
 A C L 2 0 0 7

PRAGUE

The Association for Computational Linguistics

I W P T 2 0 0 7

Proceedings of the 10th International Conference
on Parsing Technologies

June 23–34, 2007
Prague, Czech Republic

Production and Manufacturing by
Omnipress
2600 Anderson Street
Madison, WI 53704
USA

c©2007 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii

Preface

Welcome to the Tenth International Conference on Parsing Technologies, IWPT 2007, in the beautiful
city of Prague.

IWPT’07 continues the tradition of biennial workshops on parsing technology organized by SIGPARSE,
the Special Interest Group on Parsing of the Association for Computational Linguistics (ACL). The first
workshop, in Pittsburgh and Hidden Valley, was followed by workshops in Cancun (Mexico) in 1991;
Tilburg (Netherlands) and Durbuy (Belgium) in 1993; Prague and Karlovy Vary (Czech Republic) in
1995; Boston/Cambridge (Massachusetts) in 1997; Trento (Italy) in 2000; Beijing (China) in 2001; Nancy
(France) in 2003; and Vancouver (Canada) in 2005.

Over the years the IWPT Workshops have become the major forum for researchers in natural language
parsing. They have also given rise to four books on parsing technologies.

For the first time this year, IWPT is organised as a co-located event with the main ACL conference and
with EMNLP and many other workshops. We would like to thank Alon Lavie, Priscilla Rasmussen and
the ACL committee and local organisers for their help and support in organising this event.

Parsing technologies are relevant for almost all applications in Natural Language Processing. We are
fortunate to have Stuart Shieber from Harvard University as our invited speaker to explore the links
between sychronous grammars and issues related to machine translation and parsing.

This year’s programme features for the first time invited presentations by organisers of co-located events
who are also members of the IWPT Programme Committee. Joakim Nivre makes a connection with
learning dependency grammars in the CONLL-07 shared task, and the organisers of the Deep Linguistic
Processing workshop discuss the ways in which broad coverage parsing systems can be developed for
linguistically expressive grammars.

I would to thank all the programme committee members for their careful and timely work, especially
those that took up extra rewiewing obligations at very short notice. Special thanks go to Paola Merlo, the
programme chair, for organising the reviewing, designing the workshop programme and producing the
proceedings. The scientific programme includes 14 full papaer and 3 short papers out of 31 submissions
(of which 6 short papers). They cover all topics in parsing, from efficiency issues and complextiy of
algorithms to accurate supervised and unsupervised learning techniques for parsing.

Harry Bunt
IWPT 2007 General Chair

iii

Organizers

General Chair:

Harry Bunt (Tilburg University, Netherlands)

Programme Chair:

Paola Merlo (University of Geneva, Switzerland)

Logistic Arrangements Chair:

Alon Lavie (Carnegie-Mellon University, Pittsburgh, USA)

Programme Committee:

Harry Bunt (Tilburg University, Netherlands)
David Chiang(USC/ISI,USA)
John Carroll (University of Sussex, Brighton, UK)
Stephen Clark (Oxford University, UK)
James Henderson (University of Edinburgh, UK)
Ulf Hermjakob (USC Information Sciences Institute, Marina del Rey, USA)
Julia Hockenmaier (University of Pennsylvania, USA)
Aravind Joshi (University of Pennsylvania, Philadelphia, USA)
Ronald Kaplan (Xerox Palo Alto Research Center, USA)
Martin Kay (Xerox Palo Alto Research Center, USA)
Sadao Kurohashi (University of Tokyo, Japan)
Alon Lavie (Carnegie-Mellon University, Pittsburgh, USA)
Rob Malouf (San Diego State University, USA)
Yuji Matsumoto (Nara Institute of Science and Technology, Japan)
Bob Moore (Microsoft, Redmond, USA)
Mark-Jan Nederhof (MPI, Groeningen, Netherlands)
Joakim Nivre (Vaxjo University, Sweden)
Gertjan van Noord (University of Groningen, Netherlands)
Stephan Oepen (University of Oslo, Norway)
Stefan Riezler (Xerox Palo Alto Research Center, USA)
Giorgio Satta (University of Padua, Italy)
Kenji Sagae (University of Tokyo, Japan)
Khalil Sima’an (University of Amsterdam, Netherlands)
Eric Villemonte de la Clergerie (INRIA, Rocquencourt, France)
K. Vijay-Shanker (University of Delaware, USA)
Dekai Wu (Hong Kong University of Science and Technology, China)

v

Invited Speaker:

Stuart Shieber, Harvard University

Co-located Event Spotlight Presenters:

Joakim Nivre (Vaxjo University, Sweden)
Organisers of the Deep Linguistic Processing Workshop

vi

Table of Contents

Using Self-Trained Bilexical Preferences to Improve Disambiguation Accuracy
Gertjan van Noord . 1

Evaluating Impact of Re-training a Lexical Disambiguation Model on Domain Adaptation of an HPSG
Parser

Tadayoshi Hara, Yusuke Miyao and Jun’ichi Tsujii . 11

Semi-supervised Training of a Statistical Parser from Unlabeled Partially-bracketed Data
Rebecca Watson, Ted Briscoe and John Carroll . 23

Adapting WSJ-Trained Parsers to the British National Corpus using In-Domain Self-Training
Jennifer Foster, Joachim Wagner, Djam Seddah and Josef van Genabith . 33

The Impact of Deep Linguistic Processing on Parsing Technology
T. Baldwin, M. Dras, J. Hockenmaier, T. Holloway King and G. van Noord 36

Improving the Efficiency of a Wide-Coverage CCG Parser
Bojan Djordjevic, James Curran and Stephen Clark . 39

Efficiency in Unification-Based N-Best Parsing
Yi Zhang, Stephan Oepen and John Carroll . 48

A log-linear model with an n-gram reference distribution for accurate HPSG parsing
Takashi Ninomiya, Takuya Matsuzaki, Yusuke Miyao and Jun’ichi Tsujii . 60

Ambiguity Resolution by Reordering Rules in Text Containing Errors
Sylvana Sofkova Hashemi . 69

Nbest Dependency Parsing with linguistically rich models
Xiaodong Shi . 80

Symbolic Preference Using Simple Scoring
Paula Newman . 83

Synchronous Grammars and Transducers: Good News and Bad News
Stuart Shieber . 93

Are Very Large Context-Free Grammars Tractable?
Pierre Boullier and Benoit Sagot . 94

Pomset mcfgs
Michael Pan . 106

Modular and Efficient Top-Down Parsing for Ambiguous Left-Recursive Grammars
Richard Frost, Rahmatullah Hafiz and Paul Callaghan . 109

vii

On the Complexity of Non-Projective Data-Driven Dependency Parsing
Ryan McDonald and Giorgio Satta . 121

Dependency Parsing with Second-Order Feature Maps and Annotated Semantic Information
Massimiliano Ciaramita and Giuseppe Attardi .133

A Latent Variable Model for Generative Dependency Parsing
Ivan Titov and James Henderson . 144

Three-Dimensional Parametrization for Parsing Morphologically Rich Languages
Reut Tsarfaty and Khalil Sima’an . 156

Data-Driven Dependency Parsing across Languages and Domains: Perspectives from the CoNLL-2007
Shared task

Joakim Nivre . 168

viii

Conference Program

Saturday, 23 June, 2007

9:00–9:35 Registration/Opening Remarks

9:35–10:10 Using Self-Trained Bilexical Preferences to Improve Disambiguation Accuracy
Gertjan van Noord

10:10–10:45 Evaluating Impact of Re-training a Lexical Disambiguation Model on Domain
Adaptation of an HPSG Parser
Tadayoshi Hara, Yusuke Miyao and Jun’ichi Tsujii

Coffee break

11:15–11:50 Semi-supervised Training of a Statistical Parser from Unlabeled Partially-bracketed
Data
Rebecca Watson, Ted Briscoe and John Carroll

11:50–12:05 Adapting WSJ-Trained Parsers to the British National Corpus using In-Domain
Self-Training
Jennifer Foster, Joachim Wagner, Djam Seddah and Josef van Genabith

Co-located Event Spotlight Presentation

12:05–12:40 The Impact of Deep Linguistic Processing on Parsing Technology
Timothy Baldwin, Mark Dras, Julia Hockenmaier, Tracy Holloway King and Gert-
jan van Noord

Lunch break

14:00–14:35 Improving the Efficiency of a Wide-Coverage CCG Parser
Bojan Djordjevic, James Curran and Stephen Clark

14:35–15:10 Efficiency in Unification-Based N-Best Parsing
Yi Zhang, Stephan Oepen and John Carroll

15:10–15:45 A log-linear model with an n-gram reference distribution for accurate HPSG pars-
ing
Takashi Ninomiya, Takuya Matsuzaki, Yusuke Miyao and Jun’ichi Tsujii

Coffee break

ix

Saturday, 23 June, 2007 (continued)

16:15–16:50 Ambiguity Resolution by Reordering Rules in Text Containing Errors
Sylvana Sofkova Hashemi

16:50–17:05 Nbest Dependency Parsing with linguistically rich models
Xiaodong Shi

17:05–17:40 Symbolic Preference Using Simple Scoring
Paula Newman

Sunday, 24 June, 2007

9:15–9:35 Registration

Guest Speaker

9:30–10:45 Synchronous Grammars and Transducers: Good News and Bad News
Stuart Shieber

Coffee break

11:15–11:50 Are Very Large Context-Free Grammars Tractable?
Pierre Boullier and Benot Sagot

11:50–12:05 Pomset mcfgs
Michael Pan

12:05–12:40 Modular and Efficient Top-Down Parsing for Ambiguous Left-Recursive Grammars
Richard Frost, Rahmatullah Hafiz and Paul Callaghan

Lunch break

14:00–14:35 On the Complexity of Non-Projective Data-Driven Dependency Parsing
Ryan McDonald and Giorgio Satta

14:35–15:10 Dependency Parsing with Second-Order Feature Maps and Annotated Semantic Informa-
tion
Massimiliano Ciaramita and Giuseppe Attardi

x

Sunday, 24 June, 2007 (continued)

15:10–15:45 A Latent Variable Model for Generative Dependency Parsing
Ivan Titov and James Henderson

Coffee break

16:15–16:50 Three-Dimensional Parametrization for Parsing Morphologically Rich Languages
Reut Tsarfaty and Khalil Sima’an

Co-located Event Spotlight Presentation

16:50–17:25 Data-Driven Dependency Parsing across Languages and Domains: Perspectives from the
CoNLL-2007 Shared task
Joakim Nivre

xi

Proceedings of the 10th Conference on Parsing Technologies, pages 1–10,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Using Self-Trained Bilexical Preferences to Improve Disambiguation
Accuracy

Gertjan van Noord
University of Groningen

vannoord@let.rug.nl

Abstract

A method is described to incorporate bilex-
ical preferences between phrase heads, such
as selection restrictions, in a Maximum-
Entropy parser for Dutch. The bilexical
preferences are modelled as association rates
which are determined on the basis of a very
large parsed corpus (about 500M words).
We show that the incorporation of such self-
trained preferences improves parsing accu-
racy significantly.

1 Motivation

In parse selection, the task is to select the correct
syntactic analysis of a given sentence from a set
of parses generated by some other mechanism. On
the basis of correctly labelled examples, supervised
parse selection techniques can be employed to ob-
tain reasonable accuracy. Although parsing has im-
proved enormously over the last few years, even the
most successful parsers make very silly, sometimes
embarassing, mistakes. In our experiments with a
large wide-coverage stochastic attribute-value gram-
mar of Dutch, we noted that the system sometimes
is insensitive to the naturalness of the various lexical
combinations it has to consider. Although parsers
often employ lexical features which are in principle
able to represent preferences with respect to word
combinations, the size of the training data will be
too small to be able to learn the relevance of such
features successfully.

In maximum-entropy parsing, the supervised
parsing technique that we use in our experiments, ar-
bitrary features can be defined which are employed

to characterize different parses. So it is possible to
construct features for any property that is thought
to be important for disambiguation. However, such
features can be useful for disambiguation only in
case the training set contains a sufficient number of
occurrences of these features. This is problematic,
in practice, for features that encode bilexical prefer-
ences such as selection restrictions, because typical
training sets are much too small to estimate the rele-
vance of features representing cooccurrences of two
words. As a simple example consider the ambiguous
Dutch sentence

(1) Melk drinkt de baby niet
Milk drinks the baby not

The standard model of the parser we experimented
with employs a wide variety of features including
syntactic features and lexical features. In particu-
lar, the model also includes features which encode
whether or not the subject or the object is fronted in
a parse. Since subjects, in general, are fronted much
more frequently than objects, the model has learnt
to prefer readings in which the fronted constituent
is analysed as the subject. Although the model also
contains features to distinguish whether e.g. milk
occurs as the subject or the object of drink, the
model has not learnt a preference for either of these
features, since there were no sentences in the train-
ing data that involved both these two words.

To make this point more explicit, we found that in
about 200 sentences of our parsed corpus of 27 mil-
lion sentences milk is the head of the direct object
of the verb drink. Suppose that we would need at
least perhaps 5 to 10 sentences in our training corpus

1

in order to be able to learn the specific preference
between milk and drink. The implication is that
we would need a (manually labeled!) training cor-
pus of approximately 1 million sentences (20 mil-
lion words). In contrast, the disambiguation model
of the Dutch parser we are reporting on in this paper
is trained on a manually labeled corpus of slightly
over 7,000 sentences (145,000 words). It appears
that semi-supervised or un-supervised methods are
required here.

Note that the problem not only occurs for artifi-
cial examples such as (1); here are a few mis-parsed
examples actually encountered in a large parsed cor-
pus:

(2) a. Campari moet u gedronken hebben
Campari must have drunk you
You must have drunk Campari

b. De wijn die Elvis zou hebben gedronken als
hij wijn zou hebben gedronken
The wine Elvis would have drunk if he had
drunk wine
The wine that would have drunk Elvis if he
had drunk wine

c. De paus heeft tweehonderd daklozen te eten
gehad
The pope had twohunderd homeless people
for dinner

In this paper, we describe an alternative approach
in which we employ pointwise mutual informa-
tion association score in the maximum entropy dis-
ambiguation model. Pointwise mutual information
(Fano, 1961) was used to measure strength of selec-
tion restrictions for instance by Church and Hanks
(1990). The association scores used here are esti-
mated using a very large parsed corpus of 500 mil-
lion words (27 million sentences). We show that the
incorporation of this additional knowledge source
improves parsing accuracy. Because the association
scores are estimated on the basis of a large corpus
that is parsed by the parser that we aim to improve
upon, this technique can be described as a somewhat
particular instance of self-training. Self-training has
been investigated for statistical parsing before. Al-
though naively adding self-labeled material to ex-
tend training data is normally not succesfull, there
have been successful variants of self-learning for

parsing as well. For instance, in McClosky et al.
(2006) self-learning is used to improve a two-phase
parser reranker, with very good results for the clas-
sical Wall Street Journal parsing task.

Clearly, the idea that selection restrictions ought
to be useful for parsing accuracy is not new. How-
ever, as far as we know this is the first time that au-
tomatically acquired selection restrictions have been
shown to improve parsing accuracy results. Related
research includes Abekawa and Okumura (2006)
and Kawahara and Kurohashi (2006) where statis-
tical information between verbs and case elements
is collected on the basis of large automatically anal-
ysed corpora.

2 Background: Alpino parser

The experiments are performed using the Alpino
parser for Dutch. In this section we briefly describe
the parser, as well as the corpora that we have used
in the experiments described later.

2.1 Grammar and Lexicon

The Alpino system is a linguistically motivated,
wide-coverage grammar and parser for Dutch in the
tradition of HPSG. It consists of over 600 gram-
mar rules and a large lexicon of over 100,000 lex-
emes and various rules to recognize special con-
structs such as named entities, temporal expressions,
etc. The grammar takes a ‘constructional’ approach,
with rich lexical representations and a large number
of detailed, construction specific rules. Both the lex-
icon and the rule component are organized in a mul-
tiple inheritance hierarchy. Heuristics have been im-
plemented to deal with unknown words and word se-
quences, and ungrammatical or out-of-coverage sen-
tences (which may nevertheless contain fragments
that are analysable). The Alpino system includes a
POS-tagger which greatly reduces lexical ambiguity,
without an observable decrease in parsing accuracy
(Prins, 2005).

2.2 Parser

Based on the categories assigned to words, and
the set of grammar rules compiled from the HPSG
grammar, a left-corner parser finds the set of all
parses, and stores this set compactly in a packed
parse forest. All parses are rooted by an instance

2

of the top category, which is a category that general-
izes over all maximal projections (S, NP, VP, ADVP,
AP, PP and some others). If there is no parse cover-
ing the complete input, the parser finds all parses for
each substring. In such cases, the robustness com-
ponent will then select the best sequence of non-
overlapping parses (i.e., maximal projections) from
this set.

In order to select the best parse from the com-
pact parse forest, a best-first search algorithm is ap-
plied. The algorithm consults a Maximum Entropy
disambiguation model to judge the quality of (par-
tial) parses. Since the disambiguation model in-
cludes inherently non-local features, efficient dy-
namic programming solutions are not directly appli-
cable. Instead, a best-first beam-search algorithm is
employed (van Noord and Malouf, 2005; van Noord,
2006).

2.3 Maximum Entropy disambiguation model
The maximum entropy model is a conditional model
which assigns a probability to a parse t for a given
sentence s. Furthermore, fi(t) are the feature func-
tions which count the occurrence of each feature i in
a parse t. Each feature i has an associated weight λi.
The score φ of a parse t is defined as the sum of the
weighted feature counts:

φ(t) =
∑

i

λifi(t)

If t is a parse of s, the actual conditional proba-
bility is given by the following, where T (s) are all
parses of s:

P (t|s) =
exp(φ(t))∑

u∈T (s) exp(φ(u))

However, note that if we only want to select the
best parse we can ignore the actual probability, and it
suffices to use the score φ to rank competing parses.

The Maximum Entropy model employs a large set
of features. The standard model uses about 42,000
different features. Features describe various prop-
erties of parses. For instance, the model includes
features which signal the application of particular
grammar rules, as well as local configurations of
grammar rules. There are features signalling spe-
cific POS-tags and subcategorization frames. Other

features signal local or non-local occurrences of ex-
traction (WH-movement, relative clauses etc.), the
grammatical role of the extracted element (subject
vs. non-subject etc.), features to represent the dis-
tance of a relative clause and the noun it modifies,
features describing the amount of parallelism be-
tween conjuncts in a coordination, etc. In addition,
there are lexical features which represent the co-
occurrence of two specific words in a specific de-
pendency, and the occurrence of a specific word as a
specific dependent for a given POS-tag. Each parse
is characterized by its feature vector (the counts for
each of the 42,000 features). Once the model is
trained, each feature is associated with its weight λ
(a positive or negative number, typically close to 0).
To find out which parse is the best parse according
to the model, it suffices to multiply the frequency
of each feature with its corresponding weight, and
sum these weighted frequencies. The parse with the
highest sum is the best parse. Formal details of the
disambiguation model are presented in van Noord
and Malouf (2005).

2.4 Dependency structures

Although Alpino is not a dependency grammar in
the traditional sense, dependency structures are gen-
erated by the lexicon and grammar rules as the value
of a dedicated feature dt. The dependency struc-
tures are based on CGN (Corpus Gesproken Ned-
erlands, Corpus of Spoken Dutch) (Hoekstra et al.,
2003), D-Coi and LASSY (van Noord et al., 2006).
Such dependency structures are somewhat idiosyn-
cratic, as can be observed in the example in figure 1
for the sentence:

(3) waar en wanneer dronk Elvis wijn?
where and when did Elvis drink wine?

2.5 Evaluation

The output of the parser is evaluated by comparing
the generated dependency structure for a corpus sen-
tence to the gold standard dependency structure in a
treebank. For this comparison, we represent the de-
pendency structure (a directed acyclic graph) as a
set of named dependency relations. The dependency
graph in figure 1 is represented with the following
set of dependencies:

3

–
whq

whd
1

conj

cnj
adv

waar0

crd
vg
en1

cnj
adv

wanneer2

body
sv1

mod
1

hd
verb

drink3

su
name
Elvis4

obj1
noun
wijn5

Figure 1: Dependency graph example. Reentrant
nodes are visualized using a bold-face index. Root
forms of head words are explicitly included in sepa-
rate nodes, and different types of head receive a dif-
ferent relation label such as hd, crd (for coordina-
tion), whd (for WH-phrases) etc. In this case, the
WH-phrase is both the whd element of the top-node,
as well as a mod dependent of drink.

crd/cnj(en,waar) crd/cnj(en,wanneer)
whd/body(en,drink) hd/mod(drink,en)
hd/obj1(drink,wijn) hd/su(drink,Elvis)

Comparing these sets, we count the number of de-
pendencies that are identical in the generated parse
and the stored structure, which is expressed tradi-
tionally using f-score (Briscoe et al., 2002). We pre-
fer to express similarity between dependency struc-
tures by concept accuracy:

CA = 1−
∑

i D
i
f

max(
∑

i D
i
g,

∑
i D

i
p)

where Di
p is the number of dependencies produced

by the parser for sentence i, Dg is the number of
dependencies in the treebank parse, and Df is the
number of incorrect and missing dependencies pro-
duced by the parser.

The standard version of Alpino that we use here
as baseline system is trained on the 145,000 word
Alpino treebank, which contains dependency struc-
tures for the cdbl (newspaper) part of the Eind-
hoven corpus. The parameters for training the model
are the same for the baseline model, as well as the
model that includes the self-trained bilexical prefer-
ences (introduced below). These parameters include

#sentences 100% 30,000,000
#words 500,000,000

#sentences without parse 0.2% 100,000
#sentences with fragments 8% 2,500,000

#single full parse 92% 27,500,000

Table 1: Approximate counts of the number of sen-
tences and words in the parsed corpus. About 0,2%
of the sentences did not get a parse, for computa-
tional reasons (out of memory, or maximum parse
time exceeded).

the Gaussian penalty, thresholds for feature selec-
tion, etc. Details of the training procedure are de-
scribed in van Noord and Malouf (2005).

2.6 Parsed Corpora

Over the course of about a year, Alpino has been
used to parse most of the TwNC-02 (Twente News-
paper Corpus), Dutch Wikipedia, and the Duch part
of Europarl. TwNC consists of Dutch newspaper
texts from 1994 - 2004. We did not use the ma-
terial from Trouw 2001, since part of that mate-
rial is used in the test set used below. We used
the 200 node Beowulf Linux cluster of the High-
Performance Computing center of the University of
Groningen. The dependency structures are stored in
XML. The XML files can be processed and searched
in various ways, for instance, using XPATH, XSLT
and Xquery (Bouma and Kloosterman, 2002). Some
quantitative information of this parsed corpus is
listed in table 1. In the experiments described be-
low, we do not distinguish between full and frag-
ment parses; sentences without a parse are obviously
ignored.

3 Bilexical preferences

3.1 Association Score

The parsed corpora described in the previous sec-
tion have been used in order to compute association
scores between lexical dependencies. The parses
constructed by Alpino are dependency structures. In
such dependency structures, the basic dependencies
are of the form r(w1, w2) where r is a relation such
as subject, object, modifier, prepositional comple-
ment, . . . , and wi are root forms of words.

Bilexical preference between two root forms w1

4

tokens 480,000,000
types 100,000,000

types with frequency ≥ 20 2,000,000

Table 2: Number of lexical dependencies in parsed
corpora (approximate counts)

bijltje gooi neer 13
duimschroef draai aan 13

peentje zweet 13
traantje pink weg 13
boontje dop 12

centje verdien bij 12
champagne fles ontkurk 12

dorst les 12

Table 3: Pairs involving a direct object relationship
with the highest pointwise mutual information score.

and w2 is computed using an association score based
on pointwise mutual information, as defined by Fano
(1961) and used for a similar purpose in Church and
Hanks (1990), as well as in many other studies in
corpus linguistics. The association score is defined
here as follows:

I(r(w1, w2) = log
f(r(w1, w2))

f(r(w1,))f((, w2))

where f(X) is the relative frequency of X . In the
above formula, the underscore is a place holder for
an arbitrary relation or an arbitrary word. The as-
sociation score I compares the actual relative fre-
quency of w1 and w2 with dependency r, with
the relative frequency we would expect if the
words were independent. For instance, to compute
I(hd/obj1(drink,melk)) we lookup the number
of times drink occurs with a direct object out of all
462,250,644 dependencies (15,713) and the number
of times melk occurs as a dependent (10,172). If we
multiply the two corresponding relative frequencies,
we get the expected relative frequency (0.35) for
hd/obj1(drink,melk), which is about 560 times
as big as the actual frequence, 195. Taking the log
of this gives us the association score (6.33) for this
bi-lexical dependency. Note that pairs that we have
seen fewer than 20 times are ignored. Mutual in-
formation scores are unreliable for low frequencies.
An additional benefit of a frequency threshold is a
manageable size of the resulting data-structures.

The pairs involving a direct object relationship
with the highest scores are listed in table 3. The

biertje small glass of beer 8
borreltje strong alcoholic drink 8
glaasje small glass 8
pilsje small glass of beer 8
pintje small glass of beer 8
pint glass of beer 8
wijntje small glass of wine 8
alcohol alcohol 7
bier beer 7

Table 4: Pairs involving a direct object relationship
with the highest pointwise mutual information score
for the verb drink.

overlangs snijd door 12
welig tier 12

dunnetjes doe over 11
stief moederlijk bedeel 11

on zedelijk betast 11
stierlijk verveel 11

cum laude studeer af 10
hermetisch grendel af 10

ingespannen tuur 10
instemmend knik 10

kostelijk amuseer 10

Table 5: Pairs involving a modifier relationship be-
tween a verb and an adverbial with the highest asso-
ciation score.

highest scoring nouns that occur as the direct object
of drink are listed in table 4.

Selection restrictions are often associated only
with direct objects. We include bilexical association
scores for all types of dependencies. We found that
association scores for other types of dependencies
also captures both collocational preferences as well
as weaker cooccurrence preferences. Some exam-
ples including modifiers are listed in table 5. Such
preferences are useful for disambiguation as well.
Consider the ambiguous Dutch sentence

(4) omdat we lauw bier dronken
because we drank warm beer
because we drank beer warmly

The adjective lauw (cold, lukewarm, warm) can be
used to modify both nouns and verbs; this latter pos-
sibility is exemplified in:

(5) We hebben lauw gereageerd
We reacted indifferently

5

–
smain

obj1
conj

cnj
noun
bier0

crd
vg
of1

cnj
noun
wijn2

hd
verb

drink3

su
name
Elvis4

mod
adv
niet5

Figure 2: Dependency structure produced for coor-
dination

3.2 Extending pairs
The CGN dependencies that we work with fail to re-
late pairs of words in certain syntactic constructions
for which it can be reasonably assumed that bilexi-
cal preferences should be useful. We have identified
two such constructions, namely relative clauses and
coordination, and for these constructions we gener-
alize our method, to take such dependencies into ac-
count too.

Consider coordinations such as:

(6) Bier of wijn drinkt Elvis niet
Beer or wine, Elvis does not drink

The dependency structure of the intended analysis
is given in figure 2. The resulting set of dependen-
cies for this example treats the coordinator as the
head of the conjunction:

hd/obj1(drink,of) crd/cnj(of,bier)
crd/cnj(of,wijn) hd/su(drink,elvis)
hd/mod(drink,niet)

So there are no direct dependencies between the verb
and the individual conjuncts. For this reason, we
add additional dependencies r(A,C) for every pair
of dependency r(A,B), crd/cnj(B,C).

Relative clauses are another syntactic phe-
nomenon where we extend the set of dependencies.
For a noun phrase such as:

(7) Wijn die Elvis niet dronk
Wine which Elvis did not drink

there is no direct dependency between wijn and
drink, as can be seen in the dependency structure

–
np

hd
noun
wijn0

mod
rel

rhd
1

pron
die1

body
ssub

obj1
1

su
name
Elvis2

mod
adv

niet3

hd
verb

drink4

Figure 3: Dependency structure produced for rela-
tive clause

given in figure 3. Sets of dependencies are extended
in such cases, to make the relation between the noun
and the role it plays in the relative clause explicit.

3.3 Using association scores as features
The association scores for all dependencies are used
in our maximum entropy disambiguation model as
follows. The technique is reminiscent of the inclu-
sion of auxiliary distributions in stochastic attribute-
value grammar (Johnson and Riezler, 2000).

Recall that a maximum entropy disambiguation
model exploits features. Features are properties of
parses, and we can use such features to describe any
property of parses that we believe is of importance
for disambiguation. For the disambiguation model,
a parse is fully characterized by a vector of feature
counts.

We introduce features z(t, r) for each of the ma-
jor POS labels t (verb, noun, adjective, adverb, . . .)
and each of the dependency relations r. The ‘count’
of such a feature is determined by the association
scores for actually occuring dependency pairs. For
example, if in a given parse a given verb v has a
direct object dependent n, then we compute the as-
sociation of this particular pair, and use the resulting
number as the count of that feature. Of course, if
there are multiple dependencies of this type in a sin-
gle parse, the corresponding association scores are
all summed.

To illustrate this technique, consider the depen-
dency structure given earlier in figure 2. For this

6

example, there are four of these new features with a
non-zero count. The counts are given by the corre-
sponding association scores as follows:

z(verb, hd/su) = I(hd/su(drink,elvis))
z(verb, hd/mod) = I(hd/mod(drink,niet))
z(verb, hd/obj1) = I(hd/obj1(drink,of))

+ I(hd/obj1(drink,bier))
+ I(hd/obj1(drink,wijn))

z(conj, crd/cnj) = I(crd/cnj(of,bier))
+ I(crd/cnj(of,wijn))

It is crucial to observe that the new features do not
include any direct reference to actual words. This
means that there will be only a fairly limited number
of new features (depending on the number of tags t
and relations r), and we can expect that these fea-
tures are frequent enough to be able to estimate their
weights in training material of limited size.

Association scores can be negative if two words in
a lexical dependency occur less frequently than one
would expect if the words were independent. How-
ever, since association scores are unreliable for low
frequencies (including, often, frequencies of zero),
and since such negative associations involve low fre-
quencies by their nature, we only take into account
positive association scores.

4 Experiments

We report on two experiments. In the first exper-
iment, we report on the results of tenfold cross-
validation on the Alpino treebank. This is the ma-
terial that is standardly used for training and test-
ing. For each of the sentences of this corpus, the
system produces atmost the first 1000 parses. For
every parse we compute the quality by comparing
its dependency structure with the gold standard de-
pendency structure in the treebank. For training, at-
most 100 parses are selected randomly for each sen-
tence. For (tenfold cross-validated) testing, we use
all available parses for a given sentence. In order to
test the quality of the model, we check for each given
sentence which of its atmost 1000 parses is selected
by the disambiguation model. The quality of that
parse is used in the computation of the accuracy, as
listed in table 6. The column labeled exact measures
the proportion of sentences for which the model se-
lected the best possible parse (there can be multiple

fscore err.red. exact CA
% % % %

baseline 74.02 0.00 16.0 73.48
oracle 91.97 100.00 100.0 91.67

standard 87.41 74.60 52.0 87.02
+self-training 87.91 77.38 54.8 87.51

Table 6: Results with ten-fold cross-validation on
the Eindhoven-cdbl part of the Alpino treebank. In
these experiments, the models are used to select a
parse from a given set of atmost 1000 parses per sen-
tence.

best possible parses). The baseline row reports on
the quality of a disambiguation model which simply
selects the first parse for each sentence. The oracle
row reports on the quality of the best-possible dis-
ambiguation model, which would (by magic) always
select the best possible parse (some parses are out-
side the coverage of the system, and some parses are
generated only after more than 1000 inferior parses).
The error reduction column measures which part of
the disambiguation problem (difference between the
baseline and oracle scores) is solved by the model.1

The results show a small but clear increase in
error reduction, if the standard model (without the
association score features) is compared with a (re-
trained) model that includes the association score
features. The relatively large improvement of the ex-
act score suggests that the bilexical preference fea-
tures are particularly good at choosing between very
good parses.

For the second experiment, we evaluate how well
the resulting model performs in the full system. First
of all, this is the only really convincing evalua-
tion which measures progress for the system as a
whole by virtue of including bilexical preferences.
The second motivation for this experiment is for
methodological reasons: we now test on a truly
unseen test-set. The first experiment can be criti-

1Note that the error reduction numbers presented in the ta-
ble are lower than those presented in van Noord and Malouf
(2005). The reason is, that we report here on experiments in
which parses are generated with a version of Alpino with the
POS-tagger switched on. The POS-tagger already reduces the
number of ambiguities, and in particular solves many of the
‘easy’ cases. The resulting models, however, are more effec-
tive in practice (where the model also is applied after the POS-
tagger).

7

prec rec fscore CA
% % % %

standard 90.77 90.49 90.63 90.32
+self-training 91.19 90.89 91.01 90.73

Table 7: Results on the WR-P-P-H part of the D-Coi
corpus (2267 sentences from the newspaper Trouw,
from 2001). In these experiments, we report on the
full system. In the full system, the disambiguation
model is used to guide a best-first beam-search pro-
cedure which extracts a parse from the parse forest.
Difference in CA was found to be significant (using
paired T-test on the per sentence CA scores).

cized on methodological grounds as follows. The
Alpino Treebank was used to train the disambigua-
tion model which was used to construct the large
parsed treebank from which we extracted the counts
for the association scores. Those scores might some-
how therefore indirectly reflect certain aspects of the
Alpino Treebank training data. Testing on that data
later (with the inclusion of the association scores) is
therefore not sound.

For this second experiment we used the WR-P-P-
H (newspaper) part of the D-Coi corpus. This part
contains 2256 sentences from the newspaper Trouw
(2001). In table 7 we show the resulting f-score and
CA for a system with and without the inclusion of
the z(t, r) features. The improvement found in the
previous experiment is confirmed.

5 Conclusion and Outlook

One might wonder why self-training works in the
case of selection restrictions, at least in the set-up
described above. One may argue that, in order to
learn that milk is a good object for drink, the parser
has to analyse examples of drink milk in the raw data
correctly. But if the parser is capable of analysing
these examples, why does it need selection restric-
tions? The answer appears to be that the parser
(without selection restrictions) is able to analyse the
large majority of cases correctly. These cases in-
clude the many easy occurrences where no (diffi-
cult) ambiguities arise (case marking, number agree-
ment and other syntactic characteristics often force a
single reading). The easy cases outnumber the mis-
parsed difficult cases, and therefore the selection re-

strictions can be learned. Using these selection re-
strictions as additional features, the parser is then
able to also get the difficult, ambiguous, cases right.

There are various aspects of our method that
need further investigation. First of all, existing
techniques that involve selection restrictions (e.g.,
Resnik (1993)) typically assume classes of nouns,
rather than individual nouns. In future work we
hope to generalize our method to take classes into
account, where the aim is to learn class membership
also on the basis of large parsed corpora.

Another aspect of the technique that needs fur-
ther research involves the use of a threshold in estab-
lishing the association score, and perhaps related to
this issue, the incorporation of negative association
scores (for instance for cases where a large number
of cooccurrences of a pair would be expected but
where in fact none or very few were found).

There are also some more practical issues that
perhaps had a negative impact on our results. First,
the large parsed corpus was collected over a period
of about a year, but during that period, the actual
system was not stable. In particular, due to various
improvements of the dictionary, the root form of
words that was used by the system changed over
time. Since we used root forms in the computation
of the association scores, this could be harmful in
some specific cases. A further practical issue con-
cerns repeated sentences or even full paragraphs.
This happens in typical newspaper material for
instance in the case of short descriptions of movies
that may be repeated weekly for as long as that
movie is playing. Pairs of words that occur in
such repeated sentences receive association scores
that are much too high. The method should be
adapted to take this into account, perhaps simply by
removing duplicated sentences.

Clearly, the idea that selection restrictions ought
to be useful for parsing is not new. However, as far
as we know this is the first time that automatically
acquired selection restrictions have been shown to
improve parsing accuracy results.

Acknowledgements
This research was carried out in part in the
context of the D-Coi and Lassy projects.
The D-Coi and Lassy projects are carried

8

out within the STEVIN programme which is
funded by the Dutch and Flemish governments
(http://taalunieversum.org/taal/technologie/stevin/).

References
Takeshi Abekawa and Manabu Okumura. 2006.

Japanese dependency parsing using co-occurrence in-
formation and a combination of case elements. In
Proceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
pages 833–840, Sydney, Australia, July. Association
for Computational Linguistics.

Gosse Bouma and Geert Kloosterman. 2002. Query-
ing dependency treebanks in XML. In Proceedings of
the Third international conference on Language Re-
sources and Evaluation (LREC), pages 1686–1691,
Gran Canaria, Spain.

Ted Briscoe, John Carroll, Jonathan Graham, and Ann
Copestake. 2002. Relational evaluation schemes.
In Proceedings of the Beyond PARSEVAL Workshop
at the 3rd International Conference on Language Re-
sources and Evaluation, pages 4–8, Las Palmas, Gran
Canaria.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms, mutual information and lexicogra-
phy. Computational Linguistics, 16(1):22–29.

Robert Mario Fano. 1961. Transmission of Information:
A Statistical Theory of Communications. MIT Press,
Cambridge, MA.

Heleen Hoekstra, Michael Moortgat, Bram Renmans,
Machteld Schouppe, Ineke Schuurman, and Ton
van der Wouden, 2003. CGN Syntactische Annotatie,
December.

Mark Johnson and Stefan Riezler. 2000. Exploiting
auxiliary distributions in stochastic unification-based
grammars. In Proceedings of the first conference on
North American chapter of the Association for Com-
putational Linguistics, pages 154–161, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Daisuke Kawahara and Sadao Kurohashi. 2006. A fully-
lexicalized probabilistic model for japanese syntactic
and case structure analysis. In Proceedings of the main
conference on Human Language Technology Confer-
ence of the North American Chapter of the Association
of Computational Linguistics, pages 176–183, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective self-training for parsing. In Proceed-
ings of the Human Language Technology Conference

of the NAACL, Main Conference, pages 152–159, New
York City, USA, June. Association for Computational
Linguistics.

