
Proceedings of the Third Workshop on Issues in Teaching Computational Linguistics (TeachCL-08), pages 27–35,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Defining a Core Body of Knowledge for the
Introductory Computational Linguistics Curriculum

Steven Bird
Department of Computer Science and Software Engineering

University of Melbourne, Victoria 3010, Australia
sb@csse.unimelb.edu.au

Abstract

Discourse in and about computational linguis-
tics depends on a shared body of knowledge.
However, little content is shared across the
introductory courses in this field. Instead,
they typically cover a diverse assortment of
topics tailored to the capabilities of the stu-
dents and the interests of the instructor. If the
core body of knowledge could be agreed and
incorporated into introductory courses several
benefits would ensue, such as the proliferation
of instructional materials, software support,
and extension modules building on a com-
mon foundation. This paper argues that it is
worthwhile to articulate a core body of knowl-
edge, and proposes a starting point based on
the ACM Computer Science Curriculum. A
variety of issues specific to the multidisci-
plinary nature of computational linguistics are
explored.

1 Introduction

Surveys of introductory courses in computational
linguistics and natural language processing provide
evidence of great diversity.1 Regional variation is
stark: courses may emphasise theory over program-
ming (or vice versa), rule-based approaches over
statistical approaches (or vice versa), tagging and
parsing over semantic interpretation (or vice versa),
and so on. The diversity is hardly surprising given
the particular background of a student cohort and the
particular expertise of an instructor.

1http://aclweb.org/aclwiki/index.php?
title=List_of_NLP/CL_courses

In spite of this variation, the introductory course
needs to serve some common, basic needs. For some
students, it will be the first step in a pathway leading
to specialised courses, graduate research, or employ-
ment in this field. These students should receive a
solid technical foundation and should come away
with an accurate picture of the many opportunities
that lie ahead. For students who do not continue, the
introductory course will be their main exposure to
the field. In addition to the technical content, these
students need to understand how the field draws
from and contributes back to its parent disciplines
of linguistics and computer science, along with tech-
nological applications that are helping to shape the
future information society. Naturally, this course
is also a prime opportunity to promote the field to
newcomers and encourage them to pursue advanced
studies in this area. In all cases, the introductory
course needs to cover a core body of knowledge.

The fact that a core body of knowledge exists
in computational linguistics is demonstrated anec-
dotally: a doctoral student is told to curtail her
extended discussions of basic POS tagging and CFG
parsing algorithms since they are part of the pre-
sumed knowledge of the audience; a researcher pre-
senting work to a general linguistics or computer sci-
ence audience discovers to his surprise that certain
methodologies or algorithms need to be explicated
and defended, even though they was uncontroversial
when presented at a conference; a keynote speaker at
a computational linguistics conference can presume
that certain theoretical programs and practical goals
of the field are widely accepted. These three areas
– terminology, methodology, ideology – constitute

27



part of the core body of knowledge of computational
linguistics. They provide us with the starting point
for identifying the concepts and skills to be covered
in the introductory course.

Identifying a core body of knowledge would bring
three major benefits. First, technical support would
be consolidated: instructional materials together
with implementations of standard algorithms would
be available in several programming paradigms and
languages. Second, colleagues without a research
specialization in computational linguistics would
have a non-controversial curriculum with external
support, a standard course that could be promoted
to a broad range of students as a mainstream option,
in both linguistics and computer science. Similarly,
new graduates beginning a teaching career would
be better equipped to push for the adoption of a
new computational linguistics or natural language
processing course at institutions where it is not
yet established. Third, employers and graduate
schools would be able to make assumptions about
the knowledge and skills of a new graduate.

The goal of this paper is to advocate the idea of
consensus around a body of knowledge as a promis-
ing way to coordinate the introductory computa-
tional linguistics curriculum, without attempting to
mandate the structure of individual courses or the
choice of textbooks. The paper is organised as fol-
lows: section 2 sets the scene by describing a vari-
ety of contexts in which computational linguistics
is taught, drawing on the author’s first-hand experi-
ence; section 3 sets out a possible organization for
the introductory topics in computational linguistics,
modelled on the ACM Computer Science Curricu-
lum; section 4 explores some implications of this
approach for curriculum and assessment. The paper
closes with remarks about next steps.

