
Using WYSIWYM to Create an Open-ended Interface for the
Semantic Grid

F. Hielkema, C. Mellish & P. Edwards
Department of Computing Science

University of Aberdeen
Aberdeen
AB24 3UE

{fhielkem, cmellish, pedwards}@csd.abdn.ac.uk

1 Introduction

Central to the vision of the Semantic Grid is the
adoption of metadata and ontologies to describe re-
sources, to promote and enhance collaboration (De
Roure et al., 2005). This raises the question of how
such metadata comes into existence. Ideally the
users should create it themselves, which raises the
issue of how a scientist should create RDF. In our
work in the area of e-social science1, we aim to sup-
port social scientists in their research, using (Seman-
tic) Grid technologies. For this, a tool is needed that
facilitates easy creation of RDF by non-experts, to
enable researchers to deposit and describe their own
data. We believe that, for social scientists, natu-
ral language is the best medium to use, as the way
they conduct their research and the structure of their
documents and data indicate that they are more ori-
ented towards text than graphics.

We originally envisaged such tools as being driven
by an underlying ontology. However, from the start
users expressed a fear of ‘being trapped in the on-
tology’, due to the contested nature of many social
science concepts (Edwards et al., 2006). We there-
fore aim to maximise the users’ freedom, keeping
the tools open-ended by supporting dynamic evo-
lution of metadata and integrating ontologies with
folksonomies (Guy and Tonkin, 2006). A folkson-
omy is a social classification process where users
can annotate their resources with keywords or tags,
which are not restricted in any way. In some folk-
sonomies, e.g. Flickr2, users can use other users’
tags, so that a set of frequent tags emerges. Using a
folksonomy, we could suggest feasible tags to influ-
ence user-behaviour, without restricting the user to
a pre-defined set of concepts.

Natural language applications are often domain
specific and not very flexible. This makes the open-
endedness we need a great challenge. Existing elic-
itation approaches, such as using Controlled Lan-
guages, restrict in great measure what the user can
and cannot say. We believe that to achieve the
desired open-endedness and flexibility, the best ap-

1http://www.policygrid.org/
2http://www.flickr.com/

proach is not based on natural language processing,
as it is as yet beyond the state of the art to reli-
ably parse all user utterances, but based on natural
language generation. In WYSIWYM (Power et al.,
1998), the user can specify information by editing a
feedback text that is generated by the system, based
on a semantic representation of the information that
the user has specified already. This NLG-approach,
we believe, can give us both the flexibility we need
and fluent language output. The expressivity of the
language need not be restricted as it is generated by
the system, and does not need to be parsed; and if
we enable the user to modify the underlying data
structure while using the tool, we have the desired
open-endedness.

Figure 1 shows a feedback text (generated by the
current system) for a scenario in which a social sci-
entist is depositing data that forms part of a study
into rural accessibility. Existing options for deposit-
ing such data (e.g. the UK Data Archive3) are found
to be too restrictive by some social scientists. We
therefore think there is scope for a tool that allows
scientists to describe their data themselves, in a way
they see fit.

In the next sections we will first describe some re-
lated work in NLG and the Semantic Grid commu-
nity, then describe the design and implementation of
our metadata-elicitation tool. We will discuss pos-
sible methods for keeping the tool open-ended and
unrestrictive, and how folksonomies may be a part
of the solution, and conclude with a description of
remaining issues and plans for the future.

2 Related Work
Existing Semantic Grid tools that avoid the need to
write RDF are often graphical (Handschuh et al.,
2001). Natural language approaches include GINO
(Bernstein and Kaufmann, 2006), an ontology editor
with an approach reminiscent of NL-Menus (Ten-
nant et al., 1983), and Controlled languages, e.g.
PENG-D (Schwitter and Tilbrook, 2004).

Natural language approaches tend to restrict ex-
pressivity to ensure that every entry can be parsed,

3http://www.data-archive.ac.uk/

69



Bibliography
Access to 'APAT' is public. It was deposited on 9 March 2007.
It was deposited by John Farrington. John Farrington's email address is
 j.farrington@abdn.ac.uk. He is an employee of the University of Aberdeen.
John Farrington is the principal investigator of 'APAT'.

Methodology
'APAT's' observation units were individuals and focus groups.

Domain
'APAT' supports 'Settlements, Services and Access'. John Farrington, 
Jon Shaw, Matthew Leedal and Margaret Maclean are the authors of 
'Settlements, Services and Access.'

