
Extended Constituent-to-Dependency Conversion for English

Richard Johansson and Pierre Nugues

Department of Computer Science, LTH, Lund University, Sweden

{richard, pierre}@cs.lth.se

Abstract

We describe a new method to convert En-

glish constituent trees using the Penn Tree-

bank annotation style into dependency trees.

The new format was inspired by annota-

tion practices used in other dependency tree-

banks with the intention to produce a better

interface to further semantic processing than

existing methods. In particular, we used a

richer set of edge labels and introduced links

to handle long-distance phenomena such as

wh-movement and topicalization.

The resulting trees generally have a more

complex dependency structure. For exam-

ple, 6% of the trees contain at least one non-

projective link, which is difficult for many

parsing algorithms. As can be expected, the

more complex structure and the enriched set

of edge labels make the trees more difficult

to predict, and we observed a decrease in

parsing accuracy when applying two depen-

dency parsers to the new corpus. However,

the richer information contained in the new

trees resulted in a 23% error reduction in a

baseline FrameNet semantic role labeler that

relied on dependency arc labels only.

1 Introduction

Labeled dependency parsing has become increas-

ingly popular during the last few years. Dependency

syntax offers a number of advantages from a prac-

tical perspective such as the availability of efficient

parsing algorithms that analyze sentences in linear

time while still achieving state-of-the-art results. It

is arguably easier to understand and to teach to peo-

ple without a linguistic background, which may be

of use when annotating domain-specific data such as

in medicine. Finally, some linguists argued that de-

pendency grammar is universal whereas constituents

would be more English-centric (Mel’čuk, 1988).

From a theoretical perspective, dependency syn-

tax is arguably more intuitive than constituent syn-

tax when explaining linking, i.e. the realization of

the semantic arguments of predicates as syntactic

units. This may also have practical implications for

“semantic parsers”, although this still remains to be

seen in practice.

As statistical parsing is becoming the norm, syn-

tactically annotated data, and hence the annotation

style they adopt, plays a central role. For English,

no significant dependency treebank exists, although

there have been some preliminary efforts to create

one (Rambow et al., 2002). Instead, the constituent-

based Penn Treebank (Marcus et al., 1993), which is

the largest treebank for English and the most com-

mon training resource for constituent parsing of this

language, has been used to train most of the data-

driven dependency parsers reported in the literature.

However, since it based on constituent structures, a

conversion method must be applied that transforms

its constituent trees into dependency graphs.

The dependency trees produced by existing con-

version methods (Magerman, 1994; Collins, 1999;

Yamada and Matsumoto, 2003), which have been

used by all recent papers on English dependency

parsing, have been somewhat simplistic in view of

original dependency treebanks such as the Danish

Dependency Treebank (Trautner Kromann, 2003),

in particular with respect to the set of edge labels

and the treatment of complex long-distance linguis-

tic relations such as wh-movement, topicalization,

it-clefts, expletives, and gapping. However, this in-

formation is available in the Penn Treebank from

version II when its syntactic representation was ex-

tended from bare bracketing to a much richer struc-

ture (Marcus et al., 1994), but with a few exceptions

this has not yet been reflected by automatic parsers,

neither constituent-based nor dependency-based.

This article describes a new constituent-to-

dependency conversion procedure that makes better

use of the existing information in the Treebank. The

Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit (Eds.)
NODALIDA 2007 Conference Proceedings, pp. 105–112

Richard Johansson and Pierre Nugues

idea of the new conversion method is to make use

of the extended structure of the recent versions of

the Penn Treebank to derive a more “semantically

useful” representation. The first section of the arti-

cle presents previous approaches to converting con-

stituent trees into dependency trees. We then de-

scribe the modifications we brought to the previous

methods. The last section describes a small experi-

ment in which we study the impact of the new format

on the performance of two statistical dependency

parsers. Finally, we examine how the new represen-

tation affects semantic role classification.

2 Previous Constituent-to-Dependency

Conversion Methods

The current conversion procedures are based on the

idea of assigning each constituent in the parse tree a

unique head selected amongst the constituent’s chil-

dren (Magerman, 1994). For example, the toy gram-

mar below would select the noun as the head of an

NP, the verb as the head of a VP, and VP as the head

of an S consisting of a noun phrase and and a verb

phrase:

NP --> DT NN*
VP --> VBD* NP

S --> NP VP*

By following the child-parent links from the token

level up to the root of the tree, we can label every

constituent with a head token. The heads can then

be used to create dependency trees: to determine the

parent of a token in the dependency tree, we locate

the highest constituent that it is the head of and select

the head of its parent constituent.

