
Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 45–53,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

The evolution of a statistical NLP course

Fei Xia
University of Washington
Department of Linguistics

Box 354340
Seattle, WA 98195-4340

fxia@u.washington.edu

Abstract

This paper describes the evolution of a statis-
tical NLP course, which I have been teaching
every year for the past three years. The pa-
per will focus on major changes made to the
course (including the course design, assign-
ments, and the use of discussion board) and
highlight the lessons learned from this experi-
ence.

1 Introduction

In the past two decades, there has been tremendous
progress in natural language processing (NLP) and
NLP techniques have been applied to various real-
world applications such as internet/intranet search
and information extraction. Consequently, there
has been an increasing demand from the industry
for people with special training in NLP. To meet
the demand, the University of Washington recently
launched a new Professional Masters Program in
Computational Linguistics (CLMA). To earn the
master’s degree, students must take nine courses and
complete a final project. The detail of the program
can be found in (Bender et al., 2008).

One of the required courses is LING572 (Ad-
vanced statistical methods in NLP), a course that
I have been teaching every year for the past three
years. During the process and especially in Year 3, I
have made many changes to course content, assign-
ments, and the usage of discussion board. In this
paper, I will describe the evolution of the course and
highlight the lessons learned from this experience.

2 Background

LING572 is part of the four-course NLP core se-
quence in the CLMA program. The other three
are LING570 (Shallow Processing Techniques for
NLP), LING571 (Deep Processing Techniques for
NLP), and LING573 (NLP Systems and Applica-
tions). LING570 and LING571 are organized by
NLP tasks (e.g., language model, POS tagging,
Named-entity tagging, chunking for LING570, and
parsing, semantics and discourse for LING571);
LING572 is organized by machine learning meth-
ods; LING573 is the place where students use the
knowledge learned in LING570-572 to build NLP
systems for some real applications (e.g., question
answering and information extraction).

The prerequisites for LING572 are (1) at least
one college-level course in probability and statistics,
(2) strong programming skills, and (3) LING570.
The quarter is ten weeks long, with two 80-minute
sessions per week. The class size is relatively
small, with ten to twenty students. Most students
in LING572 are from the CLMA program and are
taking LING571 and other NLP courses at the same
time. About a half of the students are from computer
science background, and the remaining are from lin-
guistics or other humanity background.

3 Course content

It would be impossible to cover all the major ma-
chine learning (ML) algorithms in one quarter;
therefore, one of the decisions that I made from the
very beginning is that the course would focus on
major classification algorithms and spend only one
week showing how these algorithms can be applied
to sequence labeling problems. I believe that once

45

students have a solid grasp of these algorithms, it
would be easy for them to learn algorithms for other
kinds of learning problems (e.g., regression, cluster-
ing, and ranking).

The next question is what classification algo-
rithms should be included in the syllabus. Table 1
shows the topics covered each year and the num-
ber of sessions spent on each topic. The topics can
be roughly divided into three units: (1) supervised
learning, (2) semi- and unsupervised learning, and
(3) other related topics.

3.1 Year 1

The teaching plan for Year 1 turned out to be too
ambitious. For instance, six supervised algorithms
were covered in four weeks (i.e., 8 sessions) and four
semi-/unsupervised algorithms were covered in 2.5
weeks. Such a tight schedule did not leave sufficient
time for students to digest all the important concepts
and equations.

3.2 Year 2

In Year 2, I reduced the amount of time spent on Unit
(2). For instance, I spent only one session discussing
the main ideas in the EM algorithm, without going
through the details of the mathematic deduction and
special cases of the algorithm such as the backward-
forward algorithm and the inside-outside algorithm.
Other changes were made to other units, as shown in
the second column of Table 1.

3.3 Year 3

In the first two years, my lecturing style was simi-
lar to the tutorials given at major NLP conferences
(e.g., ACL) in that I covered a lot of material in a
short period of time and expected students to digest
all the details after class. This approach did not work
very well because our students came from very di-
verse backgrounds (e.g., linguistics, literature, com-
puter science) and many of them were not famil-
iar with mathematic concepts (e.g., Lagrangian, dual
problem, quadratic programming, hill climbing) that
are commonly used in machine learning. Most of
the students were also new to NLP, taking only
one quarter of NLP-related courses before taking
LING572.