Figure 1: Example of a WYSIWYM description

limiting the language and often making it stilted,
so that there is a small learning curve before the
user knows which structures are allowed. Tools that
generate natural language from ontologies (though
not for elicitation purposes) include Wilcock (2003)
and ONTOSUM (Bontcheva, 2005). Wilcock uses
templates, achieving portability but paying a price
in expressivity and accuracy. ONTOSUM assumes
the ontologies contain labels with the appropriate
lexicalisation of their resources, and that their part-
of-speech tags can be easily derived.

In order to maintain full expressivity and to
shorten the learning curve, we have elected to use
WYSIWYM (What You See Is What You Meant)
(Power et al., 1998). This is a natural language gen-
eration approach where the system generates a feed-
back text for the user that is based on a semantic
representation. This representation is edited directly
by the user by manipulating the feedback text. Fig-
ure 1 shows a feedback text generated by our system.

As the text is generated by the system and does
not have to be parsed, we do not have to restrict
what can be said, so the language retains its expres-
sivity and the user does not need to learn what is
acceptable input. The system is guided by an un-
derlying datastructure, in our case a lightweight on-
tology. While the original WYSIWYM could only
be ported to new domains by having an expert cre-
ate a new lexicon, we wish to allow the user to ex-
tend the ontology while using the tool (i.e. while
describing a resource). This, provided we have a
NLG-component robust enough to deal with this,
will ensure the desired open-endedness.

In the next section we describe the ongoing imple-
mentation of a WYSIWYM-tool for metadata elici-
tation from users unfamiliar with RDF. In section 4
we discuss ways to keep the tool open-ended.

3 Design and Implementation

We are building a tool that elicits metadata from
the user in the form of RDF triples, i.e. state-
ments of the form: ‘subject - predicate - object’.

The tool presents the users with a text containing
an expansion point (anchor) for each object that is
mentioned, which has a menu with possible proper-
ties associated with that object. These objects and
properties are defined by an underlying OWL-Lite
ontology4. The ontology we use for development is
based on the UK Data Archive. This lightweight
ontology is only a seed; users can extend or replace
it (see section 4). We intend to ensure that other
OWL-Lite ontologies can be substituted. Such on-
tologies should be well-formed, be clear about which
objects are permitted in the domain and range of
properties, and for the benefit of the generated text
should have clear object and property names (e.g.
HasAuthor), as these names are used for generation
with only some minor adjustments (such as adding
determiners and removing capitals).

The current system consists of five components:
the semantic graph, the ontology reader, the RDF-
creator, the natural language generator (text plan-
ner and surface realiser) and the interface.

The interface shows the feedback text with an-
chors indicating expansion points, which contain
menus with types of information that can be added.
Google Web Toolkit5 was used to create the proto-
type interface.

The semantic graph stores the information the
user is adding. Initially a generic graph is created, so
an initial feedback text can be produced; the graph
is updated each time the user adds information.

The ontology reader creates a model of a given
OWL-Lite ontology, which is consulted throughout
the building of the semantic graph and extended
with all new properties or objects that the user adds.
The ontology specifies the range and domain of the
properties; i.e. the properties in each anchor menu,
and the (type(s) of) resource that can be selected or
added as the range of a selected menu item.

The semantic graph is translated to a list of RDF
triples by the RDF-creator. These triples are
stored, with the relevant resource(s), in a shared
repository of social science resources on the Seman-
tic Grid. The RDF-creator will in the future also
store any changes the user made to the ontology.

The natural language generator maps the se-
mantic graph to (HTML) text that contains anchors.
It consists of a text planner and a surface realiser:

• Text Planner
This component creates paragraph boundaries
and headers. Each property in the semantic
graph is mapped to a dependency tree (Mel’cuk,
1988). Before this mapping, the properties are
grouped firstly for their source node (so all in-
formation about an object is grouped), secondly

4http://www.csd.abdn.ac.uk/research/policygrid/ontologies/UKDA/UKDA.owl
5http://code.google.com/webtoolkit/

70



for their label and thirdly for their target. Prop-
erties with identical source and label are marked
for aggregation in the surface realiser.

• Surface Realiser
The surface realiser maps the dependency trees
to text using the SimpleNLG package6. To im-
prove the conciseness of the text, it performs
(at present) limited aggregation, when a group
of properties has the same source and label (e.g.
‘x and y are the authors of z’). It also keeps
track of which objects are salient, in order to
use pronouns. The text in Figure 1 was gener-
ated by the system.

