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Abstract

We present a log-linear model that is used
for ranking the string realisations produced for
given corpus f-structures by a reversible broad-
coverage LFG for German and compare its re-
sults with the ones achieved by the application
of a language model (LM). Like other authors
that have developed log-linear models for reali-
sation ranking, we use a hybrid model that uses
linguistically motivated learning features and a
LM (whose score is simply integrated into the
log-linear model as an additional feature) for
the task of realisation ranking. We carry out a
large evaluation of the model, training on over
8,600 structures and testing on 323. We ob-
serve that the contribution that the structural
features make to the quality of the output is
slightly greater in the case of a free word order
language like German than it is in the case of
English. The exact match metric improves from
27% to 37% when going from the LM-based re-
alisation ranking to the hybrid model, BLEU
score improves from 0.7306 to 0.7939.

1 Introduction

Most traditional approaches to stochastic reali-
sation ranking involve applying language model
n-gram statistics to rank alternatives (Langk-
ilde, 2000; Bangalore and Rambow, 2000;
Langkilde-Geary, 2002). Much work has been
carried out into statistical realisation ranking
for English. However, n-grams alone (even
if they are efficiently implemented) may not
be a good enough measure for ranking candi-
date strings, particularly in free-word order lan-
guages.

Belz (2005) moves away from n-gram mod-
els of generation and trains a generator on a
generation treebank, achieving similar results
to a bigram model but at much lower compu-

tational cost. Cahill and van Genabith (2006)
do not use a language model, but rather rely on
treebank-based automatically derived LFG gen-
eration grammars to determine the most likely
surface order.

Ohkuma (2004) writes an LFG genera-
tion grammar for Japanese separate from the
Japanese LFG parsing grammar in order to en-
force canonical word order by symbolic means.
In another purely symbolic approach, Callaway
(2003; 2004) describes a wide-coverage system
and the author argues that there are several ad-
vantages to a symbolic system over a statistical
one. We argue that a reversible symbolic sys-
tem, which is desirable for maintainability and
modularity reasons, augmented with a statisti-
cal ranking component can produce systemat-
ically ranked, high quality surface realisations
while maintaining the flexibility associated with
hand-crafted systems.

Velldal et al. (2004) and Velldal and Oepen
(2005) present discriminative disambiguation
models using a hand-crafted HPSG grammar
for generation from MRS (Minimal Recursion
Semantics) structures. They describe three sta-
tistical models for realization ranking: The first
is a simple n-gram language model, the second
uses structural features in a maximum entropy
model for disambiguation and a third uses a
combination of the two models. Their results
show that the third model where the n-gram
language model is combined with the struc-
tural features in the maximum entropy disam-
biguation model performs best. Nakanishi et
al. (2005) present similar probabilistic models
for a chart generator using a HPSG grammar
acquired from the Penn-II Treebank (the Enju
HPSG), with the difference that, in their ex-
periments, the model that only uses structural
features outperformed the hybrid model. We
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present a model for realisation ranking similar
to the models just mentioned. The main differ-
ences between our work and theirs is that we are
working within the LFG framework and concen-
trating on a less configurational language: Ger-
man.

2 Background

2.1 Lexical Functional Grammar
The work presented in this paper is couched
in the framework of Lexical Functional Gram-
mar (LFG). LFG is a grammar formalism which
makes use of two representation levels to encode
syntactic properties of sentences: constituent
structure (c-structure) and functional struc-
ture (f-structure). C-structures are context-free
trees that encode constituency and linear order.
F-structures are attribute-value matrices that
encode grammatical relations and morphosyn-
tactic features. While translational equivalents
of sentences may vary considerably across lan-
guages at the c-structure level, it is assumed
that, at the f-structure level, where linear or-
der is abstracted away from, languages behave
much more alike. Also, f-structures are taken as
the interface from syntax to semantics. From a
language-technological perspective, f-structures
are the level of representation various (proto-
types of) question-answering systems, a sen-
tence condensation system and machine trans-
lation systems operate on and generate from.

