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Abstract

An important task in information extraction
(IE) from biomedical articles is term iden-
tification (TI), which concerns linking en-
tity mentions (e.g., terms denoting proteins)
in text to unambiguous identifiers in stan-
dard databases (e.g., RefSeq). Previous work
on TI has focused on species-specific docu-
ments. However, biomedical documents, es-
pecially full-length articles, often talk about
entities across a number of species, in which
case resolving species ambiguity becomes an
indispensable part of TI. This paper de-
scribes our rule-based and machine-learning
based approaches to species disambiguation
and demonstrates that performance of TI can
be improved by over 20% if the correct species
are known. We also show that using the
species predicted by the automatic species tag-
gers can improve TI by a large margin.

1 Introduction

The exponential growth of the amount of scien-
tific literature in the fields of biomedicine and ge-
nomics has made it increasingly difficult for sci-
entists to keep up with the state of the art. The
TXM project (Alex et al., 2008a), a three-year project
which aims to produce software tools to aid cura-
tion of biomedical papers, targets this problem and
exploits natural language processing (NLP) technol-
ogy in an attempt to automatically extract enriched
protein-protein interactions (EPPI) and tissue expres-
sions (TE) from biomedical text.

A critical task in TXM is term identification (TI),
the task of grounding mentions of biomedical named

entities to identifiers in referent databases. TI can be
seen as an intermediate task that builds on the pre-
vious component in an information extraction (IE)
pipeline, i.e., named entity recognition (NER), and
provides crucial information as input to the more
complex module of relation extraction (RE). The
structure of the IE pipeline resembles a typical cu-
ration process by human biologists. For example,
when curating protein-protein interactions (PPIs), a
curator would first mark up the protein mentions in
text, and then identify the mentions by finding their
unique identifiers from standard protein databases
such as RefSeq,1 and finally curate pairs of IDs as
PPIs.

TI is a matching and disambiguation pro-
cess (Wang and Matthews, 2008), and a primary
source of ambiguity lies in the model organisms of
the terms. In curation tasks, one often needs to deal
with collections of articles that involve entities of a
large variety of species. For example, our collec-
tion of articles from PubMed and PubMed Central
involve over 100 model organisms. Also, it is of-
ten the case that more than one species appear in the
same document, especially when the document is a
full-length article. In our dataset, 74% of the arti-
cles concern more than one organism. In many stan-
dard databases, such as RefSeq and SwissProt, ho-
molog proteins in different species, which often con-
tain nearly identical synonym lists, are assigned dis-
tinct identifiers. This makes biomedical terms even
more polysemous and hence species disambiguation
becomes crucial to TI. For example, querying Ref-
Seq2 with the protein mention plk1 resulted in 98

1http://www.ncbi.nlm.nih.gov/RefSeq/
2The searches were carried out on November 5, 2007.
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hits. By adding a species to the query, e.g. mouse,
one can significantly reduce the number of results to
two.

This paper describes our work on the task of
species disambiguation. We also report the perfor-
mance gain of a TI system from integration of vari-
ous automatic species taggers. The paper is organ-
ised as follows. Section 2 gives a brief overview of
related work. Section 3 presents our methodologies
for species disambiguation. Section 4 describes a
rule-based TI system that we developed in the TXM

project, and the evaluation metrics. This section also
reports the evaluation results of the TI system with
and without help from the species predicted by the
taggers. We finally conclude in Section 5.

2 Related Work

The most relevant work to ours are the Gene Nor-
malisation (GN) tasks (Morgan and Hirschman,
2007; Hirschman et al., 2004) in the BioCreAtIvE I
& II workshops (Hirschman et al., 2007; Hirschman
et al., 2005), which provided forums for exchang-
ing thoughts and methodologies on tackling the task
of TI. The data provided in the GN tasks, however,
were species-specific, which means that the lexicons
and datasets were concerned with single model or-
ganisms and thus species disambiguation was not
required. A few participating systems, however, in-
tegrated a filter to rule out entities with erroneous
species (Hanisch et al., 2005; Fluck et al., 2007),
which were reported to be helpful. Another differ-
ence between our task and the BioCreAtIvE GN ones
is that we carry out TI on entity level while GN on
document level.

