
Modelling control in generation∗

Roger Evans†, David Weir‡, John Carroll ‡, Daniel Paiva‡, Anja Belz†

†University of Brighton
Brighton, UK

‡University of Sussex
Brighton, UK

Abstract
In this paper we present a view of natural language
generation in which the control structure of the gen-
erator is clearly separated from the content deci-
sions made during generation, allowing us to ex-
plore and compare different control strategies in a
systematic way. Our approach factors control into
two components, a ‘generation tree’ which maps out
the relationships between different decisions, and
an algorithm for traversing such a tree which deter-
mines which choices are actually made. We illus-
trate the approach with examples of stylistic con-
trol and automatic text revision using both genera-
tive and empirical techniques. We argue that this
approach provides a useful basis for the theoreti-
cal study of control in generation, and a framework
for implementing generators with a range of control
strategies. We also suggest that this approach can be
developed into tool for analysing and adapting con-
trol aspects of other advanced wide-coverage gener-
ation systems.

1 Introduction
Natural Language Generation (NLG) has tradition-
ally been most successful when applied to restricted
domains using hand-crafted, carefully tuned sys-
tems1 In such scenarios, the range of outputs to be
generated is generally quite small, and controlling
the generator is often trivial (for example, if the
process is deterministic) or unimportant (if all so-
lutions are equally good). Moving beyond such sys-
tems, however, requires control issues to be taken
more seriously, in order to efficiently generate suit-
able output from among a range of options, some of
which may not be appropriate. Delivering re-usable

∗ This research was part of COGENT (Controlled Genera-
tion of Text) project, supported by theEPSRC under grants
GR/S24480/01 (Brighton) and GR/S24497/01 (Sussex).

1See, for example, Paiva (1998) for a survey of such sys-
tems.

generation components, or components with suffi-
cient breadth to be empirically tuned, requires a bet-
ter understanding of control in generation.

The problem is exacerbated by the complexity of
the generation process, and correspondingly of gen-
eration systems. The simple pipeline model of Re-
iter and Dale (2000) actually conceals a wide range
of underlying approaches to generation (cf. (Mel-
lish et al., 2006, section 2.1)), and a recent initiative
to provide a ‘reference architecture’ for such sys-
tems (involving some of the present authors) aban-
doned any attempt to harmonise control aspects of
the systems it studied (Mellish et al., 2006). In such
a situation, it is difficult to see how any general
statements, results or techniques relating to control-
ling generation can be developed, although Paiva
and Evans (2005) report an approach that has the
potential for wider applicability.

In the present paper, we introduce a view of the
generation process which abstracts away from spe-
cific generation systems or architectures, to a point
at which it is possible to separate control from con-
tent decisions in the generation process. This al-
lows us to explore systematically different control
strategies for constructing the same content (map-
ping from an input to the same output), and exam-
ine different approaches (e.g. generative, empiri-
cal) to the problem of controlling generation. The
approach we develop is quite abstract, but we see
potential for using it in at least three ways: as a
theoretical framework for studying and understand-
ing control; as a directly implementable generation
framework in its own right, at least for small scale
systems, and with suitable care over data represen-
tations, larger scenarios too; and as a tool for mod-
elling the control behaviour of other generation sys-
tems, perhaps with a view to tuning them to a par-
ticular domain.

The paper is organised as follows. Section 2 in-
troduces the model and discusses in general terms

25



the ways it can be used for studying control. Sec-
tion 3 describes two examples of the model be-
ing used for practical generation research: using
the pCRU system for exploring stylistic variation in
weather forecasts, and developing an automatic text
revision system for medical leaflets. Section 4 ex-
plores some wider issues and summarises the con-
tribution of this work and possible future directions.

