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Abstract
We present an empirical approach to adaptively
selecting a tutoring system’s remediation strategy
based on an annotated corpus of human-human tu-
torial dialogues. We are interested in the remedia-
tion selection problem, that of generating the best
remediation strategy given a diagnosis for an incor-
rect answer and the current problem solving con-
text. By comparing the use of individual remedia-
tion strategies to their success in varying contexts,
we can empirically extract and implement tutoring
rules for the content planner of an intelligent tutor-
ing system. We describe a methodology for analyz-
ing a tutoring corpus and using the resulting data to
inform a content planning model.

1 Introduction
The goal of an Intelligent Tutoring System (ITS)
is not simply to confer knowledge to a student or
explain how to solve problems, but to give stu-
dents help and feedback as they solve problems.
Dialogue-based ITS’s principally contribute to stu-
dent learning by providing targeted remedial feed-
back when the student gives an incorrect answer.
The success of a remediation depends both on the
content of a remediation and on selecting the right
strategy at the right time – for instance, a remedi-
ation strategy without content (“No”) may be best.
Additionally, unlike explanation generation, an ITS
shouldn’t tell the student everything it knows since
the goal is to get the student to do the problem solv-
ing, not have the tutor do it for them.

There are many competing theories about what
leads students to learn. For instance, VanLehn et al.
(2003) propose that students learn when they expe-
rience an impasse, such as getting stuck, are correct

but uncertain, or make a known type of error. Posner
et al. (1982) believe that cognitive dissonance oc-
curs when a student is forced to confront an incon-
sistency between a strongly held but inaccurate ex-
pectation and an actual outcome. Wolf et al. (2005)
credit students with generating “accountable talk”
when they use valid examples or reasoning strate-
gies from within the domain of interest to back up
their claims, and when they make appropriate con-
nections between elements of the domain. Mean-
while Thomas and Rohwer (1993) explain learning
gains by the extent to which students apply cogni-
tive effort when processing the new material.

Just as important as the error diagnosis itself then
is understanding how to present that diagnosis to the
learner, which requires knowing what options are
available for varying remedial feedback. Each type
of error the student makes can be remediated us-
ing many styles varying along social, motivational,
content and contextual dimensions even though the
diagnosis from the domain reasoner is the same.

One way to discover which of these multiple po-
tential remediation strategies would perform best af-
ter an incorrect answer in a given context is to sys-
tematically analyze a corpus of tutoring dialogues
for (1) remediation strategies, (2) the student’s per-
formance after the remediation, and (3) any contex-
tual factors that may have influenced which strategy
was selected by the human tutor. Indeed annotation
of tutoring dialogue corpora is becoming more com-
mon (Cabrera et al., 2007).

But even corpus analysis is difficult due to factors
such as data sparsity: (1) there is a large range of
potential contextual factors leading to low counts of
many phenomena for each specific context, (2) indi-
vidual remediation strategies don’t occur in all do-
mains making it harder to share annotation schemes,
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(3) remediation strategies that do occur across do-
mains may have different success rates for differ-
ent domains, and (4) few dialogues can be collected
since a large amount of time is needed to organize
and conduct corpora collection between scarce hu-
man experts and students. For instance, in the cor-
pus described below, 25 hours of dialogue were re-
quired to obtain 198 instances of remedial feedback
(i.e., 8 per hour of collected dialogue).

To provide an empirical basis for selecting reme-
diation strategies, we have explored the use of reme-
dial feedback in our tutoring system in the domain
of symbolic differentiation (Callaway et al., 2006).
By annotating remediation dialogue acts, adjacent
dialogue acts related to remediation, along with fea-
tures such as problem type, we hope to find evidence
of patterns in existing human-human dialogues that
can be correlated with measures of problem-solving
success. To measure the degree of success, we de-
fined a performance metric to compare remediation
strategies with their local outcomes, rewarding re-
mediations that led to the student overcoming an
impasse and penalizing cases where the tutor’s re-
mediations were ineffective or the tutor was forced
to “bottom out” by supplying the correct answer.

