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Abstract 

Natural language processing modules such as 
part-of-speech taggers, named-entity recog-

nizers and syntactic parsers are commonly 

evaluated in isolation, under the assumption 

that artificial evaluation metrics for individual 

parts are predictive of practical performance 

of more complex language technology sys-

tems that perform practical tasks. Although 

this is an important issue in the design and en-

gineering of systems that use natural language 

input, it is often unclear how the accuracy of 

an end-user application is affected by parame-

ters that affect individual NLP modules.  We 
explore this issue in the context of a specific 

task by examining the relationship between 

the accuracy of a syntactic parser and the 

overall performance of an information extrac-

tion system for biomedical text that includes 

the parser as one of its components.  We 

present an empirical investigation of the rela-

tionship between factors that affect the accu-

racy of syntactic analysis, and how the 

difference in parse accuracy affects the overall 

system.   

1 Introduction 

Software systems that perform practical tasks with 

natural language input often include, in addition to 

task-specific components, a pipeline of basic natu-

ral language processing modules, such as part-of-
speech taggers, named-entity recognizers, syntactic 

parsers and semantic-role labelers.  Although such 

building blocks of larger language technology so-
lutions are usually carefully evaluated in isolation 

using standard test sets, the impact of improve-

ments in each individual module on the overall 

performance of end-to-end systems is less well 
understood.  While the effects of the amount of 

training data, search beam widths and various ma-

chine learning frameworks have been explored in 

detail with respect to speed and accuracy in basic 
natural language processing tasks, how these trade-

offs in individual modules affect the performance 

of the larger systems they compose is an issue that 
has received relatively little attention.  This issue, 

however, is of great practical importance in the 

effective design and engineering of complex soft-

ware systems that deal with natural language.   
In this paper we explore some of these issues 

empirically in an information extraction task in the 

biomedical domain, the identification of protein- 
protein interactions (PPI) mentioned in papers ab-

stracts from MEDLINE, a large database of bio-

medical papers.  Due in large part to the creation of 
biomedical treebanks (Kulick et al., 2004; Tateisi 

et al., 2005) and rapid progress of data-driven 

parsers (Lease and Charniak, 2005; Nivre et al., 

2007), there are now fast, robust and accurate syn-
tactic parsers for text in the biomedical domain.  

Recent research shows that parsing accuracy of 

biomedical corpora is now between 80% and 90% 
(Clegg and Shepherd, 2007; Pyysalo et al., 2007; 

Sagae et al., 2008).  Intuitively, syntactic relation-

ships between words should be valuable in deter-
mining possible interactions between entities 

present in text.  Recent PPI extraction systems 

have confirmed this intuition (Erkan et al., 2007; 

Sætre et al., 2007; Katrenko and Adriaans, 2006).     
While it is now relatively clear that syntactic 

parsing is useful in practical tasks that use natural 

language corpora in bioinformatics, several ques-
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tions remain as to research issues that affect the 

design and testing of end-user applications, includ-
ing how syntactic analyses should be used in a 

practical setting, whether further improvements in 

parsing technologies will result in further im-

provements in practical systems, whether it is im-
portant to continue the development of treebanks 

and parser adaptation techniques for the biomedi-

cal domain, and how much effort should be spent 
on comparing and benchmarking parsers for bio-

medical data.  We attempt to shed some light on 

these matters by presenting experiments that show 
the relationship of the accuracy of a dependency 

parser and the accuracy of the larger PPI system 

that includes the parser.  We investigate the effects 

of domain-specific treebank size (the amount of 
available manually annotated training data for syn-

tactic parsers) and final system performance, and 

obtain results that should be informative to re-
searchers in bioinformatics who rely on existing 

NLP resources to design information extraction 

systems, as well as to members of the parsing 
community who are interested in the practical im-

pact of parsing research. 

In section 2 we discuss our motivation and re-

lated efforts.  Section 3 describes the system for 
identification of protein-protein interactions used 

in our experiments, and in section 4 describes the 

syntactic parser that provides the analyses for the 
PPI system, and the data used to train the parser.  

We describe our experiments, results and analysis 

in section 5, and conclude in section 6.  

