. Because we lack gold standard
BNC trees (apart from those in our test set), we
try instead to use parse trees produced by an accu-
rate parser. We choose the Charniak and Johnson
reranking parser because it is freely available and
achieves state-of-the-art accuracy (a Parseval f-score
of 91.3%) on the WSJ domain (Charniak and John-
son, 2005). It is, however, affected by domain vari-
ation — Foster et al. (2007) report that its f-score
drops by approximately 8 percentage points when
applied to the BNC domain. Our training size is
500,000 sentences. We conduct two experiments:
the first, in which 500,000 sentences are extracted
randomly from the BNC (minus the test set sen-
tences), and the second in which only shorter sen-
tences, of length ≤ 20 words, are chosen as training
material. The rationale behind the second experi-
ment is that shorter sentences are less likely to con-
tain parser errors.

We use the BLEU evaluation metric for our ex-
periments. We measure both coverage and full cov-
erage. Coverage measures the number of cases for
which the generator produced some kind of out-
put. Full coverage measures the number of cases for
which the generator produced a tree spanning all of
the words in the input.

Results The results of our experiments are shown
in Fig. 1. The first row shows the results we ob-
tain when the baseline system is applied to the f-
structures derived from the 1,000 BNC gold stan-
dard parse trees. The second row shows the results
on the same test set for a system trained on Charniak
and Johnson parser output trees for 500,000 BNC
sentences. The results in the final row are obtained
by training the generator on Charniak and Johnson

parser output trees for 500,000 BNC sentences of
length ≤ 20 words in length.

Discussion As expected, the performance of the
baseline system degrades when faced with out-of-
domain test data. The BLEU score drops from a
0.66 score for WSJ test data to a 0.54 score for
the BNC test data, and full coverage drops from
85.97% to 68.77%. There is a substantial improve-
ment, however, when the generator is trained on
BNC data. The BLEU score jumps from 0.5358
to 0.6135. There are at least two possible reasons
why a BLEU score of 0.66 is not obtained: The first
is that the quality of the f-structure-annotated trees
upon which the generator has been trained has de-
graded. For the baseline system, the generator is
trained on f-structure-annotated trees derived from
gold trees. The new system is trained on f-structure-
annotated parser output trees, and the performance
of Charniak and Johnson’s parser degrades when ap-
plied to BNC data (Foster et al., 2007). The second
reason has been suggested by Gildea (2001): WSJ
data is easier to learn than the more varied data in the
Brown Corpus or BNC. Perhaps even if gold stan-
dard BNC parse trees were available for training, the
system would not behave as well as it does for WSJ
material.

It is interesting to note that training on 500,000
shorter sentences does not appear to help. We hy-
pothesized that it would improve results because
shorter sentences are less likely to contain parser
errors. The drop in full coverage from 86.69% to
79.58% suggests that the number of short sentences
needs to be increased so that the size of the training
material stays constant.

5 Conclusion

We have investigated the effect of domain varia-
tion on a LFG-based WSJ-trained generation sys-
tem by testing the system’s performance on 1,000
sentences from the British National Corpus. Perfor-
mance drops from a BLEU score of 0.66 on WSJ test
data to 0.54 on the BNC test set. Encouragingly, we
have also shown that domain-specific training mate-
rial produced by a parser can be used to claw back
a significant portion of this performance degrada-
tion. Our method is general and could be applied
to other WSJ-trained generators (e.g. (Nakanishi et
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Train BLEU Coverage Full Coverage
WSJ02-21 0.5358 99.1 68.77
BNC(500k) 0.6135 99.1 86.69

BNC(500k) ≤ 20 words 0.5834 99.1 79.58

Figure 1: Results for 1,000 BNC Sentences

al., 2005; White et al., 2007)). We intend to con-
tinue this research by training our generator on parse
trees produced by a BNC-self-trained version of the
Charniak and Johnson reranking parser (Foster et al.,
2007). We also hope to extend the evaluation beyond
the BLEU metric by carrying out a human judge-
ment evaluation.
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