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Abstract

In this paper, we present a method which, in
practice, allows to use parsers for languages
defined by very large context-free grammars
(over a million symbol occurrences). The
idea is to split the parsing process in two
passes. A first pass computes a sub-grammar
which is a specialized part of the large gram-
mar selected by the input text and various
filtering strategies. The second pass is a tra-
ditional parser which works with the sub-
grammar and the input text. This approach
is validated by practical experiments per-
formed on a Earley-like parser running on
a test set with two large context-free gram-
mars.

1 Introduction

More and more often, in real-word natural lan-
guage processing (NLP) applications based upon
grammars, these grammars are no more written by
hand but are automatically generated, this has sev-
eral consequences. This paper will consider one of
these consequences: the generated grammars may
be very large. Indeed, we aim to deal with grammars
that have, say, over a million symbol occurrences
and several hundred thousands rules. Traditional
parsers are not usually prepared to handle them,
either because these grammars are simply too big
(the parser’s internal structures blow up) or the time
spent to analyze a sentence becomes prohibitive.

This paper will concentrate on context-free gram-
mars (CFG) and their associated parsers. However,

virtually all Tree Adjoining Grammars (TAG, see
e.g., (Schabes et al., 1988)) used in NLP applica-
tions can (almost) be seen as lexicalized Tree In-
sertion Grammars (TIG), which can be converted
into strongly equivalent CFGs (Schabes and Waters,
1995). Hence, the parsing techniques and tools de-
scribed here can be applied to most TAGs used for
NLP, with, in the worst case, a light over-generation
which can be easily and efficiently eliminated in a
complementary pass. This is indeed what we have
achieved with a TAG automatically extracted from
(Villemonte de La Clergerie, 2005)’s large-coverage
factorized French TAG, as we will see in Section 4.
Even (some kinds of) non CFGs may benefit from
the ideas described in this paper.

The reason why the run-time of context-free (CF)
parsers for large CFGs is damaged relies on a theo-
retical result. A well-known result is that CF parsers
may reach a worst-case running time ofO(|G|×n3)
where|G| is thesizeof the CFG andn is thelength
of the source text.1 In typical NLP applications
which mainly work at the sentence level, the length
of a sentence does not often go beyond a value of
say 100, while its average length is around 20-30
words.2 In these conditions, the size of the grammar,
despite its linear impact on the complexity, may be
the prevailing factor: in (Joshi, 1997), the author re-
marks that “the real limiting factor in practice is the
size of the grammar”.

The idea developed in this paper is to split the
parsing process in two passes. A first pass called
filtering pass computes a sub-grammar which is the

1These two notions will be defined precisely later on.
2At least for French, English and similar languages.
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sub-part of the large input grammar selected by the
input sentence and various filtering strategies. The
second pass is a traditional parser which works with
the sub-grammar and the input sentence. The pur-
pose is to find a filtering strategy which, in typical
practical situations, minimizes on the average the
total run-time of the filtering pass followed by the
parser pass.

A filtering pass may be seen as a (filtering) func-
tion that uses the input sentence to select a sub-
grammar out of a large input CFG. Our hope, us-
ing such a filter, is that the time saved by the parser
pass which uses a (smaller) sub-grammar will not
totally be used by the filter pass to generate this sub-
grammar.

It must be clear that this method cannot improve
the worst-case parse-time because there exists gram-
mars for which the sub-grammar selected by the fil-
tering pass is the input grammar itself. In such a
case, the filtering pass is simply a waste of time. Our
purpose in this paper is to argue that this technique
may profit from typical grammars used in NLP. To
do that we put aside the theoretical view point and
we will consider instead the average behaviour of
our processors.

More precisely we will study on two large NL
CFGs the behaviour of our filtering strategies on a
set of test sentences. The purpose being to choose
thebestfiltering strategy, if any. By best, we mean
the one which, on the average, minimizes the total
run-time of both the filtering pass followed by the
parsing pass.

Useful formal notions and notations are recalled
in Section 2. The filtering strategies are presented
in Section 3 while the associated experiments are
reported in Section 4. This paper ends with some
concluding remarks in Section 5.

2 Preliminaries

2.1 Context-free grammars

A CFG G is a quadruple(N,T, P, S) whereN is
a non-empty finite set ofnonterminal symbols, T is
a finite set ofterminal symbols, P is a finite set of
(context-free rewriting)rules (or productions) and
S is a distinguished nonterminal symbol called the
axiom. The setsN andT are disjoint andV = N∪T
is thevocabulary. The rules inP have the formA→

α, with A ∈ N andα ∈ V ∗.
For a given stringα ∈ V ∗, its size (length)

is noted |α|. As an example, for the input string
w = a1 · · · an, ai ∈ T , we have|w| = n. The empty
string is denotedε and we have|ε| = 0. The size|G|
of a CFGG is defined by|G| =

∑
A→α∈P |Aα|.

For G, on strings ofV ∗, we define the binary re-

lation derive, noted⇒, by γ1Aγ2

A→α
⇒
G

γ1αγ2 if

A → α ∈ P and γ1, γ2 ∈ V ∗. The subscriptG
or even the superscriptA → α may be omitted. As
usual, its transitive (resp. reflexive transitive) clo-

sure is noted
+
⇒
G

(resp.
∗
⇒
G

). We callderivationany

sequence of the formγ1 ⇒
G
· · · ⇒

G
γ2. A complete

derivation is a derivation which starts with the ax-
iom and ends with a terminal stringw. In that case
we haveS

∗
⇒
G

γ
∗
⇒
G

w, andγ is asentential form.