2 Motivation and related work 

While recent work has addressed questions relating 
to the use of different parsers or different types of 

syntactic representations in the PPI extraction task 

(Sætre et al., 2007, Miyao et al., 2008), little con-
crete evidence has been provided for potential ben-

efits of improved parsers or additional resources 

for training syntactic parsers.  In fact, although 
there is increasing interest in parser evaluation in 

the biomedical domain in terms of precision/recall 

of brackets and dependency accuracy (Clegg and 

Shepherd, 2007; Pyysalo et al., 2007; Sagae et al., 
2008), the relationship between these evaluation 

metrics and the performance of practical informa-

tion extraction systems remains unclear.  In the 
parsing community, relatively small accuracy gains 

are often reported as success stories, but again, the 

precise impact of such improvements on practical 

tasks in bioinformatics has not been established. 
One aspect of this issue is the question of do-

main portability and domain adaptation for parsers 

and other NLP modules.  Clegg and Shepherd 

(2007) mention that available statistical parsers 
appear to overfit to the newswire domain, because 

of their extensive use of the Wall Street Journal 

portion of the Penn Treebank (Marcus et al., 1994) 
during development and training.  While this claim 

is supported by convincing evaluations that show 

that parsers trained on the WSJ Penn Treebank 
alone perform poorly on biomedical text in terms 

of accuracy of dependencies or bracketing of 

phrase structure, the benefits of using domain-

specific data in terms of practical system perfor-
mance have not been quantified.  These expected 

benefits drive the development of domain-specific 

resources, such as the GENIA treebank (Tateisi et 
al., 2005), and parser domain adaption (Hara et al., 

2007), which are of clear importance in parsing 

research, but of largely unconfirmed impact on 
practical systems. 

Quirk and Corston-Oliver (2006) examine a 

similar issue, the relationship between parser accu-

racy and overall system accuracy in syntax-
informed machine translation.  Their research is 

similar to the work presented here, but they fo-

cused on the use of varying amounts of out-of-
domain training data for the parser, measuring how 

a translation system for technical text performed 

when its syntactic parser was trained with varying 

amounts of Wall Street Journal text.  Our work, in 
contrast, investigates the use of domain-specific 

training material in parsers for biomedical text, a 

domain where significant amounts of effort are 
allocated for development of domain-specific NLP 

resources in hope that such resources will result in 

better overall performance in practical systems.  

3 A PPI extraction system based on syn-

tactic parsing 

PPI extraction is an NLP task to identify protein 

pairs that are mentioned as interacting in biomedi-
cal papers.  Figure 2 shows two sentences that in-

clude protein names: the former sentence mentions 

a protein interaction, while the latter does not.  
Given a protein pair, PPI extraction is a task of 

binary classification; for example, <IL-8, CXCR1> 
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is a positive example, and <RBP, TTR> is a ne-

gative example. 
Following recent work on using dependency 

parsing in systems that identify protein interactions 

in biomedical text (Erkan et al., 2007; Sætre et al., 
2007; Katrenko and Adriaans, 2006), we have built 

a system for PPI extraction that uses dependency 

relations as features. As exemplified, for the pro-

tein pair IL-8 and CXCR1 in the first sentence of 
Figure 2, a dependency parser outputs a dependen-

cy tree shown in Figure 1.  From this dependency 

tree, we can extract a dependency path between 
IL-8 and CXCR1 (Figure 3), which appears to be 

a strong clue in knowing that these proteins are 

mentioned as interacting. 
The system we use in this paper is similar to the 

one described in Sætre et al. (2007), except that it 

uses syntactic dependency paths obtained with a 

dependency parser, but not predicate-argument 
paths based on deep-parsing.  This method is based 

on SVM with SubSet Tree Kernels (Collins, 2002; 

Moschitti, 2006).  A dependency path is encoded 
as a flat tree as depicted in Figure 4. Because a tree 

kernel measures the similarity of trees by counting 

common subtrees, it is expected that the system 

finds effective subsequences of dependency paths.   
In addition to syntactic dependency features, we 

incorporate bag-of-words features, which are re-

garded as a strong baseline for IE systems.  We use 
lemmas of words before, between and after the pair 

of target proteins. 