2 Contexts for Teaching and Learning in
Computational Linguistics

In this section a variety of scenarios are described
in which the author has had direct first-hand experi-
ence. All cases involve entry-level courses in com-
putational linguistics. They provide the back-drop
to the current proposal, exemplifying a range of
contexts in which a core body of knowledge would
need to be delivered, contexts imposing different

constraints on implementation.
Before embarking on this discussion it is helpful

to be reminded of the differing backgrounds and
goals of new students. Some want to use com-
putational techniques in the analysis of language,
while others want to use linguistic knowledge in the
development of language technologies. These back-
grounds and goals are orthogonal, leading to the grid
shown in Table 1.

I will begin with the most common context of a
graduate-level course, before progressing to upper-
level undergraduate, lower-level undergraduate, and
secondary levels.

2.1 Graduate-Level Courses

Dozens of graduate programs in computer science
and in linguistics have an introductory course on
computational linguistics or natural language pro-
cessing. In most cases, this is all the formal train-
ing a student will receive, and subsequent training
is happens in private study or on the job. In some
universities this is the entry point into a suite of more
advanced courses in such areas as lexical semantics,
statistical parsing, and machine translation. Even so,
it is important to consider the shared assumptions of
these specialised courses, and the needs of a student
who only undertakes the introductory course.

There are two principal challenges faced by
instructors at this level. The first is to adequately
cover the theoretical and practical sides of the field
in a single semester. A popular solution is not to try,
i.e. to focus on theory to the exclusion of practical
exercises, or to simply teach “programming for
linguists.” The former deprives students of the
challenge and excitement of writing programs to
automatically process language. The latter fails to
cover any significant domain-specific theories or
algorithms.

The second challenge is to address the diverse
backgrounds of students, ranging from those with a
computer science background to a linguistics back-
ground, with a scattering of students who have a
background in both or in neither.

The author taught at this level at the University
of Pennsylvania over a period of three years. Per-
haps the most apt summary of the experience is
triage. Cohorts fell into three groups: (i) students

28



Background: Arts and Humanities Background: Science and Engineering
Language
Analysis

Programming to manage language data,
explore linguistic models, and test empir-
ical claims

Language as a source of interesting prob-
lems in data modeling, data mining, and
knowledge discovery

Language
Technology

Knowledge of linguistic algorithms and
data structures for high quality, maintain-
able language processing software

Learning to program, with applications
to familiar problems, to work in language
technology or other technical field

Table 1: Summary of Students’ Backgrounds and Goals, from (Bird et al., 2008a)

who are well prepared in either linguistics or com-
puter science but not both (the majority) who will
perform well given appropriate intervention; (ii) stu-
dents who are well-prepared in both linguistics and
computer science, able to complete learning tasks
on their own with limited guidance; and (iii) stu-
dents with minimal preparation in either linguis-
tics or computer science, who lack any foundational
knowledge upon which to build. Resources targetted
at the first group invariably had the greatest impact.

2.2 Specialised Upper-Level Undergraduate
Courses

In contrast with graduate-level courses, a specialised
upper-level undergraduate course will typically be
an elective, positioned in the later stages of an
extended sequence of courses (corresponding to
ACM unit IS7 Natural Language Processing, see
§3). Here it is usually possible to make reliable
assumptions about background knowledge and
skills, and to provide training that is pitched at
exactly the right level.

The author taught at this level in the Computer
Science and Linguistics departments at the
University of Melbourne during the past five
years (five times in Computer Science, once in
Linguistics). In the Linguistics department, the
course began by teaching programming, with
illustrations drawn from linguistic domains,
before progressing to topics in text processing
(tokenization, tagging), grammars and parsing, and
data management. Laboratory sessions focussed on
the acquisition of programming skills, and we found
that a 1:5 staff-student ratio was insufficient.

In the Computer Science department, the first
approach was to introduce linguistics for 2-3 weeks
before looking at algorithms for linguistic process-
ing. This was unpopular with many students, who

did not see the motivation for learning about such
topics as morphology and verb subcategorization in
isolation from practical applications. A revised ver-
sion of the course opened with topics in text process-
ing, including tokenization, extracting text from the
web, and moving on to topics in language engineer-
ing. (Bird et al. (2008b) provide a more extended
discussion of opening topics.)

