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Abstract

In this paper we investigate several non-
projective parsing algorithms for depen-
dency parsing, providing novel polynomial
time solutions under the assumption that
each dependency decision is independent of
all the others, called here the edge-factored
model. We also investigate algorithms for
non-projective parsing that account for non-
local information, and present several hard-
ness results. This suggests that it is unlikely
that exact non-projective dependency pars-
ing is tractable for any model richer than the
edge-factored model.

1 Introduction

Dependency representations of natural language are
a simple yet flexible mechanism for encoding words
and their syntactic dependencies through directed
graphs. These representations have been thoroughly
studied in descriptive linguistics (Tesnière, 1959;
Hudson, 1984; Sgall et al., 1986; Meĺčuk, 1988) and
have been applied in numerous language process-
ing tasks. Figure 1 gives an example dependency
graph for the sentence Mr. Tomash will remain as a
director emeritus, which has been extracted from the
Penn Treebank (Marcus et al., 1993). Each edge in
this graph represents a single syntactic dependency
directed from a word to its modifier. In this rep-
resentation all edges are labeled with the specific
syntactic function of the dependency, e.g., SBJ for
subject and NMOD for modifier of a noun. To sim-
plify computation and some important definitions,

an artificial token is inserted into the sentence as the
left most word and will always represent the root of
the dependency graph. We assume all dependency
graphs are directed trees originating out of a single
node, which is a common constraint (Nivre, 2005).

The dependency graph in Figure 1 is an exam-
ple of a nested or projective graph. Under the as-
sumption that the root of the graph is the left most
word of the sentence, a projective graph is one where
the edges can be drawn in the plane above the sen-
tence with no two edges crossing. Conversely, a
non-projective dependency graph does not satisfy
this property. Figure 2 gives an example of a non-
projective graph for a sentence that has also been
extracted from the Penn Treebank. Non-projectivity
arises due to long distance dependencies or in lan-
guages with flexible word order. For many lan-
guages, a significant portion of sentences require
a non-projective dependency analysis (Buchholz et
al., 2006). Thus, the ability to learn and infer non-
projective dependency graphs is an important prob-
lem in multilingual language processing.

Syntactic dependency parsing has seen a num-
ber of new learning and inference algorithms which
have raised state-of-the-art parsing accuracies for
many languages. In this work we focus on data-
driven models of dependency parsing. These models
are not driven by any underlying grammar, but in-
stead learn to predict dependency graphs based on
a set of parameters learned solely from a labeled
corpus. The advantage of these models is that they
negate the need for the development of grammars
when adapting the model to new languages.

One interesting class of data-driven models are
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Figure 1: A projective dependency graph.

Figure 2: Non-projective dependency graph.

those that assume each dependency decision is in-
dependent modulo the global structural constraint
that dependency graphs must be trees. Such mod-
els are commonly referred to as edge-factored since
their parameters factor relative to individual edges
of the graph (Paskin, 2001; McDonald et al.,
2005a). Edge-factored models have many computa-
tional benefits, most notably that inference for non-
projective dependency graphs can be achieved in
polynomial time (McDonald et al., 2005b). The pri-
mary problem in treating each dependency as in-
dependent is that it is not a realistic assumption.
Non-local information, such as arity (or valency)
and neighbouring dependencies, can be crucial to
obtaining high parsing accuracies (Klein and Man-
ning, 2002; McDonald and Pereira, 2006). How-
ever, in the data-driven parsing setting this can be
partially adverted by incorporating rich feature rep-
resentations over the input (McDonald et al., 2005a).

The goal of this work is to further our current
understanding of the computational nature of non-
projective parsing algorithms for both learning and
inference within the data-driven setting. We start by
investigating and extending the edge-factored model
of McDonald et al. (2005b). In particular, we ap-
peal to the Matrix Tree Theorem for multi-digraphs
to design polynomial-time algorithms for calculat-
ing both the partition function and edge expecta-
tions over all possible dependency graphs for a given
sentence. To motivate these algorithms, we show
that they can be used in many important learning
and inference problems including min-risk decod-
ing, training globally normalized log-linear mod-
els, syntactic language modeling, and unsupervised

learning via the EM algorithm – none of which have
previously been known to have exact non-projective
implementations.

We then switch focus to models that account for
non-local information, in particular arity and neigh-
bouring parse decisions. For systems that model ar-
ity constraints we give a reduction from the Hamilto-
nian graph problem suggesting that the parsing prob-
lem is intractable in this case. For neighbouring
parse decisions, we extend the work of McDonald
and Pereira (2006) and show that modeling vertical
neighbourhoods makes parsing intractable in addi-
tion to modeling horizontal neighbourhoods. A con-
sequence of these results is that it is unlikely that
exact non-projective dependency parsing is tractable
for any model assumptions weaker than those made
by the edge-factored models.