Figures 1 and 2 illustrate the c-structure and
the f-structure that the German broad-coverage
LFG presented in the next paragraph produces
for (1).

(1) Verheugen
Verheugen

habe
had

die
the

Worte
words

des
the-GEN

Generalinspekteurs
inspector-general

falsch
wrongly

interpretiert.
interpreted.

‘Verheugen had mis-interpreted the words
of the inspector-general.’

2.2 A broad-coverage LFG for German
For the construction of our data, we use the Ger-
man broad-coverage LFG documented in Dip-
per (2003) and Rohrer and Forst (2006). It is
a hand-crafted grammar developed in and for
the LFG grammar development and processing
platform XLE (Crouch et al., 2006). It achieves
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Figure 1: C-structure for (1)

"Verheugen habe die Worte des Generalinspekteurs falsch interpretiert."

'interpretieren<[1:Verheugen], [106:Wort]>'PRED

'falsch<[279-SUBJ:pro]>'PRED

'pro'PRED

pronounNSYNNTYPE

nullPRON-TYPE

SUBJ

ATYPE adverbial, DEG-DIM pos, DEGREE positive279

ADJUNCT

'Wort'PRED

'Inspekteur'PRED

'General'PRED-12MOD

countCOMMONNSEM

commonNSYN
NTYPE

'die'PRED
defDET-TYPE

DETSPEC

CASE gen, GEND masc, NUM sg, PERS 3229

ADJ-GEN

countCOMMONNSEM

commonNSYN
NTYPE

'die'PRED
defDET-TYPE

DETSPEC

CASE acc, GEND neut, NUM pl, PERS 3106

OBJ

'Verheugen'PRED

namePROPER-TYPEPROPERNSEM

properNSYN
NTYPE

CASE nom, NUM sg, PERS 31

SUBJ

MOOD subjunctive, PERF + _, TENSE presTNS-ASP

CLAUSE-TYPE decl, PASSIVE -, STMT-TYPE decl, VTYPE main21

Figure 2: F-structure for (1)

parsing coverage of about 80% in terms of full
parses on newspaper text, and for sentences out
of coverage, the robustness techniques described
in Riezler et al. (2002) (fragment grammar,
‘skimming’) are employed for the construction
of partial analyses. The grammar is reversible,
which means that the XLE generator can pro-
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duce surface realisations for well-formed input
f-structures.

Recently, the grammar has been comple-
mented with a stochastic disambiguation mod-
ule along the lines of Riezler et al. (2002), con-
sisting of a log-linear model based on structural
features (Forst, 2007). This module makes it
possible to determine one c-/f-structure pair as
the most probable analysis of any given sen-
tence.

2.3 Surface realisation
As XLE comes with a fully-fledged generator,
the grammar can be used both for parsing and
for surface realisation. Figure 3 shows an ex-
cerpt of the set of strings (and their LM rank-
ing) that are generated from the f-structure in
Figure 2. Note that all of these (as well as the
the remaining 139 strings in the set) are gram-
matical; however, some of them are clearly more
likely or unmarked than others.

1. Falsch
Wrongly

interpretiert
interpreted

habe
had

die
the

Worte
words

des
the-GEN

Generalinspekteurs
inspector-general

Verheugen.
Verheugen.

2. Falsch interpretiert habe die Worte
des Generalinspekteures Verheugen.

3. Die Worte des Generalinspekteurs
falsch interpretiert habe Verheugen.

5. Die Worte des Generalinspekteurs habe
Verheugen falsch interpretiert.

7. Verheugen habe die Worte des General-
inspekteurs falsch interpretiert.

Figure 3: Excerpt of the set of 144 strings gen-
erated from the f-structure in Figure 2, ordered
according to their LM score

Just as hand-crafted grammars, when used
for parsing, are only useful for most applica-
tions when they have been complemented with
a disambiguation module, their usefulness as a
means of surface realisation depends on a re-
liable module for realisation ranking. A long
list of arbitrarily ordered output strings is use-
less for practical applications such as summari-
sation, QA, MT etc.