Magerman (1994) produced a head percolation

table, a set of priority lists, to find heads of con-

stituents. Collins (1999) modified Magerman’s rules

and used them in his parser, which is constituent-

based but uses dependency structures as an inter-

mediate representation. Yamada and Matsumoto

(2003) modified the table further and their proce-

dure has become the most popular one to date.

PENN2MALT (Nivre, 2006) is a reimplementation

of Yamada and Matsumoto’s method, and also de-

fines a set of heuristics to infer arc labels in the

dependency tree. Figure 1 shows the constituent

tree of the sentence Why, they wonder, should it be-

long to the EC? from the Penn Treebank and Fig-

ure 2, the corresponding dependency tree produced

by PENN2MALT.

SBARQ

VP

SBAR

ADVP

S

NP

SQ

PRN

VP

SBJ

NP

SBJ

PP

CLR

NP

SBARQ

WHADVP

PRP

T

T

Why wonderthey 0 EC ?should, belongit to the*T* *T*,

Figure 1: A constituent tree from the Penn Treebank.

Why wonderthey, , should it belong to the EC

SUB

P

P

VMOD

?

SUB

P

VMOD VMOD

VMOD

PMOD

NMOD

ROOT

Figure 2: Dependency tree by PENN2MALT.

3 The New Conversion Procedure

As can be seen from the figures, the dependency tree

that is created by PENN2MALT discards deep infor-

mation such as the fact that the word Why refers to

the purpose of the verb belong. It thus misses the di-

rect relation between this question and a possible an-

swer It should belong to the EC because. . . This re-

lation is nevertheless present in the Penn Treebank II

and is encoded in the form of a PRP link (purpose or

reason) from the verb phrase to an empty node that

is linked via a secondary edge to Why (Figure 1). In

the new method, we link wh-words and topicalized

phrases to their semantic heads, which we believe

makes more sense in a dependency grammar.

In addition to the modification of dependency

links, the new method uses a much richer set of de-

pendency arc labels than PENN2MALT. The Penn

annotation guidelines define a fairly large set of edge

labels (referring to grammatical functions or proper-

ties of phrases), and most of these are retained in

the new format. PENN2MALT only used SBJ, sub-

ject, and PRD, predicative complement. In addition,

the number of inferred labels (i.e. the labels on the

edges that carry no label in the Penn Treebank) has

been extended.

Figure 3 shows the dependency tree that is pro-

duced by the new procedure. The benefit of retain-

ing the deeper information should be obvious for ap-

106

Extended Constituent-to-Dependency Conversion for English

plications that need to carry out some semantic pro-

cessing, for example in question answering systems.

Why wonderthey, , should it belong to the EC

P

P

?

SBJ

PRN

SBJ

VC

NMOD

PMOD

CLRPRP

P
ROOT−SBARQ

Figure 3: Dependency tree by the new procedure.

The next subsections detail the modifications of

the previous methods.

3.1 Heuristically Deepening Noun Phrases

As a preprocessing step, the conversion method uses

a few heuristic rules to add internal structure to some

noun phrases. This is because a large number of

noun phrases with a complex internal structure are

annotated using a completely flat structure in the

Penn Treebank. An extreme example is other small

apparel makers, button suppliers, trucking firms and

fabric houses. The main reasons for this are prob-

ably practical; it saves annotation time, and the in-

ternal structure may not be entirely clear to the man-

ual annotators unless they are domain experts. How-

ever, the flat structure is very unappealing when the

phrase is converted to a dependency structure, since

this makes all words in the noun phrase direct de-

pendents of the head word.

We used the following heuristics:

• Certain adverbs (such as quite or too) are joined

with a consecutive adjective into an ADJP.

• Some common words in coordinated NPs (such

as& Co and and Sons) provide a clue to how to

bracket these coordinations.

• If there are two words with identical part-of-

speech tags around a conjunction, they are as-

sumed to be coordinated, such as in a small and

venomous snake.