Robbert Prins. 2005. Finite-State Pre-Processing for
Natural Language Analysis. Ph.D. thesis, University
of Groningen.

Philip Stuart Resnik. 1993. Selection and information:
a class-based approach to lexical relationships. Ph.D.
thesis, University of Pennsylvania, Philadelphia, PA,
USA.

Gertjan van Noord and Robert Malouf. 2005.
Wide coverage parsing with stochastic at-
tribute value grammars. Draft available from
http://www.let.rug.nl/˜vannoord. A preliminary ver-
sion of this paper was published in the Proceedings
of the IJCNLP workshop Beyond Shallow Analyses,
Hainan China, 2004.

Gertjan van Noord, Ineke Schuurman, and Vincent Van-
deghinste. 2006. Syntactic annotation of large cor-
pora in STEVIN. In Proceedings of the 5th Interna-
tional Conference on Language Resources and Evalu-
ation (LREC), Genoa, Italy.

Gertjan van Noord. 2006. At Last Parsing Is Now
Operational. In TALN 2006 Verbum Ex Machina,
Actes De La 13e Conference sur Le Traitement Au-
tomatique des Langues naturelles, pages 20–42, Leu-
ven.

Examples

Here we list a number of examples, which suggest
that selection restrictions can also be important for
dependencies, other than direct objects.

High scoring pairs involving a subject relation-
ship with a verb:

alarmbel rinkel
champagnekurk knal

gij echtbreek
haan kraai

kikker kwaak
rups verpop

vonk overspring
zweet parel

belletje rinkel
brievenbus klepper

High scoring pairs involving a modifier relation-
ship with a noun:

9

in vitro fertilisatie
Hubble ruimtetelescoop

zelfrijzend bakmeel
bezittelijk voornaamwoord

ingegroeid teennagel
knapperend haardvuur

levendbarend hagedis
onbevlekt ontvangenis
ongeblust kalk

High scoring pairs involving a predicative com-
plement relationship with a verb:

beetgaar kook
beuk murw

schuimig klop
suf peins
suf pieker

doormidden scheur
ragfijn hak

stuk bijt
au serieux neem
in duigen val

lam leg

High scoring pairs involving an apposition rela-
tionship with a noun:

jongensgroep Boyzone
communicatiesysteem C2000

blindeninstituut De Steffenberg
haptonoom Ted Troost

gebedsgenezeres Greet Hofmans
rally Parijs-Dakar

tovenaar Gandalf
aartsengel Gabriel

keeperstrainer Joep Hiele
basketbalcoach Ton Boot

partizaan Tito

High scoring pairs involving a measure phrase re-
lationship with an adjective:

graadje erger
lichtjaar verwijderd

mijlenver verwijderd
niets liever

eindje verderop
graad warmer
illusie armer

kilogram wegend
onsje minder

maatje te groot
knip waard

10

Proceedings of the 10th Conference on Parsing Technologies, pages 11–22,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Evaluating Impact of Re-training a Lexical Disambiguation Model
on Domain Adaptation of an HPSG Parser

Tadayoshi Hara1 Yusuke Miyao1 Jun’ichi Tsujii 1;2;31Department of Computer Science, University of Tokyo
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 Japan2School of Computer Science, University of Manchester

POBox 88, Sackville St, MANCHESTER M60 1QD, UK3NaCTeM(National Center for Text Mining)
Manchester Interdisciplinary Biocentre, University of Manchester

131 Princess St, MANCHESTER M1 7DN, UK
E-mail: fharasan, yusuke, tsujiig@is.s.u-tokyo.ac.jp

Abstract

This paper describes an effective approach
to adapting an HPSG parser trained on the
Penn Treebank to a biomedical domain. In
this approach, we train probabilities of lex-
ical entry assignments to words in a tar-
get domain and then incorporate them into
the original parser. Experimental results
show that this method can obtain higher
parsing accuracy than previous work on do-
main adaptation for parsing the same data.
Moreover, the results show that the combi-
nation of the proposed method and the exist-
ing method achieves parsing accuracy that is
as high as that of an HPSG parser retrained
from scratch, but with much lower training
cost. We also evaluated our method in the
Brown corpus to show the portability of our
approach in another domain.

1 Introduction

Domain portability is an important aspect of the ap-
plicability of NLP tools to practical tasks. There-
fore, domain adaptation methods have recently been
proposed in several NLP areas, e.g., word sense dis-
ambiguation (Chan and Ng, 2006), statistical pars-
ing (Lease and Charniak, 2005; McClosky et al.,
2006), and lexicalized-grammar parsing (Johnson
and Riezler, 2000; Hara et al., 2005). Their aim was
to re-train a probabilistic model for a new domain at
low cost, and more or less successfully improved the
accuracy for the domain.

In this paper, we propose a method for adapting
an HPSG parser (Miyao and Tsujii, 2002; Ninomiya

et al., 2006) trained on the WSJ section of the Penn
Treebank (Marcus et al., 1994) to a biomedical do-
main. Our method re-trains a probabilistic model of
lexical entry assignments to words in a target do-
main, and incorporates it into the original parser.
The model of lexical entry assignments is a log-
linear model re-trained with machine learning fea-
tures only of word n-grams. Hence, the cost for the
re-training is much lower than the cost of training
the entire disambiguation model from scratch.

In the experiments, we used an HPSG parser orig-
inally trained with the Penn Treebank, and evaluated
a disambiguation model re-trained with the GENIA
treebank (Kim et al., 2003), which consists of ab-
stracts of biomedical papers. We varied the size of
a training corpus, and measured the transition of the
parsing accuracy and the cost required for parameter
estimation. For comparison, we also examined other
possible approaches to adapting the same parser. In
addition, we applied our approach to the Brown cor-
pus (Kucera and Francis, 1967) in order to examine
portability of our approach.

The experimental results revealed that by sim-
ply re-training the probabilistic model of lexical en-
try assignments we achieve higher parsing accuracy
than with a previously proposed adaptation method.
In addition, combined with the existing adaptation
method, our approach achieves accuracy as high as
that obtained by re-training the original parser from
scratch, but with much lower training cost. In this
paper, we report these experimental results in detail,
and discuss how disambiguation models of lexical
entry assignments contribute to domain adaptation.

In recent years, it has been shown that lexical in-

11

formation plays a very important role for high accu-
racy of lexicalized grammar parsing. Bangalore and
Joshi (1999) indicated that, correct disambiguation
with supertagging, i.e., assignment of lexical entries
before parsing, enabled effective LTAG (Lexical-
ized Tree-Adjoining Grammar) parsing. Clark and
Curran (2004a) showed that supertagging reduced
cost for training and execution of a CCG (Combina-
tory Categorial Grammar) parser while keeping ac-
curacy. Clark and Curran (2006) showed that a CCG
parser trained on data derived from lexical category
sequences alone was only slightly less accurate than
one trained on complete dependency structures. Ni-
nomiya et al. (2006) also succeeded in significantly
improving speed and accuracy of HPSG parsing by
using supertagging probabilities. These results indi-
cate that the probability of lexical entry assignments
is essential for parse disambiguation.

Such usefulness of lexical information has also
been shown for domain adaptation methods. Lease
and Charniak (2005) showed how existing domain-
specific lexical resources on a target domain may be
leveraged to augment PTB-training: part-of-speech
tags, dictionary collocations, and named-entities.
Our findings basically follow the above results. The
contribution of this paper is to provide empirical re-
sults of the relationships among domain variation,
probability of lexical entry assignment, training data
size, and training cost. In particular, this paper em-
pirically shows how much in-domain corpus is re-
quired for satisfiable performance.

In Section 2, we introduce an HPSG parser and
describe an existing method for domain adaptation.
In Section 3, we show our methods of re-training
a lexical disambiguation model and incorporating
it into the original model. In Section 4, we exam-
ine our method through experiments on the GENIA
treebank. In Section 5, we examine the portability
of our method through experiments on the Brown
corpus. In Section 6, we showed several recent re-
searches related to domain adaptation.

2 An HPSG Parser

HPSG (Pollard and Sag, 1994) is a syntactic the-
ory based on lexicalized grammar formalism. In
HPSG, a small number of grammar rules describe
general construction rules, and a large number of

HEAD noun

SUBCAT <>

HEAD verb

SUBCAT <verb>

HEAD verb

SUBCAT <noun>

Grammar Rule

3

1

Unification

HEAD

SUBCAT < >

1

2

HEAD

SUBCAT < >

3

2

HEAD

SUBCAT < >

HEAD noun

SUBCAT <>

HEAD verb

SUBCAT <verb>

HEAD verb

SUBCAT <noun>

John has come

HEAD verb

SUBCAT <noun>

HEAD noun

SUBCAT <>

HEAD verb

SUBCAT <verb>

HEAD verb

SUBCAT <noun>

Lexical Entries

John has come

John has come

Figure 1: Parsing a sentence “John has come.”

HEAD verb

SUBCAT <noun>

HEAD noun

SUBCAT <>

HEAD verb

SUBCAT <verb>

HEAD verb

SUBCAT <noun>

John has come

HEAD verb

SUBCAT <>

Figure 2: An HPSG parse tree for a sentence “John
has come.”

lexical entries express word-specific characteristics.
The structures of sentences are explained using com-
binations of grammar rules and lexical entries.

Figure 1 shows an example of HPSG parsing of
the sentence “John has come.” First, as shown at the
top of the figure, an HPSG parser assigns a lexical
entry to each word in this sentence. Next, a gram-
mar rule is assigned and applied to lexical entries. At
the middle of this figure, the grammar rule is applied
to the lexical entries for “has” and “come.” We then
obtain the structure represented at the bottom of the
figure. After that, the application of grammar rules
is done iteratively, and then we can finally obtain the
parse tree as is shown in Figure 2. In practice, since
two or more parse candidates can be given for one
sentence, a disambiguation model gives probabili-
ties to these candidates, and a candidate given the
highest probability is then chosen as a correct parse.

12

The HPSG parser used in this study is Ninomiya
et al. (2006), which is based onEnju (Miyao and
Tsujii, 2005). Lexical entries of Enju were extracted
from the Penn Treebank (Marcus et al., 1994), which
consists of sentences collected from The Wall Street
Journal (Miyao et al., 2004). The disambiguation
model of Enju was trained on the same treebank.

The disambiguation model of Enju is based on
a feature forest model (Miyao and Tsujii, 2002),
which is a log-linear model (Berger et al., 1996) on
packed forest structure. The probability,pE(tjw),
of producing the parse resultt for a given sentencew = hw1; :::; wui is defined aspE(tjw) = 1Zs Yi plex(lijw; i) � qsyn(tjl);Zs = Xt2T (w)Yi plex(lijw; i) � qsyn(tjl)
wherel = hl1; :::; lui is a list of lexical entries as-

signed tow, plex(lijw; i) is a probabilistic model
giving the probability that lexical entryli is assigned
to wordwi, qsyn(tjl) is an unnormalized log-linear
model of tree construction and gives the possibil-
ity that parse candidatet is produced from lexical
entriesl, andT (w) is a set of parse candidates as-
signed tow. With a treebank of a target domain as
training data, model parameters ofplex andqsyn are
estimated so as to maximize the log-likelihood of the
training data.

Probabilistic modelplex is defined as a log-linear
model as follows.plex(lijw; i) = 1Zwi exp Xj �jfj(li;w; i)! ;Zwi = Xli2L(wi) exp Xj �jfj(li;w; i)! ;
whereL(wi) is a set of lexical entries which can

be assigned to wordwi. Before training this model,L(wi) for all wi are extracted from the training tree-
bank. The feature functionfj(li;w; i) represents the
characteristics ofli, w andwi, while corresponding�j is its weight. For the feature functions, instead of
using unigram features adopted in Miyao and Tsujii
(2005), Ninomiya et al. (2006) used “word trigram”
and “POS 5-gram” features which are listed in Ta-
ble 1. With the revised Enju model, they achieved

Table 1: Features for the probabilities of lexical en-
try selection

surrounding words w�1w0w1 (word trigram)
surrounding POS tags p�2p�1p0p1p2 (POS 5-gram)
combinations w�1w0; w0w1; p�1w0; p0w0;p1w0; p0p1p2p3; p�2p�1p0;p�1p0p1; p0p1p2; p�2p�1;p�1p0; p0p1; p1p2

parsing accuracy as high as Miyao and Tsujii (2005),
with around four times faster parsing speed.

Johnson and Riezler (2000) suggested the pos-
sibility of the method for adapting a stochastic
unification-based grammar including HPSG to an-
other domain. They incorporated auxiliary distribu-
tions as additional features for an original log-linear
model, and then attempted to assign proper weights
to the new features. With this approach, they suc-
ceeded in decreasing to a degree indistinguishable
sentences for a target grammar.

Our previous work proposed a method for adapt-
ing an HPSG parser trained on the Penn Treebank
to a biomedical domain (Hara et al., 2005). We
re-trained a disambiguation model of tree construc-
tion, i.e., qsyn, for the target domain. In this ap-
proach,qsyn of the original parser was used as a
reference distribution(Jelinek, 1998) of another log-
linear model, and the new model was trained using a
target treebank. Since re-training used only a small
treebank of the target domain, the cost was small and
parsing accuracy was successfully improved.

3 Re-training of a Disambiguation Model
of Lexical Entry Assignments

Our idea of domain adaptation is to train a disam-
biguation model of lexical entry assignments for the
target domain and then incorporate it into the origi-
nal parser. Since Enju includes the disambiguation
model of lexical entry assignments asplex, we can
implement our method in Enju by training another
disambiguation modelp0lex(lijw; i) of lexical entry
assignments for the biomedical domain, and then re-
placing the originalplex with the newly trainedp0lex.

In this paper, forp0lex, we train a disambigua-
tion modelplex�mix(lijw; i) of lexical entry assign-
ments. plex�mix is a maximum entropy model and
the feature functions for it is the same asplex as

13

given in Table 1. With these feature functions, we
train plex�mix on the treebanks both of the original
and biomedical domains.

In the experiments, we examine the contribution
of our method to parsing accuracy. In addition, we
implement several other possible methods for com-
parison of the performances.

baseline: use the original model of Enju

GENIA only: execute the same method of training
the disambiguation model of Enju, using only
the GENIA treebank

Mixture: execute the same method of training the
disambiguation model of Enju, using both of
the Penn Treebank and the GENIA treebank (a
kind of smoothing method)

HMT05: execute the method proposed in our pre-
vious work (Hara et al., 2005)

Our method: replaceplex in the original model
with plex�mix, while leavingqsyn as it is

Our method (GENIA): replaceplex in the original
model withplex�genia, which is a probabilistic
model of lexical entry assignments trained only
with the GENIA treebank, while leavingqsyn
as it is

Our method + GENIA: replaceplex in the original
model withplex�mix andqsyn with qsyn�genia,
which is a disambiguation model of tree con-
struction trained with the GENIA treebank

Our method + HMT05: replaceplex in the orig-
inal model with plex�mix and qsyn with the
model re-trained with our previous method
(Hara et al., 2005) (the combination of our
method and the “HMT05” method)

baseline (lex): use onlyplex as a disambiguation
model

GENIA only (lex): use onlyplex�genia as a disam-
biguation model, which is a probabilistic model
of lexical entry assignments trained only with
the GENIA treebank

Mixture (lex): use onlyplex�mix as a disambigua-
tion model

The “baseline” method does no adaptation to the
biomedical domain, and therefore gives lower pars-
ing accuracy for the domain than for the original do-
main. This method is regarded as the baseline of
the experiments. The “GENIA only” method relies
solely on the treebank for the biomedical domain,
and therefore it cannot work well with the small tree-
bank. The “Mixture” method is a kind of smoothing
method using all available training data at the same
time, and therefore the method can give the highest
accuracy of the three, which would be regarded as
the ideal accuracy with the naive methods. However,
training this model is expected to be very costly.

The “baseline (lex),” “GENIA only (lex),” and
“Mixture (lex)” approaches rely solely on models of
lexical entry assignments, and show lower accuracy
than those that contain both of models of lexical en-
try assignments and tree constructions. These ap-
proaches can be utilized as indicators of importance
of combining the two types of models.

Our previous work (Hara et al., 2005) showed that
the model trained with the “HMT05” method can
give higher accuracy than the “baseline” method,
even with the small amount of the treebanks in the
biomedical domain. The model also takes much less
cost to train than with the “Mixture” method. How-
ever, they reported that the method could not give as
high accuracy as the “Mixture” method.

4 Experiments with the GENIA Corpus

4.1 Experimental Settings

We implemented the models shown in Section 3,
and then evaluated the performance of them. The
original parser, Enju, was developed on Section 02-
21 of the Penn Treebank (39,832 sentences) (Miyao
and Tsujii, 2005; Ninomiya et al., 2006). For
training those models, we used the GENIA tree-
bank (Kim et al., 2003), which consisted of 1,200
abstracts (10,848 sentences) extracted from MED-
LINE. We divided it into three sets of 900, 150, and
150 abstracts (8,127, 1,361, and 1,360 sentences),
and these sets were used respectively as training, de-
velopment, and final evaluation data. The method
of Gaussian MAP estimation (Chen and Rosenfeld,
1999) was used for smoothing. The meta parameter� of the Gaussian distribution was determined so as
to maximize the accuracy on the development set.

14

� �� �
� �� �
� �� �
� �� �

� � � � � � � � � � � � � � � � �	
 � � � � � � � � � � � �� � � � ����� �
 ���

���� !" #$� %�� ������
 � %&' �(� � ��)'*� �+ � � , � � �
 �+ � � , � � �
 � -��� �� .+ � � , � � �
 � / ��� ��+ � � , � � �
 � /)'*� �#$� %�� � - %� (.�����
 � %& -%� (.' �(� � �� -%� (.
Figure 3: Corpus size vs. accuracy for various methods

In the following experiments, we measured the
accuracy of predicate-argument dependencies on
the evaluation set. The measure is labeled preci-
sion/recall (LP/LR), which is the same measure as
previous work (Clark and Curran, 2004b; Miyao and
Tsujii, 2005) that evaluated the accuracy of lexical-
ized grammars on the Penn Treebank.

The features for the examined approaches were
all the same as the original disambiguation model.
In our previous work, the features for “HMT05”
were tuned to some extent. We evened out the fea-
tures in order to compare various approaches under
the same condition. The lexical entries for training
each model were extracted from the treebank used
for training the model of lexical entry assignments.

We compared the performances of the given mod-
els from various angles, by focusing mainly on the
accuracy against the cost. For each of the models,
we measured the accuracy transition according to
the size of the GENIA treebank for training and ac-
cording to the training time. We changed the size
of the GENIA treebank for training: 100, 200, 300,
400, 500, 600, 700, 800, and 900 abstracts. Figure
3 and 4 show the F-score transition according to the

size of the training set and the training time among
the given models respectively. Table 2 and Table 3
show the parsing performance and the training cost
obtained when using 900 abstracts of the GENIA
treebank. Note that Figure 4 does not include the
results of the “Mixture” method because only the
method took too much training cost as shown in
Table 3. It should also be noted that training time
in Figure 4 includes time required for both training
and development tests. In Table 2, accuracies with
models other than “baseline” showed the significant
differences from “baseline” according to stratified
shuffling test (Cohen, 1995) with p-value< 0:05.

In the rest of this section we analyze these exper-
imental results by focusing mainly on the contribu-
tion of re-training lexical entry assignment models.
We first observe the results with the naive or existing
approaches. On the basis of these results, we evalu-
ate the impact of our method. We then explore the
combination of our method with other methods, and
analyze the errors for our future research.

4.2 Exploring Naive or Existing Approaches

Without adaptation, Enju gave the parsing accuracy
of 86.39 in F-score, which was 3.42 point lower than

15

� �� �
� �� �
� �� �
� �� �

� � � � � � � � � � �	
 � � � � � �� � �� � � ��
������� � � !" # $%& '	 � �()
 � � � * # +()
 � � � * # + �� � !" �()
 � � � * # + , � � !"()
 � � � * # + , & '	 � �� � !" # $% � $� - �' �- �)
 � � $� - �� �� �

� �� �
� �� �
� �� �

� � � � � � � � � � �	
 � � � � � �� � �� � � ��
������� � � !" # $%& '	 � �()
 � � � * # +()
 � � � * # + �� � !" �()
 � � � * # + , � � !"()
 � � � * # + , & '	 � �� � !" # $% � $� - �' �- �)
 � � $� - �

Figure 4: Training time vs. accuracy for various methods

that Enju gave for the original domain, the Penn
Treebank. This is the baseline of the experiments.

Figure 3 shows that, for less than about 4,500
training sentences, the “GENIA only” method could
not obtain as high parsing accuracy as the “baseline”
method. This result would indicate that the training
data would not be sufficient for re-training the whole
disambiguation model from scratch. However, if
we prepared more than about 4,500 sentences, the
method could give higher accuracy than “baseline”
with low training cost (see Figure 4). On the other
hand, the “Mixture” method could obtain the high-
est level of the parsing accuracy for any size of the
GENIA treebank. However, Table 3 shows that this
method required too much training cost. It would be
a major barrier for further challenges for improve-
ment with various additional parameters.

The “HMT05” method could give higher accu-
racy than the “baseline” method for any size of the
training sentences although the accuracy was lower
than the “Mixture” method. The method could also
be carried out in much smaller training time and
lower cost than the “Mixture” method. These points
would be the benefits of the “HMT05” method. On

the other hand, when we compared the “HMT05”
method with the “GENIA only” method, for the
larger size of the training corpus, the “HMT05”
method was defeated by the “GENIA only” method
in parsing accuracy and training cost.

4.3 Impact of Re-training a Lexical
Disambiguation Model

When we focused on our method, it could constantly
give higher accuracy than the “baseline” and the
“HMT05” methods. These results would indicate
that, for an individual method, re-training a model of
lexical entry assignments might be more critical to
domain adaptation than re-training that of tree con-
struction. In addition, for the small treebank, our
method could give as high accuracy as the “Mixture”
method with much lower training cost. Our method
would be a very satisfiable approach when applied
with a small treebank. It should be noted that the re-
trained lexical model could not solely give the ac-
curacy as high as our method (see “Mixture (lex)”
in Figure 3). The combination of a re-trained lexi-
cal model and a tree construction model would have
given such a high performance.

When we compared the training time for our

16

Table 2: Parsing accuracy and time for various methods

For GENIA Corpus For Penn Treebank
LP LR F-score Time LP LR F-score Time

baseline 86.71 86.08 86.39 476 sec. 89.99 89.63 89.81 675 sec.
GENIA only 88.99 87.91 88.45 242 sec. 72.07 45.78 55.99 2,441 sec.
Mixture 90.01 89.87 89.94 355 sec. 89.93 89.60 89.77 767 sec.
HMT05 88.47 87.89 88.18 510 sec. 88.92 88.61 88.76 778 sec.
Our method 89.11 88.97 89.04 327 sec. 89.96 89.63 89.79 713 sec.
Our method (GENIA) 86.06 85.15 85.60 542 sec. 70.18 44.88 54.75 3,290 sec.
Our method + GENIA 90.02 89.88 89.95 320 sec. 88.11 87.77 87.94 718 sec.
Our method + HMT05 90.23 90.08 90.15 377 sec. 89.31 88.98 89.14 859 sec.
baseline (lex) 85.93 85.27 85.60 377 sec. 87.52 87.13 87.33 553 sec.
GENIA only (lex) 87.42 86.28 86.85 197 sec. 71.49 45.41 55.54 1,928 sec.
Mixture (lex) 88.43 88.18 88.31 258 sec. 87.49 87.12 87.30 585 sec.

Table 3: Training cost of various methods

Training time Memory used
baseline 0 sec. 0.00 GByte
GENIA only 14,695 sec. 1.10 GByte
Mixture 238,576 sec. 5.05 GByte
HMT05 21,833 sec. 1.10 GByte
Our method 12,957 sec. 4.27 GByte
Our method (GENIA) 1,419 sec. 0.94 GByte
Our method + GENIA 42,475 sec. 4.27 GByte
Our method + HMT05 31,637 sec. 4.27 GByte
baseline (lex) 0 sec. 0.00 GByte
GENIA only (lex) 1,434 sec. 1.10 GByte
Mixture (lex) 13,595 sec. 4.27 GByte

method with the one for the “HMT05” method,
our method required less time than the “HMT05”
method. This would be because our method required
only the re-training of the very simple model, that is,
a probabilistic model of lexical entry assignments.

It should be noted that our method would not
work only with in-domain treebank. The “Our
method (GENIA)” and the “GENIA only (lex)”
methods could hardly give as high parsing accuracy
as the “baseline” method. Although, for the larger
size of the GENIA treebank, the methods could
obtain a little higher accuracy than the “baseline”
method, the benefit was very little. These results
would indicate that only the treebank in the target
domain would be insufficient for adaptation. Fig-
ure 5 shows the coverage of each training corpus for
the GENIA treebank, which would also support the
above observation. It shows that the GENIA tree-
bank could not solely cover so much sentences in
the GENIA corpus as the combination of the Penn
Treebank and the GENIA treebank.

��

��

��

��

��

��

��

� 	��� ���� ���� ����

�����������������

�
�
�
�
�
�
�
�
�
	

�

���

�����

�����������

Figure 5: Corpus size vs. coverage of each training
set for the GENIA corpus

Table 4: Coverage of each training set

% of covered sentences
Training set for GENIA for PTB
GENIA treebank 77.54 % 25.66 %
PTB treebank 70.45 % 84.12 %
GENIA treebank + PTB treebank 82.74 % 84.86 %

4.4 Effectiveness of Combining Lexical and
Syntactic Disambiguation Models

When we compared the “Our method + HMT05”
and “Our method + GENIA” methods with the
“Mixture” method, the former two models could
give as the high parsing accuracies as the latter one
for any size of the training corpus. In particular,
for the maximum size, the “Our method + HMT05”
models could give a little higher parsing accuracy
than the “Mixture” method. This difference was

17

Table 5: Errors in various methods
Total errors = Common errors with baseline + Specific errors

GENIA only 2,889 = 1,906 (65.97%) + 983 (34.03%)
Mixture 2,653 = 2,177 (82.06%) + 476 (17.94%)
HMT05 3,063 = 2,470 (80.64%) + 593 (19.36%)
Our method 2,891 = 2,405 (83.19%) + 486 (16.81%)
Our method (GENIA) 3,153 = 2,070 (65.65%) + 1,083 (34.35%)
Our method + GENIA 2,650 = 2,056 (77.58%) + 594 (22.42%)
Our method + HMT05 2,597 = 1,943 (74.82%) + 654 (25.18%)
baseline 3,542

Total errors = Common errors with baseline (lex) + Specific errors
GENIA only (lex) 3,320 = 2,509 (75.57%) + 811 (24.43%)
Mixture (lex) 3,100 = 2,769 (89.32%) + 331 (10.68%)
baseline (lex) 3,757

Table 6: Types of disambiguation errors

of errors
Only forError cause Common Baseline Adapted

Attachment ambiguity
prepositional phrase 12 12 6
relative clause 0 1 0
adjective 4 2 2
adverb 1 3 1
verb phrase 10 3 1
subordinate clause 0 2 0
Argument/modifier distinction
to-infinitive 0 0 7
Lexical ambiguity
preposition/modifier 0 3 0
verb subcategorization frame 5 0 6
participle/adjective 0 2 0
Test set errors
Errors of treebank 2 0 0
Other types of error causes
Comma 10 8 4
Noun phrase identification 21 5 8
Coordination/insertion 6 3 5
Zero-pronoun resolution 8 1 0
Others 1 1 2

shown to be significant according to stratified shuf-
fling test with p-value< 0.10, which might suggest
the beneficial impact of the “Our method + HMT05”
method. In addition, Figure 4 and Table 3 show
that training the “Our method + HMT05” or “Our
method + GENIA” model required much less time
and PC memory than training the “Mixture” model.
According to the above observation, we would be
able to say that the “Our method + HMT05” method
might be the most ideal among the given methods.

The “Our method + HMT05” and “Our method
+ GENIA” methods showed the different perfor-

mances in the point that the former could obtain
high parsing accuracy with less training time than
the latter. This would come from the fact that the
latter method trainedqsyn�genia solely with lexical
entries in the GENIA treebank, while the former one
trainedqsyn with rich lexical entries borrowed fromqlex�mix. Rich lexical entries would decrease un-
known lexical entries, and therefore would improve
the effectiveness of making the feature forest model.
On the other hand, the difference in lexical entries
would not seem to affect so much on the contribu-
tion of tree construction model to the parsing accu-
racy. In our experiments, the parameters for a tree
construction model such as feature functions were
not adjusted thoroughly, which might possibly blur
the benefits of the rich lexical entries.

4.5 Error Analysis

Table 5 shows the comparison of the number of er-
rors for various models with that for the original
model in parsing the GENIA corpus. For each of
the methods, the table gives the numbers of common
errors with the original Enju model and the ones
specific to that method. If possible, we would like
our methods to decrease the errors in the original
Enju model while not increasing new errors. The ta-
ble shows that our method gave the least percentage
of newly added errors among the approaches except
for the methods utilizing only lexical entry assign-
ments models. On the other hand, the “Our method
+ HMT05” approach gave over 25 % of newly added
errors, although we considered above that the ap-
proach gave the best performance.

In order to explore this phenomenon, we observed

18

the errors for the “Our method + HMT05” and the
baseline models, and then classified them into sev-
eral types. Table 6 shows manual classification of
causes of errors for the two models in 50 sentences.
In the classification, one error often propagated and
resulted in multiple errors of predicate argument de-
pendencies. The numbers in the table include such
double counting. It would be desirable that the er-
rors in the rightmost column were less than the ones
in the middle column, which means that the “Our
method + HMT05” approach did not produce more
errors specific to the approach than the baseline.

With the “Our method + HMT05” approach,
errors for “attachment ambiguity” decreased as a
whole. Errors for “comma” and lexical ambiguities
of “preposition/modifier” and “participle/adjective”
also decreased. For these attributes, the approach
could learn in the training phase lexical properties of
continuous words with the lexical entry assignment
model, and syntactic relations of separated words
with the tree construction model. On the other hand,
the errors for “to-infinitive argument/modifier dis-
tinction” and “verb subcategorization frame ambi-
guity” considerably increased. These two types of
errors have close relation to each other because the
failure to recognize verb subcategorization frames
tends to cause the failure to recognize the syntactic
role of the to-infinitives. We must research further
on these errors in our future work.

When we focused on “noun phrase identifica-
tion,” most of the errors did not differ between
the two models. In the biomedical domain, there
would be many technical terms which could not be
correctly identified solely with the disambiguation
model, which would possibly result in such many
untouched errors. In order to properly cope with
these terms, we might have to introduce some kinds
of dictionaries or named entity recognition methods.

5 Experiments with the Brown Corpus

5.1 Brown Corpus

We applied our methods to the Brown corpus
(Kucera and Francis, 1967) and examined the porta-
bility of our method. The Brown corpus consists of
15 domains, and the Penn Treebank gives bracketed
version of the corpus for the 8 domains containing
19,395 sentences (Table 7).

Table 7: Domains in the Brown corpus

label domain sentences
CF popular lore 2,420
CG belles lettres 2,546
CK general fiction 3,172
CL mystery and detective fiction 2,745
CM science fiction 615
CN adventure and western fiction 3,521
CP romance and love story 3,089
CR humor 812
All total of all the above domains 19,395

For the target of adaptation, we utilized the do-
main containing all of these 8 domains as a total fic-
tion domain (labelled “All”) as well as the individual
ones. As in the experiments with the GENIA Tree-
bank, we divided sentences for each domain into
three parts, 80% for training, 10% for develepment
test, and 10% for final test. For the “All” domain, we
merged all training sets, all development test sets,
and all final test sets for the 8 domains respectively.

Table 8 and 9 show the parsing accuracy and train-
ing time for each domain with the various methods
shown in Section 3. The methods are fundamen-
tally the same as in the experiments with the GE-
NIA corpus except that the target corpus is replaced
with the Brown corpus. In order to avoid confusion,
we replaced “GENIA” in the names of the meth-
ods with “Brown.” Each of the bold numbers in
Table 8 means that it was the best accuracy given
for the target domain. It should be noted that the
“CM” and “CR” domain contains very small tree-
bank, and therefore we must consider that the results
with these domains would not be so useful.

5.2 Evaluation of Portability of Our Method

When we focus on the “ALL” domain, the ap-
proaches other than the baseline succeeded to give
higher parsing accuracy than the baseline. This
would show that these approaches were effective not
only for the GENIA corpus but also for the Brown
corpus. The “Mixture” method gave the highest ac-
curacy which was 3.41 point higher than the base-
line. The “Our method + HMT05” approach also
gave the accuracy as high as the “Mixture” method.
In addition, as is the case with the GENIA corpus,
the approach could be trained with much less time
than the “Mixture” method. Not only for these two

19

Table 8: Parsing accuracy for the Brown corpus

F-score
ALL CF CG CK CL CM CN CP CR

baseline 83.09 85.75 85.38 81.12 77.53 85.30 82.84 85.18 76.63
Brown only 84.84 77.65 78.92 75.72 70.56 50.02 78.38 79.10 50.34
Mixture 86.50 86.59 85.94 82.49 78.66 84.82 84.28 86.85 76.45
HMT05 83.79 85.80 84.98 81.48 76.91 85.25 83.50 85.66 77.15
Our method 86.14 86.73 85.74 82.77 77.95 85.40 84.23 86.90 76.71
Our method (GENIA) 84.71 78.49 79.63 75.43 70.86 50.24 78.49 79.69 51.82
Our method + GENIA 86.00 86.12 85.41 83.22 77.10 83.39 84.21 85.77 76.91
Our method + HMT05 86.44 86.76 85.85 82.90 77.70 85.61 84.43 86.87 77.48
baseline (lex) 82.19 84.69 83.85 80.25 76.32 83.42 81.29 84.13 77.33
Brown only (lex) 83.92 77.12 77.81 75.06 70.35 49.95 77.06 78.84 50.63
Mixture (lex) 85.29 85.47 84.18 81.88 77.22 83.98 82.67 85.65 77.58

Table 9: Consumed time for various methods for the Brown corpus

Consumed time for training (sec.)
ALL CF CG CK CL CM CN CP CR

baseline 0 0 0 0 0 0 0 0 0
Brown only 42,614 4,115 3,763 2,478 2,162 925 2,362 2,695 1,226
Mixture 383,557 190,449 159,490 156,299 210,357 131,335 170,108 224,045 184,251
HMT05 30,933 6,003 4,830 4,186 5,010 1,681 4,411 5,069 1,588
Our method 15,912 11,053 10,988 11,151 10,782 10,158 11,075 10,594 10,284
Our method (Brown) 3,273 312 373 310 249 46 321 317 86
Our method + Brown 130,434 24,633 21,848 20,171 19,184 11,995 19,164 20,922 13,461
Our method + HMT05 54,355 17,722 16,627 15,229 14,914 12,226 15,760 16,175 11,724
baseline (lex) 0 0 0 0 0 0 0 0 0
Brown only (lex) 3,001 317 373 308 251 47 321 317 86
Mixture (lex) 21,148 11,128 11,251 11,094 10,728 10,466 11,151 10,897 10,537

methods, the experimental results for the “All” do-
main showed the tendency similar to the GENIA
corpus as a whole, except for the less improvement
with the “HMT05” method.

When we focus on the individual domains, our
method could successfully obtain higher parsing ac-
curacy than the baseline for all the domains. More-
over, for the “CP” domain, our method could give
the highest parsing accuracy among the methods.
These results would support the portability of re-
training the model for lexical entry assignment. The
“Our method + HMT05” approach, which gave the
highest performance for the GENIA corpus, also
gave accuracy improvement for the all domains
while it did not give so much impact for the “CL”
domain. The “Mixture” approach, which utilized
the same lexical entry assignment model, could ob-
tain 0.94 point higher parsing accuracy than the
“Our method + HMT05” approach. Table 10, which
shows the lexical coverage with each domains, does
not seem to indicate the noteworthy difference in

lexical entry coverage between the “CL” and the
other domains. As mentioned in the error analysis
in Section 4, the model of tree construction might
affect the performance in some way. In our future
work, we must clarify the mechanism of this result
and would like to further improve the performance.

6 Related Work

For recent years, domain adaptation has been stud-
ied extensively. This section explores how our re-
search is relevant to the previous works.

Our previous work (Hara et al., 2005) and this
research mainly focused on how to draw as much
benefit from a smaller amount of in-domain anno-
tated data as possible. Titov and Henderson (2006)
also took this type of approach. They first trained a
probabilistic model on original and target treebanks
and used it to define a kernel over parse trees. This
kernel was used in a large margin classifier trained
on a small set of data only from the target domain,
and the classifier was then used for reranking the top

20

Table 10: Coverage of each training set for the Brown corpus

% of covered sentences for the target corpus
Training set ALL CF CG CK CL CM CN CP CR
Target treebank 74.99 % 49.13 % 50.00 % 47.97 % 49.08 % 29.66 % 53.51 % 64.01 % 8.57%
PTB treebank 70.02 % 72.09 % 68.93 % 66.42 % 68.87 % 78.62 % 70.00 % 77.59 % 47.14 %
Target + PTB 79.77 % 74.71 % 71.47 % 71.59 % 70.45 % 80.00 % 72.70 % 80.39 % 52.86 %

parses on the target domain.

On the other hand, several studies have explored
how to draw useful information from unlabelled in-
domain data. Roark and Bacchiani (2003) adapted a
lexicalized PCFG by using maximuma posteriori
(MAP) estimation for handling unlabelled adapta-
tion data. In the field of classifications, Blitzer et al.
(2006) utilized unlabelled corpora to extract features
of structural correspondences, and then adapted a
POS-tagger to a biomedical domain. Steedman et
al. (2003) utilized a co-training parser for adapta-
tion and showed that co-training is effective even
across domains. McClosky et al. (2006) adapted a
re-ranking parser to a target domain by self-training
the parser with unlabelled data in the target domain.
Clegg and Shepherd (2005) combined several ex-
isting parsers with voting schemes or parse selec-
tion, and then succeeded to gain the improvement
of performance for a biomedical domain. Although
unsupervised methods can exploit large in-domain
data, the above studies could not obtain the accu-
racy as high as that for an original domain, even
with the sufficient size of the unlabelled corpora.
On the other hand, we showed that our approach
could achieve this goal with about 6,500 labelled
sentences. However, when 6,500 labelled can not be
prepared, it might be worth while to explore the po-
tentiality of combining the above unsupervised and
our supervised methods.