A third option is to teach computational linguistic
topics in the context of a specialised course in an
allied field. Thus a course on morphology could
include a module on finite-state morphology, and a
course on machine learning could include a mod-
ule on text mining. In the former case, a linguistic
domain is presupposed and the instructor needs to
teach the linguist audience about a particular corpus
to be processed or an algorithm to be implemented
or tested. In the latter case, a family of algorithms
and data structures is presupposed and the instructor
needs to teach a computer science audience about
linguistic data, structures, and processes that can
serve as a domain of application.

2.3 Cross-Disciplinary Transition

People entering computational linguistics from
either a linguistics or computer science background
are faced with a daunting challenge of learning
the fundamentals of the other field before they
can progress very far with the study of the target
domain. A major institution with a long history
of teaching computational linguistics will have
a cadre of graduate students and post-doctoral
researchers who can support an instructor in
teaching a course. However, one measure of the
success of the approach being advocated here are
that such institutions will be in the minority of those
where computational linguistics is taught. In such
contexts, a computational linguistics course will be

29



a lone offering, competing for enrolments with a
variety of more established electives. To compound
the problem, a newcomer to the field may be faced
with taking a course in a department other than
their host department, a course which presumes
background knowledge they lack. Additional
support and self-paced learning materials are
crucial. Efforts on filling out the computational
linguistics content in Wikipedia – by instructors and
students alike – will help the entire community.

2.4 Lower-Level Undergraduate Courses

An intriguing option for delivery of an introduc-
tion to computational linguistics is in the context
of entry-level courses in linguistics and computer
science. In some cases, this may help to address
the declining interest of students in these individual
disciplines.

As computer science finds a broader role in ser-
vice teaching, rather than in training only those stu-
dents doing a major, the curriculum needs to be
driven by topics of broad appeal. In the author’s cur-
rent first year teaching, such topics include climate
change, population health, social anthropology, and
finance. Many fundamental concepts in data struc-
tures and algorithms can be taught from such start-
ing points. It is possible to include language pro-
cessing as one of the drivers for such a course.

Many possibilities for including computational
linguistics exist in the second-level computer sci-
ence curriculum. For example, algorithmic methods
involving time-space trade-offs and dynamic pro-
gramming can be motivated by the task of building a
simple web search engine (Bird and Curran, 2006).
Concrete tasks involve web crawling, text extrac-
tion, stemming, and indexing. Spelling correction
can be used as a driver for teaching core computer
science concepts in associative arrays, linked lists,
and sorting by a secondary key.

An analogous opportunity exists in the context of
entry-level courses in linguistics. Linguistics stu-
dents will readily agree that most human knowledge
and communication is represented and expressed
using language. But it will come as a surprise that
language technologies can process language auto-
matically, leading to more natural human-machine
interfaces, and more sophisticated access to stored
information. In this context, a linguistics student

may grasp a broader vision for his/her role in the
multilingual information society of the future.

In both cases, the hope is that students are inspired
to do further undergraduate study spanning linguis-
tics and computer science, and to enter industry
or graduate school with a solid preparation and a
suitable mix of theoretical knowledge and technical
skills.

The major obstacle is the lack of resources avail-
able to the typical instructor, who is not a specialist
in computational linguistics, and who has to deliver
the course to a large audience having no prior inter-
est or knowledge in this area. They need simple
packages and modules that can be incorporated into
a variety of teaching contexts.

2.5 Secondary School

Programming and Information Technology have
found a place in the secondary curriculum in many
countries. The coursework is typically animated
with projects involving games, databases, and
dynamic websites. In contrast, the curriculum
involving the grammar and literature of a major
world language typically only uses information
technology skills for such mundane tasks as word
processing and web-based research. However, as
innovators in the language curriculum look for
new ways to enliven their classes with technology,
computational linguistics offers a ready-made
source of interesting problems and methods.