The string languagedefined (generated, recog-
nized) byG is the set of all the terminal strings that

are derived from the axiom:L(G) = {w | S
+
⇒
G

w,w ∈ T ∗}. We say that a CFG is empty iff its
language is empty.

A nonterminal symbolA is nullable iff it can de-

rive the empty string (i.e.,A
+
⇒
G

ε). A CFG isε-free

iff its nonterminal symbols are non-nullable.
A CFG is reducediff every symbol of every pro-

duction is a symbol of at least one complete deriva-
tion. A reduced grammar is empty iff its production
set is empty (P = ∅). We say that a non-empty
reduced grammar is incanonical formiff its vocab-
ulary only contains symbols that appear in the pro-
ductions ofP .3,4

Two CFGsG and G′ are weakly equivalentiff
they generate the same string language. They are
strongly equivalentiff they generate the same set of
structural descriptions (i.e., parse trees). It is a well
known result (See Section 3.2) that every CFGG
can be transformed in time linear w.r.t.|G| into a
strongly equivalent (canonical) reduced CFGG′.

For a given input stringw ∈ T ∗, we define its

3We may say that the canonical form of the empty reduced
grammar is({S}, ∅, ∅, S) though the axiomS does not appear
in any production.

4Note that the pair(P, S) completely defines a reduced CFG
G = (N, T, P, S) in canonical form since we haveN = {X0 |
X0 → α ∈ P} ∪ {S}, T = {Xi | X0 → X1 · · ·Xp ∈
P ∧1 ≤ i ≤ p}−N . Thus, in the sequel, we often note simply
G = (P, S) grammars in canonical form.
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rangesas the setRw = {[i..j] | 1 ≤ i ≤ j ≤
|w| + 1}. If w = w1tw3 ∈ T ∗ is a terminal string,
and if t ∈ T ∪ {ε} is a (terminal or empty) sym-
bol, the instantiation of t in w is the triple noted
t[i..j] where[i..j] is a range withi = |w1| + 1 and
j = i + |t|. More generally, theinstantiationof the
terminal stringw2 in w1w2w3 is notedw2[i..j] with
i = |w1| + 1 andj = i + |w2|. Obviously, the in-
stantiation ofw itself is thenw[1..1 + |w|].

Let us consider an input stringw = w1w2w3

and a CFGG. If we have a complete derivation

d = S
∗
⇒
G

w1Aw3

A→α
⇒
G

w1αw3

∗
⇒
G

w1w2w3, we

see thatA derivesw2 (we haveA
+
⇒
G

w2). More-

over, in this complete derivation, we also know a
range inRw, namely [i..j], which covers the sub-
string w2 which is derived byA (i = |w1| + 1
and j = i + |w2|). This is represented by thein-
stantiated nonterminal symbolA[i..j]. In fact, each
symbol which appears in a complete derivation may
be transformed into its instantiated counterpart. We
thus talk of instantiated productions or (complete)
instantiated derivations. For a given input textw,
and a CFGG, let Pw

G be the set of instantiated pro-
ductions that appears in all complete instantiated
derivations.5 The pair(Pw

G , S[1..|w|+ 1]) is the(re-
duced) shared parse forestin canonical form.6

2.2 Finite-state automata

A finite-state automaton(FSA) is the 5-tupleA =
(Q,Σ, δ, q0, F ) whereQ is a non empty finite set
of states, Σ is a finite set ofterminal symbols, δ is
the transition relationδ = {(qi, t, qj)|qi, qj ∈ Q ∧
t ∈ T ∪ {ε}}, q0 is a distinguished element ofQ
called theinitial stateandF is a subset ofQ whose
elements are calledfinal states. The size ofA is
defined by|A| = |δ|.

As usual, we define both aconfigurationas an ele-
ment ofQ×T ∗ andderivea binary relation between

5For example, in the previous complete derivation
d, let the right-hand sideα be the (vocabulary) string
X1 · · ·Xk · · ·Xp in which each symbolXk derives the ter-
minal string xk ∈ T ∗ (we haveXk

∗

⇒
G

xk and w2 =

x1 · · ·xk · · ·xp), then the instantiated productionA[i0..ip] →
X1[i0..i1] · · ·Xk[ik−1..ik] · · ·Xp[ip−1..ip] with i0 = |w1| +
1, i1 = i0 + |x1|, . . . ,ik = ik−1 + |xk| . . . andip = i0 + |w2|
is an element ofP w

G .
6The popular notion of shared forests mainly comes from

(Billot and Lang, 1989).

configurations, noted⊢
A

by (q, tx) ⊢
A

(q′, x), iff

(q, t, q′) ∈ δ. If w′w′′ ∈ T ∗, we callderivationany
sequence of the form(q′, w′w′′) ⊢

A
· · · ⊢

A
(q′′, w′′).

If w ∈ T ∗, the initial configuration is notedc0 and
is the pair(q0, w). A final configurationis notedcf

and has the form(qf , ε) with qf ∈ F . A complete
derivation is a derivation which starts withc0 and
ends in a final configurationcf . In that case we have

c0

∗
⊢
A

cf .

The languageL(A) defined(generated, recog-
nized) by the FSAA is the set of all terminal strings
w for which there exists a complete derivation. We
say that an FSA is empty iff its language is empty.
Two FSAsA andA′ areequivalentiff they defined
the same language.

An FSA isε-free iff its transition relation has the
form δ = {(qi, t, qj)|qi, qj ∈ Q, t ∈ Σ}, except per-
haps for a distinguished transition, theε-transition
which has the form(q0, ε, qf ), qf ∈ F and allows
the empty stringε to be inL(A). Every FSA can be
transformed into an equivalentε-free FSA.