1.1 Related Work

There has been extensive work on data-driven de-
pendency parsing for both projective parsing (Eis-
ner, 1996; Paskin, 2001; Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; McDonald et al.,
2005a) and non-projective parsing systems (Nivre
and Nilsson, 2005; Hall and Nóvák, 2005; McDon-
ald et al., 2005b). These approaches can often be
classified into two broad categories. In the first cat-
egory are those methods that employ approximate
inference, typically through the use of linear time
shift-reduce parsing algorithms (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Nivre and
Nilsson, 2005). In the second category are those
that employ exhaustive inference algorithms, usu-
ally by making strong independence assumptions, as
is the case for edge-factored models (Paskin, 2001;
McDonald et al., 2005a; McDonald et al., 2005b).
Recently there have also been proposals for exhaus-
tive methods that weaken the edge-factored assump-
tion, including both approximate methods (McDon-
ald and Pereira, 2006) and exact methods through in-
teger linear programming (Riedel and Clarke, 2006)
or branch-and-bound algorithms (Hirakawa, 2006).

For grammar based models there has been limited
work on empirical systems for non-projective pars-
ing systems, notable exceptions include the work
of Wang and Harper (2004). Theoretical studies of
note include the work of Neuhaus and Böker (1997)
showing that the recognition problem for a mini-
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mal dependency grammar is hard. In addition, the
work of Kahane et al. (1998) provides a polynomial
parsing algorithm for a constrained class of non-
projective structures. Non-projective dependency
parsing can be related to certain parsing problems
defined for phrase structure representations, as for
instance immediate dominance CFG parsing (Barton
et al., 1987) and shake-and-bake translation (Brew,
1992).

Independently of this work, Koo et al. (2007) and
Smith and Smith (2007) showed that the Matrix-
Tree Theorem can be used to train edge-factored
log-linear models of dependency parsing. Both stud-
ies constructed implementations that compare favor-
ably with the state-of-the-art. The work of Meilă
and Jaakkola (2000) is also of note. In that study
they use the Matrix Tree Theorem to develop a
tractable bayesian learning algorithms for tree belief
networks, which in many ways are closely related
to probabilistic dependency parsing formalisms and
the problems we address here.

2 Preliminaries

Let L = {l1, . . . , l|L|} be a set of permissible syn-
tactic edge labels and x = x0x1 · · ·xn be a sen-
tence such that x0=root. From this sentence we con-
struct a complete labeled directed graph (digraph)
Gx = (Vx, Ex) such that,

• Vx = {0, 1, . . . , n}

• Ex = {(i, j)k | ∀ i, j ∈ Vx and 1 ≤ k ≤ |L|}

Gx is a graph where each word in the sentence is a
node, and there is a directed edge between every pair
of nodes for every possible label. By its definition,
Gx is a multi-digraph, which is a digraph that may
have more than one edge between any two nodes.
Let (i, j)k represent the kth edge from i to j. Gx en-
codes all possible labeled dependencies between the
words of x. Thus every possible dependency graph
of x must be a subgraph of Gx.

Let i →+ j be a relation that is true if and only
if there is a non-empty directed path from node i to
node j in some graph under consideration. A di-
rected spanning tree1 of a graph G, that originates

1A directed spanning tree is commonly referred to as a ar-
borescence in the graph theory literature.

out of node 0, is any subgraph T = (VT , ET ) such
that,

• VT = Vx and ET ⊆ Ex

• ∀j ∈ VT , 0 →+ j if and only if j 6= 0

• If (i, j)k ∈ ET , then (i′, j)k′
/∈ ET , ∀i′ 6= i

and/or k′ 6= k.

Define T (G) as the set of all directed spanning trees
for a graph G. As McDonald et al. (2005b) noted,
there is a one-to-one correspondence between span-
ning trees of Gx and labeled dependency graphs
of x, i.e., T (Gx) is exactly the set of all possible
projective and non-projective dependency graphs for
sentence x. Throughout the rest of this paper, we
will refer to any T ∈ T (Gx) as a valid dependency
graph for a sentence x. Thus, by definition, every
valid dependency graph must be a tree.

3 Edge-factored Models

In this section we examine the class of models that
assume each dependency decision is independent.
Within this setting, every edge in an induced graph
Gx for a sentence x will have an associated weight
wk

ij ≥ 0 that maps the kth directed edge from node
i to node j to a real valued numerical weight. These
weights represents the likelihood of a dependency
occurring from word wi to word wj with label lk.
Define the weight of a spanning tree T = (VT , ET )
as the product of the edge weights

w(T ) =
∏

(i,j)k∈ET

wk
ij

It is easily shown that this formulation includes
the projective model of Paskin (2001) and the non-
projective model of McDonald et al. (2005b).

The definition of wk
ij depends on the context in

which it is being used. For example, in the work of
McDonald et al. (2005b) it is simply a linear classi-
fier that is a function of the words in the dependency,
the label of the dependency, and any contextual fea-
tures of the words in the sentence. In a generative
probabilistic model (such as Paskin (2001)) it could
represent the conditional probability of a word wj

being generated with a label lk given that the word
being modified is wi (possibly with some other in-
formation such as the orientation of the dependency
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or the number of words between wi and wj). We will
attempt to make any assumptions about the form wk

ij

clear when necessary.
For the remainder of this section we discuss three

crucial problems for learning and inference while
showing that each can be computed tractably for the
non-projective case.

