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Abstract

We report on some recent parse selection ex-
periments carried out with GG, a large-scale
HPSG grammar for German. Using a manu-
ally disambiguated treebank derived from the
Verbmobil corpus, we achieve over 81% exact
match accuracy compared to a 21.4% random
baseline, corresponding to an error reduction
rate of 3.8.

1 Introduction

The literature on HPSG parsing of German has al-
most exclusively been concerned with issues of the-
oretical adequacy and parsing efficiency. In contrast
to LFG parsing of German, or even to HPSG work
on English or Japanese, very little effort has been
spent on the question of how the intended, or, for
that matter a likely parse, can be extracted from the
HPSG parse forest of some German sentence. This
issue becomes all the more pressing, as the gram-
mars gain in coverage, inevitably increasing their
ambiguity. In this paper, I shall present preliminary
results on probabilistic parse selection for a large-
scale HPSG of German, building on technology de-
veloped in the Lingo Redwoods project (Oepen et
al., 2002).

∗The research reported here has been carried out at the Ger-
man Research Center for Artificial Intelligence (DFKI GmbH)
as part of the projects COLLATE, QALL-ME, and Checkpoint,
funded by the German Federal Ministery for education and Sci-
ence (BMBF), the European Union, and the State of Berlin, re-
spectively. I am also greatly indepted to my colleagues Bernd
Kiefer and G̈unter Neumann, as well as to Stephan Oepen and
Dan Flickinger for support and comments relating to the work
presented here.

The paper is organised as follows: in section 2, I
shall give a brief overview of the grammar. Section 3
discusses the treebanking effort we have undertaken
(3.1), followed by a presentation of the parse selec-
tion results we achieve using probabilistic models
trained on different feature sets (3.2).

2 The grammar

The grammar used in the experiments reported here
has originally been developed, at DFKI, in the con-
text of the Verbmobil project (M̈uller and Kasper,
2000). Developed initially for the PAGE devel-
opment and processing platform (Uszkoreit et al.,
1994), the grammar has subsequently been ported to
LKB (Copestake, 2001) and Pet (Callmeier, 2000)
by Stefan M̈uller. Since 2002, the grammar has
been extended and modified by Berthold Crysmann
(Crysmann, 2003; Crysmann, 2005; Crysmann,
2007).

The grammar, codename GG, is a large scale
HPSG grammar for German, freely available un-
der an open-source license: it consists of roughly
4000 types, out of which 290 are parametrised lexi-
cal types, used in the definition of about 35,000 lex-
ical entries. The lexicon is further extended by 44
lexical rules and about 300 inflectional rules. On
the syntactic side, the grammar has about 80 phrase
structure rules.

The grammar covers all major aspects of German
clausal and phrasal syntax, including free word or-
der in the clausal domain, long-distance dependen-
cies, complex predicates, passives, and extraposition
(Crysmann, 2005). Furthermore, the grammar cov-
ers different coordination constructions, including
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the so-called SGF coordination. Furthermore, the
grammar is fully reversible, i.e. it can be used for
parsing, as well as generation.

The phrase structure rules of the grammar are
either unary or binary branching phrase structure
schemata, permitting free interspersal of modifiers
between complements in the clausal domain. The
relatively free order of complements is captured by
means of lexical rules which permute the elements
on the COMPS valence list. As a result, the verb’s
complements can be saturated in any order.

The treatment of verb placement is somewhat spe-
cial: in sentences without a right sentence bracket, a
left branching structure is assumed, permitting effi-
cient processing. Whenever the right bracket is oc-
cupied by a non-finite verb cluster, the finite verb in
the left bracket is related to the clause finla cluster
by means of simulated head movement, following
the proposal by (Kiss and Wesche, 1991), inter alia.
As a consequence, the grammar provides both head-
initial and head-final versions of the Head-Adjunct,
Head-Complement and Head-Subject schemata.

As output, the grammar delivers detailed seman-
tic representations in the form of Minimal Recursion
Semantics (Copestake et al., 2005). These represen-
tations have been successfully used in the context
of automated email response or question answering
(Frank et al., 2006). Most recently, the grammar has
been used for automatic correction of grammar and
style errors, combining robust parsing with genera-
tion.

3 Parse Selection

3.1 Treebank construction

The treebank used in the experiments reported here
has been derived from the German subset of the
Verbmobil (Wahlster, 2000) corpus. In essence, we
removed any duplicates on the string level from the
corpus, in order to reduce the amount of subsequent
manual annotation. Many of the duplicates thus re-
moved were short interjection, such asja “yes”, nein
“no”, or hm “euhm”, which do not give rise to any
interesting structural ambiguities. As a side effect,
removal of these duplicates also enhanced the qual-
ity of the resulting treebank.

The construction of the disambiguated treebank
for German followed the procedure suggested for

English by (Oepen et al., 2002): the corpus was first
analysed with the German HPSG GG, storing the
derivation trees of all successful parses. In a sub-
sequent annotation step, we manually selected the
best parse, if any, from the parse forest, using the
Redwoods annotation tool cited above.