When we focuses on biomedical domains, there
have also been various works which coped with
domain adaptation. Biomedical sentences contain
many technical terms which cannot be easily recog-
nized without expert knowledge, and this damages
performances of NLP tools directly. In order to solve
this problem, two types of approaches have been
suggested. The first approach is to utilize existing
domain-specific lexical resources. Lease and Char-
niak (2005) utilized POS tags, dictionary colloca-
tions, and named entities for parser adaptation, and

then succeeded to achieve accuracy improvement.
The second approach is to expand lexical entries for
a target domain. Szolovits (2003) extended a lexical
dictionary for a target domain by predicting lexical
information for words. They transplanted lexicalin-
discernibilityof words in an original domain into a
target domain. Pyysalo et al. (2004) showed the ex-
perimental results that this approach improved the
performance of a parser for Link Grammar. Since
our re-trained model of lexical entry assignments
was shown to be unable to cope with this problem
properly (shown in Section 4), the combination of
the above approaches with our approach would be
expected to bring further improvement.

7 Conclusions

This paper presented an effective approach to adapt-
ing an HPSG parser trained on the Penn Treebank
to a biomedical domain. We trained a probabilis-
tic model of lexical entry assignments in a target
domain and then incorporated it into the original
parser. The experimental results showed that this
approach obtains higher parsing accuracy than the
existing approach of adapting the structural model
alone. Moreover, the results showed that, the com-
bination of our method and the existing approach
could achieve parsing accuracy that is as high as that
obtained by re-training an HPSG parser for the target
domain from scratch, but with much lower training
cost. With this model, the parsing accuracy for the
target domain improved by 3.84 f-score points, us-
ing a domain-specific treebank of 8,127 sentences.
Experiments showed that 6,500 sentences are suffi-
cient for achieving as high parsing accuracy as the
baseline for the original domain.

In addition, we applied our method to the Brown
corpus in order to evaluate the portability of our
method. Experimental results showed that the pars-
ing accuracy for the target domain improved by 3.35
f-score points. On the other hand, when we focused

21

on some individual domains, that combination ap-
proach could not give the desirable results.

In future work, we would like to explore further
performance improvement of our approach. For the
first step, domain-specific features such as named
entities could be much help for solving unsuccess-
ful recognition of technical terms.

Acknowledgment

This research was partially supported by Grant-in-
Aid for Specially Promoted Research 18002007.

References

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing.Compu-
tational Linguistics, 25(2).

A. L. Berger, S. A. Della Pietra, and V. J. Della
Pietra. 1996. A maximum entropy approach to nat-
ural language processing.Computational Linguistics,
22(1):39–71.

J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain
adaptation with structural correspondence learning. In
Proc. EMNLP 2006.

Y. S. Chan and H. T. Ng. 2006. Estimating class priors
in domain adaptation for word sense disambiguation.
In Proc. 21st COLING and 44th ACL.

S. Chen and R. Rosenfeld. 1999. A gaussian prior for
smoothing maximum entropy models. Technical Re-
port CMUCS-99-108, Carnegie Mellon University.

S. Clark and J. R. Curran. 2004a. The importance of su-
pertagging for wide-coverage CCG parsing. InProc.
COLING-04.

S. Clark and J. R. Curran. 2004b. Parsing the WSJ using
CCG and log-linear models. InProc. 42nd ACL.

S. Clark and J. R. Curran. 2006. Partial training for a
lexicalized-grammar parser. InProc. NAACL-06.

A. B. Clegg and A. Shepherd. 2005. Evaluating and
integrating treebank parsers on a biomedical corpus.
In Proc. the ACL Workshop on Software.

P. R. Cohen. 1995.Empirical Methods for Artificial In-
telligence. MIT Press.

T. Hara, Y. Miyao, and J. Tsujii. 2005. Adapting a prob-
abilistic disambiguation model of an HPSG parser to a
new domain. InProc. IJCNLP 2005.

F. Jelinek. 1998.Statistical Methods for Speech Recog-
nition. The MIT Press.

M. Johnson and S. Riezler. 2000. Exploiting auxiliary
distributions in stochastic unification-based grammars.
In Proc. 1st NAACL.

J. D. Kim, T. Ohta, Y. Teteisi, and J. Tsujii. 2003. GE-
NIA corpus - a semantically annotated corpus for bio-
textmining.Bioinformatics, 19(suppl. 1):i180–i182.

H. Kucera and W. N. Francis. 1967.Computational
Analysis of Present-Day American English. Brown
University Press, Providence, RI.

M. Lease and E. Charniak. 2005. Parsing biomedical
literature. InIn Proc. IJCNLP 2005.

M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn Treebank: Annotating predicate argu-
ment structure. InARPA HLT Workshop.

D. McClosky, E. Charniak, and M. Johnson. 2006.
Reranking and self-training for parser adaptation. In
Proc. 21st COLING and 44th ACL.

Y. Miyao and J. Tsujii. 2002. Maximum entropy estima-
tion for feature forests. InProc. HLT 2002.

Y. Miyao and J. Tsujii. 2005. Probabilistic disam-
biguation models for wide-coverage HPSG parsing. In
Proc. ACL 2005.

Y. Miyao, T. Ninomiya, and J. Tsujii. 2004. Corpus-
oriented grammar development for acquiring a Head-
driven Phrase Structure Grammar from the Penn Tree-
bank. InProc. IJCNLP-04.

T. Ninomiya, T. Matsuzaki, Y. Tsuruoka, Y. Miyao, and
J. Tsujii. 2006. Extremely lexicalized models for ac-
curate and fast HPSG parsing. InProc. EMNLP 2006.

C. Pollard and I. A. Sag. 1994.Head-Driven Phrase
Structure Grammar. University of Chicago Press.

S. Pyysalo, F. Ginter, T. Pahikkala, J. Koivula, J. Boberg,
J. Jrvinen, and T. Salakoski. 2004. Analysis
of Link Grammar on biomedical dependency cor-
pus targeted at protein-protein interactions. InProc.
BioNLP/NLPBA 2004.

B. Roark and M. Bacchiani. 2003. Supervised and unsu-
pervised PCFG adaptation to novel domains. InProc.
HLT-NAACL 2003.

M. Steedman, M. Osborne, A. Sarkar, S. Clark, R. Hwa,
J. Hockenmaier, P. Ruhen, S. Baker, and J. Crim.
2003. Bootstrapping statistical parsers from small
datasets. InProc. European ACL (EACL).

P. Szolovits. 2003. Adding a medical lexicon to an En-
glish parser. InAMIA Annu Symp Proc.

Ivan Titov and James Henderson. 2006. Porting statisti-
cal parsers with data-defined kernels. InProc. CoNLL-
2006.

22

Proceedings of the 10th Conference on Parsing Technologies, pages 23–32,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Semi-supervised Training of a Statistical Parser

from Unlabeled Partially-bracketed Data

Rebecca Watson and Ted Briscoe

Computer Laboratory

University of Cambridge, UK

FirstName.LastName@cl.cam.ac.uk

John Carroll

Department of Informatics

University of Sussex, UK

J.A.Carroll@sussex.ac.uk

Abstract

We compare the accuracy of a statisti-
cal parse ranking model trained from a
fully-annotated portion of the Susanne
treebank with one trained from unla-
beled partially-bracketed sentences de-
rived from this treebank and from the
Penn Treebank. We demonstrate that
confidence-based semi-supervised tech-
niques similar to self-training outperform
expectation maximization when both are
constrained by partial bracketing. Both
methods based on partially-bracketed
training data outperform the fully su-
pervised technique, and both can, in
principle, be applied to any statistical
parser whose output is consistent with
such partial-bracketing. We also explore
tuning the model to a different domain
and the effect of in-domain data in the
semi-supervised training processes.

1 Introduction

Extant statistical parsers require extensive and
detailed treebanks, as many of their lexical and
structural parameters are estimated in a fully-
supervised fashion from treebank derivations.
Collins (1999) is a detailed exposition of one
such ongoing line of research which utilizes the
Wall Street Journal (WSJ) sections of the Penn
Treebank (PTB). However, there are disadvan-
tages to this approach. Firstly, treebanks are ex-
pensive to create manually. Secondly, the richer
the annotation required, the harder it is to adapt
the treebank to train parsers which make differ-

ent assumptions about the structure of syntac-
tic analyses. For example, Hockenmeier (2003)
trains a statistical parser based on Combinatory
Categorial Grammar (CCG) on the WSJ PTB,
but first maps the treebank to CCG derivations
semi-automatically. Thirdly, many (lexical) pa-
rameter estimates do not generalize well be-
tween domains. For instance, Gildea (2001) re-
ports that WSJ-derived bilexical parameters in
Collins’ (1999) Model 1 parser contribute about
1% to parse selection accuracy when test data
is in the same domain, but yield no improve-
ment for test data selected from the Brown Cor-
pus. Tadayoshi et al. (2005) adapt a statistical
parser trained on the WSJ PTB to the biomed-
ical domain by retraining on the Genia Corpus,
augmented with manually corrected derivations
in the same format. To make statistical parsing
more viable for a range of applications, we need
to make more effective and flexible use of extant
training data and minimize the cost of annota-
tion for new data created to tune a system to a
new domain.

Unsupervised methods for training parsers
have been relatively unsuccessful to date, in-
cluding expectation maximization (EM) such as
the inside-outside algorithm (IOA) over PCFGs
(Baker, 1979; Prescher, 2001). However, Pereira
and Schabes (1992) adapted the IOA to apply
over semi-supervised data (unlabeled bracket-
ings) extracted from the PTB. They constrain
the training data (parses) considered within the
IOA to those consistent with the constituent
boundaries defined by the bracketing. One ad-
vantage of this approach is that, although less
information is derived from the treebank, it gen-

23

eralizes better to parsers which make different
representational assumptions, and it is easier,
as Pereira and Schabes did, to map unlabeled
bracketings to a format more consistent with
the target grammar. Another is that the cost
of annotation with unlabeled brackets should be
lower than that of developing a representation-
ally richer treebank. More recently, both Riezler
et al. (2002) and Clark and Curran (2004) have
successfully trained maximum entropy parsing
models utilizing all derivations in the model con-
sistent with the annotation of the WSJ PTB,
weighting counts by the normalized probability
of the associated derivation. In this paper, we
extend this line of investigation by utilizing only
unlabeled and partial bracketing.

We compare the performance of a statisti-
cal parsing model trained from a detailed tree-
bank with that of the same model trained with
semi-supervised techniques that require only un-
labeled partially-bracketed data. We contrast
an IOA-based EM method for training a PGLR
parser (Inui et al., 1997), similar to the method
applied by Pereira and Schabes to PCFGs, to a
range of confidence-based semi-supervised meth-
ods described below. The IOA is a generaliza-
tion of the Baum-Welch or Forward-Backward
algorithm, another instance of EM, which can be
used to train Hidden Markov Models (HMMs).
Elworthy (1994) and Merialdo (1994) demon-
strated that Baum-Welch does not necessarily
improve the performance of an HMM part-of-
speech tagger when deployed in an unsuper-
vised or semi-supervised setting. These some-
what negative results, in contrast to those of
Pereira and Schabes (1992), suggest that EM
techniques require fairly determinate training
data to yield useful models. Another motiva-
tion to explore alternative non-iterative meth-
ods is that the derivation space over partially-
bracketed data can remain large (>1K) while
the confidence-based methods we explore have a
total processing overhead equivalent to one iter-
ation of an IOA-based EM algorithm.

As we utilize an initial model to annotate ad-
ditional training data, our methods are closely
related to self-training methods described in the
literature (e.g. McClosky et al. 2006, Bacchi-

ani et al. 2006). However these methods have
been applied to fully-annotated training data
to create the initial model, which is then used
to annotate further training data derived from
unannotated text. Instead, we train entirely
from partially-bracketed data, starting from the
small proportion of ‘unambiguous’ data whereby
a single parse is consistent with the annota-
tion. Therefore, our methods are better de-
scribed as semi-supervised and the main focus
of this work is the flexible re-use of existing
treebanks to train a wider variety of statistical
parsing models. While many statistical parsers
extract a context-free grammar in parallel with
a statistical parse selection model, we demon-
strate that existing treebanks can be utilized to
train parsers that deploy grammars that make
other representational assumptions. As a result,
our methods can be applied by a range of parsers
to minimize the manual effort required to train
a parser or adapt to a new domain.

§2 gives details of the parsing system that are
relevant to this work. §3 and §4 describe our
data and evaluation schemes, respectively. §5
describes our semi-supervised training methods.
§6 explores the problem of tuning a parser to a
new domain. Finally, §7 gives conclusions and
future work.

2 The Parsing System

Sentences are automatically preprocessed in a
series of modular pipelined steps, including to-
kenization, part of speech (POS) tagging, and
morphological analysis, before being passed to
the statistical parser. The parser utilizes a man-
ually written feature-based unification grammar
over POS tag sequences.

2.1 The Parse Selection Model

A context-free ‘backbone’ is automatically de-
rived from the unification grammar1 and a gen-
eralized or non-deterministic LALR(1) table is

1This backbone is determined by compiling out the
values of prespecified attributes. For example, if we com-
pile out the attribute PLURAL which has 2 possible val-
ues (plural or not) we will create 2 CFG rules for each
rule with categories that contain PLURAL. Therefore,
no information is lost during this process.

24

constructed from this backbone (Tomita, 1987).
The residue of features not incorporated into
the backbone are unified on each reduce action
and if unification fails the associated derivation
paths also fail. The parser creates a packed
parse forest represented as a graph-structured
stack.2 The parse selection model ranks com-
plete derivations in the parse forest by com-
puting the product of the probabilities of the
(shift/reduce) parse actions (given LR state and
lookahead item) which created each derivation
(Inui et al., 1997).

Estimating action probabilities, consists of
a) recording an action history for the correct
derivation in the parse forest (for each sen-
tence in a treebank), b) computing the fre-
quency of each action over all action histories
and c) normalizing these frequencies to deter-
mine probability distributions over conflicting
(i.e. shift/reduce or reduce/reduce) actions.

Inui et al. (1997) describe the probability
model utilized in the system where a transition
is represented by the probability of moving from
one stack state, σi−1, (an instance of the graph
structured stack) to another, σi. They estimate
this probability using the stack-top state si−1,
next input symbol li and next action ai. This
probability is conditioned on the type of state
si−1. Ss and Sr are mutually exclusive sets
of states which represent those states reached
after shift or reduce actions, respectively. The
probability of an action is estimated as:

P (li, ai, σi|σi−1) ≈

{

P (li, ai|si−1) si−1 ∈ Ss

P (ai|si−1, li) si−1 ∈ Sr

}

Therefore, normalization is performed over all
lookaheads for a state or over each lookahead
for the state depending on whether the state is
a member of Ss or Sr, respectively (hereafter
the I function). In addition, Laplace estimation
can be used to ensure that all actions in the

2The parse forest is an instance of a feature forest as
defined by Miyao and Tsujii (2002). We will use the term
‘node’ herein to refer to an element in a derivation tree
or in the parse forest that corresponds to a (sub-)analysis
whose label is the mother’s label in the corresponding CF
‘backbone’ rule.

table are assigned a non-zero probability (the
IL function).

3 Training Data

The treebanks we use in this work are in one of
two possible formats. In either case, a treebank
T consists of a set of sentences. Each sentence
t is a pair (s,M), where s is the automatically
preprocessed set of POS tagged tokens (see §2)
and M is either a fully annotated derivation, A,
or an unlabeled bracketing U . This bracketing
may be partial in the sense that it may be com-
patible with more than one derivation produced
by a given parser. Although occasionally the
bracketing is itself complete but alternative non-
terminal labeling causes indeterminacy, most of-
ten the ‘flatter’ bracketing available from ex-
tant treebanks is compatible with several alter-
native ‘deeper’ mostly binary-branching deriva-
tions output by a parser.

3.1 Derivation Consistency

Given t = (s,A), there will exist a single deriva-
tion in the parse forest that is compatible (cor-
rect). In this case, equality between the deriva-
tion tree and the treebank annotation A iden-
tifies the correct derivation. Following Pereira
and Schabes (1992) given t = (s, U), a node’s
span in the parse forest is valid if it does not
overlap with any span outlined in U , and hence,
a derivation is correct if the span of every node
in the derivation is valid in U . That is, if no
crossing brackets are present in the derivation.
Thus, given t = (s, U), there will often be more
than one derivation compatible with the partial
bracketing.

Given the correct nodes in the parse forest
or in derivations, we can then extract the cor-
responding action histories and estimate action
probabilities as described in §2.1. In this way,
partial bracketing is used to constrain the set of
derivations considered in training to those that
are compatible with this bracketing.

3.2 The Susanne Treebank and

Baseline Training Data

The Susanne Treebank (Sampson, 1995) is uti-
lized to create fully annotated training data.

25

This treebank contains detailed syntactic deriva-
tions represented as trees, but the node label-
ing is incompatible with the system grammar.
We extracted sentences from Susanne and auto-
matically preprocessed them. A few multiwords
are retokenized, and the sentences are retagged
using the POS tagger, and the bracketing de-
terministically modified to more closely match
that of the grammar, resulting in a bracketed
corpus of 6674 sentences. We will refer to this
bracketed treebank as S, henceforth.

A fully-annotated and system compatible
treebank of 3543 sentences from S was also
created. We will refer to this annotated tree-
bank, used for fully supervised training, as B.
The system parser was applied to construct
a parse forest of analyses which are compati-
ble with the bracketing. For 1258 sentences,
the grammar writer interactively selected cor-
rect (sub)analyses within this set until a sin-
gle analysis remained. The remaining 2285 sen-
tences were automatically parsed and all consis-
tent derivations were returned. Since B contains
more than one possible derivation for roughly
two thirds of the data the 1258 sentences (paired
with a single tree) were repeated twice so that
counts from these trees were weighted more
highly. The level of reweighting was determined
experimentally using some held out data from
S. The baseline supervised model against which
we compare in this work is defined by the func-
tion IL(B) as described in §2.1. The costs of
deriving the fully-annotated treebank are high
as interactive manual disambiguation takes an
average of ten minutes per sentence, even given
the partial bracketing derived from Susanne.

3.3 The WSJ PTB Training Data

The Wall Street Journal (WSJ) sections of the
Penn Treebank (PTB) are employed as both
training and test data by many researchers in
the field of statistical parsing. The annotated
corpus implicitly defines a grammar by provid-
ing a labeled bracketing over words annotated
with POS tags. We extracted the unlabeled
bracketing from the de facto standard training

sections (2-21 inclusive).3 We will refer to the
resulting corpus as W and the combination (con-
catenation) of the partially-bracketed corpora S

and W as SW .

3.4 The DepBank Test Data

King et al. (2003) describe the development
of the PARC 700 Dependency Bank, a gold-
standard set of relational dependencies for 700
sentences (from the PTB) drawn at random
from section 23 of the WSJ (the de facto stan-
dard test set for statistical parsing). In all the
evaluations reported in this paper we test our
parser over a gold-standard set of relational de-
pendencies compatible with our parser output
derived (Briscoe and Carroll, 2006) from the
PARC 700 Dependency Bank (DepBank, hence-
forth).

The Susanne Corpus is a (balanced) subset of
the Brown Corpus which consists of 15 broad
categories of American English texts. All but
one category (reportage text) is drawn from dif-
ferent domains than the WSJ. We therefore, fol-
lowing Gildea (2001) and others, consider S, and
also the baseline training data, B, as out-of-
domain training data.

4 The Evaluation Scheme

The parser’s output is evaluated using a rela-
tional dependency evaluation scheme (Carroll,
et al., 1998; Lin, 1998) with standard measures:
precision, recall and F1. Relations are organized
into a hierarchy with the root node specifying an
unlabeled dependency. The microaveraged pre-
cision, recall and F1 scores are calculated from
the counts for all relations in the hierarchy which
subsume the parser output. The microaveraged
F1 score for the baseline system using this eval-
uation scheme is 75.61%, which – over similar
sets of relational dependencies – is broadly com-
parable to recent evaluation results published by
King and collaborators with their state-of-the-
art parsing system (Briscoe et al., 2006).

3The pipeline is the same as that used for creating S
though we do not automatically map the bracketing to
be more consistent with the system grammar, instead,
we simply removed unary brackets.

26

4.1 Wilcoxon Signed Ranks Test

The Wilcoxon Signed Ranks (Wilcoxon, hence-
forth) test is a non-parametric test for statistical
significance that is appropriate when there is one
data sample and several measures. For example,
to compare the accuracy of two parsers over the
same data set. As the number of samples (sen-
tences) is large we use the normal approximation
for z. Siegel and Castellan (1988) describe and
motivate this test. We use a 0.05 level of sig-
nificance, and provide z-value probabilities for
significant results reported below. These results
are computed over microaveraged F1 scores for
each sentence in DepBank.

5 Training from Unlabeled

Bracketings

We parsed all the bracketed training data us-
ing the baseline model to obtain up to 1K top-
ranked derivations and found that a significant
proportion of the sentences of the potential set
available for training had only a single deriva-
tion compatible with their unlabeled bracket-
ing. We refer to these sets as the unambiguous
training data (γ) and will refer to the remaining
sentences (for which more than one derivation
was compatible with their unlabeled bracketing)
as the ambiguous training data (α). The avail-
ability of significant quantities of unambiguous
training data that can be found automatically
suggests that we may be able to dispense with
the costly reannotation step required to gener-
ate the fully supervised training corpus, B.

Table 1 illustrates the split of the corpora into
mutually exclusive sets γ, α, ‘no match’ and
‘timeout’. The latter two sets are not utilized
during training and refer to sentences for which
all parses were inconsistent with the bracketing
and those for which no parses were found due
to time and memory limitations (self-imposed)
on the system.4 As our grammar is different
from that implicit in the WSJ PTB there is a
high proportion of sentences where no parses
were consistent with the unmodified PTB brack-

4As there are time and memory restrictions during
parsing, the SW results are not equal to the sum of those
from S and W analysis.

Corpus | γ | | α | No Match Timeout
S 1097 4138 1322 191
W 6334 15152 15749 1094
SW 7409 19248 16946 1475

Table 1: Corpus split for S, W and SW .

eting. However, a preliminary investigation of
no matches didn’t yield any clear patterns of
inconsistency that we could quickly ameliorate
by simple modifications of the PTB bracketing.
We leave for the future a more extensive investi-
gation of these cases which, in principle, would
allow us to make more use of this training data.
An alternative approach that we have also ex-
plored is to utilize a similar bootstrapping ap-
proach with data partially-annotated for gram-
matical relations (Watson and Briscoe, 2007).

5.1 Confidence-Based Approaches

We use γ to build an initial model. We then
utilize this initial model to derive derivations
(compatible with the unlabeled partial brack-
eting) for α from which we select additional
training data. We employ two types of selection
methods. First, we select the top-ranked deriva-
tion only and weight actions which resulted in
this derivation equally with those of the initial
model (C1). This method is similar to ‘Viterbi
training’ of HMMs though we do not weight
the corresponding actions using the top parse’s
probability. Secondly, we select more than one
derivation, placing an appropriate weight on
the corresponding action histories based on the
initial model’s confidence in the derivation. We
consider three such models, in which we weight
transitions corresponding to each derivation
ranked r with probability p in the set of size n

either using 1
n
, 1

r
or p itself to weight counts.5

For example, given a treebank T with sentences
t = (s, U), function P to return the set of
parses consistent with U given t and function A

that returns the set of actions given a parse p,
then the frequency count of action ak in Cr is

5In §2.1 we calculate action probabilities based on fre-
quency counts where we perform a weighted sum over
action histories and each history has a weight of 1. We
extend this scheme to include weights that differ between
action histories corresponding to each derivation.

27

determined as follows:

| ak |=
∑|T |

i=1

∑|P (ti)|
j=1,ak∈A(pij)

1
j

These methods all perform normalization over
the resulting action histories using the training
function IL and will be referred to as Cn, Cr

and Cp, respectively. Cn is a ‘uniform’ model
which weights counts only by degree of ambi-
guity and makes no use of ranking information.
Cr weights counts by derivation rank, and Cp

is simpler than and different to one iteration of
EM as outside probabilities are not utilized. All
of the semi-supervised functions described here
take two arguments: an initial model and the
data to train over, respectively.

Models derived from unambiguous training
data, γ, alone are relatively accurate, achiev-
ing indistinguishable performance to that of the
baseline system given either W or SW as train-
ing data. We utilize these models as initial mod-
els and train over different corpora with each of
the confidence-based models. Table 2 gives re-
sults for all models. Results statistically signifi-
cant compared to the baseline system are shown
in bold print (better) or italic print (worse).
These methods show promise, often yielding sys-
tems whose performance is significantly better
than the baseline system. Method Cr achieved
the best performance in this experiment and re-
mained consistently better in those reported be-
low. Throughout the different approaches a do-
main effect can be seen, models utilizing just S

are worse, although the best performing models
benefit from the use of both S and W as training
data (i.e. SW).

5.2 EM

Our EM model differs from that of Pereira and
Schabes as a PGLR parser adds context over
a PCFG so that a single rule can be applied
in several different states containing reduce ac-
tions. Therefore, the summation and normaliza-
tion performed for a CFG rule within IOA is in-
stead applied within such contexts. We can ap-
ply I (our PGLR normalization function with-
out Laplace smoothing) to perform the required
steps if we output the action history with the

Model Prec Rec F1 P (z)‡

Baseline 77.05 74.22 75.61 -
IL(γ(S)) 76.02 73.40 74.69 0.0294
C1(IL(γ(S)), α(S)) 77.05 74.22 75.61 0.4960
Cn(IL(γ(S)), α(S)) 77.51 74.80 76.13 0.0655
Cr(IL(γ(S)), α(S)) 77.73 74.98 76.33 0.0154
Cp(IL(γ(S)), α(S)) 76.45 73.91 75.16 0.2090
IL(γ(W)) 77.01 74.31 75.64 0.1038
C1(IL(γ(W)), α(W)) 76.90 74.23 75.55 0.2546
Cn(IL(γ(W)), α(W)) 77.85 75.07 76.43 0.0017
Cr(IL(γ(W)), α(W)) 77.88 75.04 76.43 0.0011
Cp(IL(γ(W)), α(W)) 77.40 74.75 76.05 0.1335
IL(γ(SW)) 77.09 74.35 75.70 0.1003
C1(IL(γ(SW)), α(SW)) 76.86 74.21 75.51 0.2483
Cn(IL(γ(SW)), α(SW)) 77.88 75.05 76.44 0.0048
Cr(IL(γ(SW)), α(SW)) 78.01 75.13 76.54 0.0007
Cp(IL(γ(SW)), α(SW)) 77.54 74.95 76.23 0.0618

Table 2: Performance of all models on DepBank.
‡represents the statistical significance of the sys-
tem against the baseline model.

corresponding normalized inside-outside weight
for each node (Watson et al., 2005).

We perform EM starting from two initial mod-
els; either a uniform probability model, IL(), or
from models derived from unambiguous train-
ing data, γ. Figure 1 shows the cross entropy
decreasing monotonically from iteration 2 (as
guaranteed by the EM method) for different cor-
pora and initial models. Some models show an
initial increase in cross-entropy from iteration 1
to iteration 2, because the models are initial-
ized from a subset of the data which is used to
perform maximisation. Cross-entropy increases,
by definition, as we incorporate ambiguous data
with more than one consistent derivation.

Performance over DepBank can be seen in
Figures 2, 3, and 4 for each dataset S, W and
SW, respectively. Comparing the Cr and EM
lines in each of Figures 2, 3, and 4, it is evident
that Cr outperforms EM across all datasets, re-
gardless of the initial model applied. In most
cases, these results are significant, even when
we manually select the best model (iteration)
for EM.

The graphs of EM performance from itera-
tion 1 illustrate the same ‘classical’ and ‘initial’
patterns observed by Elworthy (1994). When
EM is initialized from a relatively poor model,
such as that built from S (Figure 2), a ‘classical’

28

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 2 4 6 8 10 12 14 16

H(C,G)

Iteration Number

EM(IL(), S)
r

r

r r r r r r r r r r r r r

r

EM(IL(γ(S)), S)

c

c
c c c c c c c c c c c c c

c

EM(IL(), W)

4

4 4 4 4 4 4 4 4 4 4 4 4 4 4

4
EM(IL(γ(W)),W)

?

? ? ? ? ? ? ? ? ? ? ? ? ? ?

?
EM(IL(), SW)

2

2
2 2 2 2 2 2 2 2 2 2 2 2 2

2

EM(IL(γ(SW)), SW)

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3

Figure 1: Cross Entropy Convergence for vari-
ous training data and models, with EM.

pattern emerges with relatively steady improve-
ment from iteration 1 until performance asymp-
totes. However, when the starting point is better
(Figures 3 and 4), the ‘initial’ pattern emerges
in which the best performance is reached after a
single iteration.

6 Tuning to a New Domain

When building NLP applications we would want
to be able to tune a parser to a new domain
with minimal manual effort. To obtain training
data in a new domain, annotating a corpus with
partial-bracketing information is much cheaper
than full annotation. To investigate whether
such data would be of value, we considered W

to be the corpus over which we were tuning and
applied the best performing model trained over
S, Cr(IL(γ(S)), α(S)), as our initial model. Fig-
ure 5 illustrates the performance of Cr compared
to EM.

Tuning using Cr was not significantly differ-
ent from the model built directly from the entire
data set with Cr, achieving 76.57% as opposed
to 76.54% F1 (see Table 2). By contrast, EM
performs better given all the data from the be-
ginning rather than tuning to the new domain.

74

74.5

75

75.5

76

76.5

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(S)), α(S))

EM(IL(), S)

r

r r
r

r

r r
r r r r r r

r r

r

EM(IL(γ(S)), S)

b

b b

b

b b b
b

b b b b b b b b

b

Figure 2: Performance over S for Cr and EM.

75

75.2

75.4

75.6

75.8

76

76.2

76.4

76.6

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(W)), α(W))

EM(IL(), W)

r

r

r
r r r r

r r r r
r

r r r

r

EM(IL(γ(W)),W)

b

b

b
b

b b b b b b

b b b b
b b

b

Figure 3: Performance over W for Cr and EM.

29

75

75.2

75.4

75.6

75.8

76

76.2

76.4

76.6

76.8

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(SW)), α(SW))

EM(IL(), SW)

r r
r

r r r r r r r r r r
r r

r

EM(IL(γ(SW)), SW)

b

b

b

b

b b b b b b b b b b b b

b

Figure 4: Performance over SW for Cr and EM.

Cr generally outperforms EM, though it is worth
noting the behavior of EM given only the tun-
ing data (W) rather than the data from both do-
mains (SW). In this case, the graph illustrates a
combination of Elworthy’s ‘initial’ and ‘classical’
patterns. The steep drop in performance (down
to 69.93% F1) after the first iteration is proba-
bly due to loss of information from S. However,
this run also eventually converges to similar per-
formance, suggesting that the information in S

is effectively disregarded as it forms only a small
portion of SW , and that these runs effectively
converge to a local maximum over W .

Bacchiani et al. (2006), working in a similar
framework, explore weighting the contribution
(frequency counts) of the in-domain and out-of-
domain training datasets and demonstrate that
this can have beneficial effects. Furthermore,
they also tried unsupervised tuning to the in-
domain corpus by weighting parses for it by
their normalized probability. This method is
similar to our Cp method. However, when we
tried unsupervised tuning using the WSJ and
an initial model built from S in conjunction with
our confidence-based methods, performance de-
graded significantly.

74

74.5

75

75.5

76

76.5

77

0 2 4 6 8 10 12 14 16

F1

Iteration Number

Baseline
Cr(IL(γ(SW)), α(SW))

Cr(Cr(IL(γ(S)), α(S)), W)
EM(IL(γ(SW)), SW)

b

b

b
b

b b b b b b b b b b b b

b

EM(Cr(IL(γ(S)), α(S)), W)

rr

r

r

r

r r

r
r r r r r r r r

r

EM(Cr(IL(γ(S)), α(S)), SW)

c

c

c
c c c c c c c c c c c c c

c

Figure 5: Tuning over the WSJ PTB (W) from
Susanne Corpus (S).

7 Conclusions

We have presented several semi-supervised
confidence-based training methods which have
significantly improved performance over an ex-
tant (more supervised) method, while also re-
ducing the manual effort required to create
training or tuning data. We have shown
that given a medium-sized unlabeled partially
bracketed corpus, the confidence-based models
achieve superior results to those achieved with
EM applied to the same PGLR parse selection
model. Indeed, a bracketed corpus provides flex-
ibility as existing treebanks can be utilized de-
spite the incompatibility between the system
grammar and the underlying grammar of the
treebank. Mapping an incompatible annotated
treebank to a compatible partially-bracketed
corpus is relatively easy compared to mapping
to a compatible fully-annotated corpus.

An immediate benefit of this work is that
(re)training parsers with incrementally-modified
grammars based on different linguistic frame-
works should be much more straightforward –
see, for example Oepen et al. (2002) for a good
discussion of the problem. Furthermore, it sug-
gests that it may be possible to usefully tune

30

a parser to a new domain with less annotation
effort.

Our findings support those of Elworthy (1994)
and Merialdo (1994) for POS tagging and sug-
gest that EM is not always the most suit-
able semi-supervised training method (espe-
cially when some in-domain training data is
available). The confidence-based methods were
successful because the level of noise introduced
did not outweigh the benefit of incorporating
all derivations compatible with the bracketing
in which the derivations contained a high pro-
portion of correct constituents. These findings
may not hold if the level of bracketing available
does not adequately constrain the parses consid-
ered – see Hwa (1999) for a related investigation
with EM.

In future work we intend to further investigate
the problem of tuning to a new domain, given
that minimal manual effort is a major prior-
ity. We hope to develop methods which required
no manual annotation, for example, high preci-
sion automatic partial bracketing using phrase
chunking and/or named entity recognition tech-
niques might yield enough information to sup-
port the training methods developed here.

Finally, further experiments on weighting the
contribution of each dataset might be beneficial.
For instance, Bacchiani et al. (2006) demon-
strate imrpovements in parsing accuracy with
unsupervised adaptation from unannotated data
and explore the effect of different weighting of
counts derived from the supervised and unsu-
pervised data.

Acknowledgements

The first author is funded by the Overseas Re-
search Students Awards Scheme, and the Poyn-
ton Scholarship awarded by the Cambridge Aus-
tralia Trust in collaboration with the Cam-
bridge Commonwealth Trust. Development of
the RASP system was and is supported by the
EPSRC (grants GR/N36462, GR/N36493 and
GR/T19919).

References

Bacchiani, M., Riley, M., Roark, B. and R.
Sproat (2006) ‘MAP adaptation of stochas-
tic grammars’, Computer Speech and Lan-
guage, vol.20.1, pp.41–68.

Baker, J. K. (1979) ‘Trainable grammars for
speech recognition’ in Klatt, D. and Wolf,
J. (eds.), Speech Communications Papers for
the 97th Meeting of the Acoustical Society of
America, MIT, Cambridge, Massachusetts,
pp. 557–550.

Briscoe, E.J., J. Carroll and R. Watson (2006)
‘The Second Release of the RASP System’,
Proceedings of ACL-Coling’06, Sydney, Aus-
tralia.

Carroll, J., Briscoe, T. and Sanfilippo, A. (1998)
‘Parser evaluation: a survey and a new
proposal’, Proceedings of LREC, Granada,
pp. 447–454.

Clark, S. and J. Curran (2004) ‘Parsing the WSJ
Using CCG and Log-Linear Models’, Pro-
ceedings of 42nd Meeting of the Association
for Computational Linguistics, Barcelona,
pp. 103–110.

Collins, M. (1999) Head-driven Statistical Mod-
els for Natural Language Parsing, PhD Dis-
sertation, University of Pennsylvania.

Elworthy, D. (1994) ‘Does Baum-Welch Re-
estimation Help Taggers?’, Proceedings of
ANLP, Stuttgart, Germany, pp. 53–58.

Gildea, D. (2001) ‘Corpus variation and parser
performance’, Proceedings of EMNLP, Pitts-
burgh, PA.

Hockenmaier, J. (2003) Data and models for sta-
tistical parsing with Combinatory Categorial
Grammar, PhD Dissertation, The Univer-
sity of Edinburgh.

Hwa, R. (1999) ‘Supervised grammar induction
using training data with limited constituent
information’, Proceedings of ACL, College
Park, Maryland, pp. 73–79.

Inui, K., V. Sornlertlamvanich, H. Tanaka and
T. Tokunaga (1997) ‘A new formalization
of probabilistic GLR parsing’, Proceedings

31

of IWPT, MIT, Cambridge, Massachusetts,
pp. 123–134.

King, T.H., R. Crouch, S. Riezler, M. Dalrymple
and R. Kaplan (2003) ‘The PARC700 De-
pendency Bank’, Proceedings of LINC, Bu-
dapest.

Lin, D. (1998) ‘Dependency-based evaluation
of MINIPAR’, Proceedings of Workshop at
LREC’98 on The Evaluation of Parsing Sys-
tems, Granada, Spain.

McClosky, D., Charniak, E. and M. Johnson
(2006) ‘Effective self-training for parsing’,
Proceedings of HLT-NAACL, New York.

Merialdo, B. (1994) ‘Tagging English Text with
a Probabilistic Model’, Computational Lin-
guistics, vol.20.2, pp.155–171.

Miyao, Y. and J. Tsujii (2002) ‘Maximum En-
tropy Estimation for Feature Forests’, Pro-
ceedings of HLT, San Diego, California.

Oepen, S., K. Toutanova, S. Shieber, C. Man-
ning, D. Flickinger, and T. Brants (2002)
‘The LinGO Redwoods Treebank: Motiva-
tion and preliminary applications’, Proceed-
ings of COLING, Taipei, Taiwan.