3.2 Head Rule Modifications

The fundamental task in a constituent-to-

dependency conversion system is to find the

head of each phrase, which is needed in order to

create the dependency links. For the most part, we

followed the earlier approach by using a set of head

percolation rules based on the phrase type, but our

rules also made use of the context of the phrases

and of grammatical functions. Table 1 shows the

complete set of rules. In the table, NP-ε means NP

with no function tag, ** means any phrase, and

*-PRD means any phrase with a PRD function tag.

The following subsections list the modifications of

the rules used by Yamada and Matsumoto (2003).

ADJP ← NNS QP NN $ ADVP JJ VBN VBG

ADJP JJR NP JJS DT FW RBR

RBS SBAR RB

ADVP → RB RBR RBS FW ADVP TO CD JJR

JJ IN NP JJS NN

CONJP → CC RB IN

FRAG → (NN* | NP) W* SBAR (PP | IN)

(ADJP | JJ) ADVP RB

INTJ ← **
LST → LS :

NAC ← NN* NP NAC EX $ CD QP PRP

VBG JJ JJS JJR ADJP FW

NP, NX ← (NN* | NX) JJR CD JJ JJS RB

QP NP-ε NP

PP, WHPP → (first non-punctuation after preposition)

PRN → (first non-punctuation)

PRT → RP

QP ← $ IN NNS NN JJ RB DT CD NCD

QP JJR JJS

RRC → VP NP ADVP ADJP PP

S ← VP *-PRD S SBAR ADJP UCP NP

SBAR ← S SQ SINV SBAR FRAG IN DT

SBARQ ← SQ S SINV SBARQ FRAG

SINV ← VBZ VBD VBP VB MD VP *-PRD S

SINV ADJP NP

SQ ← VBZ VBD VBP VB MD *-PRD VP

SQ

UCP → **
VP → VBD VBN MD VBZ VB VBG VBP VP

*-PRD ADJP NN NNS NP

WHADJP ← CC WRB JJ ADJP

WHADVP → CC WRB

WHNP ← NN* WDT WP WP$ WHADJP WHPP

WHNP

X → **

Table 1: Head percolation rules.

Coordinated Phrases. The method of Yamada and

Matsumoto (2003) analyzed coordinations in-

consistently, although Collins (1999) had spe-

cial rules for such constructions. In the new

procedure, the leftmost conjunct is consistently

regarded as the head of a coordinated struc-

ture, and all other conjuncts and conjunctions

as children of the first conjunct. There is a con-

siderable amount of literature on how to rep-

resent coordinations in dependency grammars.

Treating the leftmost conjunct as the head in-

troduces ambiguities when modifiers attach to

the left. To have an unambiguous representa-

tion, the coordination should be represented us-

ing the conjunction as the head, but this is usu-

107

Richard Johansson and Pierre Nugues

ally not preferred since it makes parsing more

difficult.

PPs, Subordinate and Relative Clauses. In prep-

ositional phrases, including wh-phrases such as

in which, the preposition itself is regarded as a

case marker and treated as a dependent. The

same is true for other “linking words” such

as subordinating conjunctions and relative pro-

nouns.

Noun Phrases. For noun phrases, NX phrases (in-

complete NPs) are moved to the highest prior-

ity. Similarly to the treatment of PPs above,

possessive markers are regarded as dependents

of the preceding noun. When trying to set a

child NP as the head of an NP, the new con-

version procedure skips NPs having a function

tag (for instance, to avoid setting tomorrow as

the head of the meeting tomorrow). In WHNP

phrases (such as what cat), the noun instead of

the wh-word is considered head.

Main Clauses (S, SQ, and SINV). In some rare

cases, a main clause may lack a verb or a verb

phrase. In those cases, we look for a constituent

with a PRD edge label.

3.3 Modification of Arc Labeling Rules

3.3.1 Grammatical Functions from Penn

In addition to phrase labels such as NP and VP,

Penn Treebank II uses a set of 21 property labels

such as subject, SBJ, location, LOC, or manner,

MNR. The properties may be combined, such as

LOC-PRD-TPC. Of these labels, all were used to

label dependency relations except four which reflect

a structural property rather than a grammatical func-

tion: HLN (headline), TTL (title), NOM (non-NP act-

ing as a nominal), and TPC (topicalization). The

final one, topicalization, represents a property of a

phrase that is arguably more semantically relevant

than the three others, e.g. when analyzing the rhetor-

ical structure. However, we think that this property

is independent from grammatical functions – an ob-

ject is an object whether fronted or not – and it is

probably not relevant to a dependency grammar. For

the treatment of the CLF (cleft) tag, which is also a

structural property, see Sect 3.3.3.