3.1 Finding the Argmax
The first problem of interest is finding the highest
weighted tree for a given input sentence x

T = argmax
T∈T (Gx)

∏
(i,j)k∈ET

wk
ij

McDonald et al. (2005b) showed that this can be
solved in O(n2) for unlabeled parsing using the
Chu-Liu-Edmonds algorithm for standard digraphs
(Chu and Liu, 1965; Edmonds, 1967). Unlike most
exact projective parsing algorithms, which use effi-
cient bottom-up chart parsing algorithms, the Chu-
Liu-Edmonds algorithm is greedy in nature. It be-
gins by selecting the single best incoming depen-
dency edge for each node j. It then post-processes
the resulting graph to eliminate cycles and then con-
tinues recursively until a spanning tree (or valid
dependency graph) results (see McDonald et al.
(2005b) for details).

The algorithm is trivially extended to the multi-
digraph case for use in labeled dependency parsing.
First we note that if the maximum directed spanning
tree of a multi-digraph Gx contains any edge (i, j)k,
then we must have k = k∗ = argmaxk wk

ij . Oth-
erwise we could simply substitute (i, j)k∗

in place
of (i, j)k and obtain a higher weighted tree. There-
fore, without effecting the solution to the argmax
problem, we can delete all edges in Gx that do not
satisfy this property. The resulting digraph is no
longer a multi-digraph and the Chu-Liu-Edmonds
algorithm can be applied directly. The new runtime
is O(|L|n2).

As a side note, the k-best argmax problem for di-
graphs can be solved in O(kn2) (Camerini et al.,
1980). This can also be easily extended to the multi-
digraph case for labeled parsing.

3.2 Partition Function
A common step in many learning algorithms is to
compute the sum over the weight of all the possi-

ble outputs for a given input x. This value is often
referred to as the partition function due to its sim-
ilarity with a value by the same name in statistical
mechanics. We denote this value as Zx,

Zx =
∑

T∈T (Gx)

w(T ) =
∑

T∈T (Gx)

∏
(i,j)k∈ET

wk
i,j

To compute this sum it is possible to use the Matrix
Tree Theorem for multi-digraphs,

Matrix Tree Theorem (Tutte, 1984): Let G be a
multi-digraph with nodes V = {0, 1, . . . , n} and
edges E. Define (Laplacian) matrix Q as a (n +
1)×(n + 1) matrix indexed from 0 to n. For all i and
j, define:

Qjj =
∑

i6=j,(i,j)k∈E

wk
ij & Qij =

∑
i6=j,(i,j)k∈E

−wk
ij

If the ith row and column are removed from Q to
produce the matrix Qi, then the sum of the weights of
all directed spanning trees rooted at node i is equal
to |Qi| (the determinant of Qi).

Thus, if we construct Q for a graph Gx, then the de-
terminant of the matrix Q0 is equivalent to Zx. The
determinant of an n×n matrix can be calculated in
numerous ways, most of which take O(n3) (Cormen
et al., 1990). The most efficient algorithms for cal-
culating the determinant of a matrix use the fact that
the problem is no harder than matrix multiplication
(Cormen et al., 1990). Matrix multiplication cur-
rently has known O(n2.38) implementations and it
has been widely conjectured that it can be solved in
O(n2) (Robinson, 2005). However, most algorithms
with sub-O(n3) running times require constants that
are large enough to negate any asymptotic advantage
for the case of dependency parsing. As a result, in
this work we use O(n3) as the runtime for comput-
ing Zx.

Since it takes O(|L|n2) to construct the matrix Q,
the entire runtime to compute Zx is O(n3 + |L|n2).

3.3 Edge Expectations
Another important problem for various learning
paradigms is to calculate the expected value of each
edge for an input sentence x,

〈(i, j)k〉x =
∑

T∈T (Gx)

w(T )× I((i, j)k, T )
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Input: x = x0x1 · · ·xn

1. Construct Q O(|L|n2)
2. for j : 1 .. n O(n)
3. Q′

jj = Qjj and Q′
ij = Qij , 0 ≤ ∀i ≤ n O(n)

4. Qjj = 1 and Qij = 0, 0 ≤ ∀i ≤ n O(n)
5. for i : 0 .. n & i 6= j O(n)
6. Qij = −1 O(1)
7. Zx = |Q0| O(n3)
8. 〈(i, j)k〉x = wk

ijZx, ∀1 ≤ k ≤ |L| O(|L|)
9. end for
10. Qjj = Q′

jj and Qij = Q′
ij , 0 ≤ ∀i ≤ n O(n)

11. end for

Figure 3: Algorithm to calculate 〈(i, j)k〉x in
O(n5 + |L|n2).

where I((i, j)k, T ) is an indicator function that is
one when the edge (i, j)k is in the tree T .