It is worth mentioning that the protein-protein in-
teraction task (IPS) in BioCreAtIvE II has taken into
account species ambiguity. The IPS task resembles
the work-flow of manual curation of PPIs in articles
involving multiple species, and to accomplish the
task, one would require a full pipeline of IE systems,
including named entity recognition, term identifica-
tion and relation extraction. The best result for IPS

(Krallinger et al., 2007) was fairly low at 28.85%
F1, which reflects the difficulty of the task. Some
participants of IPS have reported (e.g., Grover et al.,
2007) that resolving species ambiguity was one of
the biggest challenges. Our analysis of the IPS train-
ing data revealed that the interacting proteins in this
corpus belong to over 60 species, and only 56.27%

of them are human.
As noted in previous work (Krauthammer and Ne-

nadic, 2004; Chen et al., 2005; Krallinger et al.,
2007; Wang, 2007), determining the correct species
for the protein mentions is a very important step to-
wards TI. However, as far as we know, there has
been little work in species disambiguation and in to
what extent resolving species ambiguity can help TI.

3 Species Disambiguation

3.1 Data and Ontology
The species tagger was developed on the ITI TXM

corpora (Alex et al., 2008b), which were produced
as part of the TXM project (Alex et al., 2008a). We
created two corpora in slightly different domains,
EPPI and TE. The EPPI corpus consists of 217 full-
text papers selected from PubMed and PubMed Cen-
tral and domain experts annotated all documents for
both protein entities and PPIs, as well as extra (en-
riched) information associated with the PPIs and nor-
malisations of the proteins to publicly available on-
tologies. The TE corpus consists of 230 full-text
papers, in which entities such as proteins, tissues,
genes and mRNAcDNAs were identified, and a new
tissue expression relation was marked up.

We used these corpora to develop a species tag-
ging system. As the biomedical entities in the
data were manually assigned with standard database
identifiers,3 it was straightforward to obtain their
species IDs through the mappings provided by En-
trezGene and RefSeq. In more detail, proteins, pro-
tein complexes, genes and mRNAcDNAs in both EPPI

and TE datasets were assigned with NCBI Taxon-
omy IDs (TaxIDs)4 denoting their species. The
EPPI and TE datasets have different distributions of
species. The entities in the EPPI data belong to
118 species with human being the most frequent
at 51.98%. In the TE data, the entities are across
67 species and mouse was the most frequent at
44.67%.5

To calculate the inter-annotator-agreement, about
40% of the documents were doubly annotated by
different annotators. The averaged F1 scores of

3In our data, genes are tagged with EntrezGene IDs, and
proteins and mRNAcDNAs with RefSeq IDs.

4http://www.ncbi.nlm.nih.gov/sites/
entrez?db=Taxonomy

5These figures were obtained from the training split of the
datasets.
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EPPI devtest TE devtest
P R F1 P R F1

PreWd 81.88 1.87 3.65 91.49 1.63 3.21
PreWd + Spread 63.85 14.17 23.19 77.84 17.97 29.20
PreWd Sent 60.79 5.16 9.52 56.16 7.76 13.64
PreWd Sent + Spread 39.74 50.54 44.49 31.71 46.68 37.76
Prefix 98.98 3.07 5.96 77.93 2.97 5.72
PreWd + Prefix 91.95 4.95 9.40 82.27 4.62 8.75
PreWd + Prefix + Spread 68.46 17.49 27.87 77.77 21.26 33.39

Table 1: Results (%) of the rule-based species tagger.

species annotation on the doubly annotated EPPI and
TE datasets are 86.45% and 95.11%, respectively,
indicating that human annotators have high agree-
ment when assigning species to biomedical entities.