An FSAA = (Q,Σ, δ, q0, F ) is reducediff every
element ofδ appears in a complete derivation. A
reduced FSA is empty iff we haveδ = ∅. We say
that a non-empty reduced FSA is incanonical form
iff its set of statesQ and its set of terminal symbols
Σ only contain elements that appear in the transition
relationδ.7 It is a well known result that every FSA
A can be transformed in time linear with|A| into an
equivalent (canonical) reduced FSAA′.

2.3 Input strings and input DAGs

In many NLP applications8 the source text cannot
be considered as a single string of terminal symbols
but rather as a finite set of terminal strings. These
sets are finite languages which can be defined by
particular FSAs. These particular type of FSAs are
called directed-acyclic graphs(DAGs). In a DAG
w = (Q,Σ, δ, q0, F ), the initial stateq0 is 1 and we
assume that there is a single final statef (F = {f}),
Q is a finite subset of the positive integers less than
or equal tof : Q = {i|1 ≤ i ≤ f}, Σ is the set of
terminal symbols. For the transition relationδ, we

7We may say that the canonical form of the empty reduced
FSA is ({q0}, ∅, ∅, q0, ∅) though the initial stateq0 does not
appear in any transition.

8Speech processing, lexical ambiguity representation, . . .
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require that its elements(i, t, j) are such thati < j
(there are no loops in a DAG). Without loss of gen-
erality, we will assume that DAGs areε-free reduced
FSAs in canonical form and that any DAGw is noted
by a triple(Σ, δ, f) since its initial state is always1
and its set of states is{i | 1 ≤ i ≤ f}.

For a given CFGG, the recognition of an input
DAG w is equivalent to the emptiness of its inter-
section withG. This problem can be solved in time
linear in|G| and cubic in|Q| the number of states of
w.

If the input text is a DAG, the previous notions of
range, instantiations and parse forest easily general-
ize: the indicesi andj which in the string case locate
the positions of substrings are changed in the DAG
case into DAG states. For example ifA[i0..ip] →
X1[i0..i1] · · ·Xp[ip−1..ip] is an instantiated produc-
tion of the parse forest forG = (N,T, P, S) and
w = (Σ, δ, f), we haveA → X1 · · ·Xp ∈ P and
there is a path in the input DAG from statei0 to state
ip via statesi1, . . . ,ip−1.

Of course, any nonempty terminal stringw ∈ T+,
may be viewed as a DAG(Σ, δ, f) whereΣ = {t |
w = w1tw2 ∧ t ∈ T}, δ = {(i, t, i + 1) | w =
w1tw2∧t ∈ T∧i = 1+|w1|} andf = 1+|w|. If the
input stringw is the empty stringε, the associated
DAG is (Σ, δ, f) whereΣ = ∅, δ = {(1, ε, 2)} and
f = 2. Thus, in the sequel, we will assume that the
inputs of our parsers are not strings but DAGs. As a
consequence the size (orlength) of a sentence is the
size of its DAG (i.e., its number of transitions).

3 Filtering Strategies

3.1 Gold Strategy

Let G = (N,T, P, S) be a CFG,w = (Σ, δ, f)
be an input DAG of sizen = |δ| and 〈Fw〉 =
(〈Pw〉, S[1..f ]) be the reduced output parse for-
est in canonical form. From〈Pw〉, it is pos-
sible to extract a set of (reduced) uninstanti-
ated productionsP g

w = {A → X1 · · ·Xp |
A[i0..ip] → X1[i0..i1]X2[i1..i2] · · ·Xp[ip−1..ip] ∈
〈Pw〉}, which, together with the axiomS, defines a
new reduced CFGGg

w = (P g
w, S) in canonical form.

This grammar is called thegold grammar ofG for
w, hence the superscriptg. Now, if we useGg

w to
reparse the same input DAGw, we will get the same
output forest〈Fw〉. But in that case, we are sure that

every production inP g
w is used in at least one com-

plete derivation. Now, if this process is viewed as
a filtering strategy that computes a filtering function
as introduced in Section 1, it is clear that this strat-
egy issize-optimalin the sense thatP g

w is of minimal
size, we call it thegold strategy and the associated
gold filtering function is notedg. Since we do not
want that a filtering strategy looses parses, the result
Gf

w = (P f
w , S) of any filtering functionf must be

such that, for every sentencew, P f
w is a superset of

P g
w. In other words therecall scoreof any filtering

function f must be of 100%. We can note that the
parsing pass which generatesGg

w may be led by any
filtering strategyf .

As usual, theprecision score(precision for short)
of a filtering strategyf (w.r.t. the gold case) is, for
a givenw, defined by the quotient|P

g
w|

|P f
w|

which ex-

presses the number of useful productions selected by
f onw (for someG).

However, it is clear that we are interested in strate-
gies that aretime-optimaland size-optimal strategies
are not necessarily also time-optimal: the time taken
at filtering-time to get a smaller grammar will not
necessarily be won back at parse-time.

For a given CFGG, an input DAGw and a filter-
ing strategyc, we only have to plot the times taken
by the filtering pass and by the parsing pass to make
some estimations on their average (median, decile)
parse times and then to decide which is the winner.
However, it may well happens that a strategy which
has not received the award (with the sample of CFGs
and the test sets tried) would be the winner in an-
other context!

All the following filtering strategies exhibit nec-
essary conditions that any production must hold in
order to be in a parse.