In Australia, theEnglish Languagecurriculum of
the Victorian Certificate of Education is a linguistics
program offered as part of the last two years of
secondary education (VCAA, 2006; Mulder et al.,
2001). This course provides a promising host for
computational linguistics content in the Victorian
secondary curriculum. The author has delivered an
“Electronic Grammar” module2 in an English class
in a Victorian secondary school over a three week
period, jointly with a teacher who has a double
degree in linguistics and computer science. Students
were taught the elements of programming together
with some simple applications involving taggers,
parsers and annotated corpora. These activities
served to reinforce students’ understanding of
lexical categories, lexical semantics, and syntactic

2http://nltk.org/electronic_grammar.html

30



ambiguity (i.e. prepositional phrase attachment).
Similar methods could be applied in second
language learning classes to locate common words
and idioms in corpora.

In this context, key challenges are the installa-
tion of specialised software (even a programming
language interpreter), overcoming the impenetrable
nature of standard part-of-speech tagsets by map-
ping them to simplified tagsets, and providing suit-
able training for teachers. A promising solution
is to provide a self-paced web-based programming
and testing environment, side-stepping issues with
school infrastructure and teacher training.3

3 Defining the CL Body of Knowledge

A promising approach for identifying the CL body
of knowledge is to begin with the ACMComputing
Curricula 2001 Computer Science Volume(ACM,
2001). In this scheme, the body of knowledge within
computer science is organised in a three-level hierar-
chy: subfields, units and topics. Each subfield has a
two-letter designator, such as OS for operating sys-
tems. Subfields are divided into several units, each
being a coherent theme within that particular area,
and each identified with a numeric suffix. Within
each unit, individual topics are identified. We can
select from this body of knowledge the areas that
are commonly assumed in computational linguistics
(see the Appendix), and then expect them to be part
of the background of an incoming computer science
student.

The field of linguistics is less systematised, and no
professional linguistics body has attempted to devise
an international curriculum standard. Helpful com-
pendia of topics exist, such as theLanguage Files
(Stewart and Vaillette, 2008). However, this does
not attempt to define the curriculum but to provide
supporting materials for introductory courses.

Following the ACM scheme, one could try to
establish a list of topics comprising the body of
knowledge in computational linguistics. This is not
an attempt to create a comprehensive ontology for
the field (cf. Cole (1997), Uszkoreit et al. (2003)),
but rather a simple practical organization of intro-
ductory topics.

3This is a separate activity of the author and colleagues,
available viaivle.sourceforge.net

CL. Computational Linguistics
CL1. Goals of computational linguistics

roots, philosophical underpinnings,
ideology, contemporary divides

CL2. Introduction to Language
written vs spoken language; linguistic levels;
typology, variation and change

CL3. Words, morphology and the lexicon
tokenization, lexical categories, POS-tagging,
stemming, morphological analysis, FSAs

CL4. Syntax, grammars and parsing
grammar formalisms, grammar development,
formal complexity of natural language

CL5. Semantics and discourse
lexical semantics, multiword expressions,
discourse representation

CL6. Generation
text planning, syntactic realization

CL7. Language engineering
architecture, robustness, evaluation paradigms

CL8. Language resources
corpora, web as corpus, data-intensive linguistics,
linguistic annotation, Unicode

CL9. Language technologies
named entity detection, coreference, IE, QA,
summarization, MT, NL interfaces

Following the ACM curriculum, we would expect
to designate some of these areas as core (e.g.
CL1-3), while expecting some number of additional
areas to be taken as electives (e.g. three from the
remaining six areas). A given curriculum would
then consist of three components: (a) bridging
studies so students can access the core knowledge;
(b) the core body of knowledge itself; and (c)
a selection of electives chosen to give students
a balance of linguistic models, computational
methodologies, and application domains. These
issues involve fleshing out the body of knowledge
into a sequential curriculum, the topic of the next
section.

4 Implications for the Curriculum

The curriculum of an introductory course builds out
from the body of knowledge of the field by lin-
earizing the topic areas and adding bridging studies
and electives. The result is a pathway that medi-
ates between students’ backgrounds and their goals
as already schematised in Table 1. Figure 1 dis-
plays two hypothetical pathways, one for students

31



Parsing

Computational Linguistics Core Body of Knowledge

LinguisticsPREPARATION

FOUNDATION

EXTENSION

Computer 
Science

Mathematics, 
Statistics

Psychology

Discourse Generation

...