3.2 Detecting Species Words
Words referring to species, such as human, are im-
portant indicators of the species of the nearby enti-
ties. We have developed a rule-based program that
detects species words, which were used to help the
species identification systems described in the fol-
lowing sections.

The species word tagger is a lexical look-up
component which applies to tokenised text and
marks content words such as human, murine and
D. melanogaster with their corresponding species
TaxIDs. In addition, rules written in an lxtransduce
grammar6 are used to identify species prefixes (e.g.,
’h’ for human, ’m’ for mouse). For example, the
term mSos-1 would be assigned with a TaxID for
mouse. Note that a species “word” may contain sev-
eral words, for example, “E. coli”. Please see (Wang
and Grover, 2008) for more details on the species
word tagger.

3.3 Assigning Species to Entities
3.3.1 Rule-based Approach

It is intuitive that a species word that occurs near
an entity (e.g., “mouse p53”) is a strong indicator of
its species. To assess this intuition, we developed a
set of five rules using heuristics and species words
detected by the species word tagger.

• PreWd: If the word preceding an entity is a species
word, assign the species indicated by that word to
the entity.

6See http://www.ltg.ed.ac.uk/software/
ltxml2 for details of the LT-XML 2 tools developed at the
LTG group at Edinburgh University.

• PreWd Sent: If a species word that occurs to the
left of an entity and in the same sentence, assign the
species indicated by that word to the entity.

• Prefix: If an entity has a species-indicating prefix,
e.g., mSos-1, then tag the species to that entity.

• Spread: Spread the species of an entity e to all en-
tities in the same document that have the same sur-
face form with e. This rule must be used in conjunc-
tion with the other rules.

• Majority Vote:7 Count the species words in a docu-
ment and assign as a weight to each species the pro-
portion of all species words in the document that
refer to the species.8 Tag all entities in the docu-
ment the species with the highest weight, defaulting
to human in the case of a tie.

Table 1 shows the results of species tagging when
the above rules were applied. As we can see, the pre-
cision of the systems that rely solely on the previous
species words or prefixes is very good but the recall
is low. The system that looks at the previous species
word in the same sentence does better as measured
by F1. In addition, spreading the species improves
both systems but the overall results are still not sat-
isfactory.

It is slightly counter-intuitive that using a rule
such as ‘PreWd’ did not achieve perfect precision.
Closer inspection revealed that most of the false pos-
itives were due to a few problematic guidelines in
the annotation process. For example,

• “The amounts of human and mouse CD200R ...”,
where ‘CD200R’ was tagged as mouse (10090) by
the system but the gold-standard answer was human
(9606). This was due to the fact that the annotation
tool was not able to assign multiple correct species

7The Majority Vote rule was used by default in the TI system,
which is described in Section 4.1.

8For example, if there are N species words in a document
and Nhuman are associated with human, the human species
weight is calculated as Nhuman

N
.
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BL EPPI TE Combined EPPI Model TE Model Combined Model
Model Model Model +Rules +Rules +Rules

EPPI devtest 60.56 73.03 58.67 72.28 74.24 59.67 73.77
TE devtest 30.22 67.15 69.82 67.20 67.53 70.14 67.47
Overall 48.88 70.77 62.96 70.33 71.66 63.70 71.34

Table 2: Accuracy (%) of the machine-learning based species tagger and the hybrid species tagger as tested on the
EPPI and TE devtest datasets. An ‘Overall’ score is the micro-average of a system’s accuracy on both datasets.

to a single entity.

• “... wheat eIFiso4G ...”, where ‘eIFiso4G’ was
tagged as wheat (4565) but the annotator thought
it was Triticum (4564). In this case, TaxID 4565 is
a species under genus 4564, and arguably is also a
correct answer. Other similar cases include Xeno-
pus vs. Xenopus tropicalis, and Rattus vs. Rattus
norvegicus, etc. This is the main cause for the false
positives as our system always predicts species in-
stead of genus or TaxIDs of any other ranks, which
the annotators occasionally employed.