We then statistically analyzed the resulting data
in order to provide advice to an intelligent tutoring
system on which strategy to use in a given context.
We hope to be able to empirically answer four ques-
tions: (1) what is the variation of success of individ-
ual remediation strategies, (2) do multiple remedi-
ations have better results than single remediations,
and (3) which remediation strategies are correlated
with particular types of problems (such as polyno-
mials or trigonometric functions). The resulting in-
formation can be directly used to help decide which
remediation strategy is best to use when the student
answers incorrectly in a particular context.

We begin by examining related work in dialogue
generation and tutoring, then introducing our tutor-
ing domain of symbolic differentiation and the cor-
pus we analyzed, describing the annotation scheme
and evaluation methodology, presenting and analyz-
ing the resulting empirical data, and discussing its
implications for NLG.

2 Related Work
Adding generated natural language dialogue to a
tutorial system is a complex task whether using
templates or deep generation since interactivity al-
lows for a wide range of local variation in context.

Many existing tutorial dialogue systems rely on pre-
authored curriculum scripts (Person et al., 2000) or
finite-state machines (Rosé et al., 2001) without de-
tailed knowledge representations. These systems
are easier to design for curriculum providers, but of-
fer limited flexibility because the writer has to pre-
dict all possible student responses. Representations
of domain knowledge and reasoning, along with a
record of past student problem solving behavior and
misconceptions, is vital for adaptively interacting
with students via natural language.

Newer generations of tutoring systems have con-
centrated more on the tutor’s utterances than on be-
ing able to understand free natural language input.
CIRCSIM is a tutor in the cardiac physiology do-
main (Michael et al., 2003) that parses student input
via finite state machines, arrives at a diagnosis, and
then selects and realizes a response for the student,
notably with the systematic use of discourse mark-
ers. This project also used annotation as a means
of identifying key domain phenomena, but without
relating it to a success measure (Kim et al., 2006).

The BEETLE1 system (Moore et al., 2004) de-
scribes a tutor for teaching basic electricity concepts
and components in circuits. The focus of this work
was to explore how affective factors should effect
the response given. The DIAG-NLP2 system (Euge-
nio et al., 2005) in the domain of appliance repair
takes menu-based input for determining students’
actions in a schematic environment and employs
high-level abstract revision operations when creat-
ing tutorial feedback to make the tutor’s responses
sound more natural. A formal evaluation showed
that a version with revision significantly improved
learning gain over a version without it.

In addition to CIRCSIM, annotation has been
used in the generation community to attempt to
discover relationships or prove effectiveness. Lit-
man and Forbes-Riley (2006) annotated a large ar-
ray of factors that might potentially affect learn-
ing and used χ-square tests over sequences of di-
alogue moves to discover which of those factors
had the greatest influence on learning gain. The
GNOME project (Poesio, 2004) created annotation
schemes of noun phrases and their co-referring pro-
nouns in order to be able to utilize them for evaluat-
ing pronominalization algorithms.

3 Background
We are attempting to semi-automatically formulate
remediation strategies using a corpus of human-
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Tutor: Differentiate sin(2x)
Student: cos(x)
Tutor: Again we have to use the chain rule.
Tutor: So the answer you gave isn’t right.
Student: cos(2x) (x)
Student: sorry
Student: it is cos(2x) (2)
Tutor: Yes, well done.
Tutor: And well done for spotting your mistake.

Figure 1: Extract of a tutoring dialogue

human tutoring sessions in the symbolic differen-
tiation domain. At an abstract level each tutor-
ing session consists of a short subdialogue where
a preparatory exchange occurs, followed by a series
of math problems proposed by the tutor and solved
by the student whenever possible, until a preset time
limit is reached. A segment of a typical tutoring di-
alogue is shown in Figure 1.

Each individual math problem consists of a prob-
lem proposal followed by attempts by the student
to determine the next correct substep (or the final
solution). When a student answers incorrectly, the
tutor may immediately respond with remedial feed-
back to help the student learn from that mistake or
wait for the student to ask for help before providing
the remediation. Tutors then advance to a subse-
quent problem either when the student has produced
a correct answer, the student is unable to solve the
problem and the tutor is forced to produce the an-
swer (a “bottom out”), or the tutor tries a simpler,
but related, differentiation problem.