Based on this observation, I made major changes
to the syllabus in Year 3: I reduced the lecture ma-

Table 1: Content changes over the years (-: topics not
covered, *: topics moved to LING570 in the previous
quarter, †: topics moved to an NLP seminar)

Y1 Y2 Y3
(1) Supervised learning:
kNN - 1 1
Decision Tree 1 1 1
Decision List 1 1 -
Naive Bayes - 1 2
Maximum entropy (MaxEnt) 2 2 4
Support vector machine (SVM) - - 4
Transformation-based learning (TBL) 2 1 1
Bagging 1 1 -
Boosting 1 2 -

subtotal 8 10 13
(2) Semi-/unsupervised learning:
Semisupervised 2 1 1†
Unsupervised 3 1 -†

subtotal 5 2 1
(3) Other topics:
Introduction 1 1 1
Information theory - - 1
Feature selection - 1 1
System combination 1 - -
Relation between FSA and HMM 1 - -*
Multiclass→ binary - 1 -*
Beam search - 1 -*
Student presentation 1 1 -
Recap, summary 3 2 3

subtotal 7 7 6
Total 20 19 20

terial and spent more time on discussion and illus-
trative examples. For example, on average 1.25 ses-
sions were spent on a supervised algorithm in Year
2 and that number increased to 2.17 sessions in Year
3. I also added one session on information theory,
which provides theoretic foundation for many learn-
ing methods. Because of this change, some impor-
tant topics had to be cut, as shown in the last col-
umn of Table 1. Fortunately, I was able to incorpo-
rate some of the removed topics to two other courses
(i.e., LING570 and a seminar on semi- and unsuper-
vised learning) that I was teaching in the same year.
The feedback from students indicated that the new
course plan for Year 3 was more effective than the
ones for the previous two years.

Another change I made was that I divided the
teaching material into three types: (1) the essential
knowledge that students should fully understand, (2)

46

more advanced topics that students should be aware
of but do not have to understand all the details, and
(3) related topics that are not covered in class but are
available on additional slides for people who want
to learn more by themselves. Taking MaxEnt as an
example, Type (1) includes the maximum entropy
principle, the modeling, GIS training, and decod-
ing; Type (2) includes regularization and the math-
ematic proof that shows the relation between maxi-
mum likelihood and maximum entropy as provided
in (Ratnaparkhi, 1997), and Type (3) includes L-
BFGS training and the similarity between SVM and
MaxEnt with regularization (Klein, 2007). Making
this distinction helps students focus on the most es-
sential part of the algorithms and at the same time
provides additional material for more advanced stu-
dents.

4 Reading material

One challenge of teaching a statistic NLP course is
the lack of good textbooks on the subject; as a result,
most of the reading material come from conference
and journal papers. The problem is that many of the
algorithms covered in class were originally proposed
in non-NLP fields such as machine learning and ap-
plied mathematics, and the original papers are often
heavy in mathematical proofs and rarely refer to the
NLP tasks that our students are familiar with. On the
other hand, NLP papers that apply these algorithms
to NLP tasks often assume that the readers are al-
ready familiar with the algorithms and consequently
do not explain the algorithms in detail.

Because it is hard to find a suitable paper to cover
all the theoretic and application aspects of a learning
algorithm, I chose several papers for each algorithm
and specified the sections that the students should
focus on. For instance, for Maximum Entropy, I
picked (Berger et al., 1996; Ratnaparkhi, 1997) for
the basic theory, (Ratnaparkhi, 1996) for an appli-
cation (POS tagging in this case), and (Klein and
Manning, 2003) for more advanced topics such as
optimization and smoothing.