Regarding a few of the function tags from Penn,

we introduced minor modifications. The adverbial

tag, ADV, was extended to all unmarked ADVP and

PP nodes in verb phrases. According to Penn an-

notation conventions, ADV is implicit in these cases.

The logical subject in passive clause tag, LGS, was

moved to the edge between the verb phrase and by,

rather than the edge between by and the noun phrase.

3.3.2 Inferred Labels

Most of the edges in the Treebank have no label.

For these edges, we used heuristics to infer a suitable

function tag. These rules are to a large extent based

on corresponding rules in PENN2MALT.

The treatment of objects is somewhat different

from previous approaches: we included clause com-

plements (SBAR and S) into this category, whereas

PENN2MALT includes NPs only. To filter out some

frequent annotation errors (SBARs which should

carry an edge label), we excluded SBARs starting

with as, for, since, or with. Arguably, the clause

complements should not use the same label as noun

phrase objects. On the other hand, it is quite intu-

itive that the same label is used in I told him that. . .

as in I told him a message.

In addition, we used a distinction between direct

objects (OBJ) and indirect objects (IOBJ). Adding

the IOBJ labels is not problematic if there is more

than one object, in which case the IOBJ label is as-

signed to the first of them. However, if we make a

distinction between direct and indirect object, it is

not clear that there won’t occur cases where there is

only a single object, but that object should have an

IOBJ function tag (such as in Tell me!). To have

an idea of the number of such cases, we inspected

a large set of instances of the verbs give, tell, and

provide. Fortunately, the Treebank annotates most

of those cases with an empty node to denote a miss-

ing object, although there are a few annotation errors

that make the rule fail.

The function tag on the root token was used to ex-

press the type of sentence. We used four root labels:

ROOT-S when the root constituent was S or SINV,

ROOT-SBARQ and ROOT-SQ for SBARQ and SQ

respectively, and ROOT-FRAG for everything else.

Algorithm 1 shows the complete set of rules that

were used to assign labels to the edges that were not

labeled by the Penn annotators.

108

Extended Constituent-to-Dependency Conversion for English

Algorithm 1 Rules to label unlabeled arcs
let c be a token, C the highest phrase that c is the head of,

and P the parent of C

returns The label on the dependency arc from c to its parent

if C is the root node

if C is S or SINV return ROOT-S

if C is SQ return ROOT-SQ

if C is SBARQ return ROOT-SBARQ

else return ROOT-FRAG

else

if C is the first of more than one object return IOBJ

if C is an object return OBJ

if C is PRN return PRN

if c is punctuation return P

if C is coordinated with P return COORD

if C is PP, ADVP, or SBAR and P is VP return ADV

if C is PRT and P is VP return PRT

if C is VP and P is VP, SQ, or SINV return VC

if P is VP, S, SBAR, SBARQ, SINV, or SQ return VMOD

if P is NP, NX, NAC, or WHNP return NMOD

if P is ADJP, ADVP, WHADJP, or WHADVP return AMOD

if P is PP or WHPP return PMOD

else return DEP

end if

3.3.3 Structural Labels

Although it is preferable that the dependency rela-

tions reflect function rather than structure, structural

labels were still needed for a proper representation

of a small set of complex constructions. We used

three such labels: EXP (expletive), CLF (cleft), and

GAP (gapping).

Expletive constructions and cleft sentences are

rhetorical transformations that usually result in a

fronted it. Although superficially similar, expletives

and clefts are handled rather differently in the Penn

conventions. In an expletive construction, the ref-

erent S node is linked via a secondary edge to the

preceding it, while for clefts the main clause car-

ries the function tag CLF and the referent is unla-

beled. In the converted format, these constructions

were treated similarly: we attached the referent to

the main verb and put the CLF or EXP label on that

link. Figures 4 and 5 show examples of an exple-

tive and a cleft, respectively, and their corresponding

representations as dependency trees.

SNP

NP

VP

VP

NP

SBJ

S

ADJP

PRD

SBJ
VP

S

EXP

it refrainright’s*EXP* to* it right to refrain’s

ROOT−S

SBJ PRD VMOD

EXP

Figure 4: An expletive construction and its depen-

dency representation.