Symbolic Differentiation Domain: The subject
area for our human-human corpus data is the differ-
entiation of polynomials and other functions, which
involves significant use of the Chain Rule:

d

dx
[f(g(x))] =

d

dg
[f(g(x))] · d

dx
[g(x)]

Its application involves several steps that can be
formalized in a task model describing the step-by-
step task of building a derivative in terms of simpler,
partially ordered sub-tasks, helps to identify which
parts of the task a student is currently attempting
to solve, and can aid a tutoring system in deciding
how to address student actions and provide correc-
tive feedback on the current problem.

The high-level task description for solving
derivatives of a given function y = f(g(x)) con-
sists of (1) rewriting y to a form y which the stu-
dent already knows how to solve; (2) identifying

the component elements of y as two nested func-
tions f(g(x)); (3) identify the “inner” (z = g(x))
and “outer” (w = f(z)) layers of y; (4) differentiate
each of the layers, dz

dx and dw
dz ; (5) combine the re-

sults appropriately dy
dx = dw

dz ·
dz
dx ; and (6) use algebra

to convert the result to a canonical form.
In these dialogues, tutors proposed problems

drawn from six fundamental types: polynomials
(3x4 − 2x), trigonometric functions (sin(5x2)),
square roots (

√
4x + 6x5), logarithms (log(7x)), in-

verses (1/sin(4x)) and combinations (
√

sin(3x2)).

Corpus: The human-human corpus of tutored dif-
ferential calculus for this study was conducted at the
University of Edinburgh as part of an effort to asso-
ciate subjective situational factors with learning in
the domain (Porayska-Pomsta et al., 2007) and im-
plement the newly discovered principles in an intel-
ligent tutoring system (Callaway et al., 2006)

The data consists of 33 transcripts of tutoring
sessions conducted via a chat interface and lasting
about 40 minutes each. During each session, the tu-
tor gave the student a sequence of problems to solve
until they ran out of time, regardless of the number
of problems completed. Five experienced mathe-
matics instructors (as tutors) and 28 first-year math-
ematics or science undergraduate students who were
learning differentiation in a calculus course at the
University of Edinburgh were paid to participate.

The data collection environment separated stu-
dents from tutors physically. They could, however,
communicate via a chat interface where the two in-
terlocutors could send each other their typed utter-
ances. Complex mathematical expressions could be
entered using a special editor, and text and formulas
could be intermixed. The tutor could observe the
student’s actions in real-time on a second screen.
Students and tutors were trained to use the inter-
faces prior to the data collection session. The re-
sulting corpus consists of 33 dialogues (5 students
returned twice) and contains 1650 utterances, 5447
words and 559 formulas.

Domain Reasoning: A domain reasoner supports
a model that describes correct actions and relation-
ships within that domain. To support a tutoring sys-
tem, a domain reasoner must be capable of deter-
mining whether a student’s answer is correct or not,
and if not, what is the most likely explanation for
the error. This is usually accomplished by model-
tracing using both correct and buggy rules (Brown
and Burton, 1978). For symbolic differentiation,
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Figure 2: A graphical depiction of the task model

this translates to correct and buggy rules not only for
differentiation itself, but also the algebraic rewriting
techniques necessary for problem solving.

In tutoring systems based on chat-style text inter-
faces, the tutor’s dialogue acts are the sole means
for the system to exhibit adaptivity. Of the possible
range of tutor utterances, remediations and proac-
tive hints are most likely to introduce adaptive be-
havior that will lead to increased student problem
solving performance.

Remediations and hints are based directly on the
task model itself, where the domain reasoner plays
an important role in ensuring that both student and
computer tutor are in step when solving problems.
A domain reasoner for symbolic differentiation for
instance should minimally be capable of judging the
correctness of both intermediate steps and final so-
lutions, using buggy rules to be able to interpret the
most likely reason for student errors, knowing how
far the student has progressed through the current
problem, and producing diagnoses that allow the tu-
toring system to provide feedback to the student.