The next section outlines our ideas for extending
the system to make it open-ended and flexible.

4 Achieving Open-endedness
To avoid trapping the user in an ontology, two strate-
gies present themselves: first, to make the ontology
less restrictive by making it open-ended, and second,
to do away with ontologies entirely. We are not pre-
pared to do the latter, as ontologies provide a useful
framework and are at the core of the Semantic Grid.
We will therefore try to make the most of the first
strategy in two ways: enabling the user to adapt any
ontologies that are used, and where possible using a
much less complex structure: the folksonomy.

4.1 Open-endedness in Ontologies
Although our system is driven by an ontology, we
have kept this very lightweight (OWL-Lite, using
only domain and range of properties and cardinal-
ity restrictions), and will give the user the power to
adapt this ontology to his/her own needs. Extend-
ing an ontology with new classes and properties is
no great problem; but those properties then need
a suitable natural language representation. In our
system this means they need an entry in the lexi-
con that maps them to a dependency tree (classes
merely need a noun phrase).

A straightforward way to obtain such entries is to
let a system administrator create them when needed.
However, this would cause considerable delays for
the user and would look almost as restrictive as not
allowing new property creation at all. Instead, we
want to enable the system to create these lexicon en-
tries immediately, so the user can use the new prop-
erty that session. Using the property name that the
user provides, the system should generate an appro-
priate lexicon entry.

Hallett (2006) describes a portable WYSIWYM
application that generates its lexicon automatically.
It is unclear, however, how such a fully automated
approach would work in practice. ONTOSUM
(Bontcheva, 2005) depends on the user to provide

6http://www.csd.abdn.ac.uk/∼ereiter/simplenlg/

lexicalisations of ontology resources. Their applica-
tion generates the lexicon automatically, assigning
pos-tag ‘noun’ to classes and ‘verb’ to properties;
the user can then change the ontology or correct
the pos-tags through an iterative process. This ap-
proach assumes that the user is willing to, and capa-
ble of, editing the ontology and providing pos-tags.

In contrast, we have decided to use a semi-
automatic approach, but one that requires little ex-
pertise from the user. The system has the linguis-
tic knowledge, and the user knows what the surface
realisation should be; together they can generate a
new lexicon entry. We are trying to identify com-
mon sentence types to mould into templates. The
system inserts the root form of the property name
into each template, and presents them for the user
to choose from. For instance, given the property ‘de-
posit’, with domain ‘Person’ and range ‘Document’,
the system may generate the following:

1. John Farrington deposits APAT
2. The depositor of APAT is John Farrington
3. APAT has the depositor John Farrington
4. APAT’s depositor is John Farrington

The user chooses the most suitable representation,
e.g. the first option, and then fine-tunes it by ma-
nipulating verb tense, actor and root, adding or re-
moving determiners and prepositions, and switching
the domain and range. In our example, changing the
verb to past tense and passive action results in the
surface form: ‘APAT was deposited by John Farring-
ton’. Once the user is satisfied with the representa-
tion, the corresponding dependency tree is stored in
the lexicon and used for realising all future instances
of this property.

4.2 The Freedom of Folksonomies
There are two types of property in OWL-Lite: ob-
ject and datatype properties. The object properties
have a class as their range, the datatype properties a
data-type, such as ‘string’ or ‘date’. The implemen-
tation allows the user complete freedom in specify-
ing the value of a ‘string’ datatype, using free text to
enter them. Unfortunately this means that we have
no control over the quality of the entered data; we
cannot prevent a user from entering nonsense.

This is unavoidable when the major goal is to af-
ford the user freedom. However, the problem can be
alleviated. Spelling mistakes can be prevented by
checking all entries against a dictionary - but this
can be very frustrating for the user, and a problem
when he/she wants to enter new, foreign or subject-
specific words. We believe folksonomies are a better
solution here. A folksonomy stores which tags have
been used with which frequency. In our system, each
datatype property has its own folksonomy, as peo-
ple would specify different values for the property

71



‘country’ than for ‘sampling method’. Every time
the user selects a datatype property and is prompted
to enter a value, the corresponding ‘tag cloud’ is gen-
erated and shown to the user. A tag cloud gives an
overview of tags used by other users; their frequency
is reflected in the relative font size.