For the more sophisticated learning methods (e.g.,
MaxEnt and SVM), it is very important for students
to read the assigned papers beforehand. However,
some students choose not to do so for various rea-
sons; meanwhile, other students might spend too

much time trying to understand everything in the pa-
pers. To address this problem, in Year 3 I added five
reading assignments, one for each of the following
topics: information theory, Naive Bayes, MaxEnt,
SVM, and TBL. Each assignment consists of simple
questions such as the one in Appendix A. Students
were asked to turn in their answers to the questions
before class. Although the assignments were very
simple, the effect was obvious as students started to
ask in-depth questions even before the topics were
covered in class.

5 Written and programming assignments

In addition to the reading assignments mentioned
above, students also have weekly assignments. For
the sake of clarity, we divide the latter into two
types, written and programming assignments, de-
pending on whether programming is required. Sig-
nificant changes have been made to both types, as
explained below.

5.1 Year 1

In Year 1, there were three written and six pro-
gramming assignments. The written assignments
were mainly on mathematic proof, and one example
is given in Appendix B. The programming assign-
ments asked students to use the following existing
packages to build NLP systems.

1. Carmel, a finite state transducer package writ-
ten by Jonathan Graehl at USC/ISI.

2. fnTBL (Ngai and Florian, 2001), an efficient
implementation of TBL created by Ngai and
Florian at JHU.

3. A MaxEnt toolkit written
by Le Zhang, available at
http://homepages.inf.ed.ac.uk/s0450736.

To complete the assignments, the students needed
to study some functions in the source code to under-
stand exactly how the learning algorithms were im-
plemented in the packages. They would then write
pre- and post-processing tools, create data files, and
build an end-to-end system for a particular NLP
task. They would then present their work in class
and write a final paper to report their findings.

47

5.2 Year 2

In Year 2 I made two major changes to the assign-
ments. First, I reduced the number of written as-
signments on theoretic proof. While such assign-
ments strengthen students’ mathematic capability,
they were very challenging to many students, espe-
cially the ones who lacked mathematics and statis-
tics training. The assignments were also not as ef-
fective as programming assignments in understand-
ing the basic concepts for the learning algorithms.

The second major change was to replace the three
packages mentioned above with Mallet (McCallum,
2002), a well-known package in the NLP field. Mal-
let is a well-designed package that contains almost
all the learning methods covered in the course such
as Naive Bayes, decision tree, MaxEnt, boosting,
and bagging; once the training and test data were
put into the Mallet data format, it was easy to run all
these methods and compared the results.

For the programming assignments, in addition
to reading certain Mallet functions to understand
how the learning methods were implemented, the
students were also asked to extend the package
in various ways. For instance, the package in-
cludes a text-user-interface (TUI) class called Vec-
tors2Classify.java, which produces a classifier from
the training data, uses the classifier to classify the
test data, compares the results with gold standard,
and outputs accuracy and the confusion matrix. In
one assignment, students were asked to first sepa-
rate the code for training and testing, and then add
the beam search to the latter module so that the new
code would work for sequence labeling tasks.

While using Mallet as a black box is straight-
forward, extending it with additional functionality
is much more difficult. Because the package did
not have a detailed document that explained how
its main classes should be used, I spent more than
a week going through hundreds of classes in Mal-
let and wrote a 11-page guide based on my find-
ings. While the guide was very helpful, many stu-
dents still struggled with the assignments, especially
the ones who were not used to navigating through
other people’s code and/or who were not familiar
with Java, the language that Mallet was written in.

5.3 Year 3

To address these problems, in Year 3, we changed
the focus of the assignments: instead of studying and
extending Mallet code, students would create their
own package from scratch and use Mallet only as
a reference. For instance, in one assignment, stu-
dents would implement the two Naive Bayes mod-
els as described in (McCallum and Nigam, 1998)
and compare the classification results with the re-
sults produced by the Mallet Naive Bayes learner. In
the beam search assignment, students’ code would
include modules that read in the model produced by
Mallet and calculate P (y | x) for a test instance
x and a class label y. Because the code no longer
needed to call Mallet functions, students were free to
use whatever language they were comfortable with
and could treat Mallet as a black box.