Given a student solving the differentiation prob-
lem x−3 by answering −3 ∗ x−2 instead of the cor-
rect −3 ∗ x−4, our domain reasoner would produce:

[bg-pl111, type(buggy), rule(power_rule),
tmc(basic,null), expr(xˆ(-3)),
student_answer(-3*xˆ(-2)),
wrong_part(exponent, -2),
corrected_part(exponent, -4)]

A non-adaptive template system would match
this with a single tutorial utterance which would be
the same in every context. However here we are try-
ing to use the dialogue context and problem solving

history to vary tutor feedback where the diagnosis
serves as the starting point but not the final determi-
nant of remediation content.

4 Annotation Scheme
As mentioned earlier, we are interested in using
the corpus to identify which remediations are most
likely to lead to improved student performance in
a given context. We have ignored clarification dia-
logues and in-depth follow-ups to mistakes, as they
are not easily classifiable and dialogue interpreta-
tion components would have a difficult time dis-
tinguishing their intent. We have instead concen-
trated on (1) student answers, (2) tutor responses to
those answers, and (3) utterances involved in cogni-
tive impasses, such as help requests. Given a corpus
annotated for remediation, we can then use empiri-
cal techniques to determine the success or failure of
particular remediation strategies in given contexts
and adjust the tutorial content planner’s high level
generation rules accordingly.

The following annotation scheme describes the
types of utterances (out of a larger annotated set)
that we assume have a strong bearing on remedia-
tion and adaptivity of tutorial utterances in general:

Giving and Repairing Answers: Once the tutor
has proposed a problem or presented feedback from
a previous substep, the student is expected to either
provide the next substep or the final solution, or else
declare to the tutor that he can’t advance by request-
ing help. Answers are either correct or wrong (we
coded partially correct answers as wrong), while
step type indicates whether the answer is considered
an intermediate step or final solution in terms of the
domain model.

We coded correct answers differently depending
on whether they occured within normal problem
solving or during remediation. In the latter case,
answers are instead termed repairs, and rather than
being marked for correctness (since repairs are cor-
rect by definition), they were instead annotated ac-
cording to whether the answer was given without an
intervening tutor turn (immediately) or if there was
a discussion of the error before the repair (delayed).
Figure 3 shows examples of answers in lines 4, 6,
12 and 19 and repairs in lines 8 and 17.

Local Remediation Strategies: If instead the stu-
dent’s answer is incorrect, the tutor must first make
the student aware of the mistake and then decide
how best to get the student to understand and then
fix it. In procedural problem solving domains like
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Student-01: Hi. No-Annotation
Tutor---02: Welcome back. No-Annotation
Tutor---03: Try sqrt(3xˆ2) Propose-Problem/Sqrt
Student-04: (3xˆ2)ˆ(1/2) Give-Answer/Correct/Substep
Tutor---05: good Accept-Answer/Move-On
Student-06: then (3xˆ2)ˆ(-1/2) Give-Answer/Wrong/None
Tutor---07: you’re missing the factor Remediation/Hint-Error-Location-General
Student-08: 1/2 (3xˆ2)ˆ(-1/2) Repair-Answer/Immediate/Substep
Tutor---09: right Accept-Answer/Move-On
Student-10: then i’m not sure Help-Request
Tutor---11: use the chain rule here Hint-Not-Remediation/Hint-Relevant-Rule-Name
Student-12: 1/2 (6x)ˆ(-1/2) 3xˆ2 Give-Answer/Wrong/None
Tutor---13: no, not quite. Remediation/Rejection-Only
Tutor---14: (3xˆ2)ˆ(-1/2) was right Remediation/Bottom-Out-Substep
Student-15: oh, the other way around? No-Annotation
Tutor---16: yep No-Annotation
Student-17: 1/2 (3xˆ2)ˆ(-1/2) (6x) Repair-Answer/Delayed/Substep
Tutor---18: right Accept-Answer/Move-On
Student-19: (6x)/[2*sqrt(3xˆ2)] Give-Answer/Correct/Solution
Tutor---20: Great! Accept-Answer/Positive

Figure 3: Condensed dialogue demonstrating typical dialogue moves and their annotation

differentiation, these options are limited to tech-
niques like rejections, hints, and bottoming out. Re-
mediations can occur singly (line 7 of Figure 3) or
in multiples (lines 13–14).