Pereira, F and Y. Schabes (1992) ‘Inside-
Outside Reestimation From Partially
Bracketed Corpora’, Proceedings of ACL,
Delaware.

Prescher, D. (2001) ‘Inside-outside estimation
meets dynamic EM’, Proceedings of 7th
Int. Workshop on Parsing Technologies
(IWPT01), Beijing, China.

Riezler, S., T. King, R. Kaplan, R. Crouch,
J. Maxwell III and M. Johnson (2002)
‘Parsing the Wall Street Journal using a
Lexical-Functional Grammar and Discrimi-
native Estimation Techniques’, Proceedings
of 40th Annual Meeting of the Association
for Computational Linguistics, Philadelphia,
pp. 271–278.

Sampson, G. (1995) English for the Computer,
Oxford University Press, Oxford, UK.

Siegel S. and N. J. Castellan (1988) Nonpara-
metric Statistics for the Behavioural Sci-
ences, 2nd edition, McGraw-Hill.

Tadayoshi, H., Y. Miyao and J. Tsujii (2005)
‘Adapting a probabilistic disambiguation
model of an HPSG parser to a new domain’,
Proceedings of IJCNLP, Jeju Island, Korea.

Tomita, M. (1987) ‘An Efficient Augmented
Context-Free Parsing Algorithm’, Computa-
tional Linguistics, vol.13(1–2), pp.31–46.

Watson, R. and E.J. Briscoe (2007) ‘Adapting
the RASP system for the CoNLL07 domain-
adaptation task’, Proceedings of EMNLP-
CoNLL-07, Prague.

Watson, R., J. Carroll and E.J. Briscoe (2005)
‘Efficient extraction of grammatical rela-
tions’, Proceedings of 9th Int. Workshop on
Parsing Technologies (IWPT’05), Vancou-
ver, Ca..

32

Proceedings of the 10th Conference on Parsing Technologies, pages 33–35,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Adapting WSJ-Trained Parsers to the British National Corpus Using
In-Domain Self-Training

Jennifer Foster, Joachim Wagner, Djaḿe Seddah and Josef van Genabith
National Centre for Language Technology

School of Computing, Dublin City University, Dublin 9, Ireland
{jfoster, jwagner, josef}@computing.dcu.ie, dseddah@paris4.sorbonne.fr∗

Abstract

We introduce a set of 1,000 gold standard
parse trees for the British National Corpus
(BNC) and perform a series of self-training
experiments with Charniak and Johnson’s
reranking parser and BNC sentences. We
show that retraining this parser with a com-
bination of one million BNC parse trees
(produced by the same parser) and the orig-
inal WSJ training data yields improvements
of 0.4% on WSJ Section 23 and 1.7% on the
new BNC gold standard set.

1 Introduction

Given the success of statistical parsing models on
the Wall Street Journal (WSJ) section of the Penn
Treebank (PTB) (Charniak, 2000; Collins, 2003, for
example), there has been a change in focus in recent
years towards the problem of replicating this success
on genres other than American financial news sto-
ries. The main challenge in solving the parser adap-
tation problem are the resources required to con-
struct reliable annotated training examples.

A breakthrough has come in the form of research
by McClosky et al. (2006a; 2006b) who show that
self-training can be used to improve parser perfor-
mance when combined with a two-stage reranking
parser model (Charniak and Johnson, 2005). Self-
training is the process of training a parser on its own
output, and earlier self-training experiments using
generative statistical parsers did not yield encour-
aging results (Steedman et al., 2003). McClosky et
al. (2006a; 2006b) proceed as follows: sentences

∗Now affiliated to Lalic, Université Paris 4 La Sorbonne.

from theLA Times newspaper are parsed by a first-
stage generative statistical parser trained on some
seed training data (WSJ Sections 2-21) and then-
best parse trees produced by this parser are reranked
by a discriminative reranker. The highest ranked
parse trees are added to the training set of the parser
and the parser is retrained. This self-training method
gives improved performance, not only on Section
23 of the WSJ (an absolute f-score improvement of
0.8%), but also on test sentences from the Brown
corpus (Francis and Kučera, 1979) (an absolute f-
score improvement of 2.6%).

In the experiments of McClosky et al. (2006a;
2006b), the parse trees used for self-training come
from the same domain (American newspaper text)
as the parser’s original seed training material. Bac-
chiani et al. (2006) find that self-training is ef-
fective when the parse trees used for self-training
(WSJ parse trees) come from a different domain to
the seed training data and from the same domain as
the test data (WSJ sentences). They report a per-
formance boost of 4.2% on WSJ Section 23 for a
generative statistical parser trained on Brown seed
data when it is self-trained using 200,000 WSJ parse
trees. However, McCloskey et al. (2006b) report a
drop in performance for their reranking parser when
the experiment is repeated in the opposite direction,
i.e. with Brown data for self-training and testing,
and WSJ data for seed training. In contrast, we re-
port successful in-domain1 self-training experiments
with the BNC data as self-training and test material,
and with the WSJ-trained reranking parser used by
McCloskey et al. (2006a; 2006b).

We parse the BNC (Burnard, 2000) in its entirety
1We refer to data as beingin-domain if it comes from the

same domain as the test data andout-of-domain if it does not.

33

using the reranking parser of Charniak and Johnson
(2005). 1,000 BNC sentences are manually anno-
tated for constituent structure, resulting in the first
gold standard set for this corpus. The gold standard
set is split into a development set of 500 parse trees
and a test set of 500 parse trees and used in a series
of self-training experiments: Charniak and John-
son’s parser is retrained on combinations of WSJ
treebank data and its own parses of BNC sentences.
These combinations are tested on the BNC devel-
opment set and Section 00 of the WSJ. An optimal
combination is chosen which achieves a Parseval la-
belled bracketing f-score of 91.7% on Section 23
and 85.6% on the BNC gold standard test set. For
Section 23 this is an absolute improvement of 0.4%
on the baseline results of this parser, and for the
BNC data this is a statistically significant improve-
ment of 1.7%.

2 The BNC Data

The BNC is a 100-million-word balanced part-of-
speech-tagged corpus of written and transcribed
spoken English. Written text comprises 90% of the
BNC: 75% non-fictional and 25% fictional. To fa-
cilitate parsing with a WSJ-trained parser, some re-
versible transformations were applied to the BNC
data, e.g. British English spellings were converted
to American English and neutral quotes disam-
biguated. The reranking parser of Charniak and
Johnson (2005) was used to parse the BNC. 99.8%
of the 6 million BNC sentences obtained a parse,
with an average parsing speed of 1.4s per sentence.

A gold standard set of 1,000 BNC sentences was
constructed by one annotator by correcting the out-
put of the first stage of Charniak and Johnson’s
reranking parser. The sentences included in the gold
standard were chosen at random from the BNC, sub-
ject to the condition that they contain a verb which
does not occur in the training sections of the WSJ
section of the PTB (Marcus et al., 1993). A deci-
sion was made to select sentences for the gold stan-
dard set which differ from the sentences in the WSJ
training sections, and one way of finding different
sentences is to focus on verbs which are not attested
in the WSJ Sections 2-21. It is expected that these
gold standard parse trees can be used as training
data although they are used only as test and develop-

ment data in this work. Because they contain verbs
which do not occur in the parser’s training set, they
are likely to represent a hard test for WSJ-trained
parsers. The PTB bracketing guidelines (Bies et al.,
1995) and the PTB itself were used as references by
the BNC annotator. Functional tags and traces were
not annotated. The annotator noticed that the PTB
parse trees sometimes violate the PTB bracketing
guidelines, and in these cases, the annotator chose
the analysis set out in the guidelines. It took approx-
imately 60 hours to build the gold standard set.

3 Self-Training Experiments

Charniak and Johnson’s reranking parser (June 2006
version) is evaluated against the BNC gold stan-
dard development set. Labelled precision (LP), re-
call (LR) and f-score measures2 for this parser are
shown in the first row of Table 1. The f-score of
83.7% is lower than the f-score of 85.2% reported
by McClosky et al. (2006b) for the same parser on
Brown corpus data. This difference is reasonable
since there is greater domain variation between the
WSJ and the BNC than between the WSJ and the
Brown corpus, and all BNC gold standard sentences
contain verbs not attested in WSJ Sections 2-21.

We retrain the first-stage generative statistical
parser of Charniak and Johnson using combinations
of BNC trees (parsed using the reranking parser)
and WSJ treebank trees. We test the combinations
on the BNC gold standard development set and on
WSJ Section 00. Table 1 shows that parser accu-
racy increases with the size of the in-domain self-
training material.3 The figures confirm the claim of
McClosky et al. (2006a) thatself-training with a
reranking parsing model is effective for improving
parser accuracy in general, and the claim of Gildea
(2001) thattraining on in-domain data is effective
for parser adaption. They confirm thatself-training
on in-domain data is effective for parser adaptation.
The WSJ Section 00 results suggest that, in order
to maintain performance on the seed training do-
main, it is necessary to combine BNC parse trees

2All scores are for the second stage of the parsing process,
i.e. the evaluation takes place after the reranking. All evalua-
tion is carried out using the Parseval labelled bracketing metrics,
with evalb and parameter filenew.prm.

3The notationbnc500K+5wsj refers to a set of 500,000
parser output parse trees of sentences taken randomly from the
BNC concatenated with five copies of WSJ Sections 2-21.

34

BNC Development WSJ Section 00
Self-Training LP LR LF LP LR LF
- 83.6 83.7 83.7 91.6 90.5 91.0
bnc50k 83.7 83.7 83.7 90.0 88.0 89.0
bnc50k+1wsj 84.4 84.4 84.4 91.6 90.3 91.0
bnc250k 84.7 84.5 84.6 91.1 89.3 90.2
bnc250k+5wsj 85.0 84.9 85.0 91.8 90.5 91.2
bnc500k+5wsj 85.2 85.1 85.2 91.9 90.4 91.2
bnc500k+10wsj 85.1 85.1 85.1 91.9 90.6 91.2
bnc1000k+5wsj 86.5 86.2 86.3 91.7 90.3 91.0
bnc1000k+10wsj 86.1 85.9 86.0 92.0 90.5 91.3
bnc1000k+40wsj 85.5 85.5 85.5 91.9 90.6 91.3

BNC Test WSJ Section 23
- 84.0 83.7 83.9 91.8 90.9 91.3
bnc1000k+10wsj 85.7 85.4 85.6 92.3 91.1 91.7

Table 1: In-domain Self-Training Results

with the original seed training material during the
self-training phase.

Of the self-training combinations with above-
baseline improvements for both development sets,
the combination of 1,000K BNC parse trees and
Section 2-21 of the WSJ (multiplied by ten) yields
the highest improvement for the BNC data, and we
present final results with this combination for the
BNC gold standard test set and WSJ Section 23.
There is an absolute improvement on the original
reranking parser of 1.7% on the BNC gold standard
test set and 0.4% on WSJ Section 23. The improve-
ment on BNC data is statistically significant for both
precision and recall (p< 0.0002, p< 0.0002). The
improvement on WSJ Section 23 is statistically sig-
nificant for precision only (p< 0.003).

4 Conclusion and Future Work

We have introduced a set of 1,000 gold standard
parse trees for the BNC. We have performed self-
training experiments with Charniak and Johnson’s
reranking parser and sentences from the BNC. We
have shown that retraining this parser with a com-
bination of one million BNC parse trees (produced
by the same parser) and the original WSJ train-
ing data yields improvements of 0.4% on WSJ Sec-
tion 23 and 1.7% on the BNC gold standard sen-
tences. These results indicate that self-training on
in-domain data can be used for parser adaptation.

Our BNC gold standard set consists of sentences
containing verbs which are not in the WSJ train-
ing sections. We suspect that this makes the gold
standard set a hard test for WSJ-trained parsers, and
our results are likely to represent a lower bound for
WSJ-trained parsers on BNC data. When used as

training data, we predict that the novel verbs in the
BNC gold standard set add to the variety of train-
ing material, and will further help parser adaptation
from the WSJ domain – a matter for further research.

Acknowledgments We thank the IRCSET Em-
bark Initiative (basic research grant SC/02/298
and postdoctoral fellowship P/04/232), Science
Foundation Ireland (Principal Investigator grant
04/IN.3/I527) and the Irish Centre for High End
Computing for supporting this research.

References
Michiel Bacchiani, Michael Riley, Brian Roark, and Richard

Sproat. 2006. Map adaptation of stochastic grammars.
Computer Speech and Language, 20(1):41–68.

Ann Bies, Mark Ferguson, Karen Katz, and Robert MacIntyre.
1995. Bracketing guidelines for treebank II style, Penn Tree-
bank project. Technical Report MS-CIS-95-06, University
of Pennsylvania.

Lou Burnard. 2000. User reference guide for the British Na-
tional Corpus. Technical report, Oxford University.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-fine n-
best-parsing and maxent discriminative reranking. InPro-
ceedings of ACL-05, pages 173–180, Barcelona.

Eugene Charniak. 2000. A maximum-entropy-inspired parser.
In Proceedings of NAACL-00, pages 132–139, Seattle.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing.Computational Linguistics,
29(4):499–637.

W. Nelson Francis and Henry Kučera. 1979. Brown Corpus
Manual. Technical report, Brown University, Providence.

Daniel Gildea. 2001. Corpus variation and parser performance.
In Proceedings of EMNLP-01, pages 167–202, Barcelona.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of English: the Penn Treebank.Computational Linguistics,
19(2):313–330.

David McClosky, Eugene Charniak, and Mark Johnson. 2006a.
Effective self-training for parsing. InProceedings of HLT-
NAACL-06, pages 152–159, New York.

David McClosky, Eugene Charniak, and Mark Johnson. 2006b.
Reranking and self-training for parser adaptation. InPro-
ceedings of COLING-ACL-06, pages 337–344, Sydney.

Mark Steedman, Miles Osbourne, Anoop Sarkar, Stephen
Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen,
Steven Baker, and Jeremiah Crim. 2003. Boot-strapping
statistical parsers from small datasets. InProceedings of
EACL-03, Budapest.

35

Proceedings of the 10th Conference on Parsing Technologies, pages 36–38,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

The Impact of Deep Linguistic Processing on Parsing Technology

Timothy Baldwin
University of Melbourne

tim@csse.unimelb.edu.au

Mark Dras
Macquarie University

madras@ics.mq.edu.au

Julia Hockenmaier
University of Pennsylvania

juliahr@cis.upenn.edu

Tracy Holloway King
PARC

thking@parc.com

Gertjan van Noord
University of Groningen

vannoord@let.rug.nl

Abstract

As the organizers of the ACL 2007 Deep
Linguistic Processing workshop (Baldwin et
al., 2007), we were asked to discuss our per-
spectives on the role of current trends in
deep linguistic processing for parsing tech-
nology. We are particularly interested in
the ways in which efficient, broad coverage
parsing systems for linguistically expressive
grammars can be built and integrated into
applications which require richer syntactic
structures than shallow approaches can pro-
vide. This often requires hybrid technolo-
gies which use shallow or statistical methods
for pre- or post-processing, to extend cover-
age, or to disambiguate the output.

1 Introduction

Our talk will provide a view on the relevance of deep
linguistic processing for parsing technologies from
the perspective of the organizers of the ACL 2007
Workshop on Deep Linguistic Processing (Baldwin
et al., 2007). The workshop was conceived with the
broader aim of bringing together the different com-
putational linguistic sub-communities which model
language predominantly by way of theoretical syn-
tax, either in the form of a particular theory (e.g.
CCG, HPSG, LFG, TAG, the Prague School) or a
more general framework which draws on theoretical
and descriptive linguistics. These “deep linguistic
processing” approaches differ from shallower meth-
ods in that they yield richer, more expressive, struc-
tural representations which capture long-distance

dependencies or the underlying predicate-argument
structure directly.

Aspects of this research have often had their own
separate fora, such as the ACL 2005 workshop on
deep lexical acquisition (Baldwin et al., 2005), as
well as the TAG+ (Kallmeyer and Becker, 2006),
Alpino (van der Beek et al., 2005), ParGram (Butt
et al., 2002) and DELPH-IN (Oepen et al., 2002)
projects and meetings. However, the fundamental
approaches to building a linguistically-founded sys-
tem and many of the techniques used to engineer
efficient systems are common across these projects
and independent of the specific grammar formal-
ism chosen. As such, we felt the need for a com-
mon meeting in which experiences could be shared
among a wider community, similar to the role played
by recent meetings on grammar engineering (Wint-
ner, 2006; Bender and King, 2007).

2 The promise of deep parsing

Deep linguistic processing has traditionally been
concerned with grammar development (for use in
both parsing and generation). However, the linguis-
tic precision and complexity of the grammars meant
that they had to be manually developed and main-
tained, and were computationally expensive to run.

In recent years, machine learning approaches
have fundamentally altered the field of natural lan-
guage processing. The availability of large, manu-
ally annotated, treebanks (which typically take years
of prior linguistic groundwork to produce) enabled
the rapid creation of robust, wide-coverage parsers.
However, the standard evaluation metrics for which
such parsers have been optimized generally ignore

36

much of the rich linguistic information in the orig-
inal treebanks. It is therefore perhaps only natural
that deep processing methods, which often require
substantial amounts of manual labor, have received
considerably less attention during this period.

But even if further work is required for deep
processing techniques to fully mature, we believe
that applications that require natural language under-
standing or inference, among others, will ultimately
need detailed syntactic representations (capturing,
e.g., bounded and unbounded long-range dependen-
cies) from which semantic interpretations can eas-
ily be built. There is already some evidence that
our current deep techniques can, in some cases, out-
perform shallow approaches. There has been work
demonstrating this in question answering, targeted
information extraction and the recent textual entail-
ment recognition task, and perhaps most notably in
machine translation: in this latter field, after a period
of little use of linguistic knowledge, deeper tech-
niques are beginning to lead to better performance,
e.g. by redefining phrases by syntactic “treelets”
rather than contiguous word sequences, or by explic-
itly including a syntactic component in the probabil-
ity model, or by syntactic preprocessing of the data.

3 Closing the divide

In the past few years, the divide between “deep”,
rule-based, methods and “shallow”, statistical, ap-
proaches, has begun to close from both sides. Re-
cent advances in using the same treebanks that have
advanced shallow techniques to extract more expres-
sive grammars or to train statistical disambiguators
for them, and in developing framework-specific tree-
banks, have made it possible to obtain similar cov-
erage, robustness, and disambiguation accuracy for
parsers that use richer structural representations. As
witnessed by many of the papers in our workshop
(Baldwin et al., 2007), a large proportion of current
deep systems have statistical components to them,
e.g., as pre- or post-processing to control ambigu-
ity, as means of acquiring and extending lexical re-
sources, or even use machine learning techniques
to acquire deep grammars automatically. From the
other side of the divide, many of the purely statistical
approaches are using progressively richer linguistic
features and are taking advantage of these more ex-

pressive features to tackle problems that were tradi-
tionally thought to require deep systems, such as the
recovery of traces or semantic roles.

4 The continued need for research on deep
processing

Although statistical techniques are becoming com-
monplace even for systems built around hand-
written grammars, there is still a need for further
linguistic research and manual grammar develop-
ment. For example, supervised machine-learning
approaches rely on large amounts of manually anno-
tated data. Where such data are available, develop-
ers of deep parsers and grammars can exploit them
to determine frequency of certain constructions, to
bootstrap gold standards for their systems, and to
provide training data for the statistical components
of their systems such as parse disambiguators. But
for the majority of the world’s languages, and even
for many languages with large numbers of speakers,
such corpora are unavailable. Under these circum-
stances, manual grammar development is unavoid-
able, and recent progress has allowed the underlying
systems to become increasingly better engineered,
allowing for more rapid development of any given
grammar, as well as for overlay grammars that adapt
to particular domains and applications and for port-
ing of grammars from one language to another.

Despite recent work on (mostly dependency
grammar-based) multilingual parsing, it is still the
case that most research on statistical parsing is done
on English, a fixed word-order language where sim-
ple context-free approximations are often sufficient.
It is unclear whether our current models and al-
gorithms carry over to morphologically richer lan-
guages with more flexible word order, and it is possi-
ble that the more complex structural representations
allowed by expressive formalisms will cease to re-
main a luxury.

Further research is required on all aspects of
deep linguistic processing, including novel linguis-
tic analyses and implementations for different lan-
guages, formal comparisons of different frame-
works, efficient parse and learning algorithms, better
statistical models, innovative uses of existing data
resources, and new evaluation tools and methodolo-
gies. We were fortunate to receive so many high-

37

quality submissions on all of these topics for our
workshop.

5 Conclusion and outlook

Deep linguistic processing brings together a range of
perspectives. It covers current approaches to gram-
mar development and issues of theoretical linguis-
tic and algorithmic properties, as well as the appli-
cation of deep linguistic techniques to large-scale
applications such as question answering and dialog
systems. Having industrial-scale, efficient parsers
and generators opens up new application domains
for natural language processing, as well as inter-
esting new ways in which to approach existing ap-
plications, e.g., by combining statistical and deep
processing techniques in a triage process to pro-
cess massive data quickly and accurately at a fine
level of detail. Notably, several of the papers ad-
dressed the relationship of deep linguistic process-
ing to topical statistical approaches, in particular in
the area of parsing. There is an increasing inter-
est in deep linguistic processing, an interest which
is buoyed by the realization that new, often hybrid,
techniques combined with highly engineered parsers
and generators and state-of-the-art machines opens
the way towards practical, real-world application of
this research. We look forward to further opportu-
nities for the different computational linguistic sub-
communities who took part in this workshop, and
others, to continue to come together in the future.

References

Timothy Baldwin, Anna Korhonen, and Aline Villavicen-
cio, editors. 2005. Proceedings of the ACL-SIGLEX
Workshop on Deep Lexical Acquisition. Ann Arbor,
USA.

Timothy Baldwin, Mark Dras, Julia Hockenmaier,
Tracy Holloway King, and Gertjan van Noord, editors.
2007. Proceedings of the ACL Workshop on Deep Lin-
guistic Processing, Prague, Czech Republic.

Emily Bender and Tracy Holloway King, editors. 2007.
Grammar Engineering Across Frameworks, Stanford
University. CSLI On-line Publications. to appear.

Miriam Butt, Helge Dyvik, T. H. King, Hiroshi Masuichi,
and Christian Rohrer. 2002. The parallel grammar
project. In COLING Workshop on Grammar Engi-
neering and Evaluation, Taipei, Taiwan.

Laura Kallmeyer and Tilman Becker, editors. 2006. Pro-
ceedings of the Eighth International Workshop on Tree
Adjoining Grammar and Related Formalisms (TAG+),
Sydney, Australia.

Stephan Oepen, Dan Flickinger, J. Tsujii, and Hand
Uszkoreit, editors. 2002. Collaborative Language En-
gineering: A Case Study in Efficient Grammar-based
Processing. CSLI Publications.

Leonoor van der Beek, Gosse Bouma, Jan Daciuk, Tanja
Gaustad, Robert Malouf, Mark-Jan Nederhof, Gert-
jan van Noord, Robbert Prins, and Bego na Vil-
lada Moirón. 2005. Algorithms for linguistic pro-
cessing. NWO Pionier final report. Technical report,
University of Groningen.

Shuly Wintner. 2006. Large-scale grammar development
and grammar engineering. Research workshop of the
Israel Science Foundation.

38

Proceedings of the 10th Conference on Parsing Technologies, pages 39–47,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Improving the Efficiency of a Wide-Coverage CCG Parser

Bojan Djordjevic and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{bojan,james}@it.usyd.edu.au

Stephen Clark
Computing Laboratory

Oxford University
Wolfson Building, Parks Road

Oxford, OX1 3QD, UK
stephen.clark@comlab.ox.ac.uk

Abstract

The C&C CCG parser is a highly efficient
linguistically motivated parser. The effi-
ciency is achieved using a tightly-integrated
supertagger, which assigns CCG lexical cat-
egories to words in a sentence. The integra-
tion allows the parser to request more cat-
egories if it cannot find a spanning anal-
ysis. We present several enhancements to
the CKY chart parsing algorithm used by the
parser. The first proposal is chart repair,
which allows the chart to be efficiently up-
dated by adding lexical categories individu-
ally, and we evaluate several strategies for
adding these categories. The second pro-
posal is to add constraints to the chart which
require certain spans to be constituents. Fi-
nally, we propose partial beam search to fur-
ther reduce the search space. Overall, the
parsing speed is improved by over 35% with
negligible loss of accuracy or coverage.

1 Introduction

A recent theme in parsing research has been the
application of statistical methods to linguistically
motivated grammars, for example LFG (Kaplan et
al., 2004; Cahill et al., 2004), HPSG (Toutanova
et al., 2002; Malouf and van Noord, 2004), TAG

(Sarkar and Joshi, 2003) and CCG (Hockenmaier
and Steedman, 2002; Clark and Curran, 2004b). The
attraction of linguistically motivated parsers is the
potential to produce rich output, in particular the
predicate-argument structure representing the under-
lying meaning of a sentence. The disadvantage of

such parsers is that they are typically not very effi-
cient, parsing a few sentences per second on com-
modity hardware (Kaplan et al., 2004). The C&C

CCG parser (Clark and Curran, 2004b) is an order
of magnitude faster, but is still limited to around 25
sentences per second.

The key to efficient CCG parsing is a finite-state
supertagger which performs much of the parsing
work (Bangalore and Joshi, 1999). CCG is a lex-
icalised grammar formalism, in which elementary
syntactic structures — in CCG’s case lexical cate-
gories expressing subcategorisation information —
are assigned to the words in a sentence. CCG su-
pertagging can be performed accurately and effi-
ciently by a Maximum Entropy tagger (Clark and
Curran, 2004a). Since the lexical categories contain
so much grammatical information, assigning them
with low average ambiguity leaves the parser, which
combines them together, with much less work to do
at parse time. Hence Bangalore and Joshi (1999), in
the context of LTAG parsing, refer to supertagging as
almost parsing.

Clark and Curran (2004a) presents a novel
method of integrating the supertagger and parser:
initially only a small number of categories, on av-
erage, is assigned to each word, and the parser at-
tempts to find a spanning analysis using the CKY

chart-parsing algorithm. If one cannot be found, the
parser requests more categories from the supertagger
and builds the chart again from scratch. This process
repeats until the parser is able to build a chart con-
taining a spanning analysis.1

1Tsuruoka and Tsujii (2004) investigate a similar idea in the
context of the CKY algorithm for a PCFG.

39

The supertagging accuracy is high enough that
the parser fails to find a spanning analysis using the
initial category assignment in approximately 4% of
Wall Street Journal sentences (?). However, parsing
this 4%, which largely consists of the longer sen-
tences, is disproportionately expensive.

This paper describes several modifications to the
C&C parser which improve parsing efficiency with-
out reducing accuracy or coverage by reducing the
impact of the longer sentences. The first involves
chart repair, where the CKY chart is repaired when
extra lexical categories are added (according to the
scheme described above), instead of being rebuilt
from scratch. This allows an even tighter integra-
tion of the supertagger, in that the parser is able to
request individual categories. We explore methods
for choosing which individual categories to add, re-
sulting in an 11% speed improvement.

The next modification involves parsing with con-
straints, so that certain spans are required to be con-
stituents. This reduces the search space consider-
ably by eliminating a large number of constituents
which cross the boundaries of these spans. The best
set of constraints results in a 10% speed improve-
ment over the original parser. These constraints are
general enough that they could be applied to any
constituency-based parser. Finally, we experiment
with several beam strategies to reduce the search
space, finding that a partial beam which operates on
part of the chart is most effective, giving a further
6.1% efficiency improvement.

The chart repair and constraints interact in an in-
teresting, and unexpected, manner when combined,
giving a 35.7% speed improvement overall without
any loss in accuracy or coverage. This speed im-
provement is particularly impressive because it in-
volves techniques which only apply to 4% of Wall
Street Journal sentences.

2 The CCG Parser

Clark and Curran (2004b) describes the CCG parser.
The grammar used by the parser is extracted from
CCGbank, a CCG version of the Penn Treebank
(Hockenmaier, 2003). The grammar consists of 425
lexical categories plus a small number of combi-
natory rules which combine the categories (Steed-
man, 2000). A Maximum Entropy supertagger first

assigns lexical categories to the words in a sen-
tence, which are then combined by the parser using
the combinatory rules. A log-linear model scores
the alternative parses. We use the normal-form
model, which assigns probabilities to single deriva-
tions based on the normal-form derivations in CCG-
bank. The features in the model are defined over
local parts of the derivation and include word-word
dependencies. A packed chart representation allows
efficient decoding, with the Viterbi algorithm find-
ing the most probable derivation.

The supertagger uses a log-linear model to de-
fine a distribution over the lexical category set for
each word and the previous two categories (Ratna-
parkhi, 1996) and the forward backward algorithm
efficiently sums over all histories to give a distribu-
tion for each word. These distributions are then used
to assign a set of lexical categories to each word (?).
The number of categories in each set is determined
by a parameter β: all categories are assigned whose
forward-backward probabilities are within β of the
highest probability category (?). If the parser can-
not then find a spanning analysis, the value of β is
reduced — so that more lexical categories are as-
signed — and the parser tries again. This process re-
peats until an analysis spanning the whole sentence
is found.

In our previous work, when the parser was unable
to find a spanning analysis, the chart was destroyed
and then rebuilt from scratch with more lexical cate-
gories assigned to each word. However, this rebuild-
ing process is wasteful because the new chart is al-
ways a superset of the old one and could be created
by just updating the previous chart. We describe the
chart repair process in Section 3 which allows addi-
tional categories to be assigned to an existing chart
and the CKY algorithm run over just those parts of
the chart which require modification.

2.1 Chart Parsing

The parser uses the CKY chart parsing algorithm
(Kasami, 1965; Younger, 1967) described in Steed-
man (2000). The CKY algorithm applies naturally to
CCG since the grammar is binary. It builds the chart
bottom-up, starting with the lexical categories span-
ning single words, incrementally increasing the span
until the whole sentence is covered. Since the con-
stituents are built in order of span size, at every stage

40

all the sub-constituents which could be used to cre-
ate a particular new constituent are already present
in the chart.

The charts are packed by grouping together equiv-
alent chart entries, which allows a large number of
derivations to be represented efficiently. Entries are
equivalent when they interact in the same manner
with both the generation of subsequent parse struc-
ture and the statistical parse selection. In practice,
this means that equivalent entries have the same
span; form the same structures, i.e. the remain-
ing derivation plus dependencies, in any subsequent
parsing; and generate the same features in any sub-
sequent parsing.

The Viterbi algorithm is used to find the most
probable derivation from a packed chart. For each
equivalence class of individual entries, we record the
entry at the root of the subderivation which has the
highest score for the class. The equivalence classes
are defined so that any other individual entry can-
not be part of the highest scoring derivation for the
sentence. The highest-scoring subderivations can
be calculated recursively using the highest-scoring
equivalence classes that were combined to create the
individual entry.

Given a sentence of n words, we define pos ∈
{0, . . . , n − 1} to be the starting position of an en-
try in the chart (represented by a CCG category) and
span ∈ {1, . . . , n} its length. Let cell(pos, span)
be the set of categories which span the sentence from
pos to pos + span. These will be combinations of
categories in cell(pos, k) and cell(pos+k, span−k)
for all k ∈ {1, . . . , span− 1}. The chart is a two di-
mensional array indexed by pos and span. The valid
(pos, span) pairs correspond to pos + span ≤ n,
that is, to spans that do not extend beyond the end
of the sentence. The squares represent valid cells in
Figure 1. The span from position 3 with length 4,
i.e. cell(3, 4), is marked with a diamond in Figure 2.

3 Chart Repair

The parser interacts with the supertagger by decreas-
ing the value of the β parameter when a spanning
analysis cannot be found for a sentence. This has
the effect of adding more lexical categories to the
chart. Instead of rebuilding the chart from scratch
when new categories are added, it can be repaired

affected cells

cell with a new
category added

10

5

0 1 2 3 4 5 6 7 8 9

1

span

pos

2

3

4

6

7

8

9

Figure 1: Cells affected by chart repair.

by modifying cells that are affected by the new cat-
egories. Considering the case where a single lexical
category is added to the ith word in an n word sen-
tence, the new category can only affect the cells that
satisfy pos ≤ i and pos + span > i. These cells are
shown in Figure 1 for the word at position 3.

The number of affected cells is (n−pos)(pos+1),
and so the average over the sentence is approxi-
mately 1

n

∫ n−1
0 (n − p)(p + 1) dp ≈ n2

6 cells. The
total number of cells in the chart is n(n+1)

2 . The chart
can therefore be repaired bottom up, in CKY order,
by updating a third of the cells on average.

Additional lexical categories for a word are in-
serted into the corresponding cell in the bottom row,
with the additional categories being marked as new.
For each cell C in the second row, each pair of cells
A and B is considered whose spans combine to cre-
ate the span of C. In the original CKY, all categories
from A are combined with all categories from B. In
chart repair, categories are only combined if at least
one of them is new, because otherwise the result is
already in C. The categories added to C are marked,
and the process is repeated for all affected cells in
CKY order.

Chart repair speeds up parsing for two reasons.
First, it reuses previous computations and eliminates
wasteful rebuilding of the chart. Second, it allows
lexical categories to be added to the chart one at a

41

affected cells

invalid cells

required cell

6 7 8 9

1

span

pos

2

3

4

6

7

8

9

10

5

0 1 2 3 4 5

Figure 2: Cells affected by adding a constraint.

time until a spanning derivation is found. In the orig-
inal approach extra categories were added in bulk by
changing the β level, which significantly increased
the average ambiguity. Chart repair allows the min-
imum amount of ambiguity to be added for a span-
ning derivation to be found.

The C&C parser has a predefined limit on the num-
ber of categories in the chart. If this is exceeded
before a spanning analysis is found then the parser
fails on the sentence. Our new strategy allows a
chart containing a spanning analysis to be built with
the minimum number of categories possible. This
means that some sentences can now be parsed that
would have previously exceeded the limit, slightly
increasing coverage.

3.1 Category selection

The order in which lexical categories are added to
the chart will impact on parsing speed and accu-
racy, and so we evaluate several alternatives. The
first ordering (β VALUE) is by decreasing β value,
where the β value is the ratio between the probabil-
ity of the most likely category and the probability of
the given category for that word.2 The second or-
dering (PROB) is by decreasing category probability

2We are overloading the use of β for convenience. Here, β
refers to the variable ratio dependent on the particular category,
whereas the β value used in supertagging is a cutoff applied to
the variable ratio.

as assigned by the supertagger using the forward-
backward algorithm.

We also investigated ordering categories using in-
formation from the chart. Examining the sentences
which required chart repair showed that, when a
word is missing the correct category, the cells af-
fected (as defined in Section 3) by the cell are often
empty. The CHART ordering uses this observation to
select the next lexical category to assign. It selects
the word corresponding to the cell with the high-
est number of empty affected cells, and then adds
the highest probability category not in the chart for
that word. Finally, we included a RANDOM ordering
baseline for comparison purposes.

4 Constraints

The set of possible derivations can be constrained
if we know in advance that a particular span is re-
quired to be the yield of a single constituent in the
correct parse. A constraint on span p reduces the
search space because p must be the yield of a single
cell. This means that cells with yields that cross the
boundary of p cannot be part of a correct derivation,
and do not need to be considered (the grey cells in
Figure 2). In addition, if a cell yields p as a prefix or
suffix (the hashed cells in Figure 2) then it also has
constraints on how it can be created.

Figure 2 shows an example constraint requiring
words 3–6 to be a constituent, which corresponds to
p = cell(3, 4). Consider cell(3, 7): it yields words
3–9 and so contains p as the prefix. Normally it can
be created by combining cell(3, 1) with cell(4, 6),
or cell(3, 2) with cell(5, 5), and so on up to cell(3, 6)
with cell(9, 1). However the first three combinations
are not allowed because the second child crosses the
boundary of p. This gives a lower limit for the span
of the left child. Similarly, if p is the suffix of the
span of a cell then there is a lower limit on the span
of the right child.

As the example demonstrates, a single constraint
can eliminate many combinations, reducing the
search space significantly, and thus improving pars-
ing efficiency.

4.1 Creating Constraints
How can we know in advance that the correct deriva-
tion must yield specific spans, since this appears to
require knowledge of the parse itself? We have ex-

42

plored constraints derived from shallow parsing and
from the raw sentence. Our results demonstrate that
simple constraints can reduce parsing time signifi-
cantly without loss of coverage or accuracy.

Chunk tags were used to create constraints. We
experimented with both gold standard chunks from
the Penn Treebank and also chunker output from the
C&C chunk tagger. The tagger is very similar to the
Maximum Entropy POS tagger described in Curran
and Clark (2003). Only NP chunks were used be-
cause the accuracy of the tagger for other chunks is
lower. The Penn Treebank chunks required modi-
fication because CCGbank analyses some construc-
tions differently. We also created longer NPs by con-
catenating adjacent base NPs, for example in the case
of possessives.

A number of punctuation constraints were used
and had a significant impact especially for longer
sentences. There are a number of punctuation rules
in CCGbank which absorb a punctuation mark by
combining it with a category and returning a cate-
gory of the same type. These rules are very produc-
tive, combining with many constituent types. How-
ever, in CCGbank the sentence final punctuation is
always attached at the root. A constraint on the first
n − 1 words was added to force the parser to only
attach the sentence final punctuation once the rest of
the sentence has been parsed.

Constraints are placed around parenthesised and
quoted phrases that usually form constituents be-
fore attaching elsewhere. Constraints are also placed
around phrases bound by colons, semicolons, or hy-
phens. These constraints are especially effective
for long sentences with many clauses separated by
semicolons, reducing the sentence to a number of
smaller units which significantly improves parsing
efficiency.

In some instances, adding constraints can be
harmful to parsing efficiency and/or accuracy. Lack
of precision in the constraints can come from noisy
output from NLP components, e.g. the chunker, or
from rules which are not always applicable, e.g.
punctuation constraints. We find that the punctua-
tion constraints are particularly effective while the
gold standard chunks are required to gain any ben-
efit for the NP constraints. Adding constraints also
has the potential to increase coverage because the re-
duced search space means that longer sentences can

be parsed without exceeding the pre-defined limits
on chart size.