Very regular preferences for certain reali-
sation alternatives over others can be imple-
mented by means of so-called optimality marks
(Frank et al., 2001), which are implemented in

XLE both for the parsing and the generation
direction. For ranking string realisations on the
basis of ‘soft’ and potentially contradictory con-
straints, however, the stochastic approach based
on a log-linear model, as it has previously been
implemented for English HPSGs (Nakanishi et
al., 2005; Velldal and Oepen, 2005), seems more
adequate.

3 Experimental setup

3.1 Data
We use the TIGER Treebank (Brants et al.,
2002) to train and test our model. It consists
of just over 50,000 annotated sentences of Ger-
man newspaper text. The sentences have been
annotated with morphological and syntactic in-
formation in the form of functionally labelled
graphs that may contain crossing and secondary
edges.

We split the data into training and test data
using the same data split as in Forst (2007),
i.e. sentences 8,001–10,000 of the TIGER
Treebank are reserved for evaluation. Within
this section, we have 422 TIGER annotation-
compatible f-structures, which are further di-
vided into 86 development and 336 test struc-
tures. We use the development set to tune the
parameters of the log-linear model. Of the 86
heldout sentences and the 336 test sentences, 78
and 323 respectively are of length >3 and are
actually used for our final evaluation.

For training, we build a symmetric treebank
of 8,609 packed c/f-structure representations in
a similar manner to Velldal et al. (2004). We do
not include structures for which only one string
is generated, since the log-linear model for re-
alisation ranking cannot learn anything from
them. The symmetric treebank was established
using the following strategy:

1. Parse input sentence from TIGER Tree-
bank.

2. Select all of the analyses that are compati-
ble with the TIGER Treebank annotation.

3. Of all the TIGER-compatible analyses,
choose the most likely c/f-structure pair ac-
cording to log-linear model for parse disam-
biguation.

4. Generate from the f-structure part of this
analysis.
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String Realisations #str. Avg # words
> 100 1206 18.3
≥ 50, < 100 709 14.3
≥ 10, < 50 3029 11.8
> 1, < 10 3665 7.6
Total 8609 11.3

Table 1: Number of structures and average sen-
tence length according to ambiguity classes in
the training set

5. If the input string is contained in the set
of output strings, add this sentence and
all of its corresponding c/f-structure pairs
to training set. The pair(s) that corre-
spond(s) to the original corpus sentence
is/are marked as the intended structure(s),
while all others are marked as unintended.

Theoretically all strings that can be parsed
should be generated by the system, but for rea-
sons of efficiency, punctuation is often not gen-
erated in all possible positions, therefore result-
ing in an input string not being contained in
the set of output strings. Whenever this is the
case for a given sentence, the c/f-structure pairs
associated with it cannot be used for training.
Evaluation can be carried out regardless of this
problem, but it has to be kept in mind that the
original corpus string cannot be generated for
all input f-structures. In our test set, it is gen-
erated only for 62% of them.

Tables 1 and 2 give information about the
ambiguity of the training and test data. For
example, in the training data there are 1,206
structures with more than 100 string realisa-
tions. Most of the training and test structures
have between 2 and 50 possible (and grammat-
ical) string realisations. The average sentence
length of the training data is 11.3 and it is 12.8
for the test data.1 The tables also show that
the structures with more potential string reali-
sations correspond to longer sentences than the
structures that are less ambiguous when gener-
ating.

1This is lower than the overall average sentence length
of roughly 16 in TIGER because of the restriction that
the structure produced by the reversible grammar for
any TIGER sentence be compatible with the original
TIGER graph. As the grammar develops further, we
hope that longer sentences can be included in both train-
ing and test data.