The complete assignments are shown in Appendix
C. In summary, students implemented six learners
(Naive Bayes, kNN, Decision Tree, MaxEnt, SVM,
TBL),1 beam search, and the code for feature selec-
tion. All the coding was completed in eight weeks
in total, and the students could choose to either work
alone or work with a teammate.

6 Implementation issues

All the programming assignments in Year 3, except
the one for MaxEnt, were due in a week, and stu-
dents were expected to spend between 10 and 20
hours on each assignment. While the workload was
demanding, about 90% of students completed the as-
signments successfully. Several factors contribute to
the success:

• All the learners were evaluated on the same
classification task.2 The input and output data
format were very similar across different learn-
ers; as a result, the code that handled input and
output could be reused, and the classification
results of different learners could be compared
directly.

1For SVM, students implemented only the decoder, not the
trainer, and they would test their decoder with the models pro-
duced by libSVM (Chang and Lin, 2001).

2The task is a simplified version of the classic 20-newsgroup
text classification task, with only three out of the 20 classes be-
ing used. The training data and the test data consist of 900 and
100 examples from each class, respectively.

48

• I restricted the scope of the assignments so that
they were doable in a week. For instance, the
complexity of a TBL learner highly depends on
the form of the transformations and the type of
learning problem. In the TBL assignment, the
learner was used to handle classification prob-
lems and the transformation had the form if a
feature is present in an instance, change the
class label from A to B. Implementing such
a learner was much easier than implementing
a learner (e.g., fnTBL) that use more com-
plex transformations to handle sequence label-
ing problems.

• Efficiency is an important issue, and there are
often differences between algorithms on pa-
per and the code that implements the algo-
rithms. To identify those differences and po-
tential pitfalls that students could run into, I
completed all the assignments myself at least
a week before the assignments were due, and
shared some of my findings in class. I also told
students the kind of results to be expected, and
encouraged students to discuss the results and
implementation tricks on the discussion board.

Implementing machine learning algorithms is of-
ten an art, as there are many ways to improve effi-
ciency. Two examples are given below. While such
tricks are well-known to NLP researchers, they are
often new to students and going through them in
class can help students to speed up their code sig-
nificantly.

The trainer for TBL
As described in (Brill, 1995), a TBL trainer picks

one transformation in each iteration, applies it to the
training data, and repeats the process until no more
good transformations can be found. To choose the
best transformation, a naive approach would enu-
merate all the possible transformations, for each
transformation go through the data once to calculate
the net gain, and choose the transformation with the
highest net gain. This approach is very inefficient as
the data have to be scanned through multiple times.3

3Let Nf be the number of features and Nc be the number
of classes in a classification task, the number of transformations
in the form we specified above is O(NfN2

c), which means that
the learner has to go through the data O(NfN2

c) times.

A much better implementation would be to go
through the training data only once, and for each fea-
ture in each training instance, update the net gains
of the corresponding transformations accordingly.4

Students were also encouraged to read (Ngai and
Florian, 2001), which proposed another efficient im-
plementation of TBL.

The decoder for Naive Bayes
In the multi-variate Bernoulli event model for

the text classification task (McCallum and Nigam,
1998), at the test time the class for a document d is
chosen according to Eq (1). If we calculate P (d|c)
according to Eq (2), as given in the paper, we have
to go through all the features in the feature set F .
However, as shown in Eq (3) and (4), the first prod-
uct in Eq (3), denoted as Z(c) in Eq (4), is a constant
with respect to d and can be calculated beforehand
and stored with each c. Therefore, to classify d, we
only need to go through the features that are present
in d. Implementing Eq (4) instead of Eq (2) reduces
running time tremendously.5

c∗ = arg maxcP (c)P (d|c) (1)

P (d|c) =
∏
f 6∈d

(1− P (f |c))
∏
f∈d

P (f |c) (2)

=
∏
f∈F

(1− P (f |c))
∏
f∈d

P (f |c)
1− P (f |c)

(3)

= Z(c)
∏
f∈d

P (f |c)
1− P (f |c)

(4)

7 Discussion board

A discussion board is one of the most effective ve-
hicles for outside-class communication and collab-
oration, as anyone in the class can start a new con-
versation, read recent posts, or reply to other peo-

4For each feature t in each training instance x, if x’s current
label yc is different from the true label y, there would be only
one transformation whose net gain would be affected by this
feature in this instance, and the transformation is if t is present,
change class label from yc to y. If yc is the same as y, there
would be Nc − 1 transformations whose net gain would be af-
fected, where Nc is the number of classes.