3.3.2 Machine Learning Approach
We split the EPPI and TE datasets into training

and development test (devtest) sets and developed
a machine-learning (ML) based species tagger. Us-
ing the training splits, we trained a maximum en-
tropy classifier9 using the following set of features,
with respect to each entity occurrence. The param-
eter n was empirically developed using the training
datasets.

• leftContext The n word lemmas to the left of the
entity, without position (n = 200).

• rightContext The n word lemmas to the right of the
entity, without position (n = 200).

• leftSpeciesIDs The n species IDs, located to the left
of the entity and assigned by the species word tag-
ger (n = 5).

• rightSpeciesIDs The n species IDs, located to the
right of the entity and assigned by the species word
tagger (n = 5).

• leftNouns The n nouns to the left of the entity (with
order and n = 2). This feature attempts to cap-
ture cases where a noun preceding an entity indi-
cates species, e.g., mouse protein p53.

• leftAdjs The n adjectives to the left of the entity
(with order and n = 2). This feature intends to
capture cases where an adjective preceding an en-
tity indicates species, e.g., murine protein p53.

9http://homepages.inf.ed.ac.uk/s0450736/
maxent_toolkit.html

• leftSpeciesWords The n species word forms, identi-
fied by the species word tagger, located to the left
of the entity (n = 5).

• rightSpeciesWords The n species word forms, iden-
tified by the species word tagger, located to the right
of the entity (n = 5).

• firstLetter The first character of the entity itself.
Sometimes the first letters of entities indicate their
species, e.g., hP53.

• documentSpeciesIDs All species IDs that occur in
the article in question.

• useStopWords If this feature is switched on then fil-
ter out the words that appear in a pre-compiled stop-
word list from the above features. The list consists
of frequent common English words such as prepo-
sitions (e.g., in).

• useStopPattern If this feature is switched on then fil-
ter out the words consisting only of digits and punc-
tuation characters.

The results of the ML species tagger are shown in
Table 2. We measure the performance in accuracy
instead of F1 because the ML based tagger assigns a
species tag to every entity occurrence, and therefore
precision is equal to recall. We tested four models
on the devtest portions of the EPPI and TE corpora:

• BL: a baseline system, which tags the devtest in-
stances using the most frequent species occurring
in the corresponding training dataset. For example,
human is the most frequent species in the EPPI train-
ing data, and therefore all entities in the EPPI devtest
dataset were tagged with human.

• EPPI Model: obtained by training the maxent clas-
sifier on the EPPI training data.

• TE Model: obtained by training the maxent classi-
fier on the TE training data.

• Combined Model: obtained by training the maxent
classifier on a joint dataset consisting of both the
EPPI and TE training corpora.

3.3.3 Hybrid Approach
As we have shown, rules ‘PreWd’ and ‘Prefix’

achieved very good precision but low recall, which
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suggests that when these rules were applicable, it is
highly likely that they would get the correct species.
Based on this observation, we combined the ML ap-
proach and the rule-based approach in such a way
that the rules ‘PreWd’ and ‘Prefix’ were applied on
top of ML and override predictions made by ML. In
other words, the rules act as a post-processor and
correct the decisions made by the ML when very
strong species indicators such as previous species
words or species prefixes are detected. This should
increase precision and at the same time keep recall
relatively intact. The hybrid systems were tested on
the same datasets and the results are shown in the
right 3 columns in Table 2.

We performed significance tests on the results in
Table 2. First, a Friedman test was used to deter-
mine whether the 7 sets of results10 were signifi-
cantly different, and then pairwise Wilcoxon Signed
Rank tests were employed to tell whether any sys-
tem performed significantly better than others. On
both datasets, the 6 machine-learning models signif-
icantly outperformed the baseline (p < 0.01). On
EPPI devtest dataset, the EPPI models (with or with-
out rules) and the Combined Models outperformed
the TE models (p < 0.05), while on TE dataset, the
TE models and the Combined Models outperformed
the EPPI models (p < 0.05). Also, applying the
post filtering rules did not significantly improve the
ML models, although it appears that adding the rules
consistently increase the accuracy by a small mar-
gin.