3.2 Themake-a-reduced-grammar Algorithm

An algorithm which takes as input any CFG
G = (N,T, P, S) and generates as output a
strongly equivalentreduced CFG G′ and which
runs inO(|G|) can be found in many text books
(See (Hopcroft and Ullman, 1979) for example).

So as to eliminate from all our intermediate sub-
grammars all useless productions, each filtering
strategy will end by a call to such an algorithm
namedmake-a-reduced-grammar.
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The make-a-reduced-grammaralgorithm works
as follows. It first finds allproductive9 symbols. Af-
terwards it finds allreachable10 symbols. A symbol
is useful(otherwiseuseless) if it is both productive
and reachable. A productionA→ X1 · · ·Xp is use-
ful (otherwiseuseless) iff all its symbols are useful.
A last scan over the grammar erases all useless pro-
duction and leaves the reduced form. Thecanonical
form is reached in only retaining in the nonterminal
and terminal sets of the sub-grammar the symbols
which occur in the (useful) production set.

3.3 Basic Filtering Strategy: b-filter

The basic filtering strategy (b-filter for short) which
is described in this section will always be tried the
first. Thus, its input is the couple(G,w) where
G = (N,T, P, S) is the large initial CFG and the in-
put sentencew is a reduced DAG in canonical form
w = (Σ, δ, f) of sizen. It generates a reduced CFG
in canonical form notedGb = (P b, S) in which the
references to bothG andw are assumed. Besides
this b-filter, we will examine in Sections 3.4 and 3.5
two others filtering strategies nameda andd. These
filters will always have as input a couple(Gc, w)
whereGc = (P c, S) is a reduced CFG in canonical
form which has already been filtered by a previous
sequence of strategies notedc. They generate a re-
duced CFG in canonical form notedGcf = (P cf , S)
with f = a or f = d respectively. Of course it may
happens thatGcf is identical toGc if the f -filter is
not effective. A filtering strategy or a combination of
filtering strategies may be applied several times and
lead to a filtered grammar of the form sayGba2da

in which the sequenceba2da explicits the order in
which the filtering strategies have been performed.
We may even repeatedly applya until a fixed point
is reached before applyingd, and thus get something
of the formGba∞d.

The idea behind theb-filter is very simple and has
largely been used in lexicalized formalisms parsing,
in particular in LTAG (Schabes et al., 1988) parsing.
The filter rejects productions ofP which contain ter-
minal symbols that do not occur inΣ (i.e., that are
not terminal symbols of the DAGw) and thus takes

9X ∈ V is productive iff we haveX
∗

⇒
G

w, w ∈ T ∗.
10X ∈ V is reachable iff we haveS

∗

⇒
G

w1Xw2, w1w2 ∈

T ∗.

S → AB (1)

S → BA (2)

A → a (3)

A → ab (4)

B → b (5)

B → bc (6)

Table 1: A simple grammar

O(|G|) time if we assume that the access to the ele-
ments of the terminal setΣ is performed in constant
time. Unlexicalizedproductions whose right-hand
sides are inN∗ are kept. It also rejects productions
in which several terminal symbol occurs, in an order
which is not compatible with the linear order of the
input.

Consider for example the set of productions
shown in Table 1 and assume that the source text
is the terminal stringab. It is clear that theb-filter
will erase production 6 sincec is not in the source
text.

The execution of theb-filter produces a (non-
reduced) CFGG′ such that|G′| ≤ |G|. However, it
may be the case that some productions ofG′ are use-
less, it will thus be the task of themake-a-reduced-
grammaralgorithm to transformG′ into its reduced
canonical formGb in timeO(|G′|). The worst-case
total running time of the wholeb-filter pass is thus
O(|G| × n).

We can remark that, after the execution of theb-
filter, the set of terminal symbols ofGb is a subset
of T ∩ Σ.

3.4 Adjacent Filtering Strategy: a-filter

As explained before, we assume that the input to
the adjacent filtering strategy (a-filter for short) de-
scribed in this section is a couple(Gc, w) where
Gc = (N c, T c, P c, S) is a reduced CFG in canon-
ical form. However, thea-filter would also work
for a non-reduced CFG. As usual, we define the
symbols ofGc as the elements of the vocabulary
V c = N c ∪ T c.

The idea is to erase productions that cannot be
part of any parses forw in using an adjacency crite-
ria: if two symbols are adjacent in a rule, they must
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derive terminal symbols that are also adjacent inw.
To give a (very) simple practical idea of what we
mean by adjacency criteria, let us consider again the
source stringab and the grammar defined in Table 1
in which the last production has already been erased
by theb-filter.

The fact that theB-production ends with ab and
that theA-productions all start with ana, implies
that production 2 is in a complete parse only if the
source text is such thatb is immediately followed
by a. Since it is not the case, production 2 can be
erased.

More generally, consider a production of the form
A → · · ·XY · · · . If for each couple(a, b) ∈ T 2 in
whicha is a terminal symbol that can terminate (the
terminal strings generated by)X andb is a terminal
symbol that can lead (the terminal strings generated
by) Y , there is no transition onb that can follow a
transition ona in the DAGw, it is clear that the pro-
ductionA→ · · ·XY · · · can be safely erased.

Now assume that we have the following (left)
derivation Y

∗
⇒ Y1β1

∗
⇒ Yiβi · · · β1

∗
⇒

· · ·
Yp−1→αpYpβp

⇒ αpYpβp · · · β1

∗
⇒ Ypβp · · · β1,

with αp
∗
⇒ ε. If for each couple(a, b′) in which

a has the previous definition andb′ is a terminal
symbol that can lead (the terminal strings gener-
ated by)Yp, there is no transition onb′ that can fol-
low a transition ona in the DAGw, the production
Yp−1 → αpYpβp can be erased if it is not valid in
another context.