5This trick was actually pointed out by a student in my class.

49

ple’s posts.6 Furthermore, some students feel more
comfortable posting to a discussion board than rais-
ing the questions in class or emailing the instructor.
Therefore, I provided a discussion board each time
LING572 was offered and the board was linked to
the course website. However, the board was not used
as much as I had hoped in the first two years.

In Year 3, I took a more pro-active approach:
first, I reminded students several times that emails
to me should be reserved only for confidential ques-
tions and all the non-confidential questions should
be posted to the discussion board. They should also
check the discussion board at least daily and they
were encouraged to reply to their classmates’ ques-
tions if they knew the answers. Second, if a stu-
dent emailed me any questions that should go to the
discussion board, I would copy the questions to the
board and ask the sender to find my answers there.
Third, I checked the board several times per day and
most of the questions raised there were answered
within an hour if not sooner.

As a result, there was a significant increase of the
usage of the board, as shown in Table 2. For in-
stance, compared to Year 2, the average number of
posts per student in Year 3 more than quadrupled,
and at the same time the number of emails I re-
ceived from the students was cut by 65%. More im-
portantly, more than a half of the questions posted
to the board were answered by other students, in-
dicating the board indeed encouraged collaboration
among students.

A lesson I learned from this experience is that the
success of a discussion board relies on active partic-
ipation by its members, and strong promotion by the
instructor is essential in helping students take advan-
tage of this form of communication.

8 Course evaluation

Students were asked to evaluate the course at the
end of the quarter using standard evaluation forms.
The results are shown in Table 3.7 For (1)-(11), stu-
dents were asked to answer the questions with a 6-

6The software we used is called GoPost. It is one of the
Web-based communication and collaboration applications de-
veloped by the Center for Teaching, Learning, and Technology
at the University of Washington.

7The complete form has thirty questions, the most relevant
ones are listed in the table.

Table 2: The usage of the course discussion board
Y1 Y2 Y3

of students 15 16 11
of conversations 13 47 116
Total # of posts 42 149 589
of posts by the instructor 7 21 158
of posts by students 35 128 431

Ave # of post/student 2.3 8 39.2

point scale: 0 being Very Poor and 5 being Excel-
lent. The question for (12) is “on average how many
hours per week have you spent on this course?”; The
question for (13) is “among the total average hours
spent on the course, how many do you consider were
valuable in advancing your education?” The values
for (1)-(13) in the table are the average of the re-
sponses. The last row, Challenge and Engagement
Index (CEI), is a score computed from several items
on the evaluation form, and reported as a decile rank
ranging from 0 (lowest) to 9 (highest). It reflects
how challenging students found the course and how
engaged they were in it.

The table shows that the overall evaluation in Year
2 was worse than the one in Year 1, despite much
effort put into improving course design. The main
problem in Year 2 was the programming assign-
ments, as discussed in Section 5.2 and indicated in
Row (11): many students found the task of extend-
ing Mallet overwhelming, especially since some of
them had never used Java and debugged a large pre-
existing package before. As a result, they spent
much time on learning Java and trying to figure out
how Mallet code worked, and they felt that was not
the best way to learn the subjects (cf. the big gap
between the values for Row (12) and (13)).

Based on the feedback from the first two years,
in Year 3 I made a major overhaul to the course, as
discussed in Sections 3-7 and summarized here:

• The lecture material was cut substantially; for
instance, the average number of slides used in a
session was reduced from over 60 in Year 2 to
below 30 in Year 3. The saved time was spent
on class discussion and going through exam-
ples on the whiteboard.