To calculate the expectation for the edge (i, j)k,
we can simply eliminate all edges (i′, j)k′ 6= (i, j)k

from Gx and calculate Zx. Zx will now be equal
to the sum of the weights of all trees that con-
tain (i, j)k. A naive implementation to compute
the expectation of all |L|n2 edges takes O(|L|n5 +
|L|2n4), since calculating Zx takes O(n3 + |L|n2)
for a single edge. However, we can reduce this con-
siderably by constructing Q a single time and only
making modifications to it when necessary. An al-
gorithm is given in Figure 3.3 that has a runtime of
O(n5 + |L|n2). This algorithm works by first con-
structing Q. It then considers edges from the node i
to the node j. Now, assume that there is only a single
edge from i to j and that that edge has a weight of 1.
Furthermore assume that this edge is the only edge
directed into the node j. In this case Q should be
modified so that Qjj = 1, Qij = −1, and Qi′j = 0,
∀i′ 6= i, j (by the Matrix Tree Theorem). The value
of Zx under this new Q will be equivalent to the
weight of all trees containing the single edge from i
to j with a weight of 1. For a specific edge (i, j)k its
expectation is simply wk

ijZx, since we can factor out
the weight 1 edge from i to j in all the trees that con-
tribute to Zx and multiply through the actual weight
for the edge. The algorithm then reconstructs Q and
continues.

Following the work of Koo et al. (2007) and Smith
and Smith (2007), it is possible to compute all ex-
pectations in O(n3 + |L|n2) through matrix inver-
sion. To make this paper self contained, we report
here their algorithm adapted to our notation. First,

consider the equivalence,

∂ log Zx

∂wk
ij

=
∂ log Zx

∂Zx

∂Zx

∂wk
ij

=
1

Zx

∑
T∈T (Gx)

w(T )
wk

ij

× I((i, j)k, T )

As a result, we can re-write the edge expectations as,

〈(i, j)k〉 = Zxwk
ij

∂ log Zx

∂wk
ij

= Zxwk
ij

∂ log |Q0|
∂wk

ij

Using the chain rule, we get,

∂ log |Q0|
∂wk

ij

=
∑

i′,j′≥1

∂ log |Q0|
∂(Q0)i′j′

∂(Q0)i′j′

∂wk
ij

We assume the rows and columns of Q0 are in-
dexed from 1 so that the indexes of Q and Q0 co-
incide. To calculate 〈(i, j)k〉 when i, j > 0, we can
use the fact that ∂ log |X|/Xij = (X−1)ji and that
∂(Q0)i′j′/∂wk

ij is non zero only when i′ = i and
j′ = j or i′ = j′ = j to get,

〈(i, j)k〉 = Zxwk
ij [((Q

0)−1)jj − ((Q0)−1)ji]

When i = 0 and j > 0 the only non zero term of
this sum is when i′ = j′ = j and so

〈(0, j)k〉 = Zxwk
0j((Q

0)−1)jj

Zx and (Q0)−1 can both be calculated a single time,
each taking O(n3). Using these values, each expec-
tation is computed in O(1). Coupled with with the
fact that we need to construct Q and compute the
expectation for all |L|n2 possible edges, in total it
takes O(n3 + |L|n2) time to compute all edge ex-
pectations.

3.4 Comparison with Projective Parsing
Projective dependency parsing algorithms are well
understood due to their close connection to phrase-
based chart parsing algorithms. The work of Eis-
ner (1996) showed that the argmax problem for di-
graphs could be solved in O(n3) using a bottom-
up dynamic programming algorithm similar to CKY.
Paskin (2001) presented an O(n3) inside-outside al-
gorithm for projective dependency parsing using the
Eisner algorithm as its backbone. Using this al-
gorithm it is trivial to calculate both Zx and each
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Projective Non-Projective
argmax O(n3 + |L|n2) O(|L|n2)

Zx O(n3 + |L|n2) O(n3 + |L|n2)
〈(i, j)k〉x O(n3 + |L|n2) O(n3 + |L|n2)

Table 1: Comparison of runtime for non-projective
and projective algorithms.

edge expectation. Crucially, the nested property of
projective structures allows edge expectations to be
computed in O(n3) from the inside-outside values.
It is straight-forward to extend the algorithms of Eis-
ner (1996) and Paskin (2001) to the labeled case
adding only a factor of O(|L|n2).

Table 1 gives an overview of the computational
complexity for the three problems considered here
for both the projective and non-projective case. We
see that the non-projective case compares favorably
for all three problems.

4 Applications

To motivate the algorithms from Section 3, we
present some important situations where each cal-
culation is required.

4.1 Inference Based Learning
Many learning paradigms can be defined as
inference-based learning. These include the per-
ceptron (Collins, 2002) and its large-margin vari-
ants (Crammer and Singer, 2003; McDonald et al.,
2005a). In these settings, a models parameters are
iteratively updated based on the argmax calculation
for a single or set of training instances under the
current parameter settings. The work of McDon-
ald et al. (2005b) showed that it is possible to learn
a highly accurate non-projective dependency parser
for multiple languages using the Chu-Liu-Edmonds
algorithm for unlabeled parsing.

4.2 Non-Projective Min-Risk Decoding
In min-risk decoding the goal is to find the depen-
dency graph for an input sentence x, that on average
has the lowest expected risk,

T = argmin
T∈T (Gx)

∑
T ′∈T (Gx)

w(T ′)R(T, T ′)

where R is a risk function measuring the error be-
tween two graphs. Min-risk decoding has been

studied for both phrase-structure parsing and depen-
dency parsing (Titov and Henderson, 2006). In that
work, as is common with many min-risk decoding
schemes, T (Gx) is not the entire space of parse
structures. Instead, this set is usually restricted to
a small number of possible trees that have been pre-
selected by some baseline system. In this subsection
we show that when the risk function is of a specific
form, this restriction can be dropped. The result is
an exact min-risk decoding procedure.