Moreover, consider a (right) derivation of the
form X

∗
⇒ α1X1

∗
⇒ α1 · · ·αiXi

∗
⇒

· · ·
Xp−1→αpXpβp

⇒ α1 · · ·αpXpβp
∗
⇒ α1 · · ·αpXp,

with βp
∗
⇒ ε. If for each couple(a′, b) in which b

has the previous definition anda′ is a terminal sym-
bol that can terminate (the terminal strings gener-
ated by)Xp, there is no transition onb that can fol-
low a transition ona′ in the DAGw, the production
Xp−1 → αpXpβp can be erased if it is not valid in
another context.

In order to formalize these notions we define sev-
eral binary relations together with their (reflexive)
transitive closure.

Within a CFGG = (N,T, P, S), we first define
left-corner notedx. Left-corner (Nederhof, 1993;

Moore, 2000), hereafterLC, is a well-known rela-
tion since many parsing strategies are based upon it.
We say thatX is in the LC ofA and we writeA x X

iff (A,X) ∈ {(B,Y ) | B → αY β ∈ P ∧ α
∗
⇒
G

ε}.

We can writeA x

A→αXβ
X to enforce how the cou-

ple (A,X) may be produced.
For its dual relation,right-corner, notedy, we say

thatX is in the right corner ofA and we writeX y A

iff (X,A) ∈ {(Y,B) | B → αY β ∈ P ∧ β
∗
⇒
G

ε}. We can writeX y

A→αXβ
A to enforce how the

couple(X,A) may be produced.
We also define thefirst (resp. last) relation noted
→֒t (resp. ←֓ t) by →֒t= {(X, t) | X ∈ V ∧ t ∈

T ∧X
∗
⇒
G

tx ∧ x ∈ T ∗} (resp.←֓ t= {(X, t) | X ∈

V ∧ t ∈ T ∧X
∗
⇒
G

xt ∧ x ∈ T ∗}).

We define theadjacent ternary relation onV ×
N∗ × V noted↔ and we write X

σ
↔ Y iff

(X,σ, Y ) ∈ {(U, β, V ) | A→ αUβV γ ∈ P ∧β
∗
⇒
G

ε}. This means thatX andY occur in that order in
the right-hand side of some production and are sep-
arated by a nullable stringσ. Note thatX or Y may
or may not be nullable.

On the input DAGw = (Σ, δ, f), we define the
immediately precederelation noted< and we write

a < b for a, b ∈ Σ iff w1abw3 ∈ L(w), w1, w3 ∈

Σ∗.
We also define theprecederelation noted≪ and

we write a ≪ b for a, b ∈ Σ iff w1aw2bw3 ∈

L(w), w1, w2, w3 ∈ Σ∗.We can note that≪ is not

the transitive closure of<.11

For each productionA → αX0X1 · · ·Xp−1Xpγ
in P c and for each symbol pairs(X0,Xp) of non-

nullable symbols s.t.X1 · · ·Xp−1

∗
⇒
Gc

ε, we com-

pute two setsA1 andA2 of couples(a, b), a, b ∈ T c

defined byA1 = ∪0<i≤p = {(a, b) | a ←֓ t

X0

X1···Xi−1
↔ Xi →֒t b} and A2 = ∪0≤i<p =

{(a, b) | a ←֓ t Xi
Xi+1···Xp−1

↔ Xp →֒t b}. Any

11Consider the source stringbcab for which we havea
+

< c,

but nota ≪ c.
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pair (a, b) of A1 is such that the terminal symbol
a may terminate a phrase ofX0 while the terminal
symbol b may lead a phrase ofX1 · · ·Xp. Since
X0 and Xp are not nullable,A1 is not empty. If
none of its elements(a, b) is such thata < b, the

productionA → αX0X1 · · ·Xp−1Xpγ is useless
and can be erased. Analogously, any pair(a, b) of
A2 is such that the terminal symbola may termi-
nate a phrase ofX0X1 · · ·Xp−1 while the terminal
symbol b may lead a phrase ofXp. SinceX0 and
Xp are not nullable,A2 is not empty. If none of
its elements(a, b) is such thata < b, the produc-

tion A → αX0X1 · · ·Xp−1Xpγ is useless and can
be erased. Of course ifX1 · · ·Xp−1 = ε, we have
A1 = A2.12

The previous method has checked some adjacent
properties inside the right-hand sides of productions.
The following will perform some analogous checks
but at the beginning and at the end of the right-hand
sides of productions.

Let us go back to Table 1 to illustrate our pur-
pose. Recall that, with source textab, productions 6
and 2 have already been erased. Consider produc-
tion 4 whose left-hand side is anA, the terminal
stringab that it generates ends byb. If we look for
the occurrences ofA in the right-hand sides of the
(remaining) productions, we only find production 1
which indicates thatA is followed byB. Since the
phrases ofB all start withb (See production 5) and
since in the source textb does not immediately fol-
low anotherb, production 4 can be erased.