String Realisations #str. Avg # words
> 100 61 23.7
≥ 50, < 100 26 13.5
≥10, < 50 120 11.6
> 1, < 10 129 7.8
Total 336 12.8

Table 2: Number of structures and average sen-
tence length according to ambiguity classes in
the test set

3.2 Features for realisation ranking

Using the feature templates presented in Riezler
et al. (2002), Riezler and Vasserman (2004) and
Forst (2007), we construct a list of 186,731 fea-
tures that can be used for training our log-linear
model. Out of these, only 1,471 actually occur
in our training data. In the feature selection
process of our training regime (see Subsection
3.3), 360 features are chosen as the most dis-
criminating; these are used to rank alternative
solutions when the model is applied. The fea-
tures include c-structure features, features that
take both c- and f-structure information into
account, sentence length and language model
scores. Examples of c-structure features are
the number of times a particular category la-
bel occurs in a given c-structure, the number
of children the nodes of a particular category
have or the number of times one particular cat-
egory label dominates another. Examples of
features that take both c- and f-structure in-
formation into account are the relative order of
functions (e.g. ‘Subj precedes Obj’). As in
Velldal and Oepen (2005), we incorporate the
language model score associated with the string
realisation for a particular structure as a feature
in our model.

3.3 Training

We train a log-linear model that maximises the
conditional probability of the observed corpus
sentence given the corresponding f-structure.
The model is trained in a (semi-)supervised
fashion on the 8,609 (partially) labelled struc-
tures of our training set using the cometc soft-
ware provided with the XLE platform. cometc
performs maximum likelihood estimation on
standardised feature values and offers several
regularisation and/or feature selection tech-
niques. We apply the combined method of in-
cremental feature selection and l1 regularisation
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Exact Match Upper Bound 62%
Exact Matches 27%
BLEU score 0.7306

Table 3: Results with the language model

presented in Riezler and Vasserman (2004), the
corresponding parameters being adjusted on our
heldout set.

For technical reasons, the training was carried
out on unpacked structures. However, we hope
to be able to train and test on packed struc-
tures in the future which will greatly increase
efficiency.

4 Evaluation

4.1 Evaluating the system’s output
We evaluate the most likely string produced
by our system in terms of two metrics: ex-
act match and BLEU score (Papineni et al.,
2002). Exact match measures what percentage
of the most probable strings are exactly identi-
cal to the string from which the input structure
was produced. BLEU score is a more relaxed
metric which measures the similarity between
the selected string realisation and the observed
corpus string.

We first rank the generator output with a lan-
guage model trained on the Huge German Cor-
pus (a collection of 200 million words of news-
paper and other text) using the SRILM toolkit.
The results are given in Table 3, achieving ex-
act match of 27% and BLEU score of 0.7306.
In comparison to the results reported by Velldal
and Oepen (2005) for a similar experiment on
English, these results are markedly lower, pre-
sumably because of the relatively free word or-
der of German.

We then rank the output of the generator
with our log-linear model as described above
and give the results in Table 4. There is a no-
ticeable improvement in quality. Exact match
increases from 27% to 37%, which corresponds
to an error reduction of 29%,2 and BLEU score
increases from 0.7306 to 0.7939.

There is very little comparable work on re-
alization ranking for German. Gamon et al.
(2002) present work on learning the contexts

2Remember that the original corpus string is gener-
ated only from 62% of the f-structures of our test set,
which fixes the upper bound for exact match at 62%
rather than 100%.

Exact Match Upper Bound 62%
Exact Matches 37%
BLEU score 0.7939

Table 4: Results with the log-linear model

for a particular subset of linguistic operations;
however, no evaluation of the overall system is
given.