5 Selective Beam Search

Beam search involves greedy elimination of low
probability partial derivations before they can form
complete derivations. It is used in many parsers to
reduce the search space, for example Collins (2003).
We use a variable width beam where all categories
c in a particular cell C that satisfy score(c) <
max{score(x)|x ∈ C} − B, for some beam cut-
off B, are removed. The category scores score(c)
are log probabilities.

In the C&C parser, the entire packed chart is con-
structed first and then the spanning derivations are
marked. Only the partial derivations that form part
of spanning derivations are scored to select the best
parse, which is a small fraction of the categories in
the chart. Because the categories are scored with
a complex statistical model with a large number of
features, the time spent calculating scores is signif-
icant. We found that applying a beam to every cell
during the construction of the chart was more expen-
sive than not using the beam at all. When the beam
was made harsh enough to be worthwhile, it reduced
accuracy and coverage significantly.

We propose selective beam search where the
beam is only applied to spans of particular lengths.
The shorter spans are most important to cull because
there are many more of them and removing them has
the largest impact in terms of reducing the search
space. However, the supertagger already acts like
a beam at the lexical category level and the parser
model has fewer features at this level, so the beam
may be more accurate for longer spans. We there-
fore expect the beam to be most effective for spans
of intermediate length.

6 Experiments

The parser was trained on CCGbank sections 02-21
and section 00 was used for development. The per-
formance is measured in terms of coverage, F-score
and parsing time. The F-score is for labelled depen-
dencies compared against the predicate-argument
dependencies in CCGbank. The time reported in-
cludes loading the grammar and statistical model,
which takes around 5 seconds, and parsing the 1913

43

sentences in section 00.
The failure rate (opposite of coverage) is broken

down into sentences with length ≤ 40 and > 40
because longer sentences are more difficult to parse
and the C&C parser already has very high coverage
on shorter sentences. There are 1784 1-40 word sen-
tences and 129 41+ word sentences. The average
length and standard deviation in the 41+ set are 50.8
and 31.5 respectively.

All experiments used gold standard POS tags.
Original and REPAIR do not use constraints. The
NP(GOLD) experiments use Penn Treebank gold
standard NP chunks to determine an upper bound
on the utility of chunk constraints. The times re-
ported for NP(C&C) using the C&C chunker include
the time to load the chunker model and run the chun-
ker (around 1.3 seconds). PUNCT adds all of the
punctuation constraints.

Finally the best system was compared against the
original parser on section 23, which has 2257 sen-
tences of length 1-40 and 153 of length 41+. The
maximum length is only 65, which explains the high
coverage for the 41+ section.

6.1 Chart Repair Results

The results in Table 1 show that chart repair gives
an immediate 11.1% improvement in speed and a
small 0.21% improvement in accuracy. 96.1% of
sentences do not require chart repair because they
are successfully parsed using the initial set of lexi-
cal categories supplied by the supertagger. Hence,
11% is a significant improvement for less than 4%
of the sentences.

We believe the accuracy was improved (on top of
the efficiency) because of the way the repair process
adds new categories. Adding categories individually
allows the parser to be influenced by the probabil-
ities which the supertagger assigns, which are not
directly modelled in the parser. If we were to add
this information from the supertagger into the parser
statistical model directly we would expect almost
no accuracy difference between the original method
and chart repair.

Table 2 shows the impact of different category
ordering approaches for chart repair (with PUNCT

constraints). The most effective approach is to use
the information from the chart about the proportion
of empty cells, which adds half as many categories

METHOD secs % F-SCORE CATS

RANDOM 70.2 -16.2 86.57 23.1
β VALUE 60.4 — 86.66 15.7
PROB 60.1 0.5 86.65 14.3
CHART 57.2 5.3 86.61 7.0

Table 2: Category ordering for chart repair.

on average as the β value and probability based ap-
proaches. All of our approaches significantly out-
perform randomly selecting extra categories. The
CHART category ordering is used for the remaining
experiments.

6.2 Constraints Results
The results in Table 1 show that, without chart re-
pair, using gold standard noun phrases does not im-
prove efficiency, while using noun phrases identi-
fied by the C&C chunker decreases speed by 10.8%.
They both also slightly reduce parsing accuracy.
The number of times the parsing process had to be
restarted with the constraints removed, was more
costly than the reduction of the search space. This
is unsurprising because the chunk data was not ob-
tained from CCGbank and the chunker is not ac-
curate enough for the constraints to improve pars-
ing efficiency. The most frequent inconsistencies
between CCGbank and chunks extracted from the
Penn Treebank were fixed in a preprocessing step as
explained in Section 4.1, but the less frequent con-
structions are still problematic.

The best results for parsing with constraints (with-
out repair) were with both punctuation and gold
standard noun phrase constraints, with 20.5% im-
provement in speed and 0.42% in coverage, but an
F-score penalty of 0.3%. This demonstrates the pos-
sible efficiency gain with a perfect chunker – the
corresponding results with the C&C chunker are still
worse than without constraints. The best results
without a decrease in accuracy use only punctuation
constraints, with 10.4% increase in speed and 0.37%
in coverage. The punctuation constraints also have
the advantage of being simple to implement.

The best overall efficiency gain was obtained
when punctuation and gold standard noun phrases
were used with chart repair, with a 45.4% improve-
ment in speed and 0.63% in coverage, and a 0.4%
drop in accuracy. The best results without a drop in

44

METHOD secs % F-SCORE COVER n ≤ 40 n > 40
Original 88.3 — 86.54 98.85 0.392 11.63
REPAIR 78.5 11.1 86.75 99.01 0.336 10.08
NP(GOLD) 88.4 -0.1 86.27 99.06 0.224 10.85
NP(C&C) 97.8 -10.8 86.31 99.16 0.224 9.30
PUNCT 79.1 10.4 86.56 99.22 0.168 9.30
NP(GOLD) + PUNCT 69.8 20.5 86.24 99.27 0.168 8.53
NP(C&C) + PUNCT 97.0 -9.9 86.31 99.16 0.168 10.08
NP(GOLD) + REPAIR 65.0 26.4 86.04 99.37 0.224 6.20
NP(C&C) + REPAIR 77.5 12.2 86.35 99.37 0.224 6.20
PUNCT + REPAIR 57.2 35.2 86.61 99.48 0.168 5.43
NP(GOLD) + PUNCT + REPAIR 48.2 45.4 86.14 99.48 0.168 5.43
NP(C&C) + PUNCT + REPAIR 63.2 28.4 86.43 99.53 0.163 3.88

Table 1: Parsing performance on section 00 with constraints and chart repair

METHOD secs % F-SCORE COVER n ≤ 40 n > 40
Original 88.3 — 86.54 98.85 0.392 11.63
PUNCT 79.1 10.4 86.56 99.22 0.168 9.30
REPAIR 78.5 11.1 86.75 99.01 0.336 10.08
PUNCT + REPAIR 57.2 35.2 86.61 99.48 0.168 5.43
PUNCT + REPAIR + BEAM 52.4 40.7 86.56 99.48 0.168 5.43

Table 3: Best performance on Section 00

accuracy were with only punctuation constraints and
chart repair, with improvements of 35.2% speed and
0.63% coverage. Coverage on both short and long
sentences is improved – the best results show a 43%
and 67% decrease in failure rate for sentence lengths
in the ranges 1-40 and 41+ respectively.

6.3 Partial Beam Results
We found that using the selective beam on 1–2 word
spans had negligible impact on speed and accuracy.
Using the beam on 3–4 word spans had the most im-
pact without accuracy penalty, improving efficiency
by another ∼5%. Experiments with the selective
beam on longer spans continued to improve effi-
ciency, but with a much greater penalty in F-score,
e.g. a further ∼5% at a cost of 0.5% F-score for 3–6
word spans. However, we are interested in efficiency
improvements with negligible cost to accuracy.

6.4 Overall Results
Table 3 summarises the results for section 00. The
chart repair and punctuation constraints individually
increase parsing efficiency by around 10%. How-

ever, the most interesting result is that in combina-
tion they increase efficiency by over 35%. This is
because the cost of rebuilding the chart when the
constraints are incorrect has been significantly re-
duced by chart repair. Finally, the use of the selec-
tive beam gives modest improvement of 5.5%. The
overall efficiency gain on section 00 is 40.7% with
an additional 0.5% coverage, halving both the num-
ber of short and long sentences that fail to be parsed.

Table 4 shows the performance of the punctuation
constraints, chart repair and selective beam system
on section 23. The results are consistent with sec-
tion 00, showing a 30.9% improvement in speed and
0.29% in coverage, with accuracy staying at roughly
the same level. The results show a consistent 35-
40% reduction in parsing time and a 40-65% reduc-
tion in parse failure rate.

7 Conclusion

We have introduced several modifications to CKY

parsing for CCG that significantly increase parsing
efficiency without an accuracy or coverage penalty.

45

METHOD secs % F-SCORE COVER n ≤ 40 n > 40

Original 91.3 — 86.92 99.29 0.621 1.961
PUNCT + REPAIR + BEAM 58.7 35.7 86.82 99.58 0.399 0.654

Table 4: Best performance on Section 23

Chart repair improves efficiency by reusing the
chart from the previous parse attempts. This allows
us to further tighten the parser-supertagger integra-
tion by adding one lexical category at a time until a
spanning derivation is found. We have also explored
several approaches to selecting which category to
add next. We intend to further explore strategies
for determining which category to add next when a
parse fails. This includes combining chart and prob-
ability based orderings. Chart repair alone gives an
11.1% efficiency improvement.

Constraints improve efficiency by avoiding the
construction of sub-derivations that will not be used.
They have a significant impact on parsing speed and
coverage without reducing the accuracy, provided
the constraints are identified with sufficient preci-
sion. Punctuation constraints give a 10.4% improve-
ment, but NP constraints require higher precision NP

chunking than is currently available for CCGbank.
Constraints and chart repair both manipulate the

chart for more efficient parsing. Adding categories
one at a time using chart repair is almost a form of
agenda-based parsing. We intend to explore other
methods for pruning the space and agenda-based
parsing, in particular A* parsing (Klein and Man-
ning, 2003), which will allow only the most proba-
ble parts of the chart to be built, improving efficiency
while still ensuring the optimal derivation is found.

When all of our modifications are used parsing
speed increases by 35-40% and the failure rate de-
creases by 40-65%, both for sentences of length 1-40
and 41+, with a negligible accuracy penalty. The re-
sult is an even faster state-of-the-art wide-coverage
CCG parser.

Acknowledgements

We would like to thank the anonymous reviewers
for their feedback. James Curran was funded under
ARC Discovery grants DP0453131 and DP0665973.

References
Srinivas Bangalore and Aravind Joshi. 1999. Supertag-

ging: An approach to almost parsing. Computational
Linguistics, 25(2):237–265.

A. Cahill, M. Burke, R. O’Donovan, J. van Genabith,
and A. Way. 2004. Long-distance dependency resolu-
tion in automatically acquired wide-coverage PCFG-
based LFG approximations. In Proceedings of the
42nd Meeting of the ACL, pages 320–327, Barcelona,
Spain.

Stephen Clark and James R. Curran. 2004a. The impor-
tance of supertagging for wide-coverage CCG pars-
ing. In Proceedings of COLING-04, pages 282–288,
Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Parsing the
WSJ using CCG and log-linear models. In Proceed-
ings of ACL-04, pages 104–111, Barcelona, Spain.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29(4):589–637.

James R. Curran and Stephen Clark. 2003. Investigating
GIS and smoothing for maximum entropy taggers. In
Proceedings of the 10th Meeting of the EACL, pages
91–98, Budapest, Hungary.

James R. Curran, Stephen Clark, and David Vadas.
2006. Multi-tagging for lexicalized-grammar parsing.
In Proceedings of COLING/ACL-06, pages 697–704,
Sydney, Austrailia.

Julia Hockenmaier and Mark Steedman. 2002. Gener-
ative models for statistical parsing with Combinatory
Categorial Grammar. In Proceedings of the 40th Meet-
ing of the ACL, pages 335–342, Philadelphia, PA.

Julia Hockenmaier. 2003. Data and Models for Statis-
tical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Ron Kaplan, Stefan Riezler, Tracy H. King, John
T. Maxwell III, Alexander Vasserman, and Richard
Crouch. 2004. Speed and accuracy in shallow and
deep stochastic parsing. In Proceedings of the Human
Language Technology Conference and the 4th Meeting
of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL’04), Boston,
MA.

46

J. Kasami. 1965. An efficient recognition and syntax
analysis algorithm for context-free languages. Techni-
cal Report AFCRL-65-758, Air Force Cambridge Re-
search Laboratory, Bedford, MA.

Dan Klein and Christopher D. Manning. 2003. A* pars-
ing: Fast exact Viterbi parse selection. In Proceed-
ings of Human Language Technology and the North
American Chapter of the Association for Computa-
tional Linguistics Conference, pages 119–126, Ed-
mond, Canada.

Robert Malouf and Gertjan van Noord. 2004. Wide
coverage parsing with stochastic attribute value gram-
mars. In Proceedings of the IJCNLP-04 Workshop:
Beyond shallow analyses - Formalisms and statistical
modeling for deep analyses, Hainan Island, China.

Adwait Ratnaparkhi. 1996. A maximum entropy part-
of-speech tagger. In Proceedings of the EMNLP Con-
ference, pages 133–142, Philadelphia, PA.

Anoop Sarkar and Aravind Joshi. 2003. Tree-adjoining
grammars and its application to statistical parsing. In
Rens Bod, Remko Scha, and Khalil Sima’an, editors,
Data-oriented parsing. CSLI.

Mark Steedman. 2000. The Syntactic Process. The MIT
Press, Cambridge, MA.

Kristina Toutanova, Christopher Manning, Stuart
Shieber, Dan Flickinger, and Stephan Oepen. 2002.
Parse disambiguation for a rich HPSG grammar. In
Proceedings of the First Workshop on Treebanks
and Linguistic Theories, pages 253–263, Sozopol,
Bulgaria.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2004. Iterative
cky parsing for probabilistic context-free grammars.
In Proceedings of the IJCNLP conference, pages 52–
60, Hainan Island, China.

D. Younger. 1967. Recognition and parsing of context-
free languages in time n3. Information and Control,
10(2):189–208.

47

Proceedings of the 10th Conference on Parsing Technologies, pages 48–59,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Efficiency in Unification-BasedN -Best Parsing

Yi Zhang♣, Stephan Oepen♦, and John Carroll♥

♣Saarland University, Department of Computational Linguistics, and DFKI GmbH (Germany)
♦University of Oslo, Department of Informatics (Norway)
♥University of Sussex, Department of Informatics (UK)

Abstract

We extend a recently proposed algorithm for
n-best unpacking of parse forests to deal ef-
ficiently with (a) Maximum Entropy (ME)
parse selection models containing important
classes of non-local features, and (b) forests
produced by unification grammars contain-
ing significant proportions of globally incon-
sistent analyses. The new algorithm empir-
ically exhibits a linear relationship between
processing time and the number of analyses
unpacked at all degrees of ME feature non-
locality; in addition, compared with agenda-
driven best-first parsing and exhaustive pars-
ing with post-hoc parse selection it leads to
improved parsing speed, coverage, and ac-
curacy.†

1 Background—Motivation

Technology for natural language analysis using lin-
guistically precise grammars has matured to a level
of coverage and efficiency that enables parsing of
large amounts of running text. Research groups
working within grammatical frameworks like CCG
(Clark & Curran, 2004), LFG (Riezler et al., 2002),
and HPSG (Malouf & van Noord, 2004; Oepen,
Flickinger, Toutanova, & Manning, 2004; Miyao,
Ninomiya, & Tsujii, 2005) have successfully in-
tegrated broad-coverage computational grammars
with sophisticated statistical parse selection models.
The former delineate the space of possible analy-
ses, while the latter provide a probability distribu-

†The first author warmly acknowledges the guidance of his
PhD advisors, Valia Kordoni and Hans Uszkoreit. We are grate-
ful to Ulrich Callmeier, Berthold Crysmann, Dan Flickinger,
and Erik Velldal for many discussions and their support. We
thank Ron Kaplan, Martin Kay, and Bob Moore for provid-
ing insightful information about related approaches, notably the
XLE and CLE parsers.

tion over competing hypotheses. Parse selection ap-
proaches for these frameworks often use discrimi-
native Maximum Entropy (ME) models, where the
probability of each parse tree, given an input string,
is estimated on the basis of select properties (called
features) of the tree (Abney, 1997; Johnson, Ge-
man, Canon, Chi, & Riezler, 1999). Such features,
in principle, are not restricted in their domain of
locality, and enable the parse selection process to
take into account properties that extend beyond lo-
cal contexts (i.e. sub-trees of depth one).

There is a trade-off in this set-up between the ac-
curacy of the parse selection model, on the one hand,
and the efficiency of the search for the best solu-
tion(s), on the other hand. Extending the context size
of ME features, within the bounds of available train-
ing data, enables increased parse selection accuracy.
However, the interplay of the core parsing algo-
rithm and the probabilistic ranking of alternate (sub-
)hypotheses becomes considerably more complex
and costly when the feature size exceeds the domain
of locality (of depth-one trees) that is characteristic
of phrase structure grammar-based formalisms. One
current line of research focuses on finding the best
balance between parsing efficiency and parse selec-
tion techniques of increasing complexity, aiming to
identify the most probable solution(s) with minimal
effort.

This paper explores a range of techniques, com-
bining a broad-coverage, high-efficiency HPSG
parser with a series of parse selection models with
varying context size of features. We sketch three
general scenarios for the integration: (a) a baseline
sequential configuration, where all results are enu-
merated first, and subsequently ranked; (b) an in-
terleaved but approximative solution, performing a
greedy search for ann-best list of results; and (c) a
two-phase approach, where a complete packed for-

48

est is created and combined with a specialized graph
search procedure to selectively enumerate results in
(globally) correct rank order. Although conceptu-
ally simple, the second technique has not previously
been evaluated for HPSG parsing (to the best of our
knowledge). The last of these techniques, which we
call selective unpacking, was first proposed by Car-
roll & Oepen (2005) in the context of chart-based
generation. However, they only provide an account
of the algorithm for local ME properties and assert
that the technique should generalize to larger con-
texts straightforwardly. This paper describes this
generalization of selective unpacking, in its appli-
cation to parsing, and demonstrates that the move
from features that resemble a context-free domain
of locality to features of, in principle, arbitrary con-
text size can indeed be based on the same algorithm,
but the required extensions are non-trivial.

The structure of the paper is as follows. Sec-
tion 2 summarizes our formalism, grammars used,
parse selection approach, and training and test data.
Section 3 discusses the range of possibilities for
structuring the process of statistical, grammar-based
parsing, and Sections 4 to 6 describe our approach
to efficientn-best parsing. We present experimental
results in Section 7, compare our approach to previ-
ous ones (Section 8), and finally conclude.

2 Overall Set-up

While couched in the HPSG framework, the tech-
niques explored here are applicable to the larger
class of unification-based grammar formalisms. We
make use of the DELPH-IN1 reference formalism,
as implemented by a variety of systems, including
the LKB (Copestake, 2002) and PET (Callmeier,
2002). For the experiments discussed here, we
adapted the open-source PET parsing engine in
conjunction with two publicly available grammars,
the English Resource Grammar (ERG; Flickinger,
2000) and the DFKI German Grammar (GG; Müller
& Kasper, 2000, Crysmann, 2005). Our parse se-
lection models were trained and evaluated on HPSG
treebanks that are distributed with these grammars.
The following paragraphs summarize relevant prop-
erties of the structures manipulated by the parser,

1Deep Linguistic Processing with HPSG, an open-
source repository of grammars and processing tools; see
‘http://www.delph-in.net/’.

subjh

hspec

det the le

the

sing noun

n intr le

dog

third sg fin verb

v unerg le

barks

Figure 1: Sample HPSG derivation tree for the sentencethe
dog barks. Phrasal nodes are labeled with identifiers of gram-
mar rules, and (pre-terminal) lexical nodes with class names for
types of lexical entries.

followed by relevant background on parse selection.

Figure 1 shows an example ERG derivation tree.
Internal tree nodes are labeled with identifiers of
grammar rules, and leaves with lexical entries. The
derivation tree provides complete information about
the actual HPSG analysis, in the sense that it can be
viewed as a recipe for computing it. Lexical entries
and grammar rules alike are ultimately just feature
structures, complex and highly-structured linguistic
categories. When unified together in the configura-
tion depicted by the derivation tree, the resulting fea-
ture structure yields an HPSG sign, a detailed repre-
sentation of the syntactic and semantic properties of
the input string. Just as the full derivation denotes a
feature structure, so do its sub-trees, and for gram-
mars like the ERG and GG each such structure will
contain hundreds of feature – value pairs.

Because of the lexicalized nature of HPSG (and
similar frameworks) our parsers search for well-
formed derivations in a pure bottom-up fashion.
Other than that, there are no hard-wired assumptions
about the order of computation, i.e. the specific pars-
ing strategy. Our basic set-up closely mimics that of
Oepen & Carroll (2002), where edges indexed by
sub-string positions in a chart represent the nodes of
the tree, recording both a feature structure (as its cat-
egory label) and the identity of the underlying lexi-
cal entry or rule in the grammar. Multiple edges de-
rived for identical sub-strings can be ‘packed’ into a
single chart entry in case their feature structures are
compatible, i.e. stand in an equivalence or subsump-
tion relation. By virtue of having each edge keep
back-pointers to its daughter edges—the immediate
sub-nodes in the tree whose combination resulted in

49

the mother edge—the parse forest provides a com-
plete andexplicit encoding of all possible results in a
maximally compact form.2 A simple unpacking pro-
cedure is obtained from the cross-multiplication of
all local combinatorics, which is directly amenable
to dynamic programming.

Figure 2 shows a hypothetical forest (on the left),
where sets of edges exhibiting local ambiguity have
been packed into a single ‘representative’ edge, viz.
the one in each set with one or more incoming dom-
inance arcs. Confirming the findings of Oepen &
Carroll (2002), in our experiments packing under
feature structure subsumption is much more effec-
tive than packing under mere equivalence, i.e. for
each pair of edges (over identical sub-strings) that
stand in a subsumption relation, a technique that
Oepen & Carroll (2002) termed retro-active pack-
ing ensures that the more general of the two edges
remains in the chart. When packing under subsump-
tion, however, some of the cross-product of local
ambiguities in the forest may not be globally con-
sistent. Assume for example that, in Figure 2, edges
6 and 8 subsume7 and 9 , respectively; combining
7 and 9 into the same tree during unpacking can in
principle fail. Thus, unpacking effectively needs to
deterministically replay unifications, but this extra
expense in our experience is negligible when com-
pared to the decreased cost of constructing the for-
est under subsumption. In Section 3 we argue that
this very property, in addition to increasing parsing
efficiency, interacts beneficially with parse selection
and on-demand enumeration of results in rank order.

Following (Johnson et al., 1999), a conditional
ME model of the probabilities of trees{t1 . . . tn}
for a string s, and assuming a set of feature
functions {f1 . . . fm} with corresponding weights
{λ1 . . . λm}, is defined as:

p(ti|s) =
exp

∑

j λjfj(ti)
∑n

k=1
exp

∑

j λjfj(tk)
(1)

2This property of parse forests is not a prerequisite of the
chart parsing framework. The basic CKY procedure (Kasami,
1965), for example, as well as many unification-based adapta-
tions (e.g. the Core Language Engine; Moore & Alshawi, 1992)
merely record the local category of each edge, which is suffi-
cient for the recognition task and simplifies the search. How-
ever, reading out complete trees from the chart, then, amounts
to a limited form of search, going back to the rules of the gram-
mar itself to (re-)discover decomposition relations amongchart
entries.

Type Sample Features
1 〈0 subjh hspec third sg fin verb〉
1 〈1 △ subjh hspec third sg fin verb〉
1 〈0 hspec det the le sing noun〉
1 〈1 subjh hspec det the le sing noun〉
1 〈2 △ subjh hspec det the le sing noun〉
2 〈0 subjh third sg fin verb〉
2 〈0 subjh hspce〉
2 〈1 subjh hspec det the le〉
2 〈1 subjh hspec sing noun〉
3 〈1 n intr le dog〉
3 〈2 det the le n intr le dog〉
3 〈3 � det the le n intr le dog〉

Table 1: Examples of structural features extracted from the
derivation tree in Figure 1. TheType column indicates the
template corresponding to each sample feature; the integerthat
starts each feature indicates the degree of grandparenting(in the
case of type 1 and 2 features) orn-gram size (type 3 features).
The symbols△ and� denote the root of the tree and left pe-
riphery of the yield, respectively.

Feature functionsfj can test for arbitrary structural
properties of analysesti, and their value typically is
the number of times a specific property is present
in ti. Toutanova, Manning, Flickinger, & Oepen
(2005) propose an inventory of features that per-
form well in HPSG parse selection; currently we re-
strict ourselves to the best-performing of these, of
the form illustrated in Table 1, comprising depth-
one sub-trees (or portions of these) with grammar-
internal identifiers as node labels, plus optionally
a chain of one or more dominating nodes (i.e. lev-
els of grandparents). If a grandparents chain is
present then the feature is non-local. For expository
purposes, Table 1 includes another feature type,n-
grams over leaf nodes of the derivation; in Section 5
below we speculate about the incorporation of these
(and similar) features in our algorithm.

3 Interleaving Parsing and Ranking

At an abstract level, given a grammar and an associ-
ated ME parse selection model, there are three basic
ways of combining them in order to find the single
‘best’ or small set ofn-best results.

The first way is a naı̈ve sequential set-up, in which
the parser first enumerates the full set of analyses,
computes a score for each using the model, and re-
turns the highest-rankingn results. For carefully

50

1 →
〈

2 3
〉

|
〈

4 3
〉

2 →
〈

5 6
〉

|
〈

5 7
〉

4 →
〈

8 6
〉

|
〈

8 7
〉

|
〈

9 6
〉

|
〈

9 7
〉

6 →
〈

10
〉

|
〈

11
〉

Figure 2: Sample forest and sub-node decompositions: ovalsin the forest (on the left) indicate packing of edges under subsump-
tion, i.e. edges4 , 7 , 9 , and 11 arenot in the chart proper. During unpacking, there will be multiple ways of instantiating a
chart edge, each obtained from cross-multiplying alternate daughter sequences locally. The elements of this cross-product we call
decomposition, and they are pivotal points both for stochastic scoring anddynamic programming in selective unpacking. The table
on the right shows all non-leaf decompositions for our example packed forest: given two ways of decomposing6 , there will be
three candidate ways of instantiating2 and six for4 , respectively, for a total of nine full trees.

crafted grammars and inputs of average complexity
the approach can perform reasonably well.

Another mode of operation is to organize the
parser’s search according to an agenda (i.e. priority
queue) that assigns numeric scores to parsing moves
(Erbach, 1991). Each such move is an application of
the fundamental rule of chart parsing, combining an
active and a passive edge, and the scores represent
the expected ‘figure of merit’ (Caraballo & Char-
niak, 1998) of the resulting structure. Assuming a
parse selection model of the type sketched in Sec-
tion 2, we can determine the agenda priority for a
parsing move according to the (unnormalized) ME
score of the derivation (sub-)tree that would result
from its successful execution. Note that, unlike in
probabilistic context-free grammars (PCFGs), ME
scores of partial trees do not necessarily decrease as
the tree size increases; instead, the distribution of
feature weights is in the range(−∞,+∞), centered
around0, where negative weights intuitively corre-
spond to dis-preferred properties.

This lack of monotonicity in the scores associated
with sub-trees, on the one hand, is beneficial, in that
performing a greedy best-first search becomes prac-
tical: in contrast, with PCFGs and their monoton-
ically decreasing probabilities on larger sub-trees,
once the parser finds the first full tree the chart nec-
essarily has been instantiated almost completely. On
the other hand, the same property prohibits the appli-
cation of exact best-first techniques like A∗ search,
because there is no reliable future cost estimate; in
this respect, our set-up differs fundamentally from
that of Klein & Manning (2003) and related PCFG
parsing work. Using the unnormalized sum of ME

weights on a partial solution as its agenda score, ef-
fectively, means that sub-trees with low scores ‘sink’
to the bottom of the agenda; highly-ranked partial
constituents, in turn, instigate the immediate cre-
ation of larger structures, and ideally the bottom-up
agenda-driven search will greedily steer the parser
towards full analyses with high scores. Given its
heuristic nature, this procedure cannot guarantee
that itsn-best list of results corresponds to the glob-
ally correct rank order, but it may in practice come
reasonably close to it. While conceptually simple,
greedy best-first search does not combine easily with
ambiguity packing in the chart: (a) at least when
packing under subsumption, it is not obvious how
to accurately compute the agenda score of packed
nodes, and (b) to the extent that the greedy search
avoids exploration of dis-preferred local ambigu-
ity, the need for packing should be greatly reduced.
Unfortunately, in scoring bottom-up parsing moves,
ME features involving grandparenting are not ap-
plicable, leading to a second potential source of re-
duced parse selection accuracy. In Section 7 below,
we provide an empirical evaluation of both the naı̈ve
sequential and greedy best-first approaches.

4 Selective Unpacking

Carroll & Oepen (2005) observe that, at least for
grammars like the ERG, the construction of the
parse forest can be very efficient (with observed
polynomial complexity), especially when packing
edges under subsumption. Their selective unpacking
procedure, originally proposed for the forest created
by a chartgenerator, aims to unpack then-best set

51

1 procedureselectively-unpack-edge(edge, n) ≡
2 results← 〈〉; i← 0;
3 do
4 hypothesis← hypothesize-edge(edge , i); i← i + 1;
5 if (new← instantiate-hypothesis(hypothesis)) then
6 n← n − 1; results← results ⊕ 〈new〉;
7 while (hypothesis and n ≥ 1)
8 return results;

9 procedurehypothesize-edge(edge , i) ≡
10 if (edge.hypotheses[i]) return edge.hypotheses[i];
11 if (i = 0) then
12 for each(decomposition in decompose-edge(edge)) do
13 daughters← 〈 〉; indices← 〈 〉
14 for each(edge in decomposition.rhs) do
15 daughters← daughters ⊕ 〈hypothesize-edge(edge, 0)〉;
16 indices← indices ⊕ 〈0〉;
17 new-hypothesis(edge, decomposition, daughters, indices);
18 if (hypothesis← edge.agenda.pop()) then
19 for each(indices in advance-indices(hypothesis.indices)) do
20 if (indices ∈ hypothesis.decomposition.indices) then continue
21 daughters← 〈 〉;
22 for each(edge in hypothesis.decomposition.rhs) each(i in indices) do
23 daughter← hypothesize-edge(edge, i);
24 if (not daughter) then daughters← 〈〉; break
25 daughters← daughters ⊕ 〈daughter〉;
26 if (daughters) then new-hypothesis(edge, hypothesis.decomposition, daughters, indices)
27 edge.hypotheses[i]← hypothesis;
28 return hypothesis;

29 procedurenew-hypothesis(edge , decomposition , daughters , indices) ≡
30 hypothesis← new hypothesis(decomposition, daughters, indices);
31 edge.agenda.insert(score-hypothesis(hypothesis), hypothesis);
32 decomposition.indices← decomposition.indices∪ {indices};

Figure 3: Selective unpacking procedure, enumerating then best realizations for a top-level resultedgefrom a packed forest. An
auxiliary functiondecompose-edge() performs local cross-multiplication as shown in the examples in Figure 2. Another utility
function not shown in pseudo-code isadvance-indices(), a ‘driver’ routine searching for alternate instantiations of daughter edges,
e.g.advance-indices(〈0 2 1〉)→ {〈1 2 1〉 〈0 3 1〉 〈0 2 2〉}. Finally, instantiate-hypothesis() is the function that actually builds
result trees, replaying the unifications of constructions from the grammar (as identified by chart edges) with the feature structures
of daughter constituents.

of full trees from the forest, guaranteeing the glob-
ally correct rank order according to the probability
distribution, with a minimal amount of search. The
basic algorithm is a specialized graph search through
the forest, with local contexts of optimization corre-
sponding to packed nodes.

Each such node represents local combinatorics,
and two key notions in the selective unpacking pro-
cedure are the concepts of (a)decomposingan edge
locally into candidate ways of instantiating it, and
of (b) nested contexts of local search for ranked
hypotheses(i.e. uninstantiated edges) about candi-
date subtrees. See Figure 2 for examples of the de-
composition of edges. Given one decomposition—
i.e. a vector of candidate daughters for a particu-
lar rule—there can be multiple ways of instanti-

ating each daughter: a parallel index vector~I =
〈i0 . . . in〉 serves to keep track of ‘vertical’ search
among daughter hypotheses, where each indexij
denotes thei-th best instantiation (hypothesis) of
the daughter at positionj. If we restrict ME fea-
tures to a depth of one (i.e. without grandparent-
ing), then given the additive nature of ME scores
on complete derivations, it can be guaranteed that
hypothesized trees including an edgee as an im-
mediate daughter must use the best instantiation of
e in their own best instantiation. Assuming a bi-
nary rule, the corresponding hypothesis would use
daughter indices of〈0 0〉. The second-best instan-
tiation, in turn, can be obtained from moving to the
second-best hypothesis foroneof the elements in the
(right-hand side of the) decomposition, e.g. indices

52

〈0 1〉 or 〈1 0〉 in the binary example. Hypotheses are
associated with ME scores and ordered within each
nested context by means of a local priority queue
(stored in the original representative edge, for con-
venience). Therefore, nested local optimizations re-
sult in a top-down, breadth-first, exactn-best search
through the packed forest, while avoiding exhaustive
cross-multiplication of packed nodes.

Figure 3 shows the unchanged pseudo-code of
Carroll & Oepen (2005). The main function
hypothesize-edge() controls both the ‘horizontal’ and
‘vertical’ search, initializing the set of decompo-
sitions and pushing initial hypotheses onto the lo-
cal agenda when called on an edge for the first
time (lines 11 – 17). For each call, the procedure
retrieves the current next-best hypothesis from the
agenda (line 18), generates new hypotheses by ad-
vancing daughter indices (while skipping over con-
figurations seen earlier) and calling itself recursively
for each new index (lines 19 – 26), and, finally, ar-
ranging for the resulting hypothesis to be cached for
later invocations on the sameedgeandi values (line
27). Note that unification (ininstantiate-hypothesis())
is only invoked on complete, top-level hypotheses,
as our structural ME features can actually be eval-
uatedprior to building each full feature structure.
However, as Carroll & Oepen (2005) suggest, the
procedure could be adapted to perform instantiation
of sub-hypotheses within each local search, should
additional features require it. For better efficiency,
the instantiate-hypothesis() routine applies dynamic
programming (i.e. memoization) to intermediate re-
sults.

5 Generalizing the Algorithm

Carroll & Oepen (2005) offer no solution for selec-
tive unpacking with larger context ME features. Yet,
both Toutanova et al. (2005) and our own experi-
ments (described in Section 7 below) suggest that
properties of larger contexts and especially grand-
parenting can greatly improve parse selection ac-
curacy. The following paragraphs outline how to
generalize the basic selective unpacking procedure,
while retaining its key properties: exactn-best enu-
meration with minimal search. Our generalization of
the algorithm distinguishes between ‘upward’ con-
texts, with grandparenting with dominating nodes as

a representative feature type, and ‘downward’ exten-
sions, which we discuss for the example of lexical
n-gram features.

A naı̈ve approach to selective unpacking with
grandparenting might be extending the cross-
multiplication of local ambiguity to trees of more
than depth one. However, with multiple levels of
grandparenting this approach would greatly increase
the combinatorics to be explored, and it would pose
the puzzle of overlapping local contexts of opti-
mization. Choices made among the alternates for
one packed node would interact with other ambi-
guity contexts in their internal nodes, rather than
merely at the leaves of their decompositions. How-
ever, it is sufficient to keep the depth of decompo-
sitions to minimal sub-trees and rather contextual-
ize each decomposition as a whole. Assuming our
sample forest and set of decompositions from Fig-
ure 2, let〈1 4 〉 : 6 →〈10 〉 denote the decomposi-
tion of node 6 in the context of 4 and 1 as its
immediate parents. When descending through the
forest,hypothesize-edge() can, without significant ex-
tra cost, maintain a vector~P = 〈pn . . . p0〉 of par-
ents of the current node, forn-level grandparenting.
For each packed node, the bookkeeping elements of
the graph search procedure need to be contextual-
ized on ~P , viz. (a) the edge-local priority queue,
(b) the record of index vectors hypothesized already,
and (c) the cache of previous instantiations. Assum-
ing each is stored in an associative array, then all
references toedge.agenda in the original procedure
can be replaced byedge.agenda[~P], and likewise for
other slots. With these extensions in place, the orig-
inal control structure of nested, on-demand creation
of hypotheses and dynamic programming of partial
results can be retained, and for each packed node
with multiple parents (6 in our sample forest) there
will be parallel, contextualized partitions of opti-
mization. Thus, extra combinatorics introduced in
this generalized procedure are confined to only such
nodes, which (intuitively at least) appears to estab-
lish the lower bound of added search needed—while
keeping the algorithm non-approximative. Section 7
provides empirical data on the degradation of the
procedure in growing levels of grandparenting and
the number ofn-best results to be extracted from the
forest.

Finally, we turn to enlarged feature contexts that

53

capture information from nodesbelowthe elements
of a local decomposition. Consider the example
of feature type 3 in Table 1,n-grams (of vari-
ous size) over properties of the yield of the parse
tree. For now we only consider lexicalbi-grams.
For an edgee dominating a sub-string ofn words
〈wi . . . wi+n−1〉 there will ben− 1 bi-grams inter-
nal to e, and two bi-grams that interact withwi−1

and wi+n—which will be determined by the left-
and right-adjacent edges toe in a complete tree. The
internal bi-grams are unproblematic, and we can as-
sume that ME weights corresponding to these fea-
tures have been included in the sum of weights as-
sociated toe. Seeing thate may occur in multiple
trees, with different sister edges, the selective un-
packing procedure has to take this variation into ac-
count when evaluating local contexts of optimiza-
tion.