Let R(T, T ′) be the Hamming distance between
two dependency graphs for an input sentence x =
x0x1 · · ·xn,

R(T, T ′) = n −
∑

(i,j)k∈ET

I((i, j)k, T ′)

This is a common definition of risk between two
graphs as it corresponds directly to labeled depen-
dency parsing accuracy (McDonald et al., 2005a;
Buchholz et al., 2006). Some algebra reveals,

T = argmin
T∈T (Gx)

X
T ′∈T (Gx)

w(T
′
)R(T, T

′
)

= argmin
T∈T (Gx)

X
T ′∈T (Gx)

w(T
′
)[n −

X
(i,j)k∈ET

I((i, j)
k
, T

′
)]

= argmin
T∈T (Gx)

−
X

T ′∈T (Gx)

w(T
′
)

X
(i,j)k∈ET

I((i, j)
k
, T

′
)

= argmin
T∈T (Gx)

−
X

(i,j)k∈ET

X
T ′∈T (Gx)

w(T
′
)I((i, j)

k
, T

′
)

= argmax
T∈T (Gx)

X
(i,j)k∈ET

X
T ′∈T (Gx)

w(T
′
)I((i, j)

k
, T

′
)

= argmax
T∈T (Gx)

Y
(i,j)k∈ET

e
P

T ′∈T (Gx) w(T ′)I((i,j)k,T ′)

= argmax
T∈T (Gx)

Y
(i,j)k∈ET

e
〈(i,j)k〉x

By setting the edge weights to wk
ij = e〈(i,j)

k〉x we
can directly solve this problem using the edge ex-
pectation algorithm described in Section 3.3 and the
argmax algorithm described in Section 3.1.

4.3 Non-Projective Log-Linear Models

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are global discriminative learning algorithms
for problems with structured output spaces, such as
dependency parsing. For dependency parsing, CRFs
would define the conditional probability of a depen-
dency graph T for a sentence x as a globally nor-
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malized log-linear model,

p(T |x) =

∏
(i,j)k∈ET

ew·f(i,j,k)∑
T ′∈T (Gx)

∏
(i,j)k∈ET ′ ew·f(i,j,k)

=

∏
(i,j)k∈ET

wk
ij∑

T ′∈T (Gx)

∏
(i,j)k∈ET ′ wk

ij

=
w(T )
Zx

Here, the weights wk
ij are potential functions over

each edge defined as an exponentiated linear classi-
fier with weight vector w ∈ RN and feature vector
f(i, j, k) ∈ RN , where fu(i, j, k) ∈ R represents a
single dimension of the vector f. The denominator,
which is exactly the sum over all graph weights, is a
normalization constant forcing the conditional prob-
ability distribution to sum to one.

CRFs set the parameters w to maximize the log-
likelihood of the conditional probability over a train-
ing set of examples T = {(xα, Tα)}|T |

α=1,

w = argmax
w

∑
α

log p(Tα|xα)

This optimization can be solved through a vari-
ety of iterative gradient based techniques. Many
of these require the calculation of feature expecta-
tions over the training set under model parameters
for the previous iteration. First, we note that the
feature functions factor over edges, i.e., fu(T ) =∑

(i,j)k∈ET
fu(i, j, k). Because of this, we can use

edge expectations to compute the expectation of ev-
ery feature fu. Let 〈fu〉xα represent the expectation
of feature fu for the training instance xα,

〈fu〉xα =
X

T∈T (Gxα )

p(T |xα)fu(T )

=
X

T∈T (Gxα )

p(T |xα)
X

(i,j)k∈ET

fu(i, j, k)

=
X

T∈T (Gxα )

w(T )

Zx

X
(i,j)k∈ET

fu(i, j, k)

=
1

Zx

X
(i,j)k∈Exα

X
T∈T (Gx)

w(T )I((i, j)
k
, T )fu(i, j, k)

=
1

Zx

X
(i,j)k∈Exα

〈(i, j)
k〉xα fu(i, j, k)

Thus, we can calculate the feature expectation per
training instance using the algorithms for comput-
ing Zx and edge expectations. Using this, we can

calculate feature expectations over the entire train-
ing set,

〈fu〉T =
∑
α

p(xα)〈fu〉xα

where p(xα) is typically set to 1/|T |.

4.4 Non-projective Generative Parsing Models
A generative probabilistic dependency model over
some alphabet Σ consists of parameters pk

x,y asso-
ciated with each dependency from word x ∈ Σ to
word y ∈ Σ with label lk ∈ L. In addition, we im-
pose 0 ≤ pk

x,y ≤ 1 and the normalization conditions∑
y,k pk

x,y = 1 for each x ∈ Σ. We define a gen-
erative probability model p over trees T ∈ T (Gx)
and a sentence x = x0x1 · · ·xn conditioned on the
sentence length, which is always known,

p(x, T |n) = p(x|T, n)p(T |n)

=
∏

(i,j)k∈ET

pk
xi,xj

p(T |n)

We assume that p(T |n) = β is uniform. This model
is studied specifically by Paskin (2001). In this
model, one can view the sentence as being generated
recursively in a top-down process. First, a tree is
generated from the distribution p(T |n). Then start-
ing at the root of the tree, every word generates all of
its modifiers independently in a recursive breadth-
first manner. Thus, pk

x,y represents the probability
of the word x generating its modifier y with label
lk. This distribution is usually smoothed and is of-
ten conditioned on more information including the
orientation of x relative to y (i.e., to the left/right)
and distance between the two words. In the super-
vised setting this model can be trained with maxi-
mum likelihood estimation, which amounts to sim-
ple counts over the data. Learning in the unsuper-
vised setting requires EM and is discussed in Sec-
tion 4.4.2.