4.2 Evaluating the ranker

In addition to the exact match and BLEU score
metrics, which give us an indication of the qual-
ity of the strings being chosen by the statistical
ranking system, the quality of the ranking it-
self is interesting for internal evaluation during
development. While exact match tells us how
often the correct string is selected, in all other
cases, it gives the developers no indication of
whether the correct string is close to being se-
lected or not. We propose to evaluate the ranker
by calculating the following ranking score:

s =

{
n−r+1

n if r is defined,
0 if r is not defined,

where n is the total number of potential string
realisations and r is the rank of the gold stan-
dard string. If the gold standard string is not
among the list of potentials, i.e. r is undefined,
the ranking score is defined as 0.

The ranking scores for the language model
and the hybrid log-linear model are given in
Table 5. Since the original string is not nec-
essarily in the set of candidate strings, we also
provide the upper bound (i.e. if the ranker had
chosen the correct string any time the correct
string was available). The table shows that in
almost 62% of the cases, the original string was
generated by the system. The hybrid model
achieves a ranking score of 0.5437 and the lan-
guage model alone achieves 0.4724. The struc-
tural features in the hybrid model result in an
error reduction of 49% over the baseline lan-
guage model ranking score. The hybrid model
is thus noticeably better at ranking the origi-
nal string (when available) higher in the list of
candidate strings. This error reduction is con-
siderably higher than the error reduction of the
much stricter exact match score.
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Language Model 0.4724
Hybrid Model 0.5437
Upper Bound 0.6190

Table 5: Evaluating the ranking

5 Error Analysis

We had initially expected the increase in BLEU
score to be greater than 0.0633, since German is
far less configurational than English and there-
fore we thought the syntactic features used in
the log-linear model would play an even greater
role in realisation ranking. However, in our ex-
periments, the improvement was only slighlty
greater than the improvement achieved by Vell-
dal and Oepen (2005). In this section, we
present some of the more common errors that
our system still produces.

Word Choice Often there is more than one
surface realisation for a particular group of mor-
phemes. Sometimes the system chooses an in-
correct form for the sentence context, and some-
times it chooses a valid, though marked or dis-
preferred, form. For example, from the struc-
ture in Figure 2, the system chooses the follow-
ing string as the most probable.

Verheugen
Verheugen

habe
had

die
the

Wörter
words

des
of the

Generalinspekteures
inspector-general

falsch
wrongly

interpretiert.
interpreted.

There are two mis-matches in this output
string with respect to the original corpus string.
In the first case the system has chosen Wörter
as the surface realisation for the morpheme
sequence Wort+NN.Neut.NGA.Pl rather than
the, in this case, correct form Worte. In the
second (less critical) case, the system has chosen
to mark the genitive case of Generalinspekteur
with es rather than the s that is in the original
corpus. This is a relatively frequent alternation
that is difficult to predict, and there are other
similar alternations in the dative case, for exam-
ple. In the development set, this type of error
occurs in 6 of the 78 sentences. In order to cor-
rect these errors, the morphological component
of the system needs to be improved.

Placement of adjuncts Currently, there is
no feature that captures the (relative) location
of particular types of adjuncts. In German,
there is a strong tendency for temporal adjuncts

to appear early in the sentence, for example.
Since the system was not provided with data
from which it could learn this generalisation, it
generated output like the following:

Frauenärzte
Gynaecologists

haben
have

die
the

Einschränkung
restriction

umstrittener
controversial

Antibabypillen
birth control pills

wegen
because of

erhöhter
increased

Thrombosegefahr
risk of thrombosis

am Dienstag
on Tuesday

kritisiert.
critisised.
‘Gynaecologists criticised the restriction on
controversial birth control pills due to increased
risk of thrombosis on Tuesday.’

where the temporal adjunct on Tuesday was
generated very late in the sentence, resulting
in an awkward utterance. The most obvious so-
lution is to add more features to the model to
capture generalisations about adjunct positions.