2 The control model
We start with a very general view of the generation
process2. Generation takes an input and produces
an output, which is a ‘more linguistically instan-
tiated’ representation of the input (but we will not
say precisely what that means — cf. (Evans et al.,
2002; McDonald, 1993). In the process of doing
this, the generator makes various decisions about
the content of its output — it reaches a choice-point
at which several options are possible and selects one
to follow, and then reaches another choice point, and
so on. In fact, this is all any generation algorithm
does: visit choice points one after another and make
a decision relating to the content of output at each
one. Each decision may be constrained by the input,
constrained by other decisions already made, or de-
termined by the generation algorithm itself. These
constraints may not reduce the number of choices
at a choice point to exactly one, in which case the
algorithm may be capable of returning several so-
lutions, all deemed to be equally good, or no solu-
tions at all. A simple way to think of this behaviour
is as a tree structure, where each node corresponds
to a choice-point, and each branch corresponds to a
choice (leading to the next choice-point etc.).

But now let us abstract this process a little more.
Consider first the input. It is common in genera-
tion to distinguish between different kinds of in-
formation that an algorithm may appeal to. Reiter
and Dale (2000, p.43) specify four kinds of infor-
mation in their generic generator definition: knowl-
edge source, communicative goal, user model and
discourse history. But we shall take a ‘black box’
view of the generator’s input – the input is simply
a collection of constraints on the process of produc-
ing the output. On this view, the generator does not
‘transform’ an input into an output, but creates an
output ‘from nowhere’, guided in some way by the
input information.

Turning now to the output, we assume this takes

2In principle, this view applies far more generally than lan-
guage generation, but we only consider NLG here.

the form of some kind of data structure, for exam-
ple a string of characters, a list of words, a parse
tree or even a forest representing multiple realisa-
tions. We further assume that such a structure is in
general constructed incrementally through applying
a sequence of operations, which we shall callcon-
tent operations, and that there may be some flexibil-
ity in how these operations are applied to produce
‘the same’ output (thinking algebraically, content
operations may be commutative, or may combine
together in various ways). The potential for apply-
ing these operations in different orders to produce
the same output gives rise to one source of variation
of control. We are not interested in what outputs are,
but only how they are constructed, and so we think
of them purely in terms of the content operations
that give rise to them.

Adopting this very abstract view, we can concep-
tualise a generator as having the following principal
components:

1. a set ofcontent operations – these are possi-
ble operations that can be taken with respect to
an output (for example, in a feature-based ap-
proach, a content operation might be to set a
feature in the data-structure under construction
to a particular value);

2. a way of organising content operations into a
generation tree – each node in the tree corre-
sponds to a choice-point for the generator, each
branch is labelled with a set of content opera-
tions, and selecting that branch corresponds to
choosing those operations on the output, and
then traversing the branch to a new choice-
point node;

3. aninput constraint algorithm – at each choice
point, the tree provides a set of possible op-
tions, and this algorithm applies constraints
imposed by the input to reduce these options
(possibly removing some or even all of them);

4. a traversal algorithm for the generation tree
– at each choice point, this algorithm selects
which branches to follow from among those
still available after the intervention of the in-
put constraint algorithm.

This view of generation may seem a little un-
usual, but it is, we believe, uncontroversial, in
the sense that most implemented generators could
in principle be ‘unwrapped’ into such a structure,

26



though it may be very large, or even in principle un-
bounded. Its value from the present perspective is
that it allows us to separate out control aspects from
content in a uniform way. Specifically, we maintain
that control resides in (a) the structure of the genera-
tion tree (that is, the grouping of content operations
into choice point options, and the ordering of choice
points in the tree) and (b) the traversal algorithm. In
contrast, the content aspects of the algorithm arise
from its input/output specification: the form of the
input gives rise to the input constraint algorithm (in-
dependently of the control context, that is, the posi-
tion in a generation tree at which the algorithm is
applied), and the set of outputs, viewed as content
operation combinations, gives rise to the set of con-
tent operations.