4 Term Identification

4.1 The TI system

The TI system is composed of a matcher which de-
termines a list of candidate identifiers and a ranker
that assigns a confidence value to each identifier
that is used to rank the candidates in order with the
most likely identifiers occurring first. The matcher is
based largely on the rule-based system described in
(Wang and Matthews, 2008), but has been put into a
more flexible framework that allows for defining and
customising the rules in a configuration file. In ad-
dition, the system has been expanded to perform TI

on additional entity types. The rules for each entity
were developed using the training data and a visuali-

10The Friedman test requires accuracy figures with respect to
each document in the datasets, which are not shown in Table 2.

sation system that compared the synonym list for the
target identifiers with the actual entity mentions and
provided visual feedback on the true positives and
false positives resulting from candidate rules sets.
Examples of some of the rules that can be incorpo-
rated into the system are listed below. A confidence
value is assigned to each of the rules using heuristics
and passed to the ranking system.

1. LowerCase: Convert the entity mention to lower-
case and look up the result in a lower case version
of the entity term database.

2. Norm: Normalise the mention11 and look up the re-
sult in a normalised version of the term database.

3. Prefix: Add and/or remove a set of prefixes from
the entity mention and look up the result in the en-
tity term database. The actual prefixes and whether
to add or remove them are specified in the configu-
ration file.

4. Suffix: Add and/or remove a set of suffixes from the
entity mention and look up the result in the entity
term database. The actual suffixes and whether to
add or remove them are specified in the configura-
tion file.

5. Porter: Compute the Porter stem of the entity men-
tion and looked up the synonym in a Porter stemmed
version of the entity term database.

The ranking system currently works by defining a
set of confidence indicators for each entity, comput-
ing the confidence for each indicator and then multi-
plying each individual confidence together to deter-
mine the overall identifier confidence. The follow-
ing indicators are currently used by the system.

1. Match: The confidence as determined by the
matcher.

2. Species: The confidence that the species of the iden-
tifier is the correct species.

3. Reference Count: Based on the number of liter-
ature references12 associated with each identifier.
The higher the reference count, the higher the con-
fidence.

11Normalising a string involves converting Greek characters
to English (e.g., α→alpha), converting to lowercase, changing
sequential indicators to integer numerals (e.g., i, a, alpha→1,
etc.) and removing all spaces and punctuation. For example,
rab1, rab-1, rabα, rab I are all normalised to rab1.

12The Reference Counts were obtained from EntrezGene and
RefSeq databases.
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4. Primary Name: Based on a determination that the
entity mention is the primary name for the identi-
fier. This is based both on a name provided by the
lexicon and a name derived from the synonym list.

Among these, one of the most critical indicators is
the species confidence. By default, this confidence
is set to the weight assigned to the species by the
Majority Vote tagger (see Section 3.3.1). When the
species of an entity is tagged by an external species
tagger or by human annotators, the default confi-
dence can be overridden. This setting allows us to
integrate automatic species taggers, such as the ones
described in the previous section, for achieving bet-
ter TI performance. For example, suppose we want
to employ the Hybrid species tagger. To compute the
species confidence, first the hybrid tagger is used to
predict the most likely species and the Majority Vote
tagger is run at the same time. If the species of an
identifier matches the species assigned by the hybrid
tagger, the species confidence is set to the weight
generated by the hybrid tagger. Otherwise, the con-
fidence is set to the weight generated by the Majority
Vote tagger.

To assess how much species ambiguity accounts
for the overall ambiguity in biomedical entities, we
estimated the averaged ambiguity rates for the pro-
tein entities in the TXM datasets, without and with
the species information. Suppose there are n unique
protein mentions in a dataset. First, we look up the
RefSeq database by exact match with every unique
protein mention mi, where i ∈ {0..n − 1}, and
for each mi we retrieve two lists of identifiers: Li

and L′
i, where Li consists of all identifiers and L′

i

only contains the identifiers whose model organ-
ism matches the manually tagged species of the pro-
tein mention. The ambiguity rates without and with

species are computed by
Pn−1

i=0 |Li|
n and

Pn−1
i=0 |L′

i|
n , re-

spectively. Table 3 shows the ambiguity rates on the
EPPI and TE datasets.