Discourse Information In many cases, the
particular subtleties of an utterance can only
be generated using knowledge of the context in
which it occurs. For example, the following sen-
tence appears in our development corpus:

Israel
Israel

stellt
puts

den
the

Friedensprozess
peace process

nach
after

Rabins
Rabin’s

Tod
death

nicht
not

in
in

Frage
question

‘Israel does not challenge the peace process after
Rabin’s death’

Our system generates the string:

Nach
After

Rabins
Rabin’s

Tod
death

stellt
puts

Israel
Israel

den
the

Friedensprozess
peace process

nicht
not

in
in

Frage.
question.

which, taken on its own, gets a BLEU score of
0. The sentence produced by our system is a
perfectly valid sentence and captures essentially
the same information as the original corpus
sentence. However, without knowing anything
about the information structure within which
this sentence is uttered, we have no way of
telling where the emphasis of the sentence
is. The work described in this paper is part
of a much larger project, and future research
is already planned to integrate information
structure into the surface realisation process.
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6 Discussion and future work

In the work of Callaway (2003; 2004), a purely
symbolic system is presented. Our system
makes use of a symbolic grammar, but we ap-
ply a statistical ranking model to the output.
We believe that this gives us the power to
restrict the output of the generator without
under-generating. The symbolic grammar en-
forces hard constraints and the statistical rank-
ing models (possibly conflicting) soft constraints
to weight the alternatives.

Satisfactory methods for the automatic eval-
uation of surface realisation (as well as machine
translation) have not yet been developed (Belz
and Reiter, 2006). The shortcomings of current
methods, particularly BLEU score, seem to be
even more pronounced for German and other
relatively free word-order languages. Given that
all of the sentences generated by our system
are syntactically valid, one would expect much
higher results. A human inspection of the re-
sults and investigation of other evaluation met-
rics such as NIST will be carried out to get a
clearer idea of the quality of the ranking.

There is a potential bias in the learning algo-
rithm, in that the average length of the training
data sentences is lower than the average length
of the test data. In particular, the length of the
sentences with more than 100 potential string
realisations seems to be considerably longer (cf.
Tables 1 and 2). Therefore, it is possible that
the system has not learnt enough features from
longer sentences to be able to correctly rank the
intended string. We plan to increase the size of
the training set to also include longer sentences
that would hopefully avoid this bias. Moreover,
more data will allow us to investigate in detail
the effect of more or less training data on the
results of a stastical realisation ranking system
trained on them.

Finally, more feature design is clearly neces-
sary for the improvement of the system. We
already have several features in mind, which
have not been implemented for technical rea-
sons. Examples are the distance between a
relative clause and its antecedent as well as
its weight, which will hopefully allow us to
learn which types of relative clauses tend to
appear in extraposed position. Another thing
that features for realization ranking should cap-
ture is the information-structural status of con-

stituents. Information structure is an impor-
tant factor when generating the correct surface
realisation (Kruijff et al., 2001). German is a
language in which word order is largely driven
by information structure rather than grammat-
ical function, which is often marked morpholog-
ically. In future work, we plan to integrate in-
formation structure features into the log-linear
model and hope that results will improve.

7 Conclusions

In this paper, we have presented a log-linear
realisation ranking system for a German LFG
system. The reversibility of the grammar en-
sures that all output strings will be grammati-
cal. The task then becomes to choose the most
likely one. We train on over 8,600 partially la-
belled structures and test on 323 sentences of
length >3. To our knowledge, this is the largest
statistical realisation experiment carried out for
German. The number of structures used is also
much greater than the data used in Velldal and
Oepen (2005), although the improvement over a
baseline language model was only slightly bet-
ter. We achieved an increase in exact match
score from 27% to 37% and an increase in BLEU
score from 0.7306 to 0.7939. The fact that our
scores are lower than that of Velldal and Oepen
(2005) suggests that it may be more difficult to
achieve high scores for German data, although
this is not necessarily a reflection of the qual-
ity of the strings chosen. We also show, using
a ranking score, that the log-linear ranking sys-
tem generally ranks the correct solution consid-
erably higher than our baseline system.
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