Our interest in these control components arises
because they represent theprocess of generation,
rather than, for example, the linguistic structure of
the sentence generated. Understanding and control-
ling generation can thus be expressed and studied
in terms of generation tree structures and traver-
sal algorithms independently from actual systems
and their linguistic representations. In the following
subsections, we discuss these control components in
more detail.

2.1 Generation trees

A generation tree is an unordered tree whose
branches are labelled with sets of content opera-
tions, and whose leaves are labelled with output
structures. Although we do not stipluate what con-
tent operations or output structures are, we do intend
that the output structure is in some sense the result
of applying content operations, and also allow that
not all content operations are compatible with each
other (for example, some may be mutually exclu-
sive). This allows us to place a general consistency
requirement on generation trees: a generation tree is
consistentif each output structure labelling a leaf is
compatible with the sequence of content operation
sets labelling the path from the leaf to the root.

To make this definition more concrete, here are
two possible interpretations:

• Consider a simple generator which uses a
context-free grammar to specify its output lan-
guage. Generation consists of starting at the
initial category (S) and using grammar rules to
expand non-terminals, until no non-terminals
are left. One possible generation tree repre-
sentation would have each node corresponding

to a sentential form of the grammar (a string
of terminals and nonterminals which could ex-
pand to a sentence in the grammar), with the
root node corresponding toS, and each branch
corresponding to the expansion of one or more
non-terminals in the sentential form to pro-
duce a new sentential form. Here, the con-
tent operations are the individual rule expan-
sions, and there is some flexibility in how
they are applied to produce a particular out-
put. Different generation trees correspond to
different control strategies for grammar expan-
sion – for example, always expanding just the
left-most non-terminal would correspond to a
left-to-right depth-first strategy, expanding all
non-terminals simultaneously would result in
a breadth-first strategy.

• Consider a generator that produces a complex
feature structure (such as an HPSG sign (Pol-
lard and Sag, 1994), or an MRS representa-
tion (Copestake et al., 2005)), by taking an un-
derspecified input and further instantiating it.
Here, content operations are feature specifica-
tions (of the form ‘the value of featuref is v’),
the output structures are feature structures and
an output structure is compatible with a feature
specification if it instantiates the feature with
the specified value. Then a generation tree is
consistent if each feature structure labelling a
leaf node instantiates all the features specified
on the path from the root to that leaf. Think-
ing more algorithmically, as we move down
from the root towards a leaf, each decision in-
stantiates some additional features in the out-
put structure, until the structure is completed
at the leaf.

Generation trees describe the process of gener-
ating outputs. Each path from root to leaf corre-
sponds to a different ‘run’ of the generator leading
to an output. Thus the structure of the generation
tree bears no necessary relationship to the structure
of the representations returned, or to any underlying
linguistic formalism used to specify them. In the
context-free generator described above, it is possi-
ble to read off parse trees associated with each leaf,
but the generation tree itself is not directly related to
the generator’s grammar – in general there is no re-
quirement that a generation tree is itself a derivation
tree according to some grammar, or has any other
formal property.

27



This notion of a generation tree has its roots in
two earlier ideas. Paiva (2004) introduces ‘tracing
trees’ to analyse the behaviour of a generation algo-
rithm and discusses two variants, a tree representa-
tion of the generation of an individual sentence, and
a single tree representation of all the sentences that
can be generated. In that work and subsequent pub-
lications (Paiva and Evans, 2004; Paiva and Evans,
2005), the first variant is used, but the second variant
is very similar in structure to generation trees as de-
fined here. Belz (2004) introduces generation trees
which are a direct precursor to the present defini-
tion, representing a generation algorithm directly as
traversal of a tree mapping from partially specified
to more specified content (this system is the basis of
example 3.1, discussed below).