In order to check that the input sentencew starts
and ends by valid terminal symbols, we augment
the adjacent relation with two elements($, ε, S) and
(S, ε, $) where$ is a new terminal symbol which is
supposed to start and to end every sentence.13

Let Z → αUβ be a production inP c in which U
is non-nullable andα

∗
⇒
Gc

ε. If X is a non-nullable

symbol, we compute the setL = {(a, b) | a ←֓ t

X
σ
↔ Y

∗
x Z x

Z→αUβ
U →֒t b}. SinceGc is reduced

and since$ < S, we are sure that the setX
σ
↔ Y

∗
x

12It can be shown that the previous check can be performed
on(Gc, w) in worst-case timeO(|Gc|×|Σ|3) (recall that|Σ| ≤
n). This time reduces toO(|Gc| × |Σ|2) if the input sentence
is not a DAG but a string.

13This is equivalent to assume the existence in the grammar
of asuper-productionwhose right-hand side has the form$S$.

Z is non-empty, thusL is also non-empty.14

We can associate with each couple(a, b) ∈
L at least one (left) derivation of the form
XσY

∗
⇒
Gc

w0aw1σY
∗
⇒
Gc

w0aw1w2Y
∗
⇒
Gc

w0aw1w2w3Zγ2

Z→αUβ
⇒
Gc

w0aw1w2w3αUβγ2

∗
⇒
Gc

w0aw1w2w3w4Uβγ2

∗
⇒
Gc

w0aw1w2w3w4w5bγ1βγ2

in which w1w2w3w4w5 ∈ T c∗. These derivations
contains all possible usages of the productionZ →
αUβ in a parse. If for every couple(a, b) ∈ L, the
statementa≪ b does not hold, we can conclude that

the productionZ → αUβ is not used in any parse
and can thus be deleted.

Analogously, we can check that the order of ter-
minal symbols is compatible with both a production
and its right grammatical context.

Let Z → αUβ be a production inP c in which U
is non-nullable andβ

∗
⇒
Gc

ε. If Y is a non-nullable

symbol, we compute the setR = {(a, b) | a ←֓ t

U y

Z→αUβ
Z

∗
y X

σ
↔ Y →֒t b}. SinceGc is reduced

and sinceS < $, we are sure that the setZ
∗
y X

σ
↔

Y is non-empty, thusR is also non-empty.14

To each couple(a, b) ∈ R we can asso-
ciate at least one (right) derivation of the form
XσY

∗
⇒
Gc

Xσw1bw0

∗
⇒
Gc

Xw2w1bw0

∗
⇒
Gc

γ1Zw3w2w1bw0

Z→αUβ
⇒
Gc

γ1αUβw3w2w1bw0

∗
⇒
Gc

γ1αUw4w3w2w1bw0

∗
⇒
Gc

γ1αγ2aw5w4w3w2w1bw0

in which w5w4w3w2w1 ∈ T c∗. These deriva-
tions contains all possible usages of the production
Z → αUβ in a partial parse. If for every couple
(a, b) ∈ L, the statementa ≪ b does not hold, we

can conclude that the productionZ → αUβ is not
used in any parse and can thus be deleted.

Now, a call to themake-a-reduced-grammaral-
gorithm produces a reduced CFG in canonical form
namedGca = (N ca, T ca, P ca, S).

14This statement does not hold any more if we exclude from
P c the productions that have been previously erased during the
currenta-filter. In that case, an empty set indicates that the
productionZ → αUβ can be erased.
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3.5 Dynamic Set Automaton Filtering
Strategy: d-filter

In (Boullier, 2003) the author has presented a
method that takes a CFGG and computes a FSA
that defines a regular superset ofL(G). However his
method would produce intractable gigantic FSAs.
Thus he uses his method to dynamically compute
the FSA at parse time on a given source text. Based
on experimental results, he shows that his method
called dynamic set automaton(DSA) is tractable.
He uses it toguide an Earley parser (See (Ear-
ley, 1970)) and shows improvements over the non
guided version. The DSA method can directly be
used as a filtering strategy since the states of the un-
derlying FSA are in fact sets ofitems. For a CFG
G = (N,T, P, S), an item (or dotted production)
is an element of{[A → α.β] | A → αβ ∈ P}.
A completeitem has the form[A → γ.], it indi-
cates that the productionA → γ has been, in some
sense, recognized. Thus, the complete items of the
DSA states gives the set of productions selected by
the DSA. This selection can be further refined if we
also use the mirror DSA which processes the source
text from right to left and if we only select complete
items that both belong to the DSA and to its mirror.

Thus, if we assume that the input to the DSA fil-
tering strategy (d-filter) is a couple(Gc, w) where
Gc = (P c, S) is a reduced CFG in canonical form,
we will eventually get a set of productions which is
a subset ofP c. If it is a strict subset, we then ap-
ply the make-a-reduced-grammaralgorithm which
produces a reduced CFG in canonical form named
Gcd = (P cd, S).

The Section 4 will give measures that may help to
compare the practical merits of thea andd-filtering
strategies.

4 Experiments

The measures presented in this section have been
taken on a 1.7GHz AMD Athlon PC with 1.5 Gb
of RAM running Linux. All parsers are written in C
and have been compiled with gcc 2.96 with theO2
optimization flag.

4.1 Grammars and corpus

We have performed experiments with two large
grammars described below. The first one is an auto-

matically generated CFG, the other one is the CFG
equivalent of a TIG automatically extracted from a
factorized TAG.

The first grammar, namedGT>N , is a variant of
the CFG backbone of a large-coverage LFG gram-
mar for French used in the French LFG parser de-
scribed in (Boullier and Sagot, 2005). In this vari-
ant, the setT of terminal symbols is the whole set of
French inflected forms present in the Lefff , a large-
coverage syntactic lexicon for French (Sagot et al.,
2006). This leads to as many as 407,863 different
terminal symbols and 520,711 lexicalized produc-
tions (hence, the average number of categories —
which are here non-terminal symbols — for an in-
flected form is 1.27). Moreover, this CFG entails
a non-neglectible amount of syntactic constraints
(including over-generating sub-categorization frame
checking), which implies as many as|Pu| = 19, 028
non-lexicalized productions. All in all,GT>N has
539,739 productions.