NP WHNPNP NP VP

T

SBJ

S
SBAR

PRDSBJ

VP

S

CLF

it

ROOT−S

SBJ PRD

wasit John who came*T* was John who came

SBJ

CLF

Figure 5: A cleft sentence and its dependency repre-

sentation.

The phenomenon of gapping, i.e. when some part

of a coordinated structure is ellipsed, is difficult to

handle for any grammatical formalism, and a num-

ber of idiosyncratic solutions have been proposed.

The approach used in Penn Treebank II is based on

“templates.” A coordinated structure with ellipsed

constituents is assumed to be structurally identical to

the first, and secondary edges (=) are used to iden-

tify corresponding constituents. In the dependency

representation, we used the secondary edges as de-

pendency links. Figure 6 shows an example of a

constituent tree with gapping, and Figure 7 its cor-

responding dependency tree.

NP NP NP
PP PP

ADJP ADJP

PRDPRD

VP VP

VP

S

SBJ

=

=

LOCLOC

Prices were mixed in Zurich and lower in Stockholm

Figure 6: Example of gapping in the Penn Treebank.

Prices were mixed in Zurich and lower in Stockholm

PMOD PMODSBJ

GAP

GAP

PRD

CC

LOC

ROOT−S

Figure 7: Dependency representation of gapping.

3.4 Relinking of Secondary Edges

Penn Treebank II defines seven kinds of secondary

edges, which are listed in Table 2 along with their

frequencies in WSJ sections 2–21 in the Treebank.

In many cases, the secondary edge represents a

“deep governor”, and is thus more useful as a de-

pendency arc than the constituent attachment. In

those cases, we relinked the heads of the constituents

109

Richard Johansson and Pierre Nugues

Type Description #

T Trace of wh and topicalization 15943

* Other trace 18398

ICH Discontinuous constituent 1000

RNR Right node raising 345

= Gapping 599

EXP Expletive 557

PPA Permanent predictable ambiguity 20

Table 2: Secondary edges in the Penn Treebank.

pointed to by the secondary edges. This was done

for all *T* and *ICH* edges, unless the relinking

causes the dependency graph to become cyclic (such

as the link between the empty node and the root node

in Figure 1). For right node raising, *RNR*, as for

instance in a U.S. and a Soviet naval vessel, there

are usually two secondary edges, of which only the

first one is used. The treatment of the *EXP* and =

links was described previously in Sect. 3.3.3.

The constituents pointed to by the “other trace”

edges, of which traces of object movement in pas-

sive clauses seem to be the most frequent, could not

be relinked since their original constituent attach-

ments in most cases seem to be more meaningful as

the dependency relation. For instance, we think the

subject of a passive clause should not be relinked as

an object of the passive verb. However, if the for-

malism were extended to allow for multiple heads,

it could be useful to include those links as well.

The *PPA* (permanent predictable ambiguity)

edges refer to cases where there is a structural ambi-

guity that cannot be resolved by the annotator, such

as in I saw a man with a telescope. These links were

not used in the conversion.

The relinking of constituents makes some trees

nonprojective, i.e. the dependency tree cannot be

drawn without crossing links. An example of this

can be seen in Figure 3. In WSJ sections 2–21,

the number of resulting nonprojective sentences was

2459 out of 39832, that is 6.17% of the sentences.

4 Experiments

4.1 Impact on Parsing Performance

The new format introduces more complexity in the

dependency trees and and a practical issue is to

determine how “parsable” they are. For instance,

nonprojective trees makes parsing more complicated

for some dependency parsers. To quantify this,

we trained and evaluated two statistical dependency

parsers on the new treebank.

MALTPARSER (Nivre et al., 2006) is based on a

greedy parsing procedure that builds a parse tree in-

crementally while proceeding through the sentence

one token at a time. By using a greedy strategy, a

rich history-based feature set for the SVM classifier

that selects the actions can be used. The parser pro-

duces projective trees only, but can handle nonpro-

jectivity if a preprocessing step is used before train-

ing and a postprocessing step after parsing (“pseudo-

projective parsing”).

MSTPARSER (McDonald and Pereira, 2006) pre-

dicts a parse tree by maximizing a scoring function

over the space of all possible parse trees. The scor-

ing function is a weighted sum of features of single

links or, if the “second-order” feature set is used,

pairs of adjacent links. The parser can handle non-

projectivity, although the search then becomes NP-

hard and has to be approximated.