2.2 The structure of generation trees
Generation trees provide a framework for organis-
ing the decisions made by the generator. The struc-
ture of the generation tree is a key component in the
control structure of the algorithm, because it cap-
tures two important factors:

• how content operations group together into
choice-points – each node in the tree has a
number of branches leading from it, and each
branch is labelled with a set of content opera-
tions; selecting a branch commits to the con-
tent operations which label it as a group, and
in preference to the content operations of other
branches (although nothing prevents those op-
erations occurring again further down the se-
lected branch);

• the order in which choice-points are visited –
each branch leads to another node and hence
another choice;

The primary content of a generation tree is the
set of output structures labelling leaves, and these
are ‘constructed’ from the content operations on the
path from the tree root. But where there is scope for
varying how content operations are applied to pro-
duce the same output, it is possible to alter the struc-
ture of the tree without changing the output struc-
tures, in other words, changing the control struc-
ture without changing the content. As we saw in
the context-free generator, above, depth-first and
breadth-first strategies may have radically different
trees, but result in the same output sentences.

A range of control considerations may come into
play when we think about what the structure of the

tree should be. Examples that can be directly mea-
sured in the tree structure include how balanced the
tree should be, how many daughters a node may
have, or how many content operations may label a
single branch. These will each correspond to as-
pects of the processing, for example, how much
variation in processing time there is for different
outputs or how much the system commits in one
step. Other aspects of structure may only be observ-
able when the tree is combined with actual inputs,
for example, how often this branch results in dead
ends (choice-points with no admissible choices re-
maining). There may also be interactions with the
traversal algorithm, since the tree shape provides the
domain for making choices and the branch labels
provide the way of discriminating choices. In the
examples below, we shall consider traversal algo-
rithms trained on corpus data – this will only work
well if the choices available at a choice point cor-
respond to ‘events’ in a corpus which can be effec-
tively measured.

2.3 The traversal algorithm
The second control component in our model is the
tree traversal algorithm. This gets applied once all
other constraints (those imposed by the tree struc-
ture and the input) have been applied. So in effect,
if there are still choices remaining at this point, they
are ‘free choices’ as far as the generator tree and
input structure are concerned. The simplest traver-
sal algorithm is to accept all the remaining choices
as valid, and pursue them all to return potentially
multiple solutions. Serialised variants on this theme
include pursuing any one choice, chosen at random
(on the basis that they are all equally suitable), or
imposing an order on the tree and then pursing a
left-to-right depth-first traversal. In either of these
cases, the possibility of dead-ends (no solutions at a
descendant node) needs to be accommodated, per-
haps by backtracking.

A more interesting scenario is where the traver-
sal algorithm does not treat all options as the same,
but imposes a preferential order on them. A familiar
example of this would be where choices have prob-
abilities associated with them, learned from some
corpus, with the intention that the generator is at-
tempting to generate sentences most like those that
occur in the corpus. We will see several examples
of this approach in section 3. We note here that this
probability information is not part of the input, nor
is it part of the generation tree as we have defined it
above. However the traversal algorithm associates

28



these probabilities with individual choices-points in
the tree, so that in effect it views the tree as being
annotated with these probabilities. We refer to such
a tree as atrained generation tree, while remember-
ing that strictly speaking, according to our model
the training parameters are part of the traversal al-
gorithm, not the tree.

3 Examples of this control model
3.1 Example 1 – pCRU

pCRU (Belz, 2006; Belz, 2007) is a probabilistic
language generation framework for creating NLG
systems that contain a probabilistic model of the en-
tire generation space, represented by a context-free
underspecification grammar. The basic idea is to
view all generation rules as context-free rules and
to estimate a single probabilistic model from a cor-
pus of texts to guide the generation process. In non-
probabilistic mode, the generator operates by tak-
ing any sentential form of the grammar as an input
and expanding it using the grammar to all possible
fully specified forms, which are the outputs. Thus
a pCRU grammar looks rather like a conventional
grammar for syntax, except that it is used to model
deep generation as well as surface realisation.