Rejections: The tutor indicates the answer/repair
is incorrect without elaborating why. Rejections can
appear alone, forcing the student to discover the un-
derlying cause, or in combination with a hint in the
same utterance that provides more detail.

Tutor: No. Remediation, Reject-Only
Tutor: No, but good try!

Remediation, Reject-Positive
Tutor: That’s not what I meant.

Remediation, Implied-Rejection
Tutor: Very close!

Remediation, Almost-Complete

Hints: The tutor indicates how the student should
proceed after the error (Zhou et al., 1999). Most
hints in our differentiation domain concern the lo-
cation of the error.

Tutor: Check the numerator
Remediation, Hint-Error-Location-General

Tutor: Are you sure about the 4?
Remediation, Hint-Error-Location-Specific

Tutor: Use the power rule.
Remediation, Hint-Relevant-Rule-Name

Tutor: The power rule is n*xˆ(n-1)
Remediation, Hint-Relevant-Rule-Form

Tutor: Think of sinˆ3x as (sin x)ˆ3
Remediation, Hint-Rewrite

Bottoming Out: The tutor supplies the answer.

Tutor: The chain rule gives you (3xˆ3-3)
Remediation, Bottom-Out-Substep

Tutor: No, the answer is 3(xˆ3-1)
Remediation, Bottom-Out-Complete

Requesting Help If the student is blocked on a
problem and prefers not to make an incorrect guess
or provide an uncertain answer (hedging), he will
often immediately ask for help. The student may
also give no answer, and after a short time the tutor
typically then supplies a hint to keep the tutoring
session on track. Line 10 of Figure 3 shows a typical
help request in our domain.

Tutor: Let’s try (xˆ3-3x)ˆ2
Propose-Problem

Student: Where do I start?
Help-Request

Using this scheme, two annotators coded three of
the larger corpus dialogues, obtaining a Kappa of
0.88 considering only top level tags, and 0.78 when
the additional lower-level dependent features de-
scribed below were also taken into account. A sin-
gle annotator then coded the remaining dialogues.

5 Data Analysis
When students provide incorrect answers, the nat-
ural reaction for a tutor is to remediate. There are
then a small number of responses that students make
to that remediation: (1) immediately repairing the
error, (2) repairing with some delay after additional
information has been given or requested, (3) explic-
itly making a request for help, (4) responding with
another incorrect answer, and (5) not responding,
forcing the tutor to provide further remediation or
else directly supply the correct substep or solution.

The success of a remediation can thus be deduced
from the subsequent outcome, where we might as-
sume that an immediate repair indicates that an
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Remediation Immed. Delayed Help Wrong Bottom Out Bottom Out Count
Strategy Repair Repair Request Answer Substep Complete Totals Scores
Reject-Only 1 / 6 0 / 3 2 / 1 3 / 7 3 / 1 2 / 2 11 / 20 -21 / +4
Reject-Positive 0 / 2 1 / 2 0 / 1 0 / 3 0 / 0 1 / 0 2 / 8 -2 / +5
Implied-Rejection 2 / 3 0 / 5 1 / 1 3 / 2 0 / 2 1 / 0 7 / 13 -3 / +11
Almost-Complete 3 / 5 0 / 0 0 / 0 3 / 3 0 / 2 2 / 2 8 / 12 -2 / 0
H-E-Loc-General 5 / 8 5 / 3 0 / 1 4 / 9 0 / 6 0 / 3 14 / 30 +22 / -11
H-E-Loc-Specific 13 / 7 3 / 3 0 / 1 2 / 5 0 / 0 2 / 0 20 / 16 +46 / +23
Hint-Rule-Name 0 / 2 1 / 0 0 / 0 3 / 2 0 / 0 0 / 0 4 / 4 -4 / +4
Hint-Rule-Form 2 / 1 0 / 0 1 / 1 0 / 4 0 / 0 1 / 4 5 / 10 +3 / -25
Hint-Rewrite 1 / 2 3 / 4 1 / 0 1 / 2 0 / 0 0 / 0 6 / 8 +7 / +12
Totals 27 / 36 13 / 20 5 / 6 19 / 38 3 / 11 10 / 11 77 / 121 +46 / +23