• Reading assignments were introduced to help
students focus on the most relevant part of the

50

Table 3: Student evaluation of instruction (For Item (1)-(11), the scale is between 0 and 5: 0 is Very Poor and 5 is
Excellent; The scale for Item (14) is between 0 and 9, 9 being most challenging)

Y1 Y2 Y3
Number of respondents 14 15 11
(1) The course as a whole 3.9 3.8 5.0
(2) The course content 4.0 3.7 4.9
(3) Course organization 4.0 3.8 4.8
(4) Explanations by instructor 3.7 3.5 4.6
(5) Student confidence in instructor’s knowledge 4.5 4.5 4.9
(6) Instructor’s enthusiasm 4.5 4.6 4.9
(7) Encouragement given students to express themselves 3.9 4.3 4.6
(8) Instructor’s interest in whether students learned 4.5 4.0 4.8
(9) Amount you learned in the course 3.8 3.3 4.8
(10) Relevance and usefulness of course content 4.3 3.9 4.9
(11) Reasonableness of assigned work 3.8 2.0 3.8
(12) Average number of hours/week spent on the course 7.9 21.9 19.8
(13) How many were valuable in advancing your education 6.2 14.5 17.2
(14) Challenge and engagement index (CEI) 7 9 9

reading material.

• Instead of extending Mallet, students were
asked to create their own packages from scratch
and many implementation issues were ad-
dressed in class and in the discussion board.

• Discussion board was highly promoted to en-
courage outside-class discussion and collabora-
tion, and its usage was increased dramatically.

As shown in the last column of the table, the
new strategies worked very well and the feedback
from the students was very positive. Interestingly,
although the amount of time spent on the course
in Y2 and Y3 was about the same, the students in
Y3 felt the assigned work was more reasonable than
the students in Y2. This highlights the importance
of choosing appropriate assignments based on stu-
dents’ background. Also, while the lecture material
was cut substantially over the years, students in Y3
felt that they learned more than the students in Y1
and Y2, implying that it is more beneficial to cover
a small number of learning methods in depth than to
hurry through a large number of topics.

9 Conclusion

Teaching LING572 has been a great learning expe-
rience, and significant changes have been made to

course content, assignments, and the like. Here are
some lessons learned from this experience:

• A common pitfall for course design is being
over-ambitious with the course plan. What
matters the most is not how much material is
covered in class, but how much students actu-
ally digest.

• When using journal/conference papers as read-
ing material, it is often better to select multi-
ple papers and specify the sections in the pa-
pers that are most relevant. Giving reading
assignments would encourage students to read
papers before class and provide guidelines as
what questions they should focus on.

• Adding new functionality to an existing pack-
age is often difficult if the package is very com-
plex and not well-documented. Therefore, this
kind of assignments should be avoided if pos-
sible. In contrast, students often learn more
from implementing the methods from scratch
than from reading other people’s source code.

• Implementing ML methods is an art, and point-
ing out various tricks and potential obstacles
beforehand would help students tremendously.
With careful design of the assignments and in-
class/outside-class discussion of implementa-

51

tion issues, it is possible to implement multiple
learning methods in a short period of time.

• Discussion board is a great venue for students
to share ideas, but it will be successful only if
students actively participate. The instructor can
play an important role in promoting the usage
of the board.

Many of the lessons above are not specific to
LING572, and I have made similar changes to other
courses that I am teaching. So far, the feedback from
the students have been very positive. Compared to
the first two years, in Year 3, students were much
more active both in and outside class; they were
much more satisfied with the assignments; many stu-
dents said that they really appreciated all the imple-
mentation tips and felt that they had a much better
understanding of the algorithms after implementing
them. Furthermore, several students expressed inter-
est in pursuing a Ph.D. degree in NLP.

In the future, I plan to replace some of the early
ML algorithms (e.g., kNN, Decision Tree, TBL)
with more recent ones (e.g., conditional random
field, Bayesian approach). This adjustment has to be
done with special care, because the early algorithms,
albeit quite simple, often provide the foundation for
understanding more sophisticated algorithms. I will
also fine tune the assignments to make them more
manageable for students with less CS/math training.