Another generative dependency model of interest
is that given by Klein and Manning (2004). In this
model the sentence and tree are generated jointly,
which allows one to drop the assumption that p(T |n)
is uniform. This requires the addition to the model
of parameters px,STOP for each x ∈ Σ, with the nor-
malization condition px,STOP +

∑
y,k pk

x,y = 1. It is
possible to extend the model of Klein and Manning
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(2004) to the non-projective case. However, the re-
sulting distribution will be over multisets of words
from the alphabet instead of strings. The discus-
sion in this section is stated for the model in Paskin
(2001); a similar treatment can be developed for the
model in Klein and Manning (2004).

4.4.1 Language Modeling
A generative model of dependency structure

might be used to determine the probability of a sen-
tence x by marginalizing out all possible depen-
dency trees,

p(x|n) =
∑

T∈T (Gx)

p(x, T |n)

=
∑

T∈T (Gx)

p(x|T, n)p(T |n)

= β
∑

T∈T (Gx)

∏
(i,j)k∈ET

pk
xi,xj

= βZx

This probability can be used directly as a non-
projective syntactic language model (Chelba et al.,
1997) or possibly interpolated with a separate n-
gram model.

4.4.2 Unsupervised Learning
In unsupervised learning we train our model on

a sample of unannotated sentences X = {xα}|X |
α=1.

Let |xα| = nα and p(T |nα) = βα. We choose the
parameters that maximize the log-likelihood

|X |∑
α=1

log(p(xα|nα)) =

=
|X |∑
α=1

log(
∑

T∈T (Gxα )

p(xα|T, nα)) +
|X |∑
α=1

log(βα),

viewed as a function of the parameters and subject
to the normalization conditions, i.e.,

∑
y,k pk

x,y = 1
and pk

x,y ≥ 0.
Let xαi be the ith word of xα. By solving the

above constrained optimization problem with the
usual Lagrange multipliers method one gets

pk
x,y =

=

∑|X |
α=1

1
Zxα

∑
i : xαi = x,
j : xαj = y

〈(i, j)k〉xα∑|X |
α=1

1
Zxα

∑
y′,k′

∑
i : xαi = x,
j′ : xαj′ = y′

〈(i, j′)k′〉xα

,

where for each xα the expectation 〈(i, j)k〉xα is de-
fined as in Section 3, but with the weight w(T ) re-
placed by the probability distribution p(xα|T, nα).

The above |L| · |Σ|2 relations represent a non-
linear system of equations. There is no closed form
solution in the general case, and one adopts the ex-
pectation maximization (EM) method, which is a
specialization of the standard fixed-point iteration
method for the solution of non-linear systems. We
start with some initial assignment of the parameters
and at each iteration we use the induced distribu-
tion p(xα|T, nα) to compute a refined value for the
parameters themselves. We are always guaranteed
that the Kullback-Liebler divergence between two
approximated distributions computed at successive
iterations does not increase, which implies the con-
vergence of the method to some local maxima (with
the exception of saddle points).

Observe that at each iteration we can compute
quantities 〈(i, j)k〉xα and Zxα in polynomial time
using the algorithms from Section 3 with pk

xαi,xαj

in place of wk
i,j . Furthermore, under some standard

conditions the fixed-point iteration method guaran-
tees a constant number of bits of precision gain for
the parameters at each iteration, resulting in overall
polynomial time computation in the size of the input
and in the required number of bits for the precision.
As far as we know, this is the first EM learning algo-
rithm for the model in Paskin (2001) working in the
non-projective case. The projective case has been
investigated in Paskin (2001).

5 Beyond Edge-factored Models

We have shown that several computational problems
related to parsing can be solved in polynomial time
for the class of non-projective dependency models
with the assumption that dependency relations are
mutually independent. These independence assump-
tions are unwarranted, as it has already been estab-
lished that modeling non-local information such as
arity and nearby parsing decisions improves the ac-
curacy of dependency models (Klein and Manning,
2002; McDonald and Pereira, 2006).

In the spirit of our effort to understand the nature
of exact non-projective algorithms, we examine de-
pendency models that introduce arity constraints as
well as permit edge decisions to be dependent on a
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limited neighbourhood of other edges in the graph.
Both kinds of models can no longer be considered
edge-factored, since the likelihood of a dependency
occurring in a particular analysis is now dependent
on properties beyond the edge itself.

5.1 Arity

One feature of the edge-factored models is that no
restriction is imposed on the arity of the nodes in the
dependency trees. As a consequence, these models
can generate dependency trees of unbounded arity.
We show below that this is a crucial feature in the
development of the complexity results we have ob-
tained in the previous sections.