Table 1: Frequencies of 198 single/multiple remediation dialogue acts by strategy and outcome

“optimal” remediation was selected, while bottom-
ing out indicates a poor remediation was selected.
We are thus measuring performance (Aleven et al.,
2002) rather than learning gain, where the former is
a finer-grained metric. To do this we created an ad-
hoc scoring metric that reflects this assumption: for
positive outcomes, 4 points for an immediate repair
and 2 points for a delayed repair; for negative out-
comes, subtracting 1 point for a help request, 2 for a
wrong answer, 3 for bottoming out of a substep and
4 points for bottoming out of the entire problem.

The 33 dialogues in the corpus contained 198 to-
tal remediations, 77 of which were single (occur-
ing alone) and 121 in combination. Table 1 presents
the number of each remediation type (rows) as de-
scribed in Section 4 grouped by outcome (columns)
for single/multiple remediations in the entire cor-
pus. The final column lists the score for that remedi-
ation type using the scoring metric described above.
A positive score thus indicates that that remediation
type (when used without other remediations) on av-
erage led to the student successfully solving a sub-
step or the entire problem, while a negative score
indicates that that remediation type was in general
not successful. A score near zero indicates that the
outcome averaged out. Pearson’s correlation shows
remediation as a whole was slightly correlated with
successful remediations (those followed by repairs)
at R = 0.13, and the strongest remediation type was
hint-location-specific (R = 0.23).

The frequency data also indicate which reme-
diations are most often used by tutors. For in-
stance, both hint-error-location-general
and hint-error-location-specific score
well, but the former is just as likely as not to involve
a discussion with the tutor before the student arrives

at the correct answer. (This is not to say that having
discussions is a bad thing, we merely score delayed
repairs less highly than immediate repairs, but both
positively. Also, very specific hints give away more
information and so may result in lower longer-term
learning.) Negative conclusions can also be drawn,
for example that direct rejections (“No.”) are very
rarely used as a sole remedial utterance.

The right half of each column in Table 1
contains frequencies for multiple remediations,
where a student’s incorrect answer is followed
by two or more adjacent remediation strate-
gies before an outcome is registered. Here,
hint-error-location-specific continues to
correlate strongly with positive outcomes, while
hint-error-location-general has switched
from a positive to a negative correlation.

We were also interested in seeing how
problem type (e.g., polynomial) and reme-
diation type correlates with outcome. Ta-
ble 2 presents frequencies and scores for
each remediation type, where for instance
hint-error-location-general is shown to
fare better on polynomials (+11) than square roots
(−4) while hint-error-location-specific
resulted in successful outcomes regardless of
problem type. We conclude that the type of
differentiation problem can thus have a sizeable
impact on the types of remediations a tutor should
select in this domain and that this factor should be
considered when writing content planning rules.

The data shows that not only are certain tutor re-
mediation strategies better than others overall, but
these strategies are also correlated with problem
solving performance when the type of differenti-
ation problem is taken into account. Single re-
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Remediation Poly- Square Trigono- Logari- Combin- Count
Strategy nomial Root metric thmic ation Inverses Totals
Reject-Only 7 – +2 6 – +5 7 – -11 3 – -1 1 – -1 7 – -11 31
Reject-Positive 4 – -5 1 – +4 2 – -4 1 – +2 1 – +4 1 – +2 10
Implied-Rejection 12 – +9 0 – 0 4 – +3 1 – +2 0 – 0 3 – -2 20
Almost-Complete 9 – -4 3 – -2 3 – -2 2 – +8 2 – +2 1 – -4 20
H-E-Loc-General 16 – +11 5 – -4 10 – -5 4 – +8 2 – +6 7 – -5 44
H-E-Loc-Specific 12 – +7 6 – +16 5 – +10 1 – +4 0 – 0 12 – +32 36
Hint-Rule-Name 3 – +6 1 – +2 2 – -4 1 – -2 0 – 0 1 – -2 8
Hint-Rule-Form 2 – -4 2 – -8 5 – -16 2 – +8 2 – +3 2 – -5 15
Hint-Rewrite 3 – +6 1 – -2 3 – +4 1 – +4 0 – 0 6 – +7 14
Totals 68 – +28 25 – +11 41 – -25 16 – +33 8 – +14 40 – +12 198