The second grammar, namedGTIG, is a CFG
which represents a TIG. To achieve this, we applied
(Boullier, 2000)’s algorithm on the unfolded version
of (Villemonte de La Clergerie, 2005)’s factorized
TAG. The number of productions inGTIG is com-
parable to that ofGT>N . However, these two gram-
mars are completely different. First,GTIG has much
less terminal and non-terminal symbols thanGT>N .
This means that the basic filter may be less efficient
on GTIG than onGT>N . Second, the size ofGTIG

is enormous (more than 10 times that ofGT>N ),
which shows that right-hand sides ofGTIG’s pro-
ductions are huge (the average number of right-hand
side symbols is more than 24). This may increase
the usefulness ofa- andd-filtering strategies.

Global quantitative data about these grammars is
shown in Table 2.

Both grammars, as evoked in the introduction,
have not been written by hand. On the contrary, they
are automatically generated from a more abstract
and more compact level (a meta-level over LFG for
GT>N , and a metagrammar forGTIG). These gram-
mars are not artificial grammars set up only for this
experiment. On the contrary, they are automatically
generated huge real-life CFGs that are variants of
grammars used in real NLP applications.

Our test suite is a set of 3093 French journalistic
sentences. These sentences are thegeneral lemonde
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G |N | |T | |P | |Pu| |G|

GT>N 7,862 407,863 539,739 19,028 1,123,062

GTIG 448 173 493,408 4,338 12,455,767

Table 2: Sizes of the grammarsGT>N and GTIG

used in our experiments

part of the EASy parsing evaluation campaign cor-
pus. Raw sentences have been turned into DAGs
of inflected forms known by both grammar/lexicon
couples.15 This step has been achieved by the pre-
syntactic processing chain SXPipe (Sagot and Boul-
lier, 2005). They are all recognized by both gram-
mars.16 The resulting DAGs have a median size of
28 and an average size of 31.7.

Before entering into details, let us give here the
first important result of these experiments: it was
actually possible to build parsers out ofGT>N and
GTIG and to parse efficiently with the resulting
parsers (we shall detail later on efficiency results).
Given the fact that we are dealing with grammars
whose sizes are respectively over 1,000,000 and over
12,000,000, this is in itself a very satisfying result.

4.2 Precision results

Let us recall informally that the precision of a filter-
ing strategy is the proportion of productions in the
resulting sub-grammar that are in the gold grammar,
i.e., that have effectively instantiated counterparts in
the final parse forest.

We have applied different strategies so as to com-
pare their precisions. The results onGT>N and
GTIG are summed up in Table 3. These results give
several valuable results. First, as we expected, the
basicb-filter drastically reduces the size of the gram-
mar. The result is even better onGT>N thanks to its
large number of terminal symbols. Second, both the
adjacencya-filter and the DSAd-filter efficiently re-
duce the size of the grammar: onGT>N , thea-filter
eliminates 20% of the productions they receive as
input, a bit less for thed-filter. Indeed, thea-filter
performs better than thed-filter introduced in (Boul-

15As seen above, inflected forms are directly terminal sym-
bols of GT>N , while GTIG uses alexicon to map these in-
flected forms into its own terminal symbols, thereby possibly
introducing lexical ambiguity.

16Approx. 15% of the original set of sentences were not rec-
ognized, and required error recovery techniques; we decided to
discard them for this experiment.

Strategy Average precision
GT>N GTIG

no filter 0.04% 0.03%
b 62.87% 39.43%
bd 74.53% 66.56%
ba 77.31% 66.94%

ba∞ 77.48% 67.48%
bad 80.27% 77.16%

ba∞d 80.30% 77.41%
gold 100% 100%

Table 3: Average precision of six different filtering
strategies on our test corpus withGT>N andGTIG.

lier, 2003), at least as precision is concerned. We
shall see later that this is still the case on global
parsing times. However, applying thed-filter after
the a-filter still removes a non-neglectible amount
of productions:17 each technique is able to eliminate
productions that are kept by the other one. The result
of these filters is suprisingly good: in average, after
all filters, only approx. 20% of the productions that
have been kept will not be successfully instantiated
in the final parse forest. Third, the adjacency filter
can be used in its one-pass mode, since almost all
the benefit from the full (fix-point) mode is already
reached after the first application. This is practically
a very valuable result, since the one-pass mode is
obviously faster than the full mode.

However, all these filters do require computing
time, and it is necessary to evaluate not only the pre-
cision of these filters, but also their execution time
as well as the influence they have on the global (in-
cluding filtering) parsing time .

4.3 Parsing time and best filter

Filter execution times for the six filtering strategies
introduced in Table 3 are illustrated forGT>N in
Figure 1. These graphics show three extremely valu-
able pieces of information. First, filtering times are
extremely low: the average filtering time for the
slowest filter (ba∞d, i.e., basic plus full adjacency
plus DSA) on 40-word sentences is around 20 ms.
Second, on small sentences, filtering times are virtu-
ally zero. This is important, since it means that there

17Although not reported here, applying thea befored leads
to the same conclusion.
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Figure 1: Filtering times for six different strategies withGT>N

is almost no fixed cost to pay when we use these
filters (let us recall that without any filter, building
efficient parsers for such a huge grammar is highly
problematic). Third, all these filters, at least when
used withGT>N , are executed in a time which is
linear w.r.t. the size of the input sentence (i.e., the
size of the input DAG).