In this paper, we use Aimed (Bunescu and 
Mooney, 2004), which is a popular benchmark for 

the evaluation of PPI extraction systems.  The 

Aimed corpus consists of 225 biomedical paper 

abstracts (1970 sentences), which are sentence-

split, tokenized, and annotated with proteins and 

PPIs.  

4 A data-driven dependency parser for 

biomedical text 

The parser we used as component of our PPI ex-

traction system was a shift-reduce dependency 

parser that uses maximum entropy models to de-

termine the parser’s actions.  Our overall parsing 
approach uses a best-first probabilistic shift-reduce 

algorithm, working left-to right to find labeled de-

pendencies one at a time. The algorithm is essen-
tially a dependency version of the constituent 

parsing algorithm for probabilistic parsing with 

LR-like data-driven models described by Sagae 
and Lavie (2006).  This dependency parser has 

been shown to have state-of-the-art accuracy in the 

CoNLL shared tasks on dependency parsing 

(Buchholz and Marsi, 2006; Nivre, 2007). Sagae 
and Tsujii (2007) present a detailed description of 

the parsing approach used in our work, including 

the parsing algorithm and the features used to clas-
sify parser actions.  In summary, the parser uses an 

algorithm similar to the LR parsing algorithm 

(Knuth, 1965), keeping a stack of partially built 
syntactic structures, and a queue of remaining in-

put tokens.  At each step in the parsing process, the 

parser can apply a shift action (remove a token 

from the front of the queue and place it on top of 
the stack), or a reduce action (pop the two topmost 

This study demonstrates that IL-8 recognizes 
and activates CXCR1, CXCR2, and the Duf-

fy antigen by distinct mechanisms. 

 

The molar ratio of serum retinol-binding pro-

tein (RBP) to transthyretin (TTR) is not 

useful to assess vitamin A status during infec-

tion in hospitalized children. 

Figure 2: Example sentences with protein names 

Figure 1: A dependency tree 

ROOT  IL-8  recognizes  and  activates  CXCR1 

ROOT 

SBJ 

OBJ 

COORD 

CC 

ENTITY1(IL-8)    recognizes   ENTITY2(CXCR1) 

Figure 3: A dependency path between protein names 

SBJ OBJ 
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stack items, and push a new item composed of the 

two popped items combined in a single structure). 

This parsing approach is very similar to the one 

used successfully by Nivre et al. (2006), but we 
use a maximum entropy classifier (Berger et al., 

1996) to determine parser actions, which makes 

parsing considerably faster. In addition, our pars-
ing approach performs a search over the space of 

possible parser actions, while Nivre et al.’s ap-

proach is deterministic. 
The parser was trained using 8,000 sentences 

from the GENIA Treebank (Tateisi et al., 2005), 

which contains abstracts of papers taken from 

MEDLINE, annotated with syntactic structures.  
To determine the effects of training set size on the 

parser, and consequently on the PPI extraction sys-

tem, we trained several parsing models with differ-
ent amounts of GENIA Treebank data.  We started 

with 100 sentences, and increased the training set 

by 100 sentence increments, up to 1,000 sentences.  
From that point, we increased the training set by 

1,000 sentence increments.  Figure 5 shows the 

labeled dependency accuracy for the varying sizes 

of training sets.  The accuracy was measured on a 
portion of the GENIA Treebank reserved as devel-

opment data.  The result clearly demonstrates that 

the increase in the size of the training set contri-
butes to increasing parse accuracy.  Training the 

parser with only 100 sentences results in parse ac-

curacy of about 72.5%.  Accuracy rises sharply 

with additional training data until the size of the 
training set reaches about 1,000 sentences (about 

82.5% accuracy).  From there, accuracy climbs 

consistently, but slowly, until 85.6% accuracy is 
reached with 8,000 sentences of training data. 

It should be noted that parser accuracy on the 

Aimed data used in our PPI extraction experiments 
may be slightly lower, since the domain of the 

GENIA Treebank is not exactly the same as the 

Aimed corpus.  Both of them were extracted from 

MEDLINE, but the criteria for data selection were 

not the same in the two corpora, creating possible 

differences in sub-domains.  We also note that the 
accuracy of a parser trained with more than 40,000 

sentences from the Wall Street Journal portion of 

the Penn Treebank is under 79%, a level equivalent 

to that obtained by training the parser with only 
500 sentences of GENIA data. 