A Reading assignment example

The following is the reading assignment for MaxEnt
in Year 3.

(Q1) Let P(X=i) be the probability of getting an i
when rolling a dice. What is P (X) accord-
ing to the maximum entropy principle under the
following condition?
(a) P(X=1) + P(X=2) = 0.5
(b) P(X=1) + P(X=2) = 0.5 and P(X=6) = 0.2

(Q2) In the text classification task, |V | is the num-
ber of features, |C| is the number of classes.
How many feature functions are there?

(Q3) How to calculate the empirical expectation of
a feature function?

B Written assignment example

The following is part of a written assignment for
Boosting in Year 1: In the basic AdaBoost algo-
rithm, let ht be the hypothesis created at time t,
Dt(i) be the weight of the i-th training instance,
and εt be the training error rate of ht. Let the hy-
pothesis weight αt be 1

2 ln
1−αt
αt

and the normaliza-
tion factor Zt be

∑
iDt(i)e−αtyiht(xi). Prove that

Zt = 2
√
αt(1− αt) for any t.

C Programming assignment examples

In Year 3, there were seven programming assign-
ments, as summarized below:

Hw1: Implement the two Naive Bayes models as
described in (McCallum and Nigam, 1998).

Hw2: Implement a decision tree learner, assuming
all features are binary and using information
gain as the split function.

Hw3: Implement a kNN learner using cosine and
Euclidean distance as similarity/dissimilarity
measures. Implement one of feature selection
methods covered in class, and test the effect of
feature selection on kNN.

Hw4: Implement a MaxEnt learner. For training,
use General Iterative scaling (GIS).

Hw5: Run the svm-train command in the libSVM
package (Chang and Lin, 2001) to create a
SVM model from the training data. Write a de-
coder that classifies test data with the model.

Hw6: Implement beam search and reduplicate the
POS tagger described in (Ratnaparkhi, 1996).

Hw7: Implement a TBL learner for the text clas-
sification task, where a transformation has the
form if a feature is present in a document,
change the class label from A to B.

For Hw6, students compared their POS tag-
ging results with the ones reported in (Ratnaparkhi,
1996). For all the other assignments, students tested
their learners on a text classification task and com-
pare the results with the ones produced by pre-
existing packages such as Mallet and libSVM.

Each assignment was due in a week except for
Hw4 and Hw6, which were due in 1.5 weeks. Stu-
dents could choose to work alone or work with a
teammate.

52

References
Emily Bender, Fei Xia, and Erik Bansleben. 2008.

Building a flexible, collaborative, intensive master’s
program in computational linguistics. In Proceedings
of the Third ACL Workshop on Effective Tools and
Methodologies for Teaching NLP and CL, Columbus,
Ohio, June.

Adam L. Berger, Stephen A. Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22(1), March.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging. Computational Lin-
guistics, 21(4):543–565.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM:
a library for support vector machines. Available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Dan Klein and Christopher Manning. 2003. Maxent
model, conditional estimation, and optimization. ACL
2003 tutorial.

Dan Klein. 2007. Introduction to Classification: Like-
lihoods, Margins, Features, and Kernels. Tutorial at
NAACL-2007.

Andrew McCallum and Kamal Nigam. 1998. A compar-
ison of event models for naive bayes text classification.
In In AAAI/ICML-98 Workshop on Learning for Text
Categorization.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Grace Ngai and Radu Florian. 2001. Transformation-
based learning in the fast lane. In Proceedings of
North American ACL (NAACL-2001), pages 40–47,
June.

Adwait Ratnaparkhi. 1996. A Maximum Entropy Model
for Part-of-speech Tagging. In Proc. of Joint SIGDAT
Conference on Empirical Methods in Natural Lan-
guage Processing and Very Large Corpora (EMNLP-
1996), Philadelphia.

Adwait Ratnaparkhi. 1997. A simple introduction to
maximum entropy models for natural language pro-
cessing. Technical Report Technical Report 97-08, In-
stitute for Research in Cognitive Science, University
of Pennsylvania.

53