Protein Cnt ID Cnt Ambiguity
EPPI 6,955 184,633 26.55

EPPI species 6,955 17,357 2.50
TE 8,539 103,016 12.06

TE species 8539 12,705 1.49

Table 3: Ambiguity in protein entities, with and without
species information, in EPPI and TE datasets.

4.2 Experiments on TXM Data
To identify whether species disambiguation can im-
prove performance of TI, we ran the TI system on
the EPPI and TE data. As shown in Tables 4 and 5,
we tested the TI systems with or without help from
a number of species tagging systems, including:

• Baseline: Run TI without species tags.13

• Gold Species: Run TI with manually tagged species.
This is the upper-bound performance.

• Rule: Run TI with species predicted by the rule-
based species tagger.

• ML(human/mouse): Run TI with the species that oc-
curs most frequently in the training datasets (i.e.,
human for EPPI and mouse for TE).

• ML(EPPI): Run TI with species predicted by the ML
tagger trained on the EPPI training dataset.

• ML(EPPI)+Rule: Run TI with species predicted by
the hybrid system using both ML(EPPI) and the
rules.

• ML(TE): Run TI with species predicted by the ML
tagger trained on the TE training dataset.

• ML(TE)+Rule: Run TI with species predicted by the
hybrid system using both ML(TE) and the rules.

• ML(EPPI+TE): Run TI with species predicted by the
ML tagger trained on both EPPI and TE training data.

• ML(EPPI+TE)+Rule: Run TI with species predicted
by the hybrid system using both ML(EPPI+TE) and
the rules.

We score the systems using top n precision, where
n ∈ {1, 5, 10, 15, 20}. The argument for this evalua-
tion scheme is that if a TI system is not good enough
in predicting a single identifier correctly, a ‘bag’ of
IDs with the correct answer included would also be
helpful. The ‘Avg. Rank’ field denotes the averaged
position where the correct answer lies in, and the
lower the value is, the better the TI system performs.
For example, a TI system with an ‘Avg. Rank’ of 1
would be ideal, as it would always return the correct
ID at the top of the list. Note that in the TE data, not
only protein entities, but also genes, mRNAcDNA,
and GOMOPs14 were tagged.

On both datasets, using the gold standard species
much improved accuracy of TI (e.g., 19.2% on EPPI

13Note that the TI system already integrated a basic species
tagging system that uses the Majority Vote rule as described in
Section 3.3.1. Thus this is a fairly high ‘baseline’.

14GOMOP is a tag that denotes an entity being either a gene,
or an mRNAcDNA, or a protein, which was used when the anno-
tator could not determine what type the entity in question was.
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Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank
Baseline 54.31 73.45 76.44 77.90 78.51 5.82
Gold Species 73.52 79.36 80.75 80.75 80.99 1.62
Rule 54.99 73.72 76.45 77.91 78.52 5.79
ML(human) 65.66 76.36 78.82 79.78 80.03 2.58
ML(EPPI) 65.24 76.82 79.01 79.93 80.29 2.39
ML(EPPI)+Rule 65.88 77.09 79.04 79.94 80.30 2.36
ML(TE) 55.87 75.14 78.69 79.85 80.30 2.86
ML(TE)+Rule 56.54 75.47 78.70 79.86 80.31 2.83
ML(EPPI+TE) 64.55 76.48 78.53 79.83 80.38 2.49
ML(EPPI+TE)+Rule 65.03 76.62 78.55 79.84 80.39 2.46

Table 4: Results of TI on the EPPI dataset. All figures, except ‘Avg. Rank’, are percentages. This evaluation was
carried out on protein entities only.