Let us assume a graph G
(φ)
x = (Vx, Ex) defined

as before, but with the additional condition that each
node i ∈ Vx is associated with an integer value
φ(i) ≥ 0. T (G(φ)

x ) is now defined as the set of all
directed spanning trees for G

(φ)
x rooted in node 0,

such that every node i ∈ Vx has arity smaller than or
equal to φ(i). We now introduce a construction that
will be used to establish several hardness results for
the computational problems discussed in this paper.
Recall that a Hamiltonian path in a directed graph
G is a directed path that visits all of the nodes of G
exactly once.

Let G be some directed graph with set of nodes
V = {1, 2, . . . , n}. We construct a target graph
G

(φ)
x = (Vx, Ex) with Vx = V ∪ {0} (0 the root

node) and |L| = 1. For each i, j ∈ Vx with i 6= j,
we add an edge (i, j)1 to Ex. We set w1

i,j = 1 if
there is an edge from i to j in G, or else if i or j
is the root node 0, and w1

i,j = 0 otherwise. Fur-
thermore, we set φ(i) = 1 for each i ∈ Vx. This
construction can be clearly carried out in log-space.

Note that each T ∈ T (G(φ)
x ) must be a monadic

tree with weight equal to either 0 or 1. It is not dif-
ficult to see that if w(T ) = 1, then when we remove
the root node 0 from T we obtain a Hamiltonian path
in G. Conversely, each Hamiltonian path in G can
be extended to a spanning tree T ∈ T (G(φ)

x ) with
w(T ) = 1, by adding the root node 0.

Using the above observations, it can be shown that
the solution of the argmax problem for G

(φ)
x pro-

vides some Hamiltonian directed path in G. The lat-
ter search problem is FNP-hard, and is unlikely to
be solved in polynomial time. Furthermore, quan-

tity Zx provides the count of the Hamiltonian di-
rected paths in G, and for each i ∈ V , the expecta-
tion 〈(0, i)1〉x provides the count of the Hamiltonian
directed paths in G starting from node i. Both these
counting problems are #P-hard, and very unlikely to
have polynomial time solutions.

This result helps to relate the hardness of data-
driven models to the commonly known hardness
results in the grammar-driven literature given by
Neuhaus and Böker (1997). In that work, an arity
constraint is included in their minimal grammar.

5.2 Vertical and Horizontal Markovization
In general, we would like to say that every depen-
dency decision is dependent on every other edge in
a graph. However, modeling dependency parsing in
such a manner would be a computational nightmare.
Instead, we would like to make a Markov assump-
tion over the edges of the tree, in a similar way that
a Markov assumption can be made for sequential
classification problems in order to ensure tractable
learning and inference.

Klein and Manning (2003) distinguish between
two kinds of Markovization for unlexicalized CFG
parsing. The first is vertical Markovization, which
makes the generation of a non-terminal dependent
on other non-terminals that have been generated at
different levels in the phrase-structure tree. The
second is horizontal Markovization, which makes
the generation of a non-terminal dependent on other
non-terminals that have been generated at the same
level in the tree.

For dependency parsing there are analogous no-
tions of vertical and horizontal Markovization for a
given edge (i, j)k. First, let us define the vertical and
horizontal neighbourhoods of (i, j)k. The vertical
neighbourhood includes all edges in any path from
the root to a leaf that passes through (i, j)k. The hor-
izontal neighbourhood contains all edges (i, j′)k′

.
Figure 4 graphically displays the vertical and hor-
izontal neighbourhoods for an edge in the depen-
dency graph from Figure 1.

Vertical and horizontal Markovization essentially
allow the score of the graph to factor over a larger
scope of edges, provided those edges are in the same
vertical or horizontal neighbourhood. A dth order
factorization is one in which the score factors only
over the d nearest edges in the neighbourhoods. In
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Figure 4: Vertical and Horizontal neighbourhood for
the edge from will to remain.

McDonald and Pereira (2006), it was shown that
non-projective dependency parsing with horizontal
Markovization is FNP-hard. In this study we com-
plete the picture and show that vertical Markoviza-
tion is also FNP-hard.

Consider a first-order vertical Markovization in
which the score for a dependency graph factors over
pairs of vertically adjacent edges2,

w(T ) =
∏

(h,i)k,(i,j)k′∈ET

k
hiw

k′
ij

where k
hiw

k′
ij is the weight of including both edges

(h, i)k and (i, j)k′
in the dependency graph. Note

that this formulation does not include any contribu-
tions from dependencies that have no vertically adja-
cent neighbours, i.e., any edge (0, i)k such that there
is no edge (i, j)k′

in the graph. We can easily rec-
tify this by inserting a second root node, say 0′, and
including the weights k

0′0w
k′
0i . To ensure that only

valid dependency graphs get a weight greater than
zero, we can set k

hiw
k′
ij = 0 if i = 0′ and k

0′iw
k′
ij = 0

if i 6= 0.
Now, consider the NP-complete 3D-matching

problem (3DM). As input we are given three sets
of size m, call them A, B and C, and a set S ⊆
A×B ×C. The 3DM problem asks if there is a set
S′ ⊆ S such that |S′| = m and for any two tuples
(a, b, c), (a′, b′, c′) ∈ S′ it is the case that a 6= a′,
b 6= b′, and c 6= c′.