We believe that folksonomies will stimulate the
emergence of a community set of tags (Guy and
Tonkin, 2006), prompting the user to use the same
values as other users, or to adopt a similar style. It
should in large part protect the system from mis-
takes such as spelling errors, and, when queried, in-
crease the likelihood of a search term being associ-
ated with more than one resource. The user however
retains complete freedom, as he/she does not have
to use the folksonomy values but can still use free
text; and every entry the user makes is immediately
added to the folksonomy. The folksonomy, then, al-
lows us to subtly guide user behaviour, while being
completely unrestrictive.

5 Conclusion and Future Work

We have outlined our ongoing development of a
open-ended metadata elicitation tool, that allows
users to create RDF by editing text. By using natu-
ral language generation instead of parsing we ensure
that all user input is understood by the system. The
system is driven by a lightweight ontology; open-
endedness is achieved by enabling the user to ex-
tend the ontology where necessary. To enable this,
a lexical specification for an appropriate surface re-
alisation is generated by the system using feedback
from the user, who chooses the most appropriate re-
alisation and fine-tunes it.

To guide user behaviour without being restrictive,
we employ folksonomies, collections of tags with in-
formation about how, when, where and how often
they have been used. For each datatype property,
a tag cloud is generated suggesting appropriate tags
to use. When the user enters a new value, this is
added to that property’s folksonomy.

We intend to use our tool to populate a repository
of social science resources. This will help us inves-
tigate user requirements on querying. Our aim is
to use the same approach, using WYSIWYM with
open-ended ontologies and folksonomies, for query-
ing and information presentation. This way the user
works with the same interface for each repository-
related task, which should greatly improve usabil-
ity. The folksonomy will be very useful in querying,
with the tag cloud showing possible search terms
and their frequency in the repository. A search term
taken from the folksonomy would guarantee a result.

We believe that WYSIWYM will be as suitable for
query formulation as for metadata elicitation. Infor-
mation presentation in WYSIWYM could be an in-
teractive process, allowing the user to request extra

information where needed. Eventually, WYSIWYM
will furnish us with an interesting and highly useful
set of tools for the Semantic Grid.

References
A. Bernstein and E. Kaufmann. 2006. Gino - a

guided input natural language ontology editor.
In International Semantic Web Conference 2006,
pages 144–157.

Kalina Bontcheva. 2005. Generating tailored tex-
tual summaries from ontologies. In ESWC, pages
531–545.

D. De Roure, N.R. Jennings, and N.R. Shadbolt.
2005. The Semantic Grid: Past, Present and Fu-
ture. In Proceedings of the IEEE 93(3), pages
669–681.

P. Edwards, J. Aldridge, and K. Clarke. 2006.
A Tree Full of Leaves: Description Logic and
Data Documentation. In Proceedings of the Sec-
ond International Conference on e-Social Science,
Manchester, UK.

M. Guy and E. Tonkin. 2006. Folksonomies: Tidy-
ing up Tags? D-Lib Magazine, 12(1).

C. Hallett. 2006. Generic Querying of Relational
Databases using Natural Language Generation
Techniques. In Proceedings of the Fourth Interna-
tional Natural Language Generation Conference,
pages 88–95, Nottingham, UK.

S. Handschuh, S. Staab, and A. Maedche. 2001.
Cream: Creating relational metadata with
a component-based, ontology-driven annotation
framework. In K-CAP ’01: Proceedings of the
1st international conference on Knowledge cap-
ture, pages 76–83, New York, NY, USA. ACM
Press.

I.A. Mel’cuk. 1988. Dependency Syntax: Theory
and Practice. State University of New York.

R. Power, D. Scott, and R. Evans. 1998. What You
See Is What You Meant: Direct Knowledge Edit-
ing with Natural Language Feedback. In Proceed-
ings of the Thirteenth European Conference on
Artificial Intelligence, Brighton, UK.

R. Schwitter and M. Tilbrook. 2004. Controlled
Natural Language meets the Semantic Web. In
Proceedings of the Australasian Language Tech-
nology Workshop 2004.

H.R. Tennant, K.M. Ross, R.M. Saenz,
C.W.Thompson, and J.R. Miller. 1983. Menu-
based Natural Language Understanding. In
Proceedings of the Twenty-first Annual Meetings
on Association for Computational Linguistics,
pages 151–158, Cambridge, Massachusetts.

G. Wilcock. 2003. Talking OWLs: Towards an
Ontology Verbalizer. In Human Language Tech-
nology for the Semantic Web and Web Ser-
vices (ISWC’03), pages 109–112, Sanibel Island,
Florida.

72