Following convention, we trained the parsers on

sections 2–21 of the WSJ part of the treebank. The

training step took a few hours for MALTPARSER us-

ing a 64-bit AMD processor running at 2.2 GHz and

roughly two days for MSTPARSER using a 32-bit

Intel processor at 3.0 GHz.

To test the parsers, we ran the parser on Section

23 of the treebank and measured the labeled and un-

labeled accuracy excluding punctuation. The gold-

standard part-of-speech tags were used. Table 3

shows the results of the evaluation. For the new for-

mat, the relative increase in the number of errors is

shown in brackets.

As can be expected, the new format is more dif-

ficult for parsers. For the labeled accuracy, this

can partly be attributed to the richer set of function

tags. For instance, PENN2MALT does not distin-

guish between temporal and locative adjuncts, but

labels them all as verb modifiers. The difference in

unlabeled accuracy is probably partly due to the fact

that links can now be nonprojective, although this

does not explain the whole difference. In addition,

the feature sets used by the parsers may be subop-

timal for the new way to represent some construc-

tions. For instance, the large decrease in labeled ac-

curacy by MSTPARSER can probably be explained

by the fact that “linking words” such as prepositions

and subordinating conjunctions do not attach to the

verb (see Sect. 3.2). Since the feature set of MST-

110

Extended Constituent-to-Dependency Conversion for English

MALTPARSER MSTPARSER

Labeled Unlabeled Labeled Unlabeled

PENN2MALT 90.30% 91.36% 92.04% 93.06%
New conversion 87.63% (28%) 90.54% (9%) 86.92% (64%) 91.64% (20%)

Table 3: Parsing accuracy. Relative error increase in brackets.

PARSER cannot use features of grandchildren (be-

cause of independence assumptions needed to make

search tractable), the lexical information about at-

tachment behavior is lost in those cases. This is es-

pecially clear for the LGS label, which is assigned

by MSTPARSER to many PPs not starting with by.

MALTPARSER, on the other hand, can use this lexi-

cal information and performs better for those cases.

Function R (MST) P (MST) R (MALT) P (MALT)

CLF 0 0 0 0
CLR 50% 46% 70% 51%
COORD 69% 78% 82% 84%
EXP 45% 52% 35% 45%
GAP 16% 50% 20% 45%
IOBJ 54% 89% 63% 87%
LGS 64% 67% 90% 93%
OBJ 91% 78% 90% 90%
PRN 57% 72% 66% 40%
TMP 77% 80% 81% 86%

Table 4: Precision and recall results for a subset of

the relations.

Table 4 shows the precision and recall results for

the two parsers for some of the dependency rela-

tion types added in this conversion. The structural

links (cleft, expletive, and gap) are difficult, which

is hardly surprising since these phenomena result in

long-distance dependencies and are comparatively

rare in the Treebank.

4.2 Impact on Semantic Role Classification

To assess the semantic usefulness of the new depen-

dency representation, we created a baseline seman-

tic role labeler that we applied to the FrameNet ex-

ample corpus (Baker et al., 1998), version 1.3, and

compared its accuracy using the old and the new de-

pendency treebanks. All sentences having a verb

as target word were used and we tagged them us-

ing the MXPOST tagger (Ratnaparkhi, 1996). We

then ran MALTPARSER using the statistical models

obtained from both dependency treebanks. As input,

the labeler received sentences where the semantic ar-

guments were segmented but not labeled. For each

argument that was not null-instantiated, we located

the dependency node that was closest to the target in

terms of the dependency tree. For most cases, this

node was a direct dependent of the target verb.

The baseline role classifier considered the gram-

matical function of the argument node and assigned

the semantic role label that was most frequently

associated with this grammatical function for each

verb in each frame. For instance, for the verb tell in

the frame TELLING, we mapped the subject to the

semantic role SPEAKER, the direct object to MES-

SAGE, and, for the new format, the indirect object to

ADDRESSEE.

Method Accuracy

PENN2MALT 64.3%
New conversion 72.5% (23%)

Table 5: Semantic role classification results.

Table 5 shows the accuracy of this baseline classi-

fier when using the PENN2MALT and the new con-

version, respectively. The new format gives a 23%

error reduction for classification. Clearly, the im-

proved performance is a result of the increased gran-

ularity of the set of edge labels that is gained by

using Penn’s edge labels and by distinguishing be-

tween direct and indirect objects. Table 6 shows an

example of this: for the verb receive in the frame

RECEIVING, the grammatical functions can express

twice as many semantic roles. For this frame, the

error reduction was 37.5%.