The probabilistic version of pCRU introduces
a probability distribution over the generator deci-
sions. This is achieved by usingtreebank training ,
that is, estimating a distribution over the expansion
rules that encode the generation space from a corpus
using two steps3:

1. Convert corpus into multi-treebank: use the
underlying grammar to parse the corpus and
annotate strings with the derivation trees ob-
tained

2. Train the generator: Obtain frequency counts
for each individual generation rule from the
multi-treebank; convert into probability distri-
butions over alternative rules

The resulting probability distribution is used in
one of three ways to control generation.

1. Viterbi generation: undertake a Viterbi search
of the generation forest for a given input,
which maximises the joint likelihood of all de-
cisions taken in the generation process. This
selects the most likely generation process, but

3See Belz (2006) for a more complete description.

is considerably more expensive than the greedy
modes.

2. Greedy generation: make the single most
likely decision at each choice point (rule ex-
pansion) in a generation process. This is not
guaranteed to result in the most likely genera-
tion process, but the computational cost is very
low.

3. Greedy roulette-wheel generation: use a non-
uniform random distribution proportional to
the likelihoods of alternatives.

Belz (2006) describes an application of the sys-
tem to weather forecast generation, and compares
the different control techniques with human genera-
tion and a more traditional generate-and-test proba-
bilistic architecture (Langkilde-Geary, 2002).

pCRU can be interpreted using the model intro-
duce here in the following way (cf. the first ex-
ample given in section 2.1). Thegeneration tree
is defined by all the possible derivations accord-
ing to the grammar. Each node corresponds to a
sentential form and each child node is the result
of rewriting a single non-terminal using a gram-
mar rule. Thus thecontent operationsare grammar
rules. Thecontent structures are sentences in the
grammar. The input is itself a sentential form which
identifies where in the complete tree to start gen-
erating from, and theinput constraint algorithm
does nothing (alternatively, the input constraint al-
gorithm only admits paths that pass through nodes
associated with the input sentential form). Treebank
training associates probabilities with all the possible
expansion rules at a given choice-point, and three
traversal algorithms Viterbi, greedy, and greedy
roulette-wheel are defined.

3.2 Example 2 – Automatic Text Revision
Our second example of the generation model is in a
system currently under development for Automatic
Text Revision (ATR). The core idea here is that all
the leaves in a generation tree are in a sense equiv-
alent to each other (modulo any leaves rules out
by particular input constraints). Hence they are,
in a sense, paraphrases of each other. If they are
text strings, the paraphrasing relationship may be
obvious, but even generation trees over more ab-
stract representations have this paraphrasing quality.
Hence they support a notion ofgeneralised para-
phrasing: substituting one data structure used dur-
ing generation for another one, whose equivalence

29



is licensed by a generation tree.
We are using this type of generation tree to ex-

periment with a model of ATR, intended for appli-
cations such as automatic improvement of drafts, or
texts written by non-native writers, editorial adjust-
ment to a house style, stylistic modification of a fin-
ished document for a different audience, or smooth-
ing out stylistic differences in a multi-authored doc-
ument.

Our ATR system uses generation trees whose
output structures are Minimal Recursion Semantics
(MRS) representations (Copestake et al., 2005), and
whose content operations are instantiations of par-
ticular features in MRS structures (cf. example 2 in
section 2.1). Thus a conventional use of such a gen-
eration tree might be to walk down the tree, instanti-
ating MRS features at each choice-point guided by
some input information, until a completely speci-
fied MRS realisation is reached at one of the leaves.
However, for ATR we use the trees somewhat differ-
ently: the input to the process is one of the content
structures labelling a leaf of the tree. The objective
is to locate another output structure (a ‘paraphrase’)
by walking up the tree from the input leaf (de-
generating), and then taking alternative decisions to
come back down to a different leaf (re-generating).
In the absence of an ‘input’, the generation tree can-
not distinguish between its output structures, and so
the result might be a random alternative leaf. To
overcome this, we need to add control in the sense
introduced above.