After removal of duplicates, syntactic coverage
of the corpus figured at 69.3 percent, giving a to-
tal of 11894 out of 16905 sentences. The vast ma-
jority of sentences in the corpus are between 1 and
15 words in length (14757): as a result, average
sentence length of parsed utterances figures at 7.64,
compared to 8.72 for the entire corpus. Although av-
erage sentence length is comparatively low, the tree-
bank still contains items up to sentence length 47.

The 11894 successfully parsed sentences have
subsequently been disambiguated with the Red-
woods treebanking tool, which is built on top of
LKB (Copestake, 2001) and [incr tsdb()] (Oepen,
2002). Figure 2 shows the annotation of an exam-
ple sentence from the treebank.

During annotation, 10356 sentences were suc-
cessfully disambiguated to a single reading (87.1%).
Another 276 sentences were also disambiguated, yet
contain some unresolved ambiguity (2.3%), while
95 sentences were left unannotated (0.8%). The re-
maining 1167 items (=9.8%) were rejected, since
the parse forest did not contain the desired reading.
Since not all test items in the tree bank were am-
biguous, we were left, after manual disambiguation,
with 8230 suitable test items, i.e. test items where
the number of readings assigned by the parser ex-
ceeds the number of readings judged as acceptable.

Average ambiguity of fully disambiguated sen-
tences in the tree bank is around 12.7 trees per sen-
tence. This corresponds to a baseline of 21.4% for
random parse selection, owing to the unequal distri-
bution of low and high ambiguity sentences.

3.2 Parse selection

3.2.1 Feature selection

The parse selection experiments reported on here
have been performed using the LOGON branch of
the LKB and [incr tsdb()] systems. In particular, we
used Rob Malouf’s tadm maximum entropy toolkit
for training and evaluation of our log-linear parse
selection models.
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Figure 1: The GG Verbmobil treebank

Figure 2: An example from the German treebank, featuring the Redwoods annotation tool
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All experiments were carried out as a ten-fold
cross-evaluation with 10 iterations, using 10 differ-
ent sets of 7407 annotated sentences for training and
10 disjoint sets of 823 test items for testing.

The discriminative models we evaluate here were
trained on different subsets of features, all of which
were extracted from the rule backbone of the deriva-
tions stored in the treebank. As node labels, we used
the names of the HPSG rules licensing a phrasal
node, as well as the types of lexical entries (preter-
minals). On the basis of these derivation trees,
we selected several features for training our disam-
biguation models: local trees of depth 1, several lev-
els of grandparenting, i.e. inclusion of grandpar-
ent node (GP 2), great-grandparent node (GP 3) and
great-great-grandparent node (GP 4), partial trees of
depth 1 (+AE). Grandparenting features involve lo-
cal trees of depth 1 plus a sequence of grandparent
nodes, i.e. the local tree is contextualised in relation
to the dominating tree. Information about a grand-
parent’s other daughters, however, is not taken into
consideration. Partial trees, by contrast, are included
as a kind of back-off model.

In addition to tree-configurational features, we ex-
perimented with n-gram models, using n-gram sizes
between 2 and 4. These models were further varied,
according to whether or not a back-off model was
included.

Apart from these linguistic features, we also var-
ied two parameters of the maximum entropy learner,
viz. variance and relative tolerance. The relative tol-
erance parameter restricts convergence of the model,
whereas variance defines a prior in order to reduce
over-fitting. In the results reported here, we used
optimal setting for each individual set of linguistic
parameters, although, in most cases, these optimal
values figured at 10−4 for variance and 10−6 for rel-
ative tolerance.

3.2.2 Results

The results of our parse selection experiments for
German are summarised in tables 1 and 2, as well as
figures 3 and 4.

As our major result, we can report an exact match
accuracy for parse selection of 81.72%, using great-
grandparenting (GP 3) and 4-grams. This result cor-
responds to an error reduction by a factor of 3.8, as
compared to the 21.4% random baseline.

−AE +AE
GP 0 77.96 78.14
GP 2 81.27 80.87
GP 3 81.34 80.4
GP 4 81.49 80.78

Table 1: PCFG model with Grandparenting

Figure 3: PCFG model with Grandparenting

Apart from the overall result in terms of achiev-
able parse selection accuracy, a comparison of the
individual results is also highly informative.

As illustrated by figure 3, models including any
level of grandparenting clearly outperform the basic
model without grandparenting (GP0). Furthermore,
relative gains with increasing levels of grandparent-
ing are quite low, compared to the more than 3% in-
crease in accuracy between the GP0 and GP2 mod-
els.

Another interesting observation regarding the data
in table 1 and figure 3 is that the inclusion of par-
tial constituents into the model (+AE) only benefits
the most basic model. Once the more sophisticated
grandparenting models are used, partial constituent
worsen rather than improve the overall performance.