2McDonald and Pereira (2006) define this as a second-order
Markov assumption. This is simply a difference in terminology
and does not represent any meaningful distinction.

We can reduce the 3D-matching problem to the
first-order vertical Markov parsing problem by con-
structing a graph G = (V,E), such that L =
A ∪ B ∪ C, V = {0′, 0} ∪ A ∪ B ∪ C and E =
{(i, j)k | i, j ∈ V, k ∈ L}. The set E contains mul-
tiple edges between ever pair of nodes, each edge
taking on a label representing a single element of
the set A ∪ B ∪ C. Now, define k

0′0w
k′
0a = 1, for all

a ∈ A and k, k′ ∈ A ∪ B ∪ C, and b
0aw

c
ab = 1, for

all a ∈ A and b ∈ B and c ∈ C, and c
abw

c
bc = 1, for

all (a, b, c) ∈ S. All other weights are set to zero.
We show below that there exists a bijection be-

tween the set of valid 3DMs for S and the set of non-
zero weighted dependency graphs in T (G). First, it
is easy to show that for any 3DM S′, there is a rep-
resentative dependency graph that has a weight of
1. This graph simply consists of the edges (0, a)b,
(a, b)c, and (b, c)c, for all (a, b, c) ∈ S′, plus an ar-
bitrarily labeled edge from 0′ to 0.

To prove the reverse, consider a graph with weight
1. This graph must have a weight 1 edge into the
node a of the form (0, a)b since the graph must be
spanning. By the definition of the weight function,
in any non-zero weighted tree, a must have a sin-
gle outgoing edge, and that edge must be directed
into the node b. Let’s say that this edge is (a, b)c.
Then again by the weighting function, in any non-
zero weighted graph, b must have a single outgoing
edge that is directed into c, in particular the edge
(b, c)c. Thus, for any node a, there is a single path
directed out of it to a single leaf c ∈ C. We can
then state that the only non-zero weighted depen-
dency graph is one where each a ∈ A, b ∈ B and
c ∈ C occurs in exactly one of m disjoint paths from
the root of the form 0 → a → b → c. This is be-
cause the label of the single edge going into node a
will determine exactly the node b that the one outgo-
ing edge from a must go into. The label of that edge
determines exactly the single outgoing edge from b
into some node c. Now, since the weighting func-
tion ensures that the only non-zero weighted paths
into any leaf node c correspond directly to elements
of S, each of the m disjoint paths represent a single
tuple in a 3DM. Thus, if there is a non-zero weighted
graph in T (G), then it must directly correspond to a
valid 3DM, which concludes the proof.

Note that any dth order Markovization can be em-
bedded into a d + 1th Markovization. Thus, this re-
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sult also holds for any arbitrary Markovization.

6 Discussion

In this paper we have shown that many important
learning and inference problems can be solved effi-
ciently for non-projective edge-factored dependency
models by appealing to the Matrix Tree Theorem
for multi-digraphs. These results extend the work
of McDonald et al. (2005b) and help to further our
understanding of when exact non-projective algo-
rithms can be employed. When this analysis is cou-
pled with the projective parsing algorithms of Eisner
(1996) and Paskin (2001) we begin to get a clear pic-
ture of the complexity for data-driven dependency
parsing within an edge-factored framework. To fur-
ther justify the algorithms presented here, we out-
lined a few novel learning and inference settings in
which they are required.

However, for the non-projective case, moving
beyond edge-factored models will almost certainly
lead to intractable parsing problems. We have pro-
vided further evidence for this by proving the hard-
ness of incorporating arity constraints and hori-
zontal/vertical edge Markovization, both of which
incorporate information unavailable to an edge-
factored model. The hardness results provided
here are also of interest since both arity constraints
and Markovization can be incorporated efficiently
in the projective case through the straight-forward
augmentation of the underlying chart parsing algo-
rithms used in the projective edge-factored models.
This highlights a fundamental difference between
the nature of projective parsing algorithms and non-
projective parsing algorithms. On the projective
side, all algorithms use a bottom-up chart parsing
framework to search the space of nested construc-
tions. On the non-projective side, algorithms are
either greedy-recursive in nature (i.e., the Chu-Liu-
Edmonds algorithm) or based on the calculation of
the determinant of a matrix (i.e., the partition func-
tion and edge expectations).

Thus, the existence of bottom-up chart parsing
algorithms for projective dependency parsing pro-
vides many advantages. As mentioned above, it
permits simple augmentation techniques to incorpo-
rate non-local information such as arity constraints
and Markovization. It also ensures the compatibility

of projective parsing algorithms with many impor-
tant natural language processing methods that work
within a bottom-up chart parsing framework, includ-
ing information extraction (Miller et al., 2000) and
syntax-based machine translation (Wu, 1996).

The complexity results given here suggest that
polynomial chart-parsing algorithms do not exist
for the non-projective case. Otherwise we should
be able to augment them and move beyond edge-
factored models without encountering intractability
– just like the projective case. An interesting line
of research is to investigate classes of non-projective
structures that can be parsed with chart-parsing algo-
rithms and how these classes relate to the languages
parsable by other syntactic formalisms.
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