Let xey denote an edgee, with x and y as the
lexical types of its leftmost and rightmost daugh-
ters, respectively. Returning to our sample forest,
assume lexicalizationsβ 10β andγ 11 γ (each span-
ning only one word), withβ 6= γ. Obviously, when
decomposing4 as〈8 6 〉, its ME score, in turn, will
depend on the choice made in the expansion of6 :
the sequences

〈

α 8 α β 6 β

〉

and
〈

α 8α γ 6 γ

〉

will dif-
fer in (at least) the scores associated with the bi-
grams〈αβ〉 vs. 〈αγ〉. Accordingly, when evalu-
ating candidate decompositions of4 , the number of
hypotheses that need to be considered is doubled;
as an immediate consequence, there can be up to
eight distinct lexicalized variants for the decompo-
sition 1 →〈4 3 〉 further up in the tree. It may look
as if combinatorics will cross-multiply throughout
the tree—in the worst case returning us to an ex-
ponential number of hypotheses—but this is fortu-
nately not the case: regarding the external bi-grams
of 1 , node 6 no longer participates in its left- or
rightmost periphery, so variation internal to6 is not
a multiplicative factor at this level. This is essen-
tially the observation of Langkilde (2000), and her
bottom-up factoring ofn-gram computation is eas-
ily incorporated into our top-down selective unpack-
ing control structure. At the point wherehypothesize-

edge() invokes itself recursively (line 23 in Figure 3),
its return value is now a set of lexicalized alternates,
and hypothesis creation (in line 26) can take into ac-
count the local cross-product of all such alternation.

Including additional properties from non-local sub-
trees (for example higher-ordern-grams and head
lexicalization) is a straightforward extension of this
scheme, replacing our per-edge left- and rightmost
periphery symbols with a generalized vector of ex-
ternally relevant, internal properties. In addition
to traditional (head) lexicalization as we have just
discussed it, such extended ‘downward’ properties
on decompositions—percolated from daughters to
mothers and cross-multiplied as appropriate—could
include metrics of constituent weight too, for exam-
ple to enable the ME model to prefer ‘balanced’ co-
ordination structures.

However, given that Toutanova et al. (2005) ob-
tain only marginally improved parse selection accu-
racy from the inclusion ofn-gram (and other lexical)
ME features, we have left the implementation of lex-
icalization and empirical evaluation for future work.

6 Failure Caching and Propagation

As we pointed out at the end of Section 4, during
the unpacking phase, unification is only replayed in
instantiate-hypothesis() on the top-level hypotheses. It
is only at this step that inconsistencies in the local
combinatorics are discovered. However, such a dis-
covery can be used to improve the unpacking rou-
tine by (a) avoiding further unification on hypothe-
ses that have already failed to instantiate, (b) avoid-
ing creating new hypotheses based on failed sub-
hypotheses. This requires some changes to the rou-
tinesinstantiate-hypothesis() andhypothesize-edge(), as
well as an extra boolean marker for each hypothesis.

The extended instantiate-hypothesis() starts by
checking whether the hypothesis is already marked
as failed. If it is not so marked, the routine recur-
sively instantiates all sub-hypotheses. Any failure
will again lead to instant return. Otherwise, unifica-
tion is used to create a new edge from the outcome of
the sub-hypothesis instantiations. If this unification
fails, the current hypothesis is marked. Moreover,
all its ancestor hypotheses are also marked (by re-
cursively following the pointers to the direct parent
hypotheses) as they are also guaranteed to fail.

Correspondingly, hypothesize-edge() needs to
check the instantiation failure marker to avoid re-
turning hypotheses that are guaranteed to fail. If
a hypothesis coming out of the agenda is already

54

marked as failed, it will be used to create new hy-
potheses (withadvance-indices()), but dropped af-
terward. Subsequent hypotheses will be popped
from the agenda until either a hypothesis that is not
marked as failed is returned, or the agenda is empty.

Moreover,hypothesize-edge() also needs to avoid
creating new hypotheses based on failed sub-
hypotheses. When a failed sub-hypothesis is found,
the creation of the new hypothesis is skipped. But
the index vector~I may not be simply discarded.
Otherwise hypotheses based onadvance-indices(~I)

will not be reachable in the search. On the other
hand, simply adding everyadvance-indices(~I) on to
the pending creation list is not efficient either in the
case where multiple sub-hypotheses fail.

To solve the problem, we compute a failure vec-
tor ~F = 〈f0 . . . fn〉, wherefj is 1 when the sub-
hypothesis at positionj is known as failed, and0
otherwise. If a sub-hypothesis at positionj is failed
then all the index vectors having valueij at posi-
tion j must also fail. By putting the result of~I + ~F

on the pending creation list, we can safely skip the
failed rows of sub-hypotheses, while not losing the
reachability of the others. As an example, suppose
we have a ternary index vector〈3 1 2〉 for which a
new hypothesis is to be created. By checking the in-
stantiation failure marker of the sub-hypotheses, we
find that the first and the third sub-hypotheses are al-
ready marked. The failure recording vector will then
be 〈1 0 1〉. By putting 〈4 1 3〉 = 〈3 1 2〉 + 〈1 0 1〉
on to the pending hypothesis creation list, the failed
sub-hypotheses are skipped.

We evaluate the effects of instantiation failure
caching and propagation below in Section 7.

7 Empirical Results

To evaluate the performance of the selective unpack-
ing algorithm, we carried out a series of empirical
evaluations with the ERG and GG, in combination
with a modified version of the PET parser. When
running the ERG we used as our test set theJH4
section of the LOGON treebank3, which contains
1603 items with an average sentence length of 14.6
words. The remaining LOGON treebank (of around

3The treebank is comprised of several booklets of
edited, instructional texts on backcountry activities in Nor-
way. The data is available from the LOGON web site at
‘http://www.emmtee.net’.

Configuration GP Coverage Time (s)

greedy best-first 0 91.6% 3889
exhaustive unpacking 0 84.5% 4673

selective unpacking

0 94.3% 2245
1 94.3% 2529
2 94.3% 3964
3 94.2% 3199
4 94.2% 3502

Table 2: Coverage on the ERG for different configurations, with
fixed resource consumption limits (of 100k passive edges or 300
seconds). In all cases, up to ten ‘best’ results were searched,
and Coverageshows the percentage of inputs that succeed to
parse within the available resource.Timeshows the end-to-end
processing time for each batch.

5 15 2525 35

String Length (Number of Input Tokens)

0

1

2

3

4

5

6
(s)

(generated by [incr tsdb()] at 23-mar-2007 (12:44 h))◦
◦

◦

◦

•
•

•

•

⋄
⋄

⋄

⋄

⋆
⋆

⋆

⋆

◦ gready best-first
• exhaustive unpacking
⋄ selective unpacking
⋆ forest creation

Figure 4: Parsing times for different configurations using the
ERG, in all three cases searching for up to ten results, without
the use of grandparenting.

8,000 items) was used in training the various ME
parse disambiguation models. For the experiment
with GG, we designated a 2825-item portion of the
DFKI Verbmobil treebank4 for our tests, and trained
ME models on the remaining 10,000 utterances. At
only 7.4 words, the average sentence length is much
shorter in the Verbmobil data.

We ran seven different configurations of the parser
with different search strategies and (un-)packing
mechanisms:

• Agenda driven greedyn-best parsing using the
ME score without grandparenting features; no
local ambiguity packing;

• Local ambiguity packing with exhaustive un-
packing, without grandparenting features;

4The data in this treebank is taken from transcribed appoint-
ment scheduling dialogues; see ‘http://gg.dfki.de/’
for further information on GG and its treebank.

55

1 10 20 30 40 50 60 70 80 90 100

Maximum Number of Trees to Unpack (n)

0.00

0.02

0.04

0.06

0.08

0.10
(s)

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦ ◦ ◦
◦ ◦ ◦ ◦

◦
◦ ◦ ◦

◦ ◦ ◦ ◦
◦

◦ ◦
◦ ◦ ◦ ◦ ◦

◦◦ ◦
◦ ◦ ◦ ◦ ◦

◦

GP=0

GP=1

GP=2

GP=3

GP=4

Figure 5: Mean times for selective unpacking of all test items
for n-best parsing with the ERG, for varyingn and grandpar-
enting (GP) levels

• Local ambiguity packing and selective unpack-
ing for n-best parsing, with0 through4 levels
of grandparenting (GP) features.

As a side-effect of differences in efficiency, some
configurations could not complete parsing all sen-
tences given reasonable memory constraints (which
we set at a limit of 100k passive edges or 300 sec-
onds processing time per item). The overall cover-
age and processing time of different configurations
on JH4are given in Table 2.

The correlation between processing time and cov-
erage is interesting. However, it makes the efficiency
comparison difficult as parser behavior is not clearly
defined when the memory limit is exceeded. To cir-
cumvent this problem, in the following experiments
we average only over those 1362 utterances from
JH4 that complete parsing within the resource limit
in all seven configurations. Nevertheless, it must
be noted that this restriction potentially reduces effi-
ciency differences between configurations, as some
of the more challenging inputs (which typically lead
to the largest differences) are excluded.

Figure 4 compares the processing time of differ-
ent configurations. The difference is much more
significant for longer sentences (i.e. with more than
15 words). If the parser unpacks exhaustively, the
time for unpacking grows with sentence length at a
quickly increasing rate. In such cases, the efficiency
gain with ambiguity packing in the parsing phase
is mostly lost in the unpacking phase. The graph
shows that greedy best-first parsing without packing
outperforms exhaustive unpacking for sentences of

Configuration Exact Match Top Ten

random choice 11.34 43.06
no grandparenting 52.52 68.38
greedy best-first 51.79 69.48

grandparenting[1] 56.83 85.33
grandparenting[2] 56.55 84.14
grandparenting[3] 56.37 84.14
grandparenting[4] 56.28 84.51

Table 3: Parse selection accuracy for various levels of grandpar-
enting. Theexact matchcolumn shows the percentage of cases
in which the correct tree, according to the treebank, was ranked
highest by the model; conversely, thetop tencolumn indicates
how often the correct tree was among the ten top-ranking re-
sults.

less than 25 words. With sentences longer than 25
words, the packing mechanism helps the parser to
overtake greedy best-first parsing, although the ex-
haustive unpacking time also grows fast.

With the selective unpacking algorithm presented
in the previous sections, unpacking time is reduced,
and grows only slowly as sentence length increases.
Unpacking up to ten results, when contrasted with
the timings for forest creation (i.e. the first parsing
phase) in Figure 4, adds a near-negligible extra cost
to the total time required for both phases. Moreover,
Figure 5 shows that with selective unpacking, asn

is increased, unpacking time grows roughly linearly
for all levels of grandparenting (albeit always with
an initial delay in unpacking the first result).

Table 4 summarizes a number of internal parser
measurements using the ERG with different pack-
ing/unpacking settings. Besides the difference in
processing time, we also see a significant difference
in “space” between exhaustive and selective un-
packing. Also, the difference in“unifications” and
“copies” indicates that with our selective unpacking
algorithm, these expensive operations on typed fea-
ture structures are significantly reduced.

In return for increased processing time (and
marginal loss in coverage) when using grandparent-
ing features, Table 3 shows some large improve-
ments in parse selection accuracy (although the pic-
ture is less clear-cut at higher-order levels of grand-
parenting5). A balance point between efficiency

5The models were trained using the open-sourceTADM pack-
age (Malouf, 2002), using default hyper-parameters for allcon-
figurations, viz. a convergence threshold of10

−8, variance of
the prior of10−4, and frequency cut-off of5. It is likely that

56

Configuration GP
Unifications Copies Space Unpack Total

(#) (#) (kbyte) (s) (s)

≤ 15

greedy best-first 0 1845 527 2328 – 0.12

words

exhaustive unpacking 0 2287 795 8907 0.01 0.12

selective unpacking

0 1912 589 8109 0.00 0.12
1 1913 589 8109 0.01 0.12
2 1914 589 8109 0.01 0.12
3 1914 589 8110 0.01 0.12
4 1914 589 8110 0.02 0.13

> 15

greedy best-first 0 25233 5602 24646 – 1.66

words

exhaustive unpacking 0 39095 15685 80832 0.85 1.95

selective unpacking

0 17489 4422 33326 0.03 1.17
1 17493 4421 33318 0.05 1.21
2 17493 4421 33318 0.09 1.25
3 17495 4422 33321 0.13 1.27
4 17495 4422 33320 0.21 1.34

Table 4: Contrasting the efficiency of various (un-)packingsettings in use with ERG on short (top) and medium-length (bottom)
inputs; in each configuration, up to ten trees are extracted.UnificationandCopiesis the count of top-level FS operations, where
only successful unifications require a subsequent copy (when creating a new edge).UnpackandTotalare unpacking and total parse
time, respectively.

and accuracy can be made according to application
needs.

Finally, we compare the processing time of the
selective unpacking algorithm with and without in-
stantiation failure caching and propagation (as de-
scribed in Section 4 above). The empirical results
for GG are summarized in Table 5, showing clearly
that the technique reduced unnecessary hypotheses
and instantiation failures. The design philosophy of
the ERG and GG differ. During the first, forest cre-
ation phase, GG suppresses a number of features (in
the HPSG sense, not the ME sense) that can actually
constrain the combinatorics of edges. This move
makes the packed forest more compact, but it im-
plies that unification failures will be more frequent
during unpacking. In a sense, GG thus moves part
of the search for globally consistent derivations into
the second phase, and it is possible for the forest to
contain ‘result’ trees that ultimately turn out to be
incoherent. Dynamic programming of instantiation
failures makes this approach tractable, while retain-
ing the general breadth-first characteristic of the se-
lective unpacking regime.

further optimization of hyper-parameters for individual config-
urations would moderately improve model performance, espe-
cially for higher-order grandparenting levels with large numbers
of features.

8 Discussion

The approach ton-best parsing described in this pa-
per takes as its point of departure recent work of Car-
roll & Oepen (2005), which describes an efficient al-
gorithm for unpackingn-best trees from a forest pro-
duced by a chart-based sentence generator and con-
taining local ME properties with associated weights.
In an almost contemporaneous study, but in the con-
text of parsing with treebank grammars, Huang &
Chiang (2005) develop a series of increasingly effi-
cient algorithms for unpackingn-best results from
a weighted hypergraph representing a parse forest.
The algorithm of Carroll & Oepen (2005) and the
final one of Huang & Chiang (2005) are essentially
equivalent, and turn out to be reformulations of an
approach originally described by Jiménez & Marzal
(2000) (although expressed there only for grammars
in Chomsky Normal Form).

In this paper we have considered ME properties
that extend beyond immediate dominance relations,
extending up to 4 levels of grandparenting. Pre-
vious work has either assumed properties that are
restricted to the minimal parse fragments (i.e. sub-
trees of depth one) that make up the packed repre-
sentation (Geman & Johnson, 2002), or has taken a
more relaxed approach by allowing non-local prop-

57

Configuration
Unifications Copies Hypotheses Space Unpack Total

(#) (#) (#) (kbyte) (ms) (ms)

greedy best-first 5980 1447 – 9202 – 400
selective, no caching 5535 1523 1245 27188 70 410
selective, with cache 4915 1522 382 27176 10 350

Table 5: Efficiency effects of the instantiation failure caching and propagation with GG, without grandparenting. All statistics are
averages over the 1941 items that complete within the resource bounds in all three configurations.Unification, Copies, Unpack,
andTotalhave the same interpretation as in Table 4, andHypothesesis the average count of hypothesized sub-trees.

erties but without addressing the problem of how to
efficiently extract the top-ranked trees from a packed
forest (Miyao & Tsujii, 2002).

Probably the work closest in spirit to our approach
is that of Malouf & van Noord (2004), who use an
HPSG grammar comparable to the ERG and GG,
non-local ME features, and a two-phase parse for-
est creation and unpacking approach. However, their
unpacking phase uses a beam search to find a good
(single) candidate for the best parse; in contrast—
for ME models containing the types of non-local
features that are most important for accurate parse
selection—we avoid an approximative search andef-
ficiently identify exactlythen-best parses.

When parsing with context free grammars, a (sin-
gle) parse can be retrieved from a parse forest in
time linear in the length of the input string (Bil-
lot & Lang, 1989). However, as discussed in Sec-
tion 2, when parsing with a unification-based gram-
mar and packing under feature structure subsump-
tion, the cross-product of some local ambiguities
may not be globally consistent. This means that ad-
ditional unifications are required at unpacking time.
In principle, when parsing with a pathological gram-
mar with a high rate of failure, extracting a single
consistent parse from the forest could take exponen-
tial time (see Lang (1994) for a discussion of this is-
sue with respect to Indexed Grammars). In the case
of GG, a high rate of unification failure in unpacking
is dramatically reduced by our instantiation failure
caching and propagation mechanism.

9 Conclusions and Future Work

We have described and evaluated an algorithm for
efficiently computing then-best analyses from a
parse forest produced by a unification grammar, with
respect to a Maximum Entropy (ME) model con-
taining two classes of non-local features. The al-

gorithm is efficient in that it empirically exhibits a
linear relationship between processing time and the
number of analyses unpacked, at all degrees of ME
feature non-locality. It improves over previous work
in providing the only exact procedure for retrieving
n-best analyses from a packed forest that can deal
with features with extended domains of locality and
with forests created under subsumption. Our algo-
rithm applies dynamic programming to intermediate
results and local failures in unpacking alike.

The experiments compared the new algorithm
with baseline systems representing other possible
approaches to parsing with ME models: (a) a single
phase of agenda-driven parsing with on-line prun-
ing based on intermediate ME scores, and (b) two-
phase parsing with exhaustive unpacking and post-
hoc ranking of complete trees. The new approach
showed better speed, coverage, and accuracy than
the baselines.

Although we have dealt with the non-local ME
features that in previous work have been found to be
the most important for parse selection (i.e. grand-
parenting and n-grams), this does not exhaust the
full range of features that could possibly be useful.
For example, it may be the case that accurately re-
solving some kinds of ambiguities can only be done
with reference to particular parts—or combinations
of parts—of the HPSG feature structures represent-
ing the analysis of a complete constituent. To deal
with such cases we are currently designing an exten-
sion to the algorithms described here which would
add a ‘controlled’ beam search, in which the size of
the beam was limited by the interval of score adjust-
ments for ME features that could only be evaluated
once the full linguistic structure became available.
This approach would involve a constrained amount
of extra search, but would still produce the exactn-
best trees.

58

References
Abney, S. P. (1997). Stochastic attribute-value grammars.Com-

putational Linguistics, 23, 597 – 618.

Billot, S., & Lang, B. (1989). The structure of shared forests
in ambiguous parsing. InProceedings of the 27th Meeting
of the Association for Computational Linguistics(pp. 143 –
151). Vancouver, BC.

Callmeier, U. (2002). Preprocessing and encoding techniques
in PET. In S. Oepen, D. Flickinger, J. Tsujii, & H. Uszkor-
eit (Eds.),Collaborative language engineering. A case study
in efficient grammar-based processing.Stanford, CA: CSLI
Publications.

Caraballo, S. A., & Charniak, E. (1998). New figures of merit
for best-first probabilistic chart parsing.Computational Lin-
guistics, 24(2), 275 – 298.

Carroll, J., & Oepen, S. (2005). High-efficiency realization for
a wide-coverage unification grammar. In R. Dale & K. F.
Wong (Eds.),Proceedings of the 2nd International Joint
Conference on Natural Language Processing(Vol. 3651, pp.
165 – 176). Jeju, Korea: Springer.

Clark, S., & Curran, J. R. (2004). Parsing the WSJ using CCG
and log-linear models. InProceedings of the 42nd Meeting
of the Association for Computational Linguistics(pp. 104 –
111). Barcelona, Spain.

Copestake, A. (2002).Implementing typed feature structure
grammars.Stanford, CA: CSLI Publications.

Crysmann, B. (2005). Relative clause extraposition in German.
An efficient and portable implementation.Research on Lan-
guage and Computation, 3(1), 61 – 82.

Erbach, G. (1991). A flexible parser for a linguistic develop-
ment environment. In O. Herzog & C.-R. Rollinger (Eds.),
Text understanding in LILOG(pp. 74 – 87). Berlin, Ger-
many: Springer.

Flickinger, D. (2000). On building a more efficient grammar
by exploiting types.Natural Language Engineering, 6 (1),
15 – 28.

Geman, S., & Johnson, M. (2002). Dynamic programming for
parsing and estimation of stochastic unification-based gram-
mars. InProceedings of the 40th Meeting of the Association
for Computational Linguistics.Philadelphia, PA.

Huang, L., & Chiang, D. (2005). Better k-best parsing. In
Proceedings of the 9th International Workshop on Parsing
Technologies(pp. 53 – 64). Vancouver, Canada.

Jiménez, V. M., & Marzal, A. (2000). Computation of the
n best parse trees for weighted and stochastic context-free
grammars. InProceedings of the Joint International Work-
shops on Advances in Pattern Recognition(pp. 183 – 192).
London, UK: Springer-Verlag.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S.
(1999). Estimators for stochastic ‘unification-based’ gram-
mars. InProceedings of the 37th Meeting of the Association
for Computational Linguistics(pp. 535 – 541). College Park,
MD.

Kasami, T. (1965). An efficient recognition and syntax al-
gorithm for context-free languages(Technical Report # 65-
758). Bedford, MA: Air Force Cambrige Research Labora-
tory.

Klein, D., & Manning, C. D. (2003). A* parsing. Fast exact
Viterbi parse selection. InProceedings of the 4th Confer-
ence of the North American Chapter of the ACL.Edmonton,
Canada.

Lang, B. (1994). Recognition can be harder than parsing.Com-
putational Intelligence, 10(4), 486 – 494.

Langkilde, I. (2000). Forest-based statistical sentence gener-
ation. In Proceedings of the 1st Conference of the North
American Chapter of the ACL.Seattle, WA.

Malouf, R. (2002). A comparison of algorithms for maxi-
mum entropy parameter estimation. InProceedings of the
6th Conference on Natural Language Learning.Taipei, Tai-
wan.

Malouf, R., & van Noord, G. (2004). Wide coverage parsing
with stochastic attribute value grammars. InProceedings of
the IJCNLP workshop Beyond Shallow Analysis.Hainan,
China.

Miyao, Y., Ninomiya, T., & Tsujii, J. (2005). Corpus-oriented
grammar development for acquiring a Head-Driven Phrase
Structure Grammar from the Penn Treebank. In K.-Y. Su,
J. Tsujii, J.-H. Lee, & O. Y. Kwong (Eds.),Natural language
processing(Vol. 3248, pp. 684 – 693). Hainan Island, China.

Miyao, Y., & Tsujii, J. (2002). Maximum entropy estimation
for feature forests. InProceedings of the Human Language
Technology Conference.San Diego, CA.

Moore, R. C., & Alshawi, H. (1992). Syntactic and semantic
processing. In H. Alshawi (Ed.),The Core Language Engine
(pp. 129 – 148). Cambridge, MA: MIT Press.

Müller, S., & Kasper, W. (2000). HPSG analysis of German.
In W. Wahlster (Ed.),Verbmobil. Foundations of speech-to-
speech translation(Artificial Intelligence ed., pp. 238 – 253).
Berlin, Germany: Springer.

Oepen, S., & Carroll, J. (2002). Efficient parsing for
unification-based grammars. In S. Oepen, D. Flickinger,
J. Tsujii, & H. Uszkoreit (Eds.),Collaborative language en-
gineering. A case study in efficient grammar-based process-
ing (pp. 195 – 225). Stanford, CA: CSLI Publications.

Oepen, S., Flickinger, D., Toutanova, K., & Manning, C. D.
(2004). LinGO Redwoods. A rich and dynamic treebank for
HPSG.Journal of Research on Language and Computation,
2(4), 575 – 596.

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., Maxwell III,
J. T., & Johnson, M. (2002). Parsing the Wall Street Journal
using a Lexical-Functional Grammar and discriminative es-
timation techniques. InProceedings of the 40th Meeting of
the Association for Computational Linguistics.Philadelphia,
PA.

Toutanova, K., Manning, C. D., Flickinger, D., & Oepen, S.
(2005). Stochastic HPSG parse selection using the Red-
woods corpus.Journal of Research on Language and Com-
putation, 3(1), 83 – 105.

59

Proceedings of the 10th Conference on Parsing Technologies, pages 60–68,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

A log-linear model with an n-gram reference distribution for accurate HPSG
parsing

Takashi Ninomiya
Information Technology Center

University of Tokyo
ninomi@r.dl.itc.u-tokyo.ac.jp

Takuya Matsuzaki
Department of Computer Science

University of Tokyo
matuzaki@is.s.u-tokyo.ac.jp

Yusuke Miyao
Department of Computer Science

University of Tokyo
yusuke@is.s.u-tokyo.ac.jp

Jun’ichi Tsujii
Department of Computer Science, University of Tokyo

School of Informatics, University of Manchester
NaCTeM (National Center for Text Mining)

tsujii@is.s.u-tokyo.ac.jp

Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan

Abstract

This paper describes a log-linear model with
an n-gram reference distribution for accurate
probabilistic HPSG parsing. In the model,
the n-gram reference distribution is simply
defined as the product of the probabilities
of selecting lexical entries, which are pro-
vided by the discriminative method with ma-
chine learning features of word and POS
n-gram as defined in the CCG/HPSG/CDG
supertagging. Recently, supertagging be-
comes well known to drastically improve
the parsing accuracy and speed, but su-
pertagging techniques were heuristically in-
troduced, and hence the probabilistic mod-
els for parse trees were not well defined.
We introduce the supertagging probabilities
as a reference distribution for the log-linear
model of the probabilistic HPSG. This is the
first model which properly incorporates the
supertagging probabilities into parse tree’s
probabilistic model.

1 Introduction

For the last decade, fast, accurate and wide-coverage
parsing for real-world text has been pursued in

sophisticated grammar formalisms, such as head-
driven phrase structure grammar (HPSG) (Pollard
and Sag, 1994), combinatory categorial grammar
(CCG) (Steedman, 2000) and lexical function gram-
mar (LFG) (Bresnan, 1982). They are preferred
because they give precise and in-depth analyses
for explaining linguistic phenomena, such as pas-
sivization, control verbs and relative clauses. The
main difficulty of developing parsers in these for-
malisms was how to model a well-defined proba-
bilistic model for graph structures such as feature
structures. This was overcome by a probabilistic
model which provides probabilities of discriminat-
ing a correct parse tree among candidates of parse
trees in alog-linear modelor maximum entropy
model(Berger et al., 1996) with many features for
parse trees (Abney, 1997; Johnson et al., 1999; Rie-
zler et al., 2000; Malouf and van Noord, 2004; Ka-
plan et al., 2004; Miyao and Tsujii, 2005). Follow-
ing this discriminative approach, techniques for effi-
ciency were investigated for estimation (Geman and
Johnson, 2002; Miyao and Tsujii, 2002; Malouf and
van Noord, 2004) and parsing (Clark and Curran,
2004b; Clark and Curran, 2004a; Ninomiya et al.,
2005).

An interesting approach to the problem of parsing
efficiency was using supertagging (Clark and Cur-

60

ran, 2004b; Clark and Curran, 2004a; Wang, 2003;
Wang and Harper, 2004; Nasr and Rambow, 2004;
Ninomiya et al., 2006; Foth et al., 2006; Foth and
Menzel, 2006), which was originally developed for
lexicalized tree adjoining grammars (LTAG) (Ban-
galore and Joshi, 1999). Supertagging is a process
where words in an input sentence are tagged with
‘supertags,’ which are lexical entries in lexicalized
grammars, e.g., elementary trees in LTAG, lexical
categories in CCG, and lexical entries in HPSG. The
concept of supertagging is simple and interesting,
and the effects of this were recently demonstrated in
the case of a CCG parser (Clark and Curran, 2004a)
with the result of a drastic improvement in the pars-
ing speed. Wang and Harper (2004) also demon-
strated the effects of supertagging with a statisti-
cal constraint dependency grammar (CDG) parser
by showing accuracy as high as the state-of-the-art
parsers, and Foth et al. (2006) and Foth and Menzel
(2006) reported that accuracy was significantly im-
proved by incorporating the supertagging probabili-
ties into manually tuned Weighted CDG. Ninomiya
et al. (2006) showed the parsing model using only
supertagging probabilities could achieve accuracy as
high as the probabilistic model for phrase structures.
This means that syntactic structures are almost de-
termined by supertags as is claimed by Bangalore
and Joshi (1999). However, supertaggers themselves
were heuristically used as an external tagger. They
filter out unlikely lexical entries just to help parsing
(Clark and Curran, 2004a), or the probabilistic mod-
els for phrase structures were trained independently
of the supertagger’s probabilistic models (Wang and
Harper, 2004; Ninomiya et al., 2006). In the case of
supertagging of Weighted CDG (Foth et al., 2006),
parameters for Weighted CDG are manually tuned,
i.e., their model is not a well-defined probabilistic
model.

We propose a log-linear model for probabilistic
HPSG parsing in which the supertagging probabil-
ities are introduced as a reference distribution for
the probabilistic HPSG. The reference distribution is
simply defined as the product of the probabilities of
selecting lexical entries, which are provided by the
discriminative method with machine learning fea-
tures of word and part-of-speech (POS) n-gram as
defined in the CCG/HPSG/CDG supertagging. This
is the first model which properly incorporates the su-

pertagging probabilities into parse tree’s probabilis-
tic model. We compared our model with the proba-
bilistic model for phrase structures (Miyao and Tsu-
jii, 2005). This model uses word and POS unigram
for its reference distribution, i.e., the probabilities of
unigram supertagging. Our model can be regarded
as an extension of a unigram reference distribution
to an n-gram reference distribution with features that
are used in supertagging. We also compared with a
probabilistic model in (Ninomiya et al., 2006). The
probabilities of their model are defined as the prod-
uct of probabilities of supertagging and probabilities
of the probabilistic model for phrase structures, but
their model was trained independently of supertag-
ging probabilities, i.e., the supertagging probabili-
ties are not used for reference distributions.

2 HPSG and probabilistic models

HPSG (Pollard and Sag, 1994) is a syntactic theory
based on lexicalized grammar formalism. In HPSG,
a small number of schemata describe general con-
struction rules, and a large number of lexical entries
express word-specific characteristics. The structures
of sentences are explained using combinations of
schemata and lexical entries. Both schemata and
lexical entries are represented by typed feature struc-
tures, and constraints represented by feature struc-
tures are checked withunification.

An example of HPSG parsing of the sentence
“Spring has come” is shown in Figure 1. First,
each of the lexical entries for “has” and “come”
is unified with a daughter feature structure of the
Head-Complement Schema. Unification provides
the phrasal sign of the mother. The sign of the
larger constituent is obtained by repeatedly applying
schemata to lexical/phrasal signs. Finally, the parse
result is output as a phrasal sign that dominates the
sentence.

Given a setW of words and a setF of feature
structures, an HPSG is formulated as a tuple,G =
〈L, R〉, where

L = {l = 〈w, F 〉|w ∈ W, F ∈ F} is a set of
lexical entries, and

R is a set of schemata; i.e.,r ∈ R is a partial
function:F × F → F .

Given a sentence, an HPSG computes a set of
phrasal signs, i.e., feature structures, as a result of

61

Spring

HEAD noun
SUBJ < >
COMPS < > 2

HEAD verb
SUBJ < >
COMPS < >

1

has

HEAD verb
SUBJ < >
COMPS < >

1

come

2

head-comp

HEAD verb

SUBJ < >

COMPS < >

HEAD noun
SUBJ < >
COMPS < >

1

=⇒

Spring

HEAD noun
SUBJ < >
COMPS < > 2

HEAD verb
SUBJ < >
COMPS < >

1

has

HEAD verb
SUBJ < >
COMPS < >

1

come

2

HEAD verb
SUBJ < >
COMPS < >

1

HEAD verb
SUBJ < >
COMPS < >

1

subject-head

head-comp

Figure 1: HPSG parsing.

parsing. Note that HPSG is one of the lexicalized
grammar formalisms, in which lexical entries deter-
mine the dominant syntactic structures.

Previous studies (Abney, 1997; Johnson et al.,
1999; Riezler et al., 2000; Malouf and van Noord,
2004; Kaplan et al., 2004; Miyao and Tsujii, 2005)
defined a probabilistic model of unification-based
grammars including HPSG as alog-linear modelor
maximum entropy model(Berger et al., 1996). The
probability that a parse resultT is assigned to a
given sentencew = 〈w1, . . . , wn〉 is

(Probabilistic HPSG)

phpsg(T |w) =
1

Zw
exp

(∑
u

λufu(T)

)

Zw =
∑
T ′

exp

(∑
u

λufu(T ′)

)
,

whereλu is a model parameter,fu is a feature func-
tion that represents a characteristic of parse treeT ,
andZw is the sum over the set of all possible parse
trees for the sentence. Intuitively, the probability
is defined as the normalized product of the weights
exp(λu) when a characteristic corresponding tofu

appears in parse resultT . The model parameters,λu,
are estimated using numerical optimization methods
(Malouf, 2002) to maximize the log-likelihood of
the training data.

However, the above model cannot be easily esti-
mated because the estimation requires the compu-
tation of p(T |w) for all parse candidates assigned

to sentencew. Because the number of parse can-
didates is exponentially related to the length of the
sentence, the estimation is intractable for long sen-
tences. To make the model estimation tractable, Ge-
man and Johnson (Geman and Johnson, 2002) and
Miyao and Tsujii (Miyao and Tsujii, 2002) proposed
a dynamic programming algorithm for estimating
p(T |w). Miyao and Tsujii (2005) also introduced a
preliminary probabilistic modelp0(T |w) whose es-
timation does not require the parsing of a treebank.
This model is introduced as areference distribution
(Jelinek, 1998; Johnson and Riezler, 2000) of the
probabilistic HPSG model; i.e., the computation of
parse trees given low probabilities by the model is
omitted in the estimation stage (Miyao and Tsujii,
2005), or a probabilistic model can be augmented
by several distributions estimated from the larger
and simpler corpus (Johnson and Riezler, 2000). In
(Miyao and Tsujii, 2005),p0(T |w) is defined as the
product of probabilities of selecting lexical entries
with word and POS unigram features:

(Miyao and Tsujii (2005)’s model)

puniref (T |w) = p0(T |w)
1

Zw
exp

(∑
u

λufu(T)

)

Zw =
∑
T ′

p0(T
′|w) exp

(∑
u

λufu(T ′)

)

p0(T |w) =

n∏
i=1

p(li|wi),

whereli is a lexical entry assigned to wordwi in
T andp(li|wi) is the probability of selecting lexical
entryli for wi.

In the experiments, we compared our model with
other two types of probabilistic models using a su-
pertagger (Ninomiya et al., 2006). The first one is
the simplest probabilistic model, which is defined
with only the probabilities of lexical entry selec-
tion. It is defined simply as the product of the prob-
abilities of selecting all lexical entries in the sen-
tence; i.e., the model does not use the probabilities
of phrase structures like the probabilistic models ex-
plained above. Given a set of lexical entries,L, a
sentence,w = 〈w1, . . . , wn〉, and the probabilistic
model of lexical entry selection,p(li ∈ L|w, i), the
first model is formally defined as follows:

62

HEAD verb
SUBJ <>
COMPS <>

HEAD noun
SUBJ <>
COMPS <>

HEAD verb
SUBJ < >
COMPS <>

HEAD verb
SUBJ < >
COMPS < >

HEAD verb
SUBJ < >
COMPS <>

subject-head

head-comp

Spring/NN has/VBZ come/VBN

1

1 11 2
2

froot= <S, has, VBZ, >
HEAD verb
SUBJ <NP>
COMPS <VP>

fbinary=

head-comp, 1, 0,

1, VP, has, VBZ, ,

1, VP, come, VBN,

HEAD verb
SUBJ <NP>
COMPS <VP>

HEAD verb
SUBJ <NP>
COMPS <>

flex= <spring, NN, >
HEAD noun
SUBJ <>
COMPS <>

Figure 2: Example of features.

(Ninomiya et al. (2006)’s model 1)

pmodel1(T |w) =

n∏
i=1

p(li|w, i),

whereli is a lexical entry assigned to wordwi in T
andp(li|w, i) is the probability of selecting lexical
entryli for wi.

The probabilities of lexical entry selection,
p(li|w, i), are defined as follows:

(Probabilistic model of lexical entry selection)

p(li|w, i) =
1

Zw
exp

(∑
u

λufu(li,w, i)

)

Zw =
∑

l′
exp

(∑
u

λufu(l′,w, i)

)
,

whereZw is the sum over all possible lexical entries
for the wordwi.

The second model is a hybrid model of supertag-
ging and the probabilistic HPSG. The probabilities
are given as the product of Ninomiya et al. (2006)’s
model 1 and the probabilistic HPSG.

(Ninomiya et al. (2006)’s model 3)

pmodel3(T |w) = pmodel1(T |w)phpsg(T |w)

In the experiments, we compared our model with
Miyao and Tsujii (2005)’s model and Ninomiya et

fbinary =

〈
r, d, c,
spl, syl, hwl, hpl, hll,
spr, syr, hwr, hpr, hlr

〉

funary = 〈r, sy, hw, hp, hl〉
froot = 〈sy, hw, hp, hl〉
flex = 〈wi, pi, li〉

fsptag =

〈
wi−1, wi, wi+1,
pi−2, pi−1, pi, pi+1, pi+2

〉

r name of the applied schema
d distance between the head words of the daughters

c
whether a comma exists between daughters
and/or inside daughter phrases

sp number of words dominated by the phrase
sy symbol of the phrasal category
hw surface form of the head word
hp part-of-speech of the head word
hl lexical entry assigned to the head word
wi i-th word
pi part-of-speech forwi

li lexical entry forwi

Table 1: Feature templates.

al. (2006)’s model 1 and 3. The features used in our
model and their model are combinations of the fea-
ture templates listed in Table 1 and Table 2. The
feature templatesfbinary andfunary are defined for
constituents at binary and unary branches,froot is a
feature template set for the root nodes of parse trees.
flex is a feature template set for calculating the uni-
gram reference distribution and is used in Miyao and
Tsujii (2005)’s model.fsptag is a feature template
set for calculating the probabilities of selecting lex-
ical entries in Ninomiya et al. (2006)’s model 1 and
3. The feature templates infsptag are word trigrams
and POS 5-grams. An example of features applied
to the parse tree for the sentence “Spring has come”
is shown in Figure 2.