Another observation we made regarding the rela-
tive usefulness of the features we have employed re-
lates to n-gram models: again, we find that n-gram
models clearly improve on the basic model without
grandparenting (by about 1 percentage point), al-
beit to a lesser degree than grandparenting itself (see
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N0 N2 N3 N4
GP 0 77.96 78.79 78.92 78.74
GP 2 81.27 81.5 81.65 81.55
GP 3 81.34 81.44 81.51 81.72
GP 4 81.49 81.62 81.69 81.67

Table 2: PCFG model with Grandparenting & N-grams

Figure 4: PCFG model with Grandparenting & N-Grams
(-AE)

above). With grandparenting added, however, the
relative gains of the n-gram models greatly dimin-
ishes. A possible explanation for this finding is that
reference to grandparenting indirectly makes avail-
able information about the preceding and linear con-
text, obviating the need for direct encoding in terms
of n-grams. Again, the best combined model (hier-
archy + n-grams) outperforms the best purely hierar-
chical model by a mere 0.23 percentage points. The
results obtained here for German thus replicate the
results established earlier for English, namely that
the inclusion of n-gram information only improves
overall parse selection to a less significant extent.

A probably slightly unsurprising result relates
to the use of back-off models: we found that n-
gram models with backing-off yielded better results
throughout our test field than the correspoding n-
gram models that did not use this feature. Differ-
ences, however, were not dramatic, ranging roughly
between 0.07 and 0.3 percentage points.

The results obtained here for German compare

quite well to the results previously achieved for the
ERG, a broad coverage HPSG for English: using
a similar treebank1 (Toutanova et al., 2002) report
81.80 exact match accuracy for a log-linear model
with local trees plus ancestor information, the model
which is closest to the models we have evaluated
here. The baseline in their experiments is 25.81. The
best model they obtain includes semantic dependen-
cies, as well, yielding 82.65 exact match accuracy.

Probably the most advanced approach to parse se-
lection for German is (Forst, 2007): using a broad
coverage LFG grammar, he reports an f-score of
83% of correctly assigned dependency triples for a
reference corpus of manually annotated newspaper
text. However, it is unclear how these figures relate
to the exact match accuracy used here.

Relevant, in principle, to our discussion here, are
also the results obtained with treebank grammars for
German: (Dubey and Keller, 2003) have trained a
PCFG on the Negra corpus (Skut et al., 1998), re-
porting labelled precision and recall between 70 and
75%. (Kübler et al., 2006) essentially confirm these
results for the Negra treebank, but argue instead that
probabilistic parsing for German can reach far bet-
ter results (around 89%), once a different treebank
is chosen, e.g. T̈uba-D/Z. However, it is quite dif-
ficult to interpret the significance of these two tree-
bank parsers for our purposes here: not only is the
evaluation metric an entirely different one, but so are
the parsing task and the corpus.

In an less recent paper, however, (Ruland, 2000)
reports on probabilistic parsing of Verbmobil data
using a probabilistic LR-parser. The parser has been
trained on a set of 19,750 manually annotated sen-
tences. Evaluation of the parser was then performed
on a hold-out set of 1000 sentences. In addition to
labelled precision and recall, (Ruland, 2000) also
report exact match, which figures at 46.3%. Us-
ing symbolic postprocessing, exact match improves
to as much as 53.8%. Table 3.2.2 summarizes Ru-
land’s results, permitting a comparison between ex-
act match and PARSEVAL measures. Although the
test sets are certainly not fully comparable,2 these

1In fact, the Redwoods treebank used by (Toutanova et al.,
2002) was also derived from Verbmobil data. The size of the
treebank, however, is somewhat smaller, containing a total of
5312 sentences.

2The overall size of the treebank suggests that we are ac-
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German
Not parsed 4.3%
Exact match 53.8%
LP 90.8%
LR (all) 84.9%
LR (in coverage) 91.6%

Table 3: Performance of Ruland’s probabilistic parser
(with postprocessing) on Verbmobil data

figures at least gives us an indication about how to
judge the the performance of the HPSG parse selec-
tion models presented here: multiplying our 69.3%
coverage with 81.72% exact match accuracy still
gives us an overall exact match accuracy of 56.6%
for the entire corpus.

However, comparing our German treebank to
a structurally similar English treebank, we have
shown that highly comparable parse selection fig-
ures can be obtained for the two languages with es-
sentially the same type of probabilistic model.

4 Conclusion

We have presented a treebanking effort for a large-
scale German HPSG grammar, built with the Red-
woods treebank technology (Oepen et al., 2002), and
discussed some preliminary parse selection results
that are comparable in performance to the results
previously achieved for the English Resource Gram-
mar (lingoredwoods:2002tlt). Using a treebank of
8230 disambiguated sentences, we trained discrim-
inative log-linear models that achieved a maximal
exact match accuracy of 81.69%, against a random
baseline of 21.4%. We further investigated the im-
pact of different levels of grandparenting and n-
grams, and found that inclusion of the grandpar-
ent node into the model improved the quality sig-
nificantly, reference, however, to any higher nodes
only lead to very mild improvements. For n-grams
we could only observe significant gains for models
without any grandparenting. We therefore hope to
test these findings against treebanks with a higher
syntactic complexity, in the near future, in order to

tually dealing with the same set of primary data. However, in
our HPSG treebank string-identical test items had been removed
prior to annotation and training. As a result, our treebank con-
tains less redundancy than the original Verbmobil test suites.

establish whether these observations are indeed ro-
bust.
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