Table 2: Combined frequencies and scores for remediations split by problem type

mediations are also more highly correlated with
performance than are multiple remediations. This
may be because a low aptitude student will per-
form poorly regardless of whether one or more
remediations are administered, but the tutor may
feel the need to give more than one remediation
type to such a student. Similarly, more specific
hints (like hint-error-location-specific
and hint-rule-form) may be given immediately,
and the next step in the tutor’s remediation sequence
after a highly specific hint is to bottom out, resulting
in a lower score. Both multiple remediations and
highly specific hints may also be given depending
on how difficult a step the tutor thinks the student is
facing (rather than the overall problem difficulty).

Even more variation is seen when problem
type is taken into account. With the differences
apparent in Table 2, it becomes possible to
write the remediation rules of a tutoring com-
ponent directly from such data. For instance,
we could extract a rule that says if the stu-
dent is working on a logarithmic function, then
select randomly among almost-complete,
hint-error-location-general+ and
hint-rule-form, and otherwise default to
selecting hint-error-location-specific.
This method also points to baseline strategies to
use in evaluating an implemented tutoring system
against a more sophisticated strategy.

6 Tutorial Generation Component
We have implemented a text generation component
(named BUG) in the symbolic differentiation do-
main that produces turns for the computer in its
role as tutor. BUG generates a variety of verbaliza-
tions for system feedback within the current context
and automatically pronominalizes, aggregates dia-

logue segments, and inserts discourse markers ap-
propriately. The remediation content planner is in-
cluded as part of a dialogue manager (Callaway et
al., 2006) based on TRINDIKIT which manages the
dialogue context and generates all dialogue acts for
verbalization within a single turn. As the tactical
generator, BUG accepts dialogue moves (sequences
of dialogue acts interrelated by rhetorical relations)
and information about the dialogue context.

To illustrate, if the dialogue manager decides it
would be best to correct a student’s wrong answer
with a hint-error-location-specific reme-
diation type, it gathers details from the diagnosis
and constructs a dialogue move such as:
[[id1,[concession,id2,id3]],
[id2,[assert,correct,diff_outer]],
[id3,[join,id4,id5]],
[id4,[assert,location,factor,missing]],
[id5,[assert,location,factor,correct_value,2]]]

producing the tutorial utterance “You differenti-
ated the outer layer correctly. However, you missed
the factor: it should be 2.” where the first clause cor-
responds to id2, the second to id4, and the third to
id5. BUG first converts the dialogue move to deep
linguistic representations based on a version of the
STORYBOOK system (Callaway and Lester, 2002)
modified for use in dialogue systems, and which in-
cludes modules for pronominalization, clause ag-
gregation and discourse marker insertion. In this
example, it pronominalizes a repeated use of “fac-
tor” as “it”, revises id4 and id5 as indicated by
the join relation, and inserts the discourse marker
“However” into the resulting sentence to connect it
to id2 as indicated by the dialogue move above.

7 Conclusions
We have described natural language generation in
the setting of intelligent tutoring systems, focusing
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on empirically acquiring tutorial (content) planning
rules directly from a corpus of human-human tutor-
ing dialogues. We developed an annotation scheme
and local performance metric for tutorial remedia-
tions within that corpus, and constructed a frame-
work for analyzing the resulting data. The analy-
sis supports an initial baseline and set of parameters
that will be extremely useful when the tutorial feed-
back generator selects remediation rules when we
formally evaluate our computer tutor.
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