3 Probabilistic HPSG with an n-gram
reference distribution

In this section, we propose a probabilistic model
with an n-gram reference distribution for probabilis-
tic HPSG parsing. This is an extension of Miyao
and Tsujii (2005)’s model by replacing the unigram
reference distribution with an n-gram reference dis-
tribution. Our model is formally defined as follows:

63

combinations of feature templates forfbinary

〈r, d, c, hw, hp, hl〉, 〈r, d, c, hw, hp〉, 〈r, d, c, hw, hl〉,
〈r, d, c, sy, hw〉, 〈r, c, sp, hw, hp, hl〉, 〈r, c, sp, hw, hp〉,
〈r, c, sp, hw, hl〉, 〈r, c, sp, sy, hw〉, 〈r, d, c, hp, hl〉,
〈r, d, c, hp〉, 〈r, d, c, hl〉, 〈r, d, c, sy〉, 〈r, c, sp, hp, hl〉,
〈r, c, sp, hp〉, 〈r, c, sp, hl〉, 〈r, c, sp, sy〉

combinations of feature templates forfunary

〈r, hw, hp, hl〉, 〈r, hw, hp〉, 〈r, hw, hl〉, 〈r, sy, hw〉,
〈r, hp, hl〉, 〈r, hp〉, 〈r, hl〉, 〈r, sy〉

combinations of feature templates forfroot

〈hw, hp, hl〉, 〈hw, hp〉, 〈hw, hl〉,
〈sy, hw〉, 〈hp, hl〉, 〈hp〉, 〈hl〉, 〈sy〉

combinations of feature templates forflex

〈wi, pi, li〉, 〈pi, li〉

combinations of feature templates forfsptag

〈wi−1〉, 〈wi〉, 〈wi+1〉,
〈pi−2〉, 〈pi−1〉, 〈pi〉, 〈pi+1〉, 〈pi+2〉, 〈pi+3〉,
〈wi−1, wi〉, 〈wi, wi+1〉,
〈pi−1, wi〉, 〈pi, wi〉, 〈pi+1, wi〉,
〈pi, pi+1, pi+2, pi+3〉, 〈pi−2, pi−1, pi〉,
〈pi−1, pi, pi+1〉, 〈pi, pi+1, pi+2〉
〈pi−2, pi−1〉, 〈pi−1, pi〉, 〈pi, pi+1〉, 〈pi+1, pi+2〉

Table 2: Combinations of feature templates.

(Probabilistic HPSG with an n-gram reference distribution)

pnref (T |w) =

1

Znref
pmodel1(T |w) exp

(∑
u

λufu(T)

)

Znref =

∑
T ′

pmodel1(T
′|w) exp

(∑
u

λufu(T ′)

)
.

In our model, Ninomiya et al. (2006)’s model 1
is used as a reference distribution. The probabilis-
tic model of lexical entry selection and its feature
templates are the same as defined in Ninomiya et al.
(2006)’s model 1.

The formula of our model is the same as Ni-
nomiya et al. (2006)’s model 3. But, their model
is not a probabilistic model with a reference distri-
bution. Both our model and their model consist of
the probabilities for lexical entries (=pmodel1(T |w))
and the probabilities for phrase structures (= the rest
of each formula). The only difference between our
model and their model is the way of how to train
model parameters for phrase structures. In both our

model and their model, the parameters for lexical en-
tries (= the parameters ofpmodel1(T |w)) are first es-
timated from the word and POS sequences indepen-
dently of the parameters for phrase structures. That
is, the estimated parameters for lexical entries are
the same in both models, and hence the probabilities
of pmodel1(T |w) of both models are the same. Note
that the parameters for lexical entries will never be
updated after this estimation stage; i.e., the parame-
ters for lexical entries are not estimated in the same
time with the parameters for phrase structures. The
difference of our model and their model is the esti-
mation of parameters for phrase structures. In our
model, given the probabilities for lexical entries, the
parameters for phrase structures are estimated so as
to maximize the entire probabilistic model (= the
product of the probabilities for lexical entries and
the probabilities for phrase structures) in the train-
ing corpus. In their model, the parameters for phrase
structures are trained without using the probabili-
ties for lexical entries, i.e., the parameters for phrase
structures are estimated so as to maximize the prob-
abilities for phrase structures only. That is, the pa-
rameters for lexical entries and the parameters for
phrase structures are trained independently in their
model.

Miyao and Tsujii (2005)’s model also uses a ref-
erence distribution, but with word and POS unigram
features, as is explained in the previous section. The
only difference between our model and Miyao and
Tsujii (2005)’s model is that our model uses se-
quences of word and POS tags as n-gram features
for selecting lexical entries in the same way as su-
pertagging does.

4 Experiments

We evaluated the speed and accuracy of parsing
by using Enju 2.1, the HPSG grammar for English
(Miyao et al., 2005; Miyao and Tsujii, 2005). The
lexicon of the grammar was extracted from Sec-
tions 02-21 of the Penn Treebank (Marcus et al.,
1994) (39,832 sentences). The grammar consisted
of 3,797 lexical entries for 10,536 words1. The prob-

1An HPSG treebank is automatically generated from the
Penn Treebank. Those lexical entries were generated by apply-
ing lexical rules to observed lexical entries in the HPSG tree-
bank (Nakanishi et al., 2004). The lexicon, however, included
many lexical entries that do not appear in the HPSG treebank.

64

No. of tested sentences Total No. of sentences Avg. length of tested sentences
Section 23 2,299 (100.00%) 2,299 22.2
Section 24 1,245 (99.84%) 1,247 23.0

Table 3: Statistics of the Penn Treebank.

Section 23 (Gold POSs)
LP LR LF UP UR UF Avg. time

(%) (%) (%) (%) (%) (%) (ms)
Miyao and Tsujii (2005)’s model 87.26 86.50 86.88 90.73 89.93 90.33 604
Ninomiya et al. (2006)’s model 1 87.23 86.47 86.85 90.05 89.27 89.66 129
Ninomiya et al. (2006)’s model 3 89.48 88.58 89.02 92.33 91.40 91.86 152
our model 1 89.78 89.28 89.53 92.58 92.07 92.32 234
our model 2 90.03 89.60 89.82 92.82 92.37 92.60 1379

Section 23 (POS tagger)
LP LR LF UP UR UF Avg. time

(%) (%) (%) (%) (%) (%) (ms)
Miyao and Tsujii (2005)’s model 84.96 84.25 84.60 89.55 88.80 89.17 674
Ninomiya et al. (2006)’s model 1 85.00 84.01 84.50 88.85 87.82 88.33 154
Ninomiya et al. (2006)’s model 3 87.35 86.29 86.82 91.24 90.13 90.68 183
Matsuzaki et al. (2007)’s model 86.93 86.47 86.70 - - - 30
our model 1 87.28 87.05 87.17 91.62 91.38 91.50 260
our model 2 87.56 87.46 87.51 91.88 91.77 91.82 1821

Table 4: Experimental results for Section 23.

abilistic models were trained using the same portion
of the treebank. We used beam thresholding, global
thresholding (Goodman, 1997), preserved iterative
parsing (Ninomiya et al., 2005) and quick check
(Malouf et al., 2000).

We measured the accuracy of the predicate-
argument relations output of the parser. A
predicate-argument relation is defined as a tuple
〈σ,wh, a, wa〉, whereσ is the predicate type (e.g.,
adjective, intransitive verb),wh is the head word of
the predicate,a is the argument label (MODARG,
ARG1, ..., ARG4), and wa is the head word of
the argument. Labeled precision (LP)/labeled re-
call (LR) is the ratio of tuples correctly identified
by the parser2. Unlabeled precision (UP)/unlabeled
recall (UR) is the ratio of tuples without the pred-
icate type and the argument label. This evaluation
scheme was the same as used in previous evaluations
of lexicalized grammars (Hockenmaier, 2003; Clark

The HPSG treebank is used for training the probabilistic model
for lexical entry selection, and hence, those lexical entries that
do not appear in the treebank are rarely selected by the proba-
bilistic model. The ‘effective’ tag set size, therefore, is around
1,361, the number of lexical entries without those never-seen
lexical entries.

2When parsing fails, precision and recall are evaluated, al-
though nothing is output by the parser; i.e., recall decreases
greatly.

and Curran, 2004b; Miyao and Tsujii, 2005). The
experiments were conducted on an AMD Opteron
server with a 2.4-GHz CPU. Section 22 of the Tree-
bank was used as the development set, and the per-
formance was evaluated using sentences of≤ 100
words in Section 23. The performance of each
model was analyzed using the sentences in Section
24 of ≤ 100 words. Table 3 details the numbers
and average lengths of the tested sentences of≤ 100
words in Sections 23 and 24, and the total numbers
of sentences in Sections 23 and 24.

The parsing performance for Section 23 is shown
in Table 4. The upper half of the table shows the per-
formance using the correct POSs in the Penn Tree-
bank, and the lower half shows the performance us-
ing the POSs given by a POS tagger (Tsuruoka and
Tsujii, 2005). LF and UF in the figure are labeled
F-score and unlabeled F-score. F-score is the har-
monic mean of precision and recall. We evaluated
our model in two settings. One is implemented with
a narrow beam width (‘our model 1’ in the figure),
and the other is implemented with a wider beam
width (‘our model 2’ in the figure)3. ‘our model

3The beam thresholding parameters for ‘our model 1’ are
α0 = 10, ∆α = 5, αlast = 30, β0 = 5.0, ∆β = 2.5, βlast =
15.0, δ0 = 10, ∆δ = 5, δlast = 30, κ0 = 5.0, ∆κ =
2.5, κlast = 15.0, θ0 = 6.0, ∆θ = 3.5, andθlast = 20.0.

65

83.00%

83.50%

84.00%

84.50%

85.00%

85.50%

86.00%

86.50%

87.00%

87.50%

88.00%

0 100 200 300 400 500 600 700 800 900

Parsing time (ms/sentence)

F
-s

co
re

Miyao and Tsujii
(2005)'s model
Ninomiya et al.
(2006)'s model 1
Ninomiya et al.
(2006)'s model 3
our model

Figure 3: F-score versus average parsing time for sentences in Section 24 of≤ 100 words.

1’ was introduced to measure the performance with
balanced F-score and speed, which we think appro-
priate for practical use. ‘our model 2’ was intro-
duced to measure how high the precision and re-
call could reach by sacrificing speed. Our mod-
els increased the parsing accuracy. ‘our model 1’
was around 2.6 times faster and had around 2.65
points higher F-score than Miyao and Tsujii (2005)’s
model. ‘our model 2’ was around 2.3 times slower
but had around 2.9 points higher F-score than Miyao
and Tsujii (2005)’s model. We must admit that the
difference between our models and Ninomiya et al.
(2006)’s model 3 was not as great as the differ-
ence from Miyao and Tsujii (2005)’s model, but ‘our
model 1’ achieved 0.56 points higher F-score, and
‘our model 2’ achieved 0.8 points higher F-score.
When the automatic POS tagger was introduced, F-
score dropped by around 2.4 points for all models.

We also compared our model with Matsuzaki et
al. (2007)’s model. Matsuzaki et al. (2007) pro-

The termsκ andδ are the thresholds of the number of phrasal
signs in the chart cell and the beam width for signs in the chart
cell. The termsα andβ are the thresholds of the number and
the beam width of lexical entries, andθ is the beam width for
global thresholding (Goodman, 1997). The terms with suffixes
0 are the initial values. The parser iterates parsing until it suc-
ceeds to generate a parse tree. The parameters increase for each
iteration by the terms prefixed by∆, and parsing finishes when
the parameters reach the terms with suffixes last. Details of the
parameters are written in (Ninomiya et al., 2005). The beam
thresholding parameters for ‘our model 2’ areα0 = 18, ∆α =
6, αlast = 42, β0 = 9.0, ∆β = 3.0, βlast = 21.0, δ0 =
18, ∆δ = 6, δlast = 42, κ0 = 9.0, ∆κ = 3.0, κlast = 21.0.
In ‘our model 2’, the global thresholding was not used.

posed a technique for efficient HPSG parsing with
supertagging and CFG filtering. Their results with
the same grammar and servers are also listed in the
lower half of Table 4. They achieved drastic im-
provement in efficiency. Their parser ran around 6
times faster than Ninomiya et al. (2006)’s model 3,
9 times faster than ‘our model 1’ and 60 times faster
than ‘our model 2.’ Instead, our models achieved
better accuracy. ‘our model 1’ had around 0.5 higher
F-score, and ‘our model 2’ had around 0.8 points
higher F-score. Their efficiency is mainly due to
elimination of ungrammatical lexical entries by the
CFG filtering. They first parse a sentence with a
CFG grammar compiled from an HPSG grammar,
and then eliminate lexical entries that are not in the
parsed CFG trees. Obviously, this technique can
also be applied to the HPSG parsing of our mod-
els. We think that efficiency of HPSG parsing with
our models will be drastically improved by applying
this technique.

The average parsing time and labeled F-score
curves of each probabilistic model for the sentences
in Section 24 of≤ 100 words are graphed in Fig-
ure 3. The graph clearly shows the difference of
our model and other models. As seen in the graph,
our model achieved higher F-score than other model
when beam threshold was widen. This implies that
other models were probably difficult to reach the F-
score of ‘our model 1’ and ‘our model 2’ for Section
23 even if we changed the beam thresholding param-
eters. However, F-score of our model dropped eas-

66

ily when we narrow down the beam threshold, com-
pared to other models. We think that this is mainly
due to its bad implementation of parser interface.
The n-gram reference distribution is incorporated
into the kernel of the parser, but the n-gram fea-
tures and a maximum entropy estimator are defined
in other modules; n-gram features are defined in a
grammar module, and a maximum entropy estimator
for the n-gram reference distribution is implemented
with a general-purpose maximum entropy estimator
module. Consequently, strings that represent the n-
gram information are very frequently changed into
feature structures and vice versa when they go in and
out of the kernel of the parser. On the other hand, Ni-
nomiya et al. (2006)’s model 3 uses the supertagger
as an external module. Once the parser acquires the
supertagger’s outputs, the n-gram information never
goes in and out of the kernel. This advantage of Ni-
nomiya et al. (2006)’s model can apparently be im-
plemented in our model, but this requires many parts
of rewriting of the implemented parser. We estimate
that the overhead of the interface is around from 50
to 80 ms/sentence. We think that re-implementation
of the parser will improve the parsing speed as esti-
mated. In Figure 3, the line of our model crosses the
line of Ninomiya et al. (2006)’s model. If the esti-
mation is correct, our model will be faster and more
accurate so that the lines in the figure do not cross.
Speed-up in our model is left as a future work.

5 Conclusion

We proposed a probabilistic model in which su-
pertagging is consistently integrated into the prob-
abilistic model for HPSG. In the model, the n-gram
reference distribution is simply defined as the prod-
uct of the probabilities of selecting lexical entries
with machine learning features of word and POS n-
gram as defined in the CCG/HPSG/CDG supertag-
ging. We conducted experiments on the Penn Tree-
bank with a wide-coverage HPSG parser. In the ex-
periments, we compared our model with the prob-
abilistic HPSG with a unigram reference distribu-
tion (Miyao and Tsujii, 2005) and the probabilistic
HPSG with supertagging (Ninomiya et al., 2006).
Though our model was not as fast as Ninomiya
et al. (2006)’s models, it achieved the highest ac-
curacy among them. Our model had around 2.65

points higher F-score than Miyao and Tsujii (2005)’s
model and around 0.56 points higher F-score than
the Ninomiya et al. (2006)’s model 3. When we sac-
rifice parsing speed, our model achieved around 2.9
points higher F-score than Miyao and Tsujii (2005)’s
model and around 0.8 points higher F-score than Ni-
nomiya et al. (2006)’s model 3. Our model achieved
higher F-score because parameters for phrase struc-
tures in our model are trained with the supertagging
probabilities, which are not in other models.

References

Steven P. Abney. 1997. Stochastic attribute-value gram-
mars.Computational Linguistics, 23(4):597–618.

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing.Computational
Linguistics, 25(2):237–265.

Adam Berger, Stephen Della Pietra, and Vincent Della
Pietra. 1996. A maximum entropy approach to nat-
ural language processing.Computational Linguistics,
22(1):39–71.

Joan Bresnan. 1982.The Mental Representation of
Grammatical Relations. MIT Press, Cambridge, MA.

Stephen Clark and James R. Curran. 2004a. The impor-
tance of supertagging for wide-coverage CCG parsing.
In Proc. of COLING-04.

Stephen Clark and James R. Curran. 2004b. Parsing the
WSJ using CCG and log-linear models. InProc. of
ACL’04, pages 104–111.

Killian Foth and Wolfgang Menzel. 2006. Hybrid pars-
ing: Using probabilistic models as predictors for a
symbolic parser. InProc. of COLING-ACL 2006.

Killian Foth, Tomas By, and Wolfgang Menzel. 2006.
Guiding a constraint dependency parser with su-
pertags. InProc. of COLING-ACL 2006.

Stuart Geman and Mark Johnson. 2002. Dynamic
programming for parsing and estimation of stochas-
tic unification-based grammars. InProc. of ACL’02,
pages 279–286.

Joshua Goodman. 1997. Global thresholding and mul-
tiple pass parsing. InProc. of EMNLP-1997, pages
11–25.

Julia Hockenmaier. 2003. Parsing with generative
models of predicate-argument structure. InProc. of
ACL’03, pages 359–366.

F. Jelinek. 1998.Statistical Methods for Speech Recog-
nition. The MIT Press.

67

Mark Johnson and Stefan Riezler. 2000. Exploiting
auxiliary distributions in stochastic unification-based
grammars. InProc. of NAACL-2000, pages 154–161.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi,
and Stefan Riezler. 1999. Estimators for stochastic
“unification-based” grammars. InProc. of ACL ’99,
pages 535–541.

R. M. Kaplan, S. Riezler, T. H. King, J. T. Maxwell
III, and A. Vasserman. 2004. Speed and accuracy
in shallow and deep stochastic parsing. InProc. of
HLT/NAACL’04.

Robert Malouf and Gertjan van Noord. 2004. Wide
coverage parsing with stochastic attribute value gram-
mars. In Proc. of IJCNLP-04 Workshop “Beyond
Shallow Analyses”.

Robert Malouf, John Carroll, and Ann Copestake. 2000.
Efficient feature structure operations without compi-
lation. Journal of Natural Language Engineering,
6(1):29–46.

Robert Malouf. 2002. A comparison of algorithms for
maximum entropy parameter estimation. InProc. of
CoNLL-2002, pages 49–55.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2007. Efficient HPSG parsing with supertagging and
CFG-filtering. InProc. of IJCAI 2007, pages 1671–
1676.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum en-
tropy estimation for feature forests. InProc. of HLT
2002, pages 292–297.

Yusuke Miyao and Jun’ichi Tsujii. 2005. Probabilistic
disambiguation models for wide-coverage HPSG pars-
ing. In Proc. of ACL’05, pages 83–90.

Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsu-
jii, 2005. Keh-Yih Su, Jun’ichi Tsujii, Jong-Hyeok
Lee and Oi Yee Kwong (Eds.), Natural Language
Processing - IJCNLP 2004 LNAI 3248, chapter
Corpus-oriented Grammar Development for Acquir-
ing a Head-driven Phrase Structure Grammar from the
Penn Treebank, pages 684–693. Springer-Verlag.

Hiroko Nakanishi, Yusuke Miyao, and Jun’ichi Tsujii.
2004. An empirical investigation of the effect of lexi-
cal rules on parsing with a treebank grammar. InProc.
of TLT’04, pages 103–114.

Alexis Nasr and Owen Rambow. 2004. Supertagging
and full parsing. InProc. of the 7th International
Workshop on Tree Adjoining Grammar and Related
Formalisms (TAG+7).

Takashi Ninomiya, Yoshimasa Tsuruoka, Yusuke Miyao,
and Jun’ichi Tsujii. 2005. Efficacy of beam threshold-
ing, unification filtering and hybrid parsing in proba-
bilistic HPSG parsing. InProc. of IWPT 2005, pages
103–114.

Takashi Ninomiya, Takuya Matsuzaki, Yoshimasa Tsu-
ruoka, Yusuke Miyao, and Jun’ichi Tsujii. 2006. Ex-
tremely lexicalized models for accurate and fast HPSG
parsing. InProc. of EMNLP 2006, pages 155–163.

Carl Pollard and Ivan A. Sag. 1994.Head-Driven Phrase
Structure Grammar. University of Chicago Press.

Stefan Riezler, Detlef Prescher, Jonas Kuhn, and Mark
Johnson. 2000. Lexicalized stochastic modeling of
constraint-based grammars using log-linear measures
and EM training. InProc. of ACL’00, pages 480–487.

Mark Steedman. 2000.The Syntactic Process. The MIT
Press.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidirec-
tional inference with the easiest-first strategy for tag-
ging sequence data. InProc. of HLT/EMNLP 2005,
pages 467–474.

Wen Wang and Mary P. Harper. 2004. A statistical con-
straint dependency grammar (CDG) parser. InProc.
of ACL’04 Incremental Parsing workshop: Bringing
Engineering and Cognition Together, pages 42–49.

Wen Wang. 2003. Statistical Parsing and Language
Modeling based on Constraint Dependency Grammar.
Ph.D. thesis, Purdue University.

68

Proceedings of the 10th Conference on Parsing Technologies, pages 69–79,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Ambiguity Resolution by Reordering Rules in Text Containing Errors

Sylvana Sofkova Hashemi
Department of Linguistics, Göteborg University

Box 200, SE-405 30 Göteborg, SWEDEN
sylvana@ling.gu.se

Abstract

Writing aids such as spelling and grammar
checkers are often based on texts by adult writ-
ers and are not sufficiently targeted to support
children in their writing process. This paper
reports on the development of a writing tool
based on a corpus of Swedish text written by
children and on the parsing methods developed
to handle text containing errors. The system
uses finite state techniques for finding gram-
mar errors without actually specifying the error.
The ‘broadness’ of the grammar and the lexical
ambiguity in words, necessary for parsing text
containing errors, also yields ambiguous and/or
alternative phrase annotations. We block some
of the (erroneous) alternative parses by the or-
der in which phrase segments are selected,
which causes bleeding of some rules and more
‘correct’ parsing results are achieved. The
technique shows good coverage results for
agreement and verb selection phenomena.

1 Introduction

Writing on a computer in school often involves
making a fair copy from a handwritten draft. Al-
though a computer is an excellent means for the
writing process, especially the linguistic tools are
not used adequately. Spelling and grammar correc-
tors are in general developed for and adapted to
adult writers and have difficulties to support chil-
dren in their writing development and give no
space for acquisition or training. Errors in texts
written by school children are more frequent and
the distribution of the error types is different from
adult writers.

This paper reports on the development of a finite
state system for finding grammar errors, called Fi-
niteCheck, based on a corpus of Swedish text writ-
ten by school children. The system applies descrip-
tions of correct language use in the detection proc-
ess of grammatical violations and contains no rules
describing the nature of the erroneous segments the
system searches for. The approach (following
Karttunen et al., 1996) for finding errors involves
developing automata that represent two ‘positive’
grammars with varying degree of detail and then
subtracting the detailed one from the general one.
The difference between the automata corresponds
to a grammar for errors.

2 Grammar Checkers

2.1 Current Systems

Whereas spelling checkers are standard in most
word processors, grammar checking is a rather re-
cent technology, especially for Swedish. Different
methods and techniques have been applied to han-
dle nonsense words and thus operate on isolated
words as most spelling correctors do. Both statisti-
cal and rule-based methods and also algorithms
that to some extent take into consideration the sur-
rounding context (i.e. context-sensitive errors) or
how a word is pronounced have been used for
spelling correction (cf. Kukich, 1992).

Grammar checkers involve techniques and solve
problems above the single word level and require
syntactic, semantic or even discourse analysis (see
Section 2.2). Grammar checking techniques started
to develop first in the 1980’s with products mainly
for English (see Jensen et al, 1993; Vernon, 2000)
but also for other languages, e.g. French (Chanod,
1996), Dutch (Vosse, 1994), Czech (Kirschner,

69

1994), Spanish and Greek (Bustamente and León,
1996). Computer-based grammar checking for
Swedish is fairly recent and has primarily focused
on the needs of adult writers. The first product re-
lease of such a writing aid was in November 1998
with the tool Grammatifix (Arppe, 2000; Birn,
2000), now part of the Swedish Microsoft Office
2000. Two other research groups developed
grammar checking prototypes: Granska (Knutsson,
2001; Domeij, 2003) and Scarrie (Sågvall Hein,
1999).

2.2 Methods and Techniques

Many of the grammar checking systems are com-
mercial products and technical documentation is
often minimal or even absent. Critique (known
until 1984 as Epistle) is an exception, a system
developed in collaboration with IBM within the
Programming Language for Natural Language
Processing (PLNLP) project (Jensen et al., 1993).
This tool is based on a parser using Augmented
Phrase Structure Grammar (ACFG) and produces
a complete analysis for all sentences (even un-
grammatical) by application of relaxation rules
when parsing fails on the first try or parse fitting
procedure identifying the head and its constituents
(Heidorn, 1993; Jensen et al., 1993). This approach
of providing analysis of all sentences had influ-
enced other grammar formalisms such as Con-
straint Grammar (Karlsson et al., 1995) or Func-
tional Dependency Grammar (Järvinen and Ta-
panainen, 1998). The methods of rule relaxation
and parse fitting had an impact on the development
of other grammar checking systems.

The three Swedish tools use different technol-
ogy to analyze unrestricted text and detect gram-
mar errors. The lexical analysis in Grammatifix is
based on the morphological analyzer SWETWOL,
designed according to the principles of two-level
morphology (Karlsson, 1992). The part-of-speech
assignment applies the Swedish Constraint Gram-
mar (SWECG), a surface-syntactic parser applying
context-sensitive disambiguation rules (Birn,
1998). Errors are detected by partial parsing and
relaxation on rules, regarding certain word se-
quences as phrases despite grammar errors in them.

Granska combines probabilistic and rule-based
methods, where specific error rules (around 600)
and local applied rules detect ungrammaticalities in
free text. The lexical analyzer applies Hidden
Markov Models and a rule matching system analy-

ses the tagged text searching for grammatical vio-
lations defined in the detection rules and produces
error description and a correction suggestion for
the error (Carlberger & Kann, 1999).

The grammar checker in Scarrie is based on a
previously developed parser, the Uppsala Chart
Parser (UCP), a procedural, bottom-up parser, ap-
plying a longest path strategy (Sågvall Hein,
1983). The parsing strategy of erroneous input is
based on constraint relaxation and application of
local error rules. The grammar is in other words
underspecified to a certain level, allowing feature
violations and parsing of ungrammatical word se-
quences (Wedbjer Rambell, 1999).

The Swedish approaches to detection of gram-
mar errors vary from chart-based methods in Scar-
rie, application of constraint grammars in Gram-
matifix, to a combination of probabilistic and rule-
based methods in Granska. Scarrie and Granska
identify erroneous patterns by partial analysis,
whereas Grammatifix produces full analysis for
both grammatical and ungrammatical sentences.
All the tools define (wholly or to some extent) ex-
plicit error rules describing the nature of the error
they search for. In the process of error detection
they either proceed sentence by sentence, requiring
recognition of sentence boundaries, or they rely in
their rules on for instance capitalization conven-
tions.

2.3 Error Coverage

Current grammar checking systems are restricted
to a small set of all possible writing errors, con-
cerning mostly syntactic analysis. The choice of
what types of errors are detected in the Swedish
tools is based on analysis of errors in writing of
certain groups of writers (e.g. professional writers,
writers at work). The coverage of error types is
very similar between the systems, including errors
in noun phrase agreement and agreement in predi-
cative complement, pronoun case after preposition,
word order, errors in verbs, etc.

Observations with children writing on a com-
puter in school (Hård af Segerstad & Sofkova
Hashemi, 2006; Sofkova Hashemi, forthcoming)
and performance tests of the Swedish tools on texts
written by school children (Sofkova Hashemi,
2003) show that grammar checkers do not suffi-
ciently support school children in their writing de-
velopment. The grammatical mistakes found in
texts written by children display different fre-

70

quency and distribution than in adults and the text
structure as whole is different. Main clauses are
often joined together without conjunctions and
punctuation marks often delimit larger textual units
than syntactic sentences. Sentence boundaries and
capitalization are something the Swedish tools rely
on in their detection process, which may have im-
pact on the coverage results. Although the systems
cover many of the types of errors found in school
texts, they detect around 12% of all writing errors
(Sofkova Hashemi, 2003) (see Section 6). Per-
formance on text data such as newspaper texts and
student compositions evaluated within the frames
of the separate projects shows a much higher cov-
erage of error detection on average 58% (Birn,
2000; Knutsson, 2001; Sågvall Hein et al., 1999).

3 The Training Data

3.1 The Child Data Corpus

FiniteCheck, the grammar error detector reported
in this paper, is based on a corpus of Swedish text
written by school children. This Child Data corpus
of 29 812 words (3 373 word types) is composed
of computer written and hand written essays writ-
ten by children between 9 and 13 years of age. In
general, the text structure of the compositions re-
veals clearly the influence of spoken language and
performance difficulties in spelling, segmentation
of words, the use of capitals and punctuation, with
fairly wide variation both by individual and age. In
total, 260 instances of grammatical errors were
found in 134 narratives.

3.2 The Error Types

The most frequent grammatical violation concerns
the omission of finite verb inflection (42% of all
errors), i.e. when the main finite verb in a clause
lacks the appropriate present or past tense endings:

(1) På natten *vakna jag av att brandlarmet tjöt
in the-night wake[untensed] I from that fire-
alarm howled
– In the night I woke up from that the fire-
alarm went off.

The correct form of the verb vakna ‘wake’ should
be in the past tense, i.e. vaknade ‘woke’. This type
of error arises from the fact that the writing is
highly influenced by spoken language. In spoken

Swedish regular weak verbs in the past tense often
lack the appropriate ending and the spoken form
then coincides with the infinitive (and for some
verbs also imperative) form of the verb.

Other frequent grammar problems concern extra
inserted or missing words in sentences (22%), here
the preposition i ‘in’ is missing:

(2) Gunnar var på semester *_ norge och åkte
skidor.
Gunnar was on vacation _ Norway and went
skis
– Gunnar was on vacation in Norway and
skied.

word choice errors (11%), here the verb att vara
lika ‘to be alike’ requires the particle till ‘to’ in
combination with the noun phrase sättet ‘the-
manner’ and not på ‘on’ as the writer uses:

(3) vi var väldigt lika *på sättet
we were very like on the-manner
– We were very alike in the manners.

errors in noun phrase agreement (6%), here the
correct form of the noun phrase requires the noun
to be definite as in den närmsta handduken ‘the
nearest towel’:

(4) jag tar den närmsta *handduk och slänger
den i vasken
I take the[def] nearest[def] towel [indef] and
throw it in the sink
– I take the nearest towel and throw it into the
sink.

errors in verb chains (3%), here the auxiliary verb
should be followed by an infinitive, ska bli ‘will
become’, but in this case the present tense is used:

(5) Men kom ihåg att det inte ska *blir någon
riktig brand.
but remember that it not will becomes[pres]
some real fire
– But remember that there will not be a real
fire.

Other grammar errors occurred less than ten times
in the whole corpus, including reference errors,
agreement between subject and predicative com-

71

plement, definiteness in single nouns, pronoun
form, errors in infinitive phrases, word order.
Punctuation problems are also included in the
analyses. In general, the use of punctuation varies
from no usage at all (mostly among the youngest
children) to rather sparse marking. In the following
example the main clauses are joined together and
the boundary between the sentences is not marked:

(6) nasse blev arg han gick och la sig med dom
andra syskonen.
nasse became angry he went and lay himself
with the other siblings
– Nasse got angry. He went and lay down
with the other siblings.

The finite verb problem, verb form in verb chains
and infinitive phrases and agreement problems in
noun phrase are the four types of errors detected by
the current system, FiniteCheck.

4 System architecture

The framework for detection of grammar errors in
FiniteCheck is built as a network of finite state
transducers compiled from regular expressions in-
cluding operators defined in the Xerox Finite State
Tool (XFST) (Karttunen et al., 1997). Each
automaton in the network composes with the result
of previous application and in principle all the
automata can be composed into a single transducer.

There are in general two types of transducers in
use: one that annotates text in order to select cer-
tain segments and one that redefines or refines ear-
lier decisions. Annotations of any kind are handled
by transducers defined as finite state markers that
add reserved symbols into text and mark out syn-
tactical segments, grammar errors, or other patterns
aimed at selections. Finite state filters are used for
refinement and/or revision of earlier decisions.

The system runs under UNIX in a simple Emacs
environment used for testing and development of
finite state grammars. The environment shows the
results of an XFST-process run on the current
Emacs buffer in a separate buffer. An XFST-mode
allows for menus to be used and recompile files in
the system.

The sequenced finite state transducers of
FiniteCheck are divided in four main modules:

the lexicon lookup, the grammar, the parser and
the error finder – see Figure 1.

 text input

Figure 1: The system architecture

4.1 The Lexicon Lookup

The lexicon of around 160, 000 word forms, is
built as a finite state transducer, using the Xerox
tool Finite State Lexicon Compiler (Karttunen,
1993). The lexicon is composed from two re-
sources and takes a string and maps inflected sur-
face form to a tag containing part-of-speech and
feature information, e. g. applying the transducer to
the string kvinna ‘woman’ will return [nn utr sin
ind nom]. The morphosyntactic tags follow di-
rectly the relevant string or token. More than one
tag can be attached to a string, since no contextual
information is taken into account. The morphosyn-
tactic information in the tags is further used in the
grammars of the system. The set of tags follows
the Stockholm-Umeå Corpus project conventions
(Ejerhed et al, 1992), including 23 category classes
and 29 feature classes that were extended with 3
additional categories. Below is an example of a
lookup on the example sentence in (5):

(7) Men[kn] kom[qmvb prt akt][vb prt akt]

ihåg[ab][pl] att[sn][ie] det[pn neu sin def
sub/obj] [dt neu sin def] inte[ab] ska[vb prs
akt][mvb prs akt] blir[vb prs akt] någon[dt utr
sin ind][pn utr sin ind sub/obj] riktig[jj pos utr
sin ind nom] brand[nn utr sin ind nom]

72

4.2 The Grammar

The grammar module includes two grammar sets
with (positive) rules reflecting the grammatical
structure of Swedish, differing in the level of de-
tail. The broad grammar is especially designed to
handle text with ungrammaticalities and the lin-
guistic descriptions are less accurate accepting
both valid and invalid patterns. The narrow
gramar is fine and accurate and accepts only the
grammatical segments. For example, the regular
expression in (8) belongs to the broad grammar set
and recognizes potential verb clusters (VC) (both
grammatical and ungrammatical) as a pattern con-
sisting of a sequence of two or three verbs in com-
bination with (zero or more) adverbs:

(8) define VC [Verb Adv* Verb (Verb)];

This automaton accepts all the verb cluster exam-
ples in (9), including the ungrammatical instance
(9c) (marked by an asterisk ‘*’), where a finite
verb follows a (finite) auxiliary verb.

(9) a. kan inte springa ‘can not run’
 b. skulle ha sprungit ‘would have run [sup]’
 c. *ska blir ‘will be [pres]’

Corresponding rules in the narrow grammar set
represented by the regular expressions in (10) take
into account the internal structure of a verb cluster
and define the grammar of modal auxiliary verbs
(Mod) followed by (zero or more) adverb(s), and
either a verb in infinitive form (VerbInf) as in
(10a), or a temporal verb in infinitive (PerfInf) and
a verb in supine form (VerbSup), as in (10b).
These rules thus accept only the grammatical seg-
ments in (9) and will not include example (9c). The
actual grammar of grammatical verb clusters is a
little bit more complex.

(10) a. define VC1 [Mod Adv* VerbInf];
 b. define VC2 [Mod Adv* PerfInf VerbSup];

4.3 The parser

The various kinds of constituents are marked out in
a text using a lexical-prefix-first method, i.e. pars-
ing first from left margin of a phrase to the head
and then extending the phrase by adding on com-
plements. The actual parsing (based on the broad

grammar definitions) is incremental in a similar
fashion as the methods described in Ait-Mohtar
and Chanod (1997), where the output from one
layer serves as input to the next, building on the
segments. The system recognizes the head phrases
in certain order in the first phase (verbal head,
prepositional head, adjective phrase) and then ap-
plies the second phase in the reverse order and ex-
tends the phrases with complements (noun phrase,
prepositional phrase, verb phrase). The parsing
method is described in detail in Section 5.

4.4 Error Detection

The error finder is a separate module in the system,
which means that the grammar and parser could
potentially be used directly in a different applica-
tion. The nets of this module correspond to the dif-
ference between the two grammars, broad and nar-
row.

By subtracting the narrow grammar from the
broad grammar we create machines that will find
ungrammatical phrases in a text. For example, the
regular expression in (11) identifies verb clusters
that violate the narrow grammar of modal verb
clusters (VC1 or VC2, defined in (10)) by subtract-
ing these rules from the more general (overgenerat-
ing) rule in the broad grammar (VC, defined in (8))
within the boundaries of a verb cluster (‘<vc>’,
‘</vc>’), that have been previously marked out in
the parsing stage.

(11) define VCerror ["<vc>" [VC - [VC1 |

 VC2]] "</vc>"];

By application of a marking transducer in (12), the
found error segment is annotated directly in the
text as in example (13).