The control questions we are exploring in this
scenario are:

• How can we train a generation tree so that it is
possible to locate ‘better’ paraphrases than the
input?

• Can we structure a tree so that ‘better’ para-
phrases are close to the input (that is, limited
de-generation will always result in significant
improvement)?

We address the first question using probabilistic
training against a corpus of texts like the ones we
want to paraphrase into (the ‘target’ corpus). In a
simlar way to the pCRU example, we train the tree
by estimating frequency distributions for different
branches at each choice-point in the tree. In this
case the branches are labelled with sets of feature
instantiations. We train by parsing a corpus of target
texts to MRS structures and then counting instances

of the sets of feature instantiations on each branch,
smoothing and normalising. In effect, we are using
MRS features to characterise the ‘style’ of the cor-
pus. Once we have done this, each leaf MRS can be
assigned an overall probability score, and each in-
terior node can compare the incoming score (from
the branch leading to the input MRS) with scores
for MRS’s on the other branches, deciding whether
to de-generate higher (in the hope of more improve-
ment, but at greater cost) or start re-generating from
this point.

The second question is interesting both from a
computational complexity point of view (can we
structure the tree to make the ATR more efficient?)
and also because our goal isminimal paraphrasing:
in many ATR contexts, it is bad to change the text
unnecessarily, and so we are looking for minimal
changes that improve the style. Our approach to
this problem is to induce the generation trees them-
selves from a pool of MRS structures. We auto-
matically construct different decision trees which
gather together choices about groups of feature as-
signments in MRS’s in different ways and different
orders. This results in a set of generation trees with
different structures, but all covering the same set of
MRS leaves (and all with the same very abstract
specification at their root – the fragment of MRS
structure shared byall the MRS’s). We then exper-
iment with these trees to find which trees are more
efficient for ATR from one text domain to another.
Our long-term aim is to use the difference between
our two corpora (for example pharmaceutical leaflet
written for doctor and or for patients) to allow us
to construct or select efficient generation trees auto-
matically.

The description of this system makes reference to
concepts in the generation model introduced here,
but it may be useful to be more explicit, as we did
with the pCRU example. Theoutput structures are
MRS’s (more accurately, de-lexicalised MRS’s) and
the generation treesare labelled with abstractions
over MRS’s. Thecontent operationsare instanti-
ations of MRS features, and typically there is more
than one content operation on each branch in a gen-
eration tree (where features tend to co-occur with
each other). The input is one of the leaf MRS’s,the
input constraint algorithm does nothing (as the in-
fluence of the input is entirely captured by its posi-
tion in the tree) and thetraversal algorithm uses
the probability distributions to locate the best (or a
better) paraphrase, relative to the training corpus.

30



4 Discussion

The examples just discussed illustrate how the
model introduced in this paper offers a uniform per-
spective which is still flexible. The model sepa-
rates out control and content aspects of the genera-
tion process and makes it possible to reason about
and compare different control strategies in differ-
ent generation scenarios. In the examples described
here, we have illustrated generation trees over two
different kinds of structure (strings in a language
and MRS’s), created in two different ways (gen-
eratively from the sentential forms of a grammar,
and induced from data), with two kinds of con-
tent operation (grammar expansion and feature in-
stantiation), two notions of training and four dif-
ferent traversal algorithms, and two very different
notions of input. And of course this does not ex-
haust the range. Additional sources for generation
trees, for example, may include manually crafted
trees (somewhat akin to systemic grammars, al-
though concerned more with control than linguis-
tics) or trees induced from implemented generation
systems (in the manner used by Paiva (2004) for his
tracing trees).

This last option highlights one of several potential
uses for the model proposed here. On the one hand
our aim is to promote a clearer theoretical perspec-
tive on control issues in generation, by introducing
a model in which they can be represented and ex-
plored in a common framework. The two exam-
ples given above constitute direct implementations
of the model. Although they are both quite small
scale systems, they indicate the prospects for direct
implementation in larger systems (and help identify
where scaling up may be problematic). But we also
envisage using this approach as an analytic tool for
studying and tuning other generation systems – by
mapping a system into this generation model it may
become possible to understand how it might most
effectively be empirically controlled, for example,
to identify deficiencies in the design, or to reason
about computational complexity and efficiency.