 

 
Figure 5: Data size vs. parse accuracy 

 

5 Experiments and Results 

In this section we present our PPI extraction expe-
riments applying the dependency parsers trained 

with the different amounts of the GENIA Treebank 

in our PPI system.  As we mentioned, the GENIA 
Treebank is used for training the parser, while the 

Aimed is used for training and evaluation of PPI 

extraction.  A part-of-speech tagger trained with 

GENIA and PennBioIE was used.  We do not ap-
ply automatic protein name detection, and instead 

use the gold-standard protein annotations in the 

Aimed corpus.  Before running a parser, multiword 
protein names are concatenated and treated as sin-

gle words. As described in Section 3, bag-of-words 

and syntactic dependency paths are fed as features 
to the PPI classifier. The accuracy of PPI extrac-

tion is measured by the abstract-wise 10-fold cross 

validation (Sætre et al, 2007). 

When we use the part-of-speech tagger and the 
dependency parser trained with WSJ, the accuracy 

(F-score) of PPI extraction on this data set is 55.2.  

The accuracy increases to 56.9 when we train the 
part-of-speech tagger with GENIA and Penn BioIE, 

while using the WSJ-trained parser.  This confirms 

the claims by Lease and Charniak (2005) that sub-
sentential lexical analysis alone is helpful in adapt-

ing WSJ parsers to the biomedical domain.  While 

Lease and Charniak looked only at parse accuracy, 

70
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0 2000 4000 6000 8000

Figure 4: A tree kernel representation of the dependency 

path 

(dep_path (SBJ (ENTITY1 ecognizes)) 
(rOBJ (recognizes ENTITY2))) 
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our result shows that the increase in parse accuracy 

is, as expected, beneficial in practice. 
Figure 6 shows the relationship between the 

amount of parser training data and the F-score for 

the PPI extraction.  The result shows that the accu-

racy of PPI extraction increases with the use of 
more sentences to train the parser.    The best accu-

racy was obtained when using 4,000 sentences, 

where parsing accuracy is around 84.3.  Although 
it may appear that further increasing the training 

data for the parser may not improve the PPI extrac-

tion accuracy (since only small and inconsistent 
variations in F-score are observed in Figure 6), 

when we plot the curves shown in Figures 5 and 6 

in a single graph (Figure 7), we see that the two 

curves match each other to a large extent.  This is 
supported by the strong correlation between parse 

accuracy and PPI accuracy observed in Figure 8.  

While this suggests that training the parser with a 
larger treebank may result in improved accuracy in 

PPI extraction, we observe that a 1% absolute im-

provement in parser accuracy corresponds roughly 
to a 0.25 improvement in PPI extraction F-score.  

Figure 5 indicates that to obtain even a 1% im-

provement in parser accuracy by using more train-

ing data, the size of the treebank would have to 
increase significantly. 

Although the results presented so far seem to 

suggest the need for a large data annotation effort 
to achieve a meaningful improvement in PPI ex-

traction accuracy, there are other ways to improve 

the overall accuracy of the system without an im-

provement in parser accuracy.  One obvious alter-
native is to increase the size of the PPI-annotated 

corpus (which is distinct from the treebank used to 

train the parser).  As mentioned in section 3, our 
system is trained using the Aimed corpus, which 

contains 225 abstracts from biomedical papers with 

manual annotations indicating interactions between 
proteins.  Pairs of proteins with no interaction de-

scribed in the text are used as negative examples, 

and pairs of proteins described as interacting are 

used as positive examples.  The corpus contains a 
total of roughly 9,000 examples.  Figure 9 shows 

how the overall system accuracy varies when dif-

ferent amounts of training data (varying amounts 
of training examples) are used to train the PPI sys-

tem (keeping the parse accuracy constant, using all 

of the available training data in the GENIA tree-
bank to train the parser).  While Figure 5 indicates 

that a significant improvement in parse accuracy 

requires a large increase in the treebank used to 

train the parser, and Figure 7 shows that improve-
ments in PPI extraction accuracy may require a 

sizable improvement in parse accuracy, Figure 9 

suggests that even a relatively small increase in the 

PPI corpus may lead to a significant improvement 
in PPI extraction accuracy. 