Language 
Engineering

...

"LING-380 Language Technology""CS-390 Natural Language Processing"

Figure 1: Curriculum as a Pathway Through the Core Body of Knowledge, with Two Hypothetical Courses

from a computer science background wanting to
learn about natural language processing, and one for
students from a linguistics background wanting to
learn about language technology. These could serve
as templates for individual advanced undergraduate
courses with names that are driven by local market-
ing needs rather than the need to emphasise the com-
putational linguistics content. However, they could
also serve as a guide for a whole series of course
selections in the context of a coursework masters
program. Clearly, the adoption of a core body of
knowledge has rather limited implications for the
sequence of an individual curriculum.

This section explores these implications for the
curriculum and raises issues for wider discussion
and exploration.

4.1 Diverse Entry Points

An identified body of knowledge is not yet a cur-
riculum. It must sit in the context of the background
and goals of a particular audience. An analysis of
the author’s experience in teaching computational
linguistics to several types of audience has led to
a four-way partitioning of the possible entry points,
shown in Figure 2.

The approaches in the top half of the figure are
driven by applications and skills, while those in the
bottom half are driven by theoretical concerns both
inside and outside computational linguistics. The
entry points in the top-left and bottom-right of the
diagram seem to work best for a computer science

audience, while the other two seem to work best
for a linguistics audience (though further work is
required to put such impressionistic observations on
a sound footing).

By definition, all students would have to cover
the core curriculum regardless of their entry point.
Depending on the entry point and the other courses
taken, different amounts of the core curriculum
would already be covered. For students with
minimal preparation, it might actually take more
than one course to cover the core curriculum.

4.2 Bridging Studies

One approach to preparation, especially suitable at
the graduate level, is to mandate bridging studies
for students who are not adequately prepared for the
introductory course. This could range from an indi-
vidual program of preparatory readings, to a sum-
mer intensive course, to a full semester course (e.g.
auditing a first or second year undergraduate course
such asIntroduction to Languageor Algorithms and
Data Structures).

It is crucial to take seriously the fact that some
students may be learning to program for the first
time in their lives. Apart from learning the syntax
of a particular programming language, they need to
learn a new and quite foreign algorithmic approach
to problem solving. Students often report that they
understand the language constructs and follow the
examples provided by the instructor, but find they
are unable to write new programs from scratch.

32



Programming First:
skills and problem-solving 

focus, with CL for motivation, 

illustrations, and applications

Text Processing First:
application focus, token-

ization, tagging, evaluation, 

language engineering

Linguistics First:
syntax, semantics, morph-

ology, with CL for testing a 

theory, exploring corpora

Algorithms First:
CL algorithms or CL as 

application for an allied field 

(e.g. AI, IR, ML, DB, HCI)

Language Computing

Application

Theory

Figure 2: Approaches to Teaching NLP

This accords with the finding that the way in
which programmers understand or write programs
differs greatly between the novice and the expert
(Lister et al., 2006). The issue is independent of
the computational linguistics context, and fits the
more general pattern that students completing an
introductory programming course do not perform as
well as expected (McCracken et al., 2001).

Bridging studies can also overlap with the course
itself, as already indicated in Figure 1. For example,
in the first week of classes one could run a quiz that
identifies students who are not sufficiently prepared
for the programming component of the course. Such
a quiz could include a diagnostic non-programming
task, like articulating the search process for looking
up a name in a telephone book, which is a predictor
of programming skill (Simon et al., 2006). Early
intervention could include extra support, readings,
classes, and so on. Some students could be alerted
to the fact that they will find the course very chal-
lenging. Some students in this category may opt
to switch to a less demanding course, which might
actually be the best outcome for all concerned.

4.3 Organizational Models

Linguistics Model: A natural way to structure the
computational linguistics curriculum is to adopt
organizational patterns from linguistics courses.
This could involve progression up through the
linguistic levels from phonology to discourse, or
a focus on the analysis of a particular language or

language family, the implementation of a particular
linguistic theory, or skills development in corpus
linguistics or field methods. In this way, content can
be packaged to meet local needs, while retaining
latitude to enter and exit the core body of knowledge
in computational linguistics.