The results onGTIG lead to the same conclusions,
with one exception: with this extremely huge gram-
mar with so long right-hand sides, the basic filter
is not as fast as onGT>N (and not as precise, as
we will see below, which slows down themake-a-
reduced-grammaralgorithm since it is applied on
a larger filtered grammars). For example, the me-
dian execution time for the basic filter on sentences
whose size is approximately 40 is 0.25 seconds,
to be compared with the 0.00 seconds reached on
GT>N (this zero value means a median time strictly
lower than 0.01 seconds, which is the granularity of
our time measurments).

Figure 2 and 3 show the global (filtering+parsing)
execution time for the 6 different filters. We only
show median times computed on classes of sen-
tences of length10i to 10(i + 1) − 1 and plotted
with a centeredx-coordinate (10(i + 1/2)), but re-
sults with other percentiles or average times on the
same classes draw the same overall picture.
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Figure 2: Global (filtering+parsing) times for six
different strategies withGT>N

One can see that the results are completely differ-
ent, showing a strong dependency on the character-
istics of the grammar. In the case ofGT>N , the huge
number of terminal symbols and the reasonable av-
erage size of right-hand sides of productions, the ba-
sic filtering strategy is the best strategy: although it
is fast because relatively simple, it reduces the gram-
mar extremely efficiently (it has a 60.56% precision,
to be compared with the precision of the void filter
which is 0.04%). Hence, forGT>N , our only result
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Figure 3: Global (filtering+parsing) times for six
different strategies withGTIG

is that this basic filter does allow us to build an effi-
cient parser (the most efficient one), but that refined
additionnal filtering strategies are not useful.

The picture is completely different withGTIG.
Contrary toGT>N , this grammar has comparatively
very few terminal and non-terminal symbols, and
very long right-hand sides. These two facts lead
to a lower precision of the basic filter (39.43%),
which keeps many more productions when applied
on GTIG than when applied onGT>N , and leads,
when applied alone, to the less efficient parser. This
gives to the adjacency filter much more opportunity
to improve the global execution time. However, the
complexity of the grammar makes the construction
of the DSA filter relatively costly despite its preci-
sion, leading to the following conclusion: onGTIG

(and probably on any grammar with similar charac-
teristics), the best filtering strategy is the one-pass
adjacency strategy. In particular, this leads to an im-
provement over the work of (Boullier, 2003) which
only introduced the DSA filter. Incidentally, the
extreme size ofGTIG leads to much higher pars-
ing times, approximately 10 times higher than with
GT>N , which is consistent with the ratio between
the sizes of both involved grammars.

5 Conclusion

It is a well known result in optimization techniques
that the key to practically improve these processes is
to reduce their search space. This is also the case in
parsing and in particular in CF parsing.

Many parsers process their inputs from left to
right but we can find in the literature other parsing
strategies. In particular, in NLP, (van Noord, 1997)
and (Satta and Stock, 1994) propose bidirectional al-
gorithms. These parsers have the reputation to have
a better efficiency than their left-to-right counterpart.
This reputation is not only based upon experimental
results (van Noord, 1997) but also upon mathemat-
ical arguments in (Nederhof and Satta, 2000). This
is specially true when the productions of the CFG
strongly depend on lexical information. In that case
the parsing search space is reduced because the con-
straints associated to lexical elements are evaluated
as early as possible. We can note that our filtering
strategies try to reach the same purpose by a totally
different mean: we reduce the parsing search space
by eliminating as many productions as possible, in-
cluding possibly non-lexicalized productions whose
irrelevance to parse the current input can not be di-
rectly deduced from that input.

We can also remark that our results are not in con-
tradiction with the claims of (Nederhof and Satta,
2000) in which they argue that “Earley algorithm
and related standard parsing techniques [. . . ] can-
not be directly extended to allow left-to-right and
correct-prefix-property parsing in acceptable time
bound”. First, as already noted in Section 1, our
method does not work for any large CFG. In order
to work well, the first step of our basic strategy must
filter out a great amount of (lexicalized) productions.
To do that, it is clear that the set of terminals in the
input text must select a small ratio of lexicalized pro-
ductions. To give a more concrete idea we advo-
cate that the selected productions produce roughly a
grammar ofnormal size out of the large grammar.
Second, our method as a whole clearly does not pro-
cess the input text from left-to-right and thus does
not enter in the categories studied in (Nederhof and
Satta, 2000). Moreover, the authors bring strong evi-
dences that in case of polynomial-time off-line com-
pilation of the grammar, left-to-right parsing cannot
be performed in polynomial time, independently of
the size of the lexicon. Once again, if our filter pass
is viewed as an off-line processing of the large input
grammar, our output is not a compilation of the large
grammar, but a (compilation of a) smaller grammar,
specialized in (some abstractions of) the source text
only. In other words their negative results do not
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necessarily apply to our specific case.
The experiment campaign as been conducted in

using an Earley-like parser.18 We have also success-
fuly tried the coupling of our filtering strategies with
a CYK parser (Kasami, 1967; Younger, 1967) as
post-processor. However the coupling with a GLR
parser (See (Satta, 1992) for example) is perhaps
more problematic since the time taken to build up
the underlying nondeterministic LR automaton from
the sub-grammar can be prohibitive.

Though no definitive answer can be made to the
question asked in the title, we have shown that, in
some cases, the answer is certainlyyes.
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