 
Figure 6: Parser training data size vs. PPI extraction 

accuracy 

 

 

 
Figure 7: Parser training data size vs. parser accuracy 

and PPI extraction accuracy 

 

 

 
Figure 8: Parse accuracy vs. PPI extraction accuracy 
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Figure 9: Number of PPI training examples vs. PPI ex-

traction accuracy 

 
While some of the conclusions that can be 

drawn from these results may be somewhat sur-

prising, most are entirely expected.  However, even 
in these straightforward cases, our experiments 

provide some empirical evidence and concrete 

quantitative analysis to complement intuition.  We 

see that using domain-specific training data for the 
parsing component for the PPI extraction system 

produces superior results, compared to using train-

ing data from the WSJ Penn Treebank.  When the 
parser trained on WSJ sentences is used, PPI ex-

traction accuracy is about 55, compared to over 57 

when sentences from biomedical papers are used.  
This corresponds fairly closely to the differences in 

parser accuracy: the accuracy of the parser trained 

on 500 sentences from GENIA is about the same 

as the accuracy of the parser trained on the entire 
WSJ Penn Treebank, and when these parsers are 

used in the PPI extraction system, they result in 

similar overall task accuracy.  However, the results 
obtained when a domain-specific POS tagger is 

combined with a parser trained with out-of-domain 

data, overall PPI results are nearly at the same lev-
el as those obtained with domain-specific training 

data (just below 57 with a domain-specific POS 

tagger and out-of-domain parser, and just above 57 

for domain-specific POS tagger and parser).  At 
the same time, the argument against annotating 

domain-specific data for parsers in new domains is 

not a strong one, since higher accuracy levels (for 
both the parser and the overall system) can be ob-

tained with a relatively small amount of domain-

specific data. 

Figures 5, 6 and 7 also suggest that additional 

efforts in improving parser accuracy (through the 
use of feature engineering, other machine learning 

techniques, or an increase in the size of its training 

set) could improve PPI extraction accuracy, but a 

large improvement in parser accuracy may be re-
quired.  When we combine these results with the 

findings obtained by Miyao et al. (2008), they sug-

gest that a better way to improve the overall sys-
tem is to spend more effort in designing a specific 

syntactic representation that addresses the needs of 

the system, instead of using a generic representa-
tion designed for measuring parser accuracy.  

Another potentially fruitful course of action is to 

design more sophisticated and effective ways for 

information extraction systems to use NLP tools, 
rather than simply extracting features that corres-

pond to small fragments of syntactic trees.  Of 

course, making proper use of natural language 
analysis is a considerable challenge, but one that 

should be kept in mind through the design of prac-

tical systems that use NLP components. 

6 Conclusion 

This paper presented empirical results on the rela-

tionship between the amount of training data used 

to create a dependency parser, and the accuracy of 

a system that performs identification of protein-
protein interactions using the dependency parser.  

We trained a dependency parser with different 

amounts of data from the GENIA Treebank to es-
tablish how the improvement in parse accuracy 

corresponds to improvement in practical task per-

formance in this information extraction task.  

While parsing accuracy clearly increased with 
larger amounts of data, and is likely to continue 

increasing with additional annotation of data for 

the GENIA Treebank, the trend in the accuracy of 
PPI extraction indicates that a sizable improvement 

in parse accuracy may be necessary for improved 

detection of protein interactions. 
When combined with recent findings by Miyao 

et al. (2008), our results indicate that further work 

in designing PPI extraction systems that use syn-

tactic dependency features would benefit from 
more adequate syntactic representations or more 

sophisticated use of NLP than simple extraction of 

syntactic subtrees.  Furthermore, to improve accu-
racy in this task, efforts on data annotation should 

focus on task-specific data (manual annotation of 
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protein interactions in biomedical papers), rather 

than on additional training data for syntactic pars-
ers.  While annotation of parser training data might 

seems like a cost-effective choice, since improved 

parser results might be beneficial in a number of 

systems where the parser can be used, our results 
show that, in this particular task, efforts should be 

focused elsewhere, such as the annotation of addi-

tion PPI data.  
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