Although we have discussed generation trees as if
they cover the entire generation process (from non-
linguistic input, whatever that may be, to textual re-
alisation), nothing in the definitions above forces
this. In practice a generation tree might be used
to model just some part of the generation process
(such as content selection or realisation), and multi-
ple generation trees might be used collectively in a
more complex algorithm. We also believe that this

approach suggests a way forward for hybrid sym-
bolic/probabilistic systems. By making the con-
trol structures of the generator more explicit it be-
comes easier to see how (and in how many ways)
one can introduce empirically informed processing
into even quite complex symbolic systems.

Finally, the model presented here is not ‘just’ a
classical search algorithm, because the process is in
a sense constructive – content actions are intended
to further specify the solution, rather than distin-
guish between fully-formed solutions, and the inter-
nal nodes of the tree are intended not to be solutions
in themselves. A search perspective is also possible,
by associating internal nodes with the set of reali-
sations they dominate and construing the algorithm
as a search for the right set of realisations genera-
tion trees can be embedded in. But such a view pre-
supposes the enumeration of the set of realisations
which we are keen to avoid. This may seem like a
procedural nicety, and of course in a sense it is, but
in addressing control issues at all we are committed
to looking at procedural aspects of a system. In fact,
ultimately what we are trying to achieve here is to
provide a theoretical and formal foundation for ex-
actly those aspects of a system generally regarded
as procedural details.

References

A. Belz. 2004. Context-free representational un-
derspecification for NLG. Technical Report
ITRI-04-08, Information Technology Research
Institute, University of Brighton.

A. Belz. 2006. Probabilistic generation using rep-
resentational underspecification. Technical Re-
port NLTG-06-01, Natural Language Technology
Group, CMIS, University of Brighton.

A. Belz. 2007. Probabilistic generation of weather
forecast texts. InProceedings of the Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL-HLT
2007).

A. Copestake, D. Flickinger, I. Sag, and C. Pollard.
2005. Minimal recursion semantics: An intro-
duction. Research on Language and Computa-
tion, 3(2/3):281–332.

R Evans, P. Piwek, and L. Cahill. 2002. What is
NLG? In Proceedings of International Confer-
ence on Natural Language Generation.

I. Langkilde-Geary. 2002. An empirical verifica-
tion of coverage and correctness for a general-
purpose sentence generator. InProceedings of

31



the 12th International Conference on Natural
Language Generation, pages 17–24.

D. McDonald. 1993. Issues in the choice of a
source for natural language generation.Compu-
tational Linguistics, 19(1):191–197.

C. Mellish, D. Scott, L. Cahill, R. Evans, D. Paiva,
and M. Reape. 2006. A reference architecture for
natural language generation systems.Journal of
Natural Language Engineering, 12(1):1–34.

D. Paiva and R. Evans. 2004. A framework for
stylistically controlled generation. InProceed-
ings of the International Conference on Natural
Language Generation, pages 120–129.

D. Paiva and R. Evans. 2005. Empirically-based
control of natural language generation. InPro-
ceedings of the 43th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 58–
65.

D. Paiva. 1998. A survey of applied natural
language generation systems. Technical Report
ITRI-98-03, ITRI, University of Brighton.

D. Paiva. 2004. Using Stylistic Parameters to
Control a Natural Language Generation System.
Ph.D. thesis, University of Brighton.

Carl J. Pollard and Ivan A. Sag. 1994.Head-
Driven Phrase Structure Grammar. University of
Chicago Press, Chicago.

E. Reiter and R. Dale. 2000.Building Natural-
Language Generation Systems. Cambridge Uni-
versity Press.

32