FN Role PENN2MALT New conversion

COUNTERTRANSFER ∅ ∅

DEPICTIVE ∅ ∅

DONOR VMOD CLR, DIR

MANNER ∅ ∅

MEANS ∅ ∅

MODE_OF_TRANSFER ∅ MNR

PATH ∅ ∅

PLACE ∅ LOC

PURPOSE_OF_DONOR ∅ ∅

PURPOSE_OF_THEME ∅ PRP

RECIPIENT SUB LGS, SBJ, VMOD

ROLE ∅ ∅

THEME OBJ ADV, OBJ

TIME ∅ TMP

Table 6: FrameNet semantic roles and their corre-

sponding grammatical functions for the verb receive

in the frame RECEIVING.

111

Richard Johansson and Pierre Nugues

5 Conclusion and Future Work

This paper presented a new method to convert En-

glish constituent structures in the Penn Treebank for-

mat into dependency trees. The aim was that the re-

sulting trees should make more sense semantically

than those produced by previous approaches. The

new procedure relied on the extended representation

that is available in the recent versions of the Tree-

bank. The set of arc labels used by previous meth-

ods was enriched by using Penn’s own set of labels

and by creating a set of rules to infer some other.

The new format is structurally more complex; for

instance, some sentences now have nonprojective

links. This is reflected in the performance of two

statistical parsers: the error rate increased by 28%

for the best system. It would be interesting to ex-

amine in detail which constructions are problematic

for the parser, and how complex phenomena such as

coordination should be represented for best parsing

performance. Possibly, better parsing results could

be achieved by first predicting a parse tree in the

PENN2MALT style or some other surface-oriented

format, and then applying a (possibly statistically

trained) transformation to arrive at the richer depen-

dency structure.

A further step could be to extend the depen-

dency structures to allow multiple-headed graphs,

for which a practical parsing algorithm was recently

proposed (McDonald and Pereira, 2006). This work

was restricted to conventional single-headed depen-

dency trees, which might be inadequate in some

cases, such as right node raising and verbs of control

and raising. Multiple-headed dependency parsing

is also relevant for semantic interpretation of parse

trees; ideally, all semantic arguments of a predicate

verb would be direct dependents of that verb.

Finally, the motivation for this research is that

we believe that a semantically oriented dependency

structure will make automatic semantic analyses,

such as FrameNet-based predicate argument struc-

ture analysis, more robust and easier to implement.

While we see a large gain in semantic role clas-

sification accuracy with a baseline technique using

only grammatical functions, it remains to be seen

which impact the new formalism has on semantic

role labeling in general. A well-designed depen-

dency structure would ideally allow us to get rid of

the very sparse and brittle Path feature that has been

used in most contituent-based semantic role labelers

to date.

References

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet Project. In Proceed-
ings of COLING-ACL’98.

Michael J. Collins. 1999. Head-driven statistical models
for natural language parsing. Ph.D. thesis, University
of Pennsylvania, Philadelphia.

David M. Magerman. 1994. Natural language parsing as
statistical pattern recognition. Ph.D. thesis, Stanford
University.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The Penn tree-
bank: Annotating predicate argument structure. In
ARPA Human Language Technology Workshop.

Ryan McDonald and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing al-
gorithms. In Proceedings EACL-2006.

Igor A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University Press of New York, Albany.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006. Malt-
Parser: A data-driven parser generator for dependency
parsing. In Proceedings of LREC2006.

Joakim Nivre. 2006. Inductive Dependency Parsing.
Springer Verlag.

Owen Rambow, Cassandre Creswell, Rachel Szekely,
Harriet Tauber, and Marilyn Walker. 2002. A de-
pendency treebank for English. In Proceedings of
LREC2002.

Adwait Ratnaparkhi. 1996. A maximum entropy part-
of-speech tagger. In Proceedings of EMNLP-1996.

Matthias Trautner Kromann. 2003. The Danish Depen-
dency Treebank and the DTAG treebank tool. In Pro-
ceedings of the Second Workshop on Treebanks and
Linguistic Theories (TLT).

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Proceedings of 8th InternationalWorkshop on Parsing
Technologies.

112