Computer Science Model: The curriculum
could adopt organizational patterns from other
computer science courses. This could involve
progression through families of algorithms, or
navigating the processing pipeline of speech
understanding, or exploring the pieces of a
multi-component system (e.g. question answering).
As with the linguistics model, the course would be
badged to appeal to students in the local context,
while covering the core body of knowledge in
computational linguistics.

Vocational Model: In some contexts, established
theoretical courses dominate, and there is room to
promote a course that is focussed on building pro-
gramming skills in a new language or for some new
application area. This may result in a popular elec-
tive that gives students a readily marketable skill.4

This approach may also work at the secondary level
in the form of an after-school club. The course is
structured according to the features of a particular
programming language, but examples and projects
on text processing succeed in covering the core body

4The author found this approach to be successful in the case
of a database theory course, in which a semester project on
building a web database using PHP and MySQL added signifi-
cant appeal to an otherwise dry subject.

33



of knowledge in computational linguistics.
Dialectic Model: As discussed above, a major

goal for any curriculum is to take students from one
of the entry points in Figure 2 into the core body of
knowledge. One approach is to consider transitions
to topics covered in one of the other entry points:
the entry point is a familiar topic, but from there the
curriculum goes across to the other side, attempt-
ing to span the divide between computer science
and linguistics. Thus, a computational linguistics
curriculum for a computer science audience could
begin with algorithms (bottom-left) before applying
these to a range of problems in text processing (top-
left) only to discover that richer sources of linguistic
knowledge were required (bottom-right). Similarly
a curriculum for a linguistics audience could begin
with programming (top-right), then seek to apply
these skills to corpus processing for a particular lin-
guistic domain (bottom-left).

This last approach to the curriculum criss-crosses
the divide between linguistics and computer science.
Done well, it will establish a dialectic between the
two fields, one in which students reach a mature
understanding of the contrasting methodologies
and ideologies that exist within computational
linguistics including: philosophical assumptions
(e.g. rationalism vs empiricism); the measurement
of success (e.g. formal evaluation vs linguistic
explanation); and the role of observation (e.g.
a single datum as a valuable nugget vs massive
datasets as ore to be refined).

5 Conclusion

A core body of knowledge is presumed background
to just about any communication within the field
of computational linguistics, spanning terminology,
methodology, and ideology. Consensus on this body
of knowledge would serve to underpin a diverse
range of introductory curricula, ensuring they cover
the core without imposing much restriction on the
details of any particular course. Curricula beginning
from four very different starting points can progress
towards this common core, and thence to specialised
topics that maximise the local appeal of the course
and its function of attracting newcomers into the
field of computational linguistics.

There is enough flexibility in the curriculum of

most existing introductory computational linguis-
tics courses to accommodate a core body of knowl-
edge, regardless of the aspirations of students or the
research interests of an instructor. If the introductory
course is part of a sequence of courses, a larger body
of knowledge is in view and there will be scope for
switching content into and out of the first course. If
the introductory course stands alone as an elective
that leads to no other courses, there will also be
scope for adding or removing content.

The preliminary discussion of this paper leaves
many areas open for discussion and exploration.
The analyses and recommendations remain at the
level of folk pedagogy and need to be established
objectively. The various pathways have only been
described schematically, and still need to be fleshed
out into complete syllabuses, down to the level of
week-by-week topics. Support for skill development
is crucial, especially in the case of students learn-
ing to program for the first time. Finally, obsta-
cles to conceptual learning and skill development
need to be investigated systematically, with the help
of more sophisticated and nuanced approaches to
assessment.

Acknowledgments

The experiences and ideas discussed in this paper
have arisen during my computational linguistics
teaching at the Universities of Edinburgh,
Pennsylvania and Melbourne. I’m indebted to
several co-teachers who have accompanied me on
my journey into teaching computational linguistics,
including Edward Loper, Ewan Klein, Baden
Hughes, and Selina Dennis. I am also grateful
to many students who have willingly participated
in my explorations of ways to bridge the divide
between linguistics and computer science over the
past decade. This paper has benefitted from the
feedback of several anonymous reviewers.