Method Prec@1 Prec@5 Prec@10 Prec@15 Prec@20 Avg. Rank
Baseline 63.24 76.20 77.30 77.94 78.25 1.72
Gold Species 71.82 78.03 78.34 78.40 78.41 1.29
Rule 63.45 76.21 77.30 77.95 78.25 1.72
ML(mouse) 58.76 75.40 77.25 77.92 78.24 1.90
ML(EPPI) 66.59 76.53 77.23 77.76 78.12 1.68
ML(EPPI)+Rule 66.85 76.54 77.24 77.76 78.12 1.67
ML(TE) 66.12 76.25 77.32 77.81 78.11 1.70
ML(TE)+Rule 66.37 76.25 77.32 77.81 78.11 1.70
ML(EPPI+TE) 65.78 76.14 77.28 77.84 78.12 1.71
ML(EPPI+TE)+Rule 66.03 76.14 77.29 77.84 78.12 1.70

Table 5: Results of TI on the TE dataset. All figures, except ‘Avg. Rank’, are percentages. There are four entity types
in the TE data, i.e., protein, gene, mRNAcDNA and GOMOP. The evaluation was carried out on all entity types.

data). Also, automatically predicted species tags
were proven to be helpful. On the EPPI data, the
ML(EPPI)+Rule outperformed other systems. Note
that the species distribution in the devtest dataset is
strongly biased to human, which explains why the
ML(human) system performed nearly as well. How-
ever, defaulting to human was not guaranteed to suc-
ceed because one would not be able to know the
prior species in a collection of unseen documents.
Indeed, on the TE data, the system ML(mouse),
which uses the most frequent species in the training
data, i.e. mouse, as default, yielded poor results.

4.3 Experiments on BioCreAtIvE Data

To assess the portability of the species tagging ap-
proaches, an “artificial” dataset was created by join-
ing the species-specific datasets from BioCreAtIvE
1 & 2 GN tasks to form a corpus consisting of four
species. In detail, four datasets were taken, three
from BioCreAtIvE 1 task 1B (i.e., fly, mouse and
yeast) and one from BioCreAtIvE 2 task GN (i.e., hu-

man). Assuming genes in each dataset are species-
specific,15 we can train/test ML models for species
disambiguation and apply them to help TI. This task
is more difficult than the original BioCreAtIvE GN

tasks due to the additional ambiguity caused by mul-
tiple model organisms.

We first carried out experiments on species dis-
ambiguation. In addition to the TXM (i.e., the sys-
tem uses ML(EPPI+TE)+Rule model) and the Major-
ity Vote taggers, we trained the species tagger on
a dataset comprising of the devtest sets from the
BioCreAtIvE I & II GN tasks. In more detail, we first
pre-processed the dataset and marked up gene enti-
ties with an NER system (Alex et al., 2007; Grover et
al., 2007).16 The entities were also tagged with the

15This assumption is not strictly true because each dataset
may contain genes of other species, and it would be hard to
assess how true it is as abstracts in the BioCreAtIvE GN datasets
are not normalised to an entity level.

16The NER system was trained on BioCreAtIvE II GM train-
ing and test datasets.
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species as indicated by the source dataset where they
were drawn from, which were used as the ‘Gold’
species. Using the same algorithm and feature set as
described in Section 3.3.2, a BC model was trained.

human fly mouse yeast
Majority Vote 82.35 78.43 71.69 85.12

BC model 70.23 89.24 75.41 87.64
TXM model 93.35 3.27 31.89 3.49

Table 6: Accuracy (%) of the species disambiguation
systems as tested on the BioCreAtIvE I & II test data.
The ‘BC model’ was trained on the BioCreAtIvE de-
vtest data, the ‘TXM model’ was trained on the TXM EPPI
and TE training data, and the ‘Majority Vote’ was the de-
fault species tagging system in the TI system (see Section
3.3.1).