34



References

ACM. 2001.Computing Curricula 2001: Computer Sci-
ence Volume. Association for Computing Machinery.
http://www.sigcse.org/cc2001/.

Steven Bird and James Curran. 2006. Building a
search engine to drive problem-based learning. In
Proceedings of the Eleventh Annual Conference on
Innovation and Technology in Computer Science Edu-
cation. http://eprints.unimelb.edu.au/
archive/00001618/.

Steven Bird, Ewan Klein, and Edward Loper. 2008a.
Natural Language Processing in Python.http://
nltk.org/book.html.

Steven Bird, Ewan Klein, Edward Loper, and Jason
Baldridge. 2008b. Multidisciplinary instruction with
the Natural Language Toolkit. InProceedings of the
Third Workshop on Issues in Teaching Computational
Linguistics. Association for Computational Linguis-
tics.

Ronald Cole, editor. 1997.Survey of the State of the Art
in Human Language Technology. Studies in Natural
Language Processing. Cambridge University Press.

Raymond Lister, Beth Simon, Errol Thompson, Jacque-
line L. Whalley, and Christine Prasad. 2006. Not
seeing the forest for the trees: novice programmers
and the SOLO taxonomy. InProceedings of the 11th
Annual SIGCSE Conference on Innovation and Tech-
nology in Computer Science Education, pages 118–
122.

Michael McCracken, Vicki Almstrum, Danny Diaz,
Mark Guzdial, Dianne Hagan, Yifat Ben-David
Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and
Tadeusz Wilusz. 2001. A multi-national, multi-
institutional study of assessment of programming
skills of first-year CS students.SIGCSE Bulletin,
33:125–180.

Jean Mulder, Kate Burridge, and Caroline Thomas.
2001.Macmillan English Language: VCE Units 1 and
2. Melbourne: Macmillan Education Australia.

Simon Simon, Quintin Cutts, Sally Fincher, Patricia
Haden, Anthony Robins, Ken Sutton, Bob Baker, Ilona
Box, Michael de Raadt, John Hamer, Margaret Hamil-
ton, Raymond Lister, Marian Petre, Denise Tolhurst,
and Jodi Tutty. 2006. The ability to articulate strategy
as a predictor of programming skill. InProceedings of
the 8th Australian Conference on Computing Educa-
tion, pages 181–188. Australian Computer Society.

Thomas W. Stewart and Nathan Vaillette, editors. 2008.
Language Files: Materials for an Introduction to Lan-
guage and Linguistics. Ohio State University Press.

Hans Uszkoreit, Brigitte Jörg, and Gregor Erbach. 2003.
An ontology-based knowledge portal for language
technology. InProceedings of ENABLER/ELSNET

Workshop “International Roadmap for Language
Resources”.

VCAA. 2006. English Language: Victorian
Certicate of Education Study Design. Victorian
Curriculum and Assessment Authority. http:
//www.vcaa.vic.edu.au/vce/studies/
englishlanguage/englangindex.htm%l.

Appendix: Selected Topics from ACM CS
Body of Knowledge Related to
Computational Linguistics

DS. Discrete Structures
DS1. Functions, relations and sets
DS2. Basic logic
DS5. Graphs and trees
DS6. Discrete probability

PF. Programming Fundamentals
PF1. Fundamental programming constructs
PF2. Algorithms and problem solving
PF3. Fundamental data structures
PF4. Recursion

AL. Algorithms and Complexity
AL1. Basic algorithmic analysis
AL2. Algorithmic strategies

IS. Intelligent Systems
IS1. Fundamental issues in intelligent systems
IS2. Search and constraint satisfaction
IS3. Knowledge representation and reasoning
IS7. (Natural language processing)

IM. Information Management
IM1. Information models and systems
IM3. Data modeling

SP. Social and Professional Issues
SP4. Professional and ethical responsibilities
SP5. Risks and liabilities of computer-based systems

SE. Software Engineering
SE1. Software design
SE2. Using application programming interfaces
SE9. Component-based computing

35