As shown in Table 6, except on human, the TXM

model yielded very disappointing results, whereas
the BC model did well overall. This was because
the TXM model was trained on a dataset where fly
and yeast entities occur rarely with only 2% and 5%
of the training instances belonging to these species,
respectively, which again revealed the influence of
the bias introduced in the training material to the ML

models.

System Precision Recall F1
Gold 70.1 63.3 66.5
Majority Vote 46.7 56.3 51.0
TXM model 37.8 46.5 41.7
BC model 45.8 56.1 50.4

Table 7: Performance of TI with or without the automati-
cally predicted species on the joint BioCreAtIvE GN test
dataset.

Using the species disambiguation models, we car-
ried out TI experiments, using the same procedure
as we did on the TXM data. The results were ob-
tained using the official BioCreAtIvE GN scorers17

and are presented in Table 7. Performance of TI as-
sisted by all three species taggers were much behind
that of TI using the gold-standard species, which
shows species-tagging can potentially enhance TI

performance and there is much room for improving
17We tested the TI system on the four original BioCreAtIvE

GN datasets separately and the averaged performance was about
the median among the participating systems in the workshops.
We did not optimise the TXM TI system on BioCreAtIvE, as our
point here is to measure the TI performance with or without help
from the automatic predicted species.

the species disambiguation systems. On the other
hand, it was disappointing that the ‘Majority Vote’
system, which did not use any external species tag-
ger, achieved the best results, while TI with the ‘BC
model’ tagger yielded slightly worse results and the
TXM model performed poorly.

# Species # of Docs % of Docs
1 96 26.20
2 121 32.79

3+ 153 41.19

Table 8: # of species per document in the TXM data.

One possible reason that the ‘Majority Vote’ tag-
ger yielded reasonably good result on the BioCre-
AtIvE dataset, but unsatisfactory result on the TXM

datasets was due to the difference in document
length in the two corpora: the BioCreAtIvE corpus
is comprised of abstracts and the TXM corpora con-
sist of only full-length articles. In abstracts, authors
are inclined to only talk about the main biomedical
entities described in the paper, whereas in full arti-
cles, they tend to describe a larger number of enti-
ties, possibly in multiple species, for the purposes of
describing related work or comparison. Recall that
the ‘Majority Vote’ rule outputs the species indicated
by the majority of the species words, which would
obviously perform better on abstracts, where more
likely only one species is described, than on full-
length articles. Table 8 shows the number of species
per document in the TXM data, where most docu-
ments (i.e., 74%) involve more than one species, in
which cases the ‘Majority Vote’ would not be able to
take obvious advantage.

5 Conclusions and Future Work

This paper presented a range of solutions to the task
of species disambiguation and evaluated their per-
formance on the ITI TXM corpus, and on a joint
dataset from BioCreAtIvE I & II GN tasks. We
showed that rule-based species tagging systems that
exploit heuristics, such as previous species words or
species prefix, can achieve very high precision but
low recall. ML species taggers, on the other hand,
can achieve good overall performance, under the
condition that the species distributions in training
and test datasets are not too distant. Our best per-
forming species tagger is a hybrid system that first
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uses ML to predict species and then applies certain
rules to correct errors.

We also performed TI experiments with help from
species tags assigned by human annotators, or pre-
dicted by the automatic species taggers. On all
datasets, the gold-standard species tags improved TI

performance by a large margin: 19.21% on the EPPI

devtest set, 8.59% on the TE devtest set, and 23.4%
on the BioCreAtIvE GN test datasets, which clearly
shows that species information is indeed very impor-
tant for TI. On the EPPI and TE datasets, the species
predicted by the best-performing hybrid system im-
proved TI by 11.57% and 3.61%, respectively. On
the combined dataset from BioCreAtIvE GN tasks,
however, it did not work as well as expected.

In the future we plan to work on better ways to
integrate the machine learning approaches and the
rules. In particular, we would like to explore statis-
tical relational learning, which may provide ways to
integrate rules as constraints into machine learning
and may be able to alleviate the bias in the learnt
models.
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