(12) define markVCerror [VCerror ->

"<Error verb after Vaux>" ... "</Error>"];

(13) Men <vp> <vpHead> kom ihåg </vpHead>

</vp> att <np> det </np> <vp> <vpHead> inte
<Error verb after Vaux> <vc> ska blir </vc>
</Error> </vpHead> <np> någon <ap> riktig
</ap> brand </np> </vp>

73

5 Parsing

5.1 Parsing procedure

The rules of the (underspecified) broad grammar
are used to mark syntactic patterns in a text. A par-
tial, lexical-prefix-first, longest-match, incremental
strategy is used for parsing. The parsing procedure
is partial in the sense that only portions of text are
recognized and no full parse is provided for. Pat-
terns not recognized by the rules of the (broad)
grammar remain unchanged. The maximal in-
stances of a particular phrase are selected by appli-
cation of the left-to-right-longest-match replace-
ment operator.

The segments are built on in cascades in the
sense that first the heads are recognized, starting
from the left-most edge to the head (so called lexi-
cal-prefix) and then the segments are expanded in
the next level by addition of complement con-
stituents. The regular expressions in (14) compose
the marking transducers of separate segments into
a three step process.

(14) define parse1[markVPhead .o.

markPPhead .o. AP];
define parse2 [markNP];
define parse3 [markPP .o. markVP];

First the verbal heads, prepositional heads and
adjective phrases are recognized by composition in
that order (parse1). This output serves then as in-
put to the next level, where the adjective phrases
are extended and noun phrases are recognized and
marked (parse2). This output in turn serves as in-
put to the last level, where the whole prepositional
phrases and verb phrases are recognized in that
order (parse3). During and after this parsing anno-
tation, some phrase types are further expanded
with post-modifiers, split segments are joined and
empty results are removed.

The ‘broadness’ of the grammar and the lexical
ambiguity in words, necessary for parsing text con-
taining errors, also yields ambiguous and/or alter-
native phrase annotations. We block some of the
(erroneous) alternative parses by the order in
which phrase segments are selected, which causes
bleeding of some rules (i.e. the parsing order de-
stroys application of another parsing rules; a fea-
ture mostly used of the ordering of phonological
rules) and more ‘correct’ parsing results are
achieved. The order in which the labels are in-

serted into the string influences the segmentation
of patterns into phrases. Further ambiguity resolu-
tion is provided for by filtering automata.

5.2 The Heuristics of Parsing Order

Reordering rules used in parsing allows us to re-
solve certain ambiguities. For example, marking
verbal heads before noun phrases will prefer a verb
phrase interpretation of a string over a noun phrase
interpretation and avoid merging constituents of
verbal heads into noun phrases and yielding noun
phrases with too-wide range.

For instance, marking first the sentence in (15)
for noun phrases will interpret the pronoun De
‘they’ as a determiner and the verb såg ‘saw’, that
is exactly as in English homonymous with the
noun ‘saw’, as a noun and merges these two con-
stituents to a noun phrase as shown in (16). De såg
will subsequently be marked as ungrammatical,
since a number feature mismatch occurs between
the plural De ‘they’ and singular såg ‘saw’.

(15) De såg ledsna ut

they looked sad out
- They seemed sad.

(16) <np>De såg </np> <np>ledsna </np> ut .

Composing the marking transducers by first mark-
ing the verbal head and then the noun phrase will
instead yield the more correct parse. Although the
alternative of the verb being parsed as verbal head
or a noun remains (i.e. såg ‘saw’ is still tagged as a
noun in a noun phrase), the pronoun De ‘they’ is
now marked correctly as a separate noun phrase
and not merged together with the main verb into a
noun phrase:

(17) <np> De </np> <vpHead> <np> såg </np>

</vpHead> <np> ledsna </np> ut .

The output at this stage is then further refined
and/or revised by application of filtering transduc-
ers. Earlier parsing decisions depending on lexical
ambiguity are resolved (e.g. adjectives parsed as
verbs) and phrases extended (e.g. with postnominal
modifiers). Other structural ambiguities, such as
verb coordinations or clausal modifiers on nouns,
are also taken care of.

74

This ordering strategy is not absolute however,
since the opposite scenario is possible where pars-
ing noun phrases before verbal heads is more suit-
able, as for instance in example (18) below, where
the string det öppna fönstret ‘the open window’
will be split in three separate noun phrase segments
when applying the order of parsing verbal heads
before noun phrases, due the homonymity between
an adjective and an infinitive or imperative verb
form (19).

(18) han tittade genom det öppna fönstret

he looked through the open window
- He looked through the open window

(19) <np> han </np><vpHead> tittade </vpHead>

genom <np> det </np> <vpHead> <np>
öppna </np> </vpHead> <np> fönstret </np>

We analyzed the ambiguity frequency in the Child
Data corpus and found that occurrences of nouns
recognized as verbs are more frequent than the op-
posite. On this ground, we chose the strategy of
marking verbal heads before marking noun
phrases. In the case of the opposite scenario, the
false parsing can be revised and corrected by an
additional filter (see Section 5.3).

A similar problem occurs with homonymous
prepositions and nouns. For instance, the string vid
is ambiguous between an adjective (‘wide’) and a
preposition (‘by’) as shown in example (20) and
influences the order of marking prepositional heads
and noun phrases. Parsing prepositional heads be-
fore noun phrases is more suitable for preposition
occurrences as shown in (22) in order to prevent
the preposition from being merged as part of a
noun phrase, as in (21):

(20) Jag satte mig vid bordet

I sat me by the-table
– I sat down at the table.

(21) <np> Jag </np> satte <np> mig </np> <np>

<ppHead> vid </ppHead> bordet </np>

(22) <np> Jag </np> satte <np> mig </np>

<ppHead> <np> vid </np> </ppHead> <np>
bordet </np>

5.3 Further Ambiguity Resolution

Nouns, adjectives and pronouns are homonymous
with verbs and might then be interpreted by the
parser as verbal heads. Adjectives homonymous
with prepositions can be analyzed as prepositional
heads. These parsing decisions can be redefined at
a later stage by application of filtering transducers.

As exemplified in (19) above, the consequence
of parsing verbal heads before noun phrases may
yield noun phrases that are split into parts, due to
the fact that adjectives are interpreted as verbs. The
filtering transducer in (23) adjusts such segments
and removes the erroneous (inner) syntactic tags
(i.e. replaces them with the empty string ‘0’) so
that only the outer noun phrase markers remain and
converts the split phrase in to one noun phrase
yielding (24).

(23) define adjustNPAdj [

"</np><vpHead><np>" -> 0 || Det _ APPhr
"</np></vpHead>" NPPhr,,
"</np></vpHead><np>" -> 0 || Det
"</np><vpHead><np>" APPhr _];

(24) <np> han </np> <vpHead> tittade </vpHead>
genom <np> det öppna fönstret </np>

The regular expression consists of two replacement
rules that apply in parallel. They are constrained by
the surrounding context of a preceding determiner
(Det) and a subsequent adjective phrase (APPhr)
and a noun phrase (NPPhr) in the first rule, and a
preceding determiner and an adjective phrase in
the second rule.

5.4 Parsing Expansion and Adjustment

The text is now annotated with syntactic tags and
some of the segments have to be further expanded
with postnominal attributes and coordinations. In
the current system, partitive prepositional phrases
are the only postnominal attributes taken care of.
The reason is that grammatical errors were found
in these constructions.

By application of the filtering transducer in (25)
the example text in (26) with the partitive noun
phrase en av dom gamla husen ‘one of the old
houses’ split into a noun phrase followed by a
prepositional head that includes the partitive
preposition av ‘of’ and yet another noun phrase

75

from the parsing stage (27) is merged to form a
single noun phrase, as shown in (28). This automa-
ton removes the redundant inner syntactic markers
by application of two replacement rules, con-
strained by the right or left context. The replace-
ment occurs simultaneously by application of par-
allel replacement.

 (25) define adjustNPPart [

"</np><ppHead>" -> 0 || _ PPart
"</ppHead><np>",,
"</ppHead><np>" -> 0 ||
"</np><ppHead>" PPart _];

(26) Virginia hade öppnat en tygaffär i en av
dom gamla husen.
Virginia had opened a fabric-store in one
of the old houses[def].
- Virginia had opened a fabric-store in one
of the old houses.

(27) <np> Virginia </np> <vp><vpHead> <vc>
hade öppnat </vc> </vpHead> <np> en tyg-
affär </np> i <np> en </np> <ppHead> av
</ppHead> <np> dom <ap> gamla </ap>
husen </np> .

(28) <np> Virginia </np> <vp> <vpHead> <vc>

hade öppnat </vc> </vpHead> <np> en tyg-
affär </np> i <NPPart> en av dom <ap> gamla
</ap> husen </np>

Other filtering transducers are used for refining the
parsing result and eliminate incomplete parsing
decisions such as prepositional heads without a
following noun phrase.

6 The System Performance

6.1 Result on Child Data

The implemented error detector, FiniteCheck, can-
not at present be considered as a fully developed
grammar checking tool, but still even with its re-
stricted lexicon and small grammar the results are
promising. So far the technique was used to detect
agreement errors in noun phrases, selection of
finite and non-finite verb forms in main and subor-
dinate clauses and infinitival complements. The
implementation proceeded in two steps. In the first
phase we devoted all effort to detection of the

grammar errors, working mostly with the errors
and not paying much attention to the text as a
whole. The second phase involved blocking of the
resultant false alarms found in the first stage.

In Table 1 we show the final results of error de-
tection in the training corpus of Child Data. There
were altogether 15 agreement errors in noun
phrase, 110 errors in the form of finite verb, 7 er-
rors in the verb form after an auxiliary verb and 4
errors in verbs after infinitive marker.

Error type No.
Errors CA FA R P F

Agreement in
NP 15 15 62 100% 19% 33%

Finite verb
form 110 96 126 87% 43% 58%

Verb form
after aux. verb 7 6 47 86% 11% 20%

Verb form
after inf. mar-
ker

4 4 0 100% 100% 100%

Total 136 121 235 89% 34% 49%

Table 1. Performance of FiniteCheck on Child Data:
correct alarms (CA), false alarms (FA), recall (R), pre-
cision (P), F-value (F).

FiniteCheck detected all the agreement errors in
noun phrases and all erroneous verb forms after an
infinitive marker, only a portion of other errors in
verb form was missed. The precision of the system
is rather low, primarily due the ambiguity of the
texts and the number of alarms marking other er-
rors such as segmentation or spelling errors. This
side-effect is difficult to eliminate totally and gives
rather rise to new questions of how to handle also
these types of writing problems that concern spell-
ing rather than grammar.

The three Swedish grammar checkers mentioned
above in Section 2: Grammatifix, Granska and
Scarrie, have been tested on the Child Data. The
result of their performance is shown in Figure 2,
below, together with the results of FiniteCheck.

These three tools are designed to detect errors in
text different from the nature of the Child Data and
thus not surprisingly the accuracy rates are in over-
all low. The total recall rate for the four error types
covered by FiniteCheck is between 9% and 21% in
these three tools and precision varies between 16%
to 35%. Errors in noun phrases seem to be better
covered than verb errors.

76

In the case of Grammatifix, errors in verbs are not
covered at all. Half of the noun phrase errors were
identified and only five errors in the finite verb
form. Granska covered all four error types and de-
tected at most half of the errors for three of these
types. However, only seven instances of errors in
finite verb form were identified. Scarrie had diffi-
culties with errors in verb form after infinitive
marker that were not detected at all. Errors in noun
phrase were the best detected type.

Figure 2: Performance of All Systems on Child Data

The detection performance of these three tools on
Child Data is in general half that good in compari-
son to our detector and the fact that the error type
with worst coverage (finite verbs) is the one most
frequent among children indicates clearly the need
for specialized grammar checking tools for chil-
dren.

6.2 Result on Text Written by Adult

The current system was also tested on a text of
1 070 words written by an adult, one of the demon-
stration texts used by Granska. The performance of
FiniteCheck on this text is presented in Table 2.
We found 17 noun phrase agreement errors, 5 er-
rors in the form of finite verb and 1 error in the
verbform after an auxiliary verb in the text. Fi-
niteCheck found all the verb form errors and most
of the agreement errors, ending in a recall value of
87%. False alarms occurred also only in the
agreement errors, resulting in a precision rate of
71% and an F-value of 78%.

Error type No.
Errors CA FA R P F

Agreement
in NP 17 14 6 82% 70% 76%

Finite verb
form 5 5 1 100% 83% 91%

Verb form
after aux.
verb

1 1 1 100% 50% 67%

Total 23 20 8 87% 71% 78%

Table 2. Performance of FiniteCheck on Text Written
by Adult: correct alarms (CA), false alarms (FA), recall
(R), precision (P), F-value (F).

The three Swedish grammar checkers were also
tested on this adult text, that reflects more the text
type these tools are designed for. The results pre-
sented in Figure 3 show an average recall rate of
52% for the three Swedish grammar checkers, Fi-
niteCheck scored 87%. These tools had difficulties
to detect the verb form errors, whereas most of the
errors in noun phrase agreement were found. The
opposite scenario applies for precision, where Fi-
niteCheck had slightly worse rate (71%) than
Grammatifix and Granska, which had a precision
above 90%. Scarrie’s precision was 65%. In the
combined measure of recall and precision (F-
value) our system obtained 78%, which is slightly
better in comparison to the other tools that had
70% or less in F-value.

Figure 3: Performance of All Systems on Text Written
by Adult

77

7 Conclusion

The simple finite state technique of subtraction
presented in this paper, has the advantage that the
grammars one needs to write to find errors are
always positive grammars rather than grammars
written to find specific errors. Thus, covering the
valid rules of language means that the rule sets re-
main quite small and practically no prediction of
errors is necessary.

The approach aimed further at minimal informa-
tion loss in order to be able to handle text contain-
ing errors. The degree of ambiguity is maximal at
the lexical level, where we choose to attach all
lexical tags to strings. At higher levels, structural
ambiguity is treated by parsing order, grammar
extension and some other heuristics. There is an
essential problem of ambiguity resolution on com-
plement decisions that remains to be solved. Se-
quences of words grammatical in one context and
ungrammatical in another are treated the same. The
system overinterprets and gives rise to false
alarms, mostly due the application of longest-
match, but more seriously information indicating
an error may be filtered out by erroneous segmen-
tation and errors overlooked. A ‘higher’ mech-
anism is needed in order to solve these problems
that takes into consideration the complement dis-
tribution and solves these structural dependencies.

The linguistic accuracy of the system is compa-
rable to other Swedish grammar checking tools,
that actually performed worse on the Child Data.
The low performance of the Swedish tools on
Child Data motivates clearly the need for adapta-
tion of grammar checking techniques to children.
The other tools obtained in general much lower
recall values and although the error type of particu-
lar error was defined, the systems had difficulties
to identify the errors, probably due problems to
handle such a disrupted structure with many ad-
joined sentences and high error frequency.

Further, the robustness and modularity of this
system makes it possible to perform both error de-
tection and diagnostics and that the grammars can
be reused for other applications that do not neces-
sarily have anything to do with error detection,
e. g. for educational purposes, speech recognition,
and for other users such as dyslectics, aphasics,
deaf and foreign speakers.

References
Ait-Mohtar, Salah and Chanod, Jean-Pierre (1997) In-

cremental Finite-State Parsing, In ANLP’97, Wash-
ington, pp. 72-79.

Arppe, A. (2000) Developing a Grammar Checker for
Swedish.In The 12th Nordic Conference of Computa-
tional Linguistics, NODALIDA-99, pp.13-27.

Birn, J. (1998). Swedish Constraint Grammar: A Short
Presentation. [http://www.lingsoft.fi/doc/swecg/].

Birn, J. (2000) Detecting Grammar Errors with Ling-
soft's Swedish Grammar Checker. In The 12th Nordic
Conference of Computational Linguistics,
NODALIDA-99, pp.28-40.

Bustamente, F. R. and León, F. S. (1996) GramCheck:
A Grammar and Style Checker. In The 16th Interna-
tional Conference on Computational Linguistics, Co-
penhagen, pp. 175-181.

Carlberger, J. and Kann, V. (1999) Implementing an
efficient part-f-speech tagger. Software – Practice
and Experience, 29(9):815-832.

Chanod, J.-P. (1996) A Broad-Coverage French Gram-
mar Checker: Some Underlying Principles. In The
Sixth International Conference on Symbolic and Log-
ical Computing, Dakota State University Madison,
South Dakota.

Domeij, R. (2003). Datorstödd språkgranskning under
skrivprocessen. Svensk språkkontroll ur användarp-
erspektiv. Doktorsavhandling, Stockholms Univer-
sitet, Institutionen för lingvistik.

Ejerhed, E., Källgren, G., Wennstedt, O. and Åström,
M. (1992) The Linguistic Annotation System of the
Stockholm-Umeå Corpus Project. Report 33. Univer-
sity of Umeå, Department of Linguistics.

Heidorn, G. (1993). Experience with an easily computed
metric for ranking alternative parses. In Jensen, K.,
Heidorn, G., and Richardson, S. D. (eds.) Natural
Language Processing: The PLNLP Approach. Klu-
wer Academic Publishers, Dordrecht.

Hård af Segerstad, Y. and Sofkova Hashemi, S. (2006)
Learning to Write in the Information Age: A Case
Study of Schoolchildren's Writing in Sweden. In Van
Waes, L., Leijten, M. och Neuwirth, C. (eds.), Writ-
ing and Digital Media, Elsevier.

Jensen, K., Heidorn, G. and Richardsson, S. D. (eds.)
(1993) Natural Language Processing: The PLNLP
Approach. Kluwer Academic Publishers, Dordtrecht.

Järvinen, T. and Tapanainen, P. (1998). Towards an
implementable dependency grammar. In Kahane, S.
and Polguere, A. (eds.) The Proceedings of COLIN-

78

GACL’98, Workshop on ‘Processing of Dependency-
Based Grammars’, pages 1–10. Universite de Mont-
real, Canada.

Karlsson, F. (1992). SWETWOL: Comprehensive mor-
phological analyzer for Swedish. Nordic Journal of
Linguistics, 15:1–45.

Karlsson, F., Voutilainen, A., Heikkilä, J., and Anttila,
A. (1995). Constraint Grammar: a language-
independent system for parsing unrestricted text.
Mouton de Gruyter, Berlin.

Karttunen, L. (1993) Finite State Lexicon Compiler.
Technical Report ISTL-NLTT-1993-04-02, Xerox
Palo Alto Research Center, Palo Alto, California.

Karttunen, L., Chanod, J., Grefenstette, G. and Schiller,
A. (1996) Regular Expressions for Language Engi-
neering, In Natural Language Engineering 2 (4) 305-
328.

Karttunen, L., Gaál, T. and Kempe, A. (1997) Xerox
Finite State Tool. Xerox Research Centre Europe,

Kirschner, Z. (1994) CZECKER -a Maquette Grammar-
Checker for Czech. In The Prague Bulletin of
Mathematical Linguistics 62, Praha: Universita Kar-
lova.

Knutsson, O. (2001). Automatisk språkgranskning av
svensk text. Licentiatavhandling, KTH, Institutionen
för numerisk analys och datalogi, Stockholm.

Kukich, K. (1992) Techniques for Automatically Cor-
recting Words in Text. ACM Computing Surveys,
Vol. 24, No. 4: 377 - 439.

Sofkova Hashemi, S. (2003) Automatic Detection of
Grammar Errors in Primary School Children's Texts.
A Finite State Approach. Doctoral dissertation. Goth-
enburg Monographs in Linguistics 24. Department of
Linguistics, Göteborg University.

 Sofkova Hashemi, S. (forthcoming) The role of writing
aid in the text production of school children. De-
partment of Linguistics, Göteborg University

Sågvall Hein, A. (1983). A Parser for Swedish. Status
Report for SveUcp. (UCDLR-83-2). Uppsala Univer-
sity, Department of Linguistics. February 1983.

Sågvall Hein, A. (1999) A grammar checking module
for Swedish. Report from the Scarrie-project: DEL
6.6.3, June 1999, Dept. of Linguistics, Uppsala Uni-
versity.

Sågvall Hein, A., Olsson, L.-G., Dahlqvist, B., and
Mats, E. (1999). Evaluation report for the Swedish
prototype. In Sågvall Hein, A. (ed.) Reports from the
SCARRIE project, Deliverable 8.1.3, June 1999.
Uppsala University, Department of Linguistics.

Vernon, A. (2000) Computerized grammar checkers
2000: Capabilities, limitations, and pedagogical pos-
sibilities. Computers and Composition 17, 329-349.

Vosse, T. G. (1994) The Word Connection. Grammar-
based Spelling Error Correction in Dutch. Enschede:
Neslia Paniculata.

Wedbjer Rambell, O. (1999). Swedish phrase constitu-
ent rules. A formalism for the expression of local er-
ror rules for Swedish. In Sågvall Hein, A. (ed.) Re-
ports from the SCARRIE project. Uppsala University,
Department of Linguistics.

79

Proceedings of the 10th Conference on Parsing Technologies, pages 80–82,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Nbest Dependency Parsing with linguistically rich models

Xiaodong Shi
Institute of Artificial Intelligence
Department of Computer Science

Xiamen University, Xiamen 361005
mandel@xmu.edu.cn

Yidong Chen
Institute of Artificial Intelligence
Department of Computer Science

Xiamen University, Xiamen 361005
ydchen@xmu.edu.cn

Abstract

We try to improve the classifier-based de-
terministic dependency parsing in two
ways: by introducing a better search
method based on a non-deterministic nbest
algorithm and by devising a series of lin-
guistically richer models. It is experimen-
tally shown on a ConLL 2007 shared task
that this results in a system with higher per-
formance while still keeping it simple
enough for an efficient implementation.

1 Introduction

This work tries to improve the deterministic de-
pendency parsing paradigm introduced in (Coving-
ton 2001, Nivre 2003, Nivre and Hall, 2005) where
parsing is performed incrementally in a strict left-
to-right order and a machine learned classifier is
used to predict deterministically the next parser
action. Although this approach is very simple, it
achieved the state-of-art parsing accuracy. How-
ever, there are still some problems that leave fur-
ther room for improvement:

(1) A greedy algorithm without backtracking
cannot ensure to find the optimal solution. In the
course of left-to-right parsing, when further con-
text is seen, the previous decisions may be wrong
but a deterministic parser cannot correct it. The
usual way of preventing early error “commitment”
is to enable a k-best or beam-search strategy
(Huang and Chiang 2005, Sagae and Lavie 2006).

(2) A classifier based approach (e.g. using SVM
or memory based learning) is usually linguistically
naïve, to make it applicable to multiple languages.
However, a few studies (Collins 1999, Charniak et
al 2003, Galley et al 2006) have shown that lin-

guistically sophisticated models can have a better
accuracy at parsing, language modeling, and ma-
chine translation, among others.

In this paper we explore ways to improve on the
above-mentioned deterministic parsing model to
overcome the two problems. The rest of the paper
is organized as follows. Section 2 argues for a
search strategy better at finding the optimal solu-
tion. In section 3 we built a series of linguistically
richer models and show experimental results dem-
onstrating their practical consequences. Finally we
draw our conclusions and point out areas to be ex-
plored further.

2 Dependency Parsing Enhancements

In the classifier-based approach as in Nivre (2003)
a parse tree is produced by a series of actions
similar to a left-to-right shift-reduce parser. The
main source of errors in this method is the
irrevocability of the parsing action and a wrong
decision can therefore lead to further inaccuracies
in later stages. So it cannot usually handle garden-
path sentences. Moreover, each action is usually
predicted using only the local features of the words
in a limited window, although dynamic features of
the local context can be exploited (Carreras 2006).

To remedy this situation, we just add a scoring
function and a priority queue which records nbest
partial parses. The scoring function is defined on
the parsing actions and the features of a partial
parse. It can be decomposed into two subfunctions:

score(a,y)=parsing_cost(a,y) + lm(y)
where a is parsing actions and y is partial parses,
and parsing cost (parsing_cost) is used to imple-
ment certain parsing preferences while the lingus-
tic model score (lm) is usually modeled in the lin-
guistic (in our case, dependency model) framework.

80

In the usual nbest or beam-search implementation
(e.g. Huang and Chiang 2005, Sagae and Lavie
2006), only lm is present.

We give justification of the first term as follows:
Many probability functions need to know the de-
pendency label and relative distance between the
dependent and the head. However, during parsing
sometimes this head-binding can be very late. This
means a right-headed word may need to wait very
long for its right head, and so a big partial-parse
queue is needed, while psychological evidence
suggests that there is some overhead involved in
processing every word and a word tends to attach
locally. By modeling parsing cost we can first use
a coarse probability model to guide the nbest par-
tial results in order not to defer the probability cal-
culation. As parsing progresses, more information
becomes available; we can have a better estimation
of our linguistic probability model to rectify the
inaccuracy.

This use of a coarse scoring mechanism to guide
the early parsing for possible later rectification of
the decision is a novel feature of our parsing
framework and enables better searching of the so-
lution space. To implement it, we just remember
the exact score of the every major decision (wait,
add a dependent or attach a head) in parsing, and
re-score when more context is available. Compared
with (Charniak 2005), our parsing process requires
only one pass.

Thus, we can strike a balance between accuracy,
memory and speed. With a moderately-sized n
(best partial results), we can reduce memory use
and get higher speed to get a same accuracy. An
added advantage is that this idea is also useful in
other bottom-up parsing paradigms (not only in a
dependency framework).

In a word, our main innovation is the use of a
parsing cost to influence the search paths, and the
use of an evolving lm function to enable progres-
sively better modeling. The nbest framework is
general enough to make this a very simple modifi-
cation to the basic algorithm of Nivre (2003).

3 Better Linguistic Modeling

In our modeling we combine different linguistic
models by using many probability functions:

lm(y)=ΣlogP(wi,wj,x,y) =ΣW*log P

where w are the trained weight vector and P is a
vector of probability functions. In our system we
considered the following functions:

P1: function measuring the probability of a head
and a dependent. This is the base function in most
dependency parsing framework.

P2: function calculating the subcategorization
frame probability;

P3: function calculating the semantic frame us-
ing a Chinese FrameNet (Liu 2006).

P4: function measuring the semantic affinity be-
tween a head and a dependent using resources such
as Hownet (Dong 2003).

P5: Other Chinese specific probability functions
defined on the features of the head, the dependents,
the partial parse and the input.

Model P2 is a probability function on pseudo
subcategorization frames (as a concatenation of all
the dependents’ labels) as we don’t know the dis-
tinction of arguments and adjuncts in the depend-
ency Treebank. We used a Markovian subcategori-
zation scheme with left and right STOP delimiters
to ease the data sparseness. And as a first approxi-
mation, we also experimented with a model where
each label can only be used a certain times in a
direction. This model is called P2’ in Table 4.

Other functions (P3-P5) are also very useful
with its different linguistic content. Model P5 actu-
ally contains a lot of Chinese-specific functions,
e.g. between a sentence-final particle and a verb.

We designed a series of experiments to show to
effectiveness of each model. We use the Chinese
training data of the ConLL 2007 shared task. We
divided the training data by a 9:1 split. Table 1
shows the statistics.
 Training testing
sentences 51777 5180
Words 302943 34232

Table 1. Experimental data
In the baseline model, we train a simple probability
function between a head and a dependent using
deleted interpolation. For nbest=1, we have a
deterministic model.
 LAS UAS time
Deterministic 41.64 % 44.11 % 8s
nbest = 50 71.30 % 76.34 % 72s
nbest = 500 71.90 % 76.99 % 827s

Table 2. baseline systems
It can be seen (Table 3) that combing different

linguistic information can lead to significant in-

81

crease of the accuracy. However, different models
have different contributions. Our experiments con-
firm with Collins’s result in that subcategorization
carries very important linguistic content.
 LAS UAS time
P1 71.90 % 76.99 % 827s
P1 + P2’ 73.45 % 78.44 % 832s
P1 + P2’ + P2 77.92 % 82.42 % 855s
P1 + P2 + P3 79.13% 83.57% 1003s
P1-4 81.21% 85.78% 1597s
P1-5 83.12% 87.03% 2100s
Verb valency 85.32 % 89.12 % -
DE refinement 85.98% 90.20% -

Table 3. systems with different linguistic models

3.1 Relabeling of the parse treebank

Sometimes the information needed in the modeling
is not in the data explicitly. Implicit information
can be made explicit and accessible to the parser.

In the Chinese Treebank the relation label is
often determined by the head word’s semantic type.
We tried the relabeling of coarse POS info of the
verb in a effort to detect its valency; and refine-
ment of the auxiliary word 的 DE (as error analy-
sis shows it is the where the most errors occur).
Results are in Table 3.

We also tried refinement of the relation label by
using the two connected words. However, this does
not improve the result. Automatic linguistic model-
ing using latent label (Matsuzaki 2005) can also be
attempted but is not yet done.

4 Conclusions

In this paper we showed that simple classifier-
based deterministic dependency parsing can be
improved using a more flexible search strategy
over an nbest parsing framework and a variety of
linguistically richer models. By incorporating dif-
ferent linguistic knowledge, the parsing model can
be made more accurate and thus achieves better
results.

Further work to be done includes ways to com-
bine machine learning based on the automatic fea-
ture selection with manual linguistic modeling: an
interactive approach for better synergistic model-
ing (where the machine proposes and the human
guides). Various a priori models can be tried by the
machine and patterns inherent in the data can be
revealed to the human who can then explore more
complex models.

References
Xavier Carreras, Mihai Surdeanu, and Lluís Màrquez.

2006. Projective Dependency Parsing with Percep-
tron. In Proceedings of CoNLL-X. 181-185.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proceedings of IWPT.

Eugene Charniak; K. Knight, and K.Yamada. 2003.
Syntax-based language models for statistical ma-
chine translation. In MT Summit IX. Intl. Assoc. for
Machine Translation.

Eugene Charniak and Mark Johnson. 2005. Coarse-
tofine n-best parsing and maxent discriminative
reranking. In Proceedings of ACL.

Michael Collins. 1999. Head-Driven Statistical Models-
for Natural Language Parsing. PhD Dissertation,
University of Pennsylvania.

Michael Collins. 2004. Parameter Estimation for Statis-
tical Parsing Models: Theory and Practice of Distri-
bution-Free Methods. In Harry Bunt el al, New De-
velopments in Parsing Technology, Kluwer.

Michael A. Covington. 2001. A fundamental algorithm
for dependency parsing. Proceedings of the 39th An-
nual ACM Southeast Conference, pp. 95-102.

Zhendong Dong and Qiang Dong. 2003. HowNet - a
hybrid language and knowledge resource. In Pro-
ceeding of Natural Language Processing and Knowl-
edge Engineering.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe,
W. Wang, and I. Thayer. 2006. Scalable Inference
and Training of Context-Rich Syntactic Models. In
Proc. ACL-COLING.

Kaiying Liu. 2006. Building a Chinese FrameNet. In
Proceeding of 25th anniversary of Chinese Informa-
tion Processing Society of China.

Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. 2005.
Probabilistic CFG with latent annotations. In Pro-
ceedings of ACL-2005.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proceedings of IWPT.
149-160.

Joakim Nivre and Johan Hall. 2005. MaltParser: A Lan-
guage-Independent System for Data-Driven Depend-
ency Parsing. In Proceedings of the Fourth Work-
shop on Treebanks and Linguistic. Theories, Barce-
lona, 9-10 December 2005. 137-148.

Sagae, K. and Lavie, A. 2006 A best-first probabilistic
shift-reduce parser. In Proceedings of ACL.

82

Proceedings of the 10th Conference on Parsing Technologies, pages 83–92,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Symbolic Preference Using Simple Scoring

Paula S. Newman
newmanp@acm.org

Abstract

Despite the popularity of stochastic parsers,
symbolic parsing still has some advantages,
but is not practical without an effective
mechanism for selecting among alternative
analyses. This paper describes the symbolic
preference system of a hybrid parser that
combines a shallow parser with an overlay
parser that builds on the chunks. The hy-
brid currently equals or exceeds most sto-
chastic parsers in speed and is approaching
them in accuracy. The preference system is
novel in using a simple, three-valued scor-
ing method (-1, 0, or +1) for assigning
preferences to constituents viewed in the
context of their containing constituents.
The approach addresses problems associ-
ated with earlier preference systems, and
has considerably facilitated development. It
is ultimately based on viewing preference
scoring as an engineering mechanism, and
only indirectly related to cognitive princi-
ples or corpus-based frequencies.

1 Introduction

Despite the popularity of stochastic parsers, sym-
bolic parsing still has some advantages, but is not
practical without an effective mechanism for se-
lecting among alternative analyses. Without it, ac-
cept/fail grammar rules must either be overly
strong or admit very large numbers of parses. .

Symbolic parsers have recently been augmented
by stochastic post-processors for output disam-
biguation, which reduces their independence from
corpora. Both the LFG XLE parser (Kaplan et.al.
2004), and the HPSG LinGO ERG parser (Tou-
tanova et al. 2005) have such additions.

This paper examines significant aspects of a
purely symbolic alternative: the preference and
pruning system of the RH (Retro-Hybrid) parser

(Newman, 2007). The parser combines a pre-
existing, efficient shallow parser with an overlay
parser that builds on the emitted chunks. The over-
lay parser is "retro" in that the grammar is related
to ATNs (Augmented Transition Networks) origi-
nated by Woods (1970).

RH delivers single "best" parses providing syn-
tactic categories, syntactic functions, head features,
and other information (Figure 1). The parenthe-
sized numbers following the category labels in the
figure are preference scores, and are explained fur-
ther on. While the parses are not quite as detailed
as those obtained using "deep" grammars, the
missing information, mostly relating to long dis-
tance dependencies, can be added at far less cost in
a post-parse phase that operates only on a single
best parse. Methods for doing so, for stochastic
parser output, are described by Johnson (2002) and
Cahill et al (2004).

The hybrid parser exceeds most stochastic pars-
ers in speed, and approaches them in accuracy,
even based on limited manual "training" on a par-
ticular idiom, so the preference system is a suc-
cessful one (see Section 6), and continues to im-
prove.

The RH preference system builds on earlier
methods. The major difference is a far simpler
scoring system, which has considerably facilitated
overlay parser development. Also, the architecture
allows the use of large numbers of preference tests
without impacting parser speed. Finally, the treat-
ment of coordination exploits the lookaheads af-
forded by the shallow parser to license or bar alter-
native appositive readings.

Section 2 below discusses symbolic preference
systems in general, and section 3 provides an over-
view of RH parser structure. Section 4 describes
the organization of the RH preference system and
the simplified scoring mechanism. Section 5 dis-
cusses the training approach and Section 6 pro-
vides some experimental results. Section 7 sum-
marizes, and indicates directions for further work.

83

Figure 1. Output Parse Tree for "Rumsfeld micromanaged daily briefings and rode roughshod
 over people." * indicates head. Mouseover shows head features for "micromanaged".

2 Background: Symbolic Preference

2.1 Principles

Preference-based parsing balances necessarily
permissive syntactic rules by preference rules that
promote more likely interpretations. One of the
earliest works in the area is by Wilks (1975),
which presented a view of preference as based on
semantic templates. Throughout the 1980's there
was a considerable amount of work devoted to
finding general principles, often cognitively ori-
ented, for preference rules, and then to devise
mechanisms for using them in practical systems.
Hobbs and Bear (1990) provide a useful summary
of the evolved principles. Slightly restated, these
principles are:
1. Prefer attachments in the "most restrictive

context".
2. If that doesn't uniquely determine the result,

attach low and parallel, and finally
3. Adjust the above based on considerations of

punctuation
Principle 1 suggests that the preference for a

constituent in a construction should depend on the
extent to which the constituent meets a narrow set
of expectations. Most of the examples given by
Hobbs and Bear use either (a) sub-categorization
information, e.g., preferring the attachment of a
prepositional phrase to a head that expects that par-
ticular preposition, or (b) limited semantic infor-
mation, for example, preferring the attachment of a
time expression to an event noun.

Principle 2 implies that in the absence of coor-
dination, attachment should be low, and in the
presence of coordination, parallel constituents
should be preferred. Principle 3 relates primarily
to the effect of commas in modifying attachment
preferences.

2.2 Implementations

Abstractly, symbolic preference systems can be
thought of as regarding a set of possible parses as a
collection of spanning trees over a network of po-
tential relationships, with each edge having a nu-
meric value, and attempting to find the highest
scoring tree.1

However, for syntactic parsers, in contrast with
dependency parsers, it is convenient to associate
scores with constituents as they are built, for con-
sistency with the parser structure, and to permit
within-parse pruning. A basic model for a prefer-
ence system assigns preference scores to rules. For
a rule

C → c1, c2, …, cn
the preference score PS(CC) of a resultant con-
stituent CC is the sum:

PS(cc1) + PS(cc2) + +PS(ccn)
 + TRS (C, cc1, cc2, …, ccn)

where PS(cci) is the non-contexted score of con-
stituent cci, and the total relationship score TRS is a
value that assesses the relationships among the sib-
ling constituents of CC. The computation of TRS
depends on the parser approach. For a top-down
parser, TRS may be the sum of contexted relation-
ship scores CRS, for example:

TRS = CRS (cc1|C) +CRS (cc2|C, cc1), +
 CRS (cc3|C, cc1, cc2) + …..
 + CRS (cn |C, cc1,….ccn-1)

where each CRS (cci|_) evaluates cci in the context
of the prior content of the constituent CC and the
category C..

Few publications specify details of how prefer-
ence scores are assigned and combined. For exam-
ple, Hobbs and Bear (1990) say only that "When a

1 The idea has also been used directly in stochastic pars-
ers that consider all possible attachments, for example,
by McDonald et al. (2005).

84

non-terminal node of a parse tree is constructed, it
is given an initial score which is the sum of the
scores of its child nodes. Various conditions are
checked during the construction of the node and, as
a result, a score of 20, 10, 3, -3, -10, or -20 may be
added to the initial score."

McCord (1993), however, carefully describes
how the elements of TRS are computed in his slot
grammar system. Each element value is the sum of
the results of up to 8 optional, typed tests, relating
to structural, syntactic, and semantic conditions.
One of these tests, relating to coordination, is a
complex test involving 7 factors assessing parallel-
ism.

2.3 Multi-Level Contexted Scoring

The scores assigned by symbolic preference sys-
tems to particular relationships or combinations
usually indicate not just whether they are preferred
or dispreferred, but to what degree. For example, a
score of 1 might indicate that a relationship is
good, and 2 that it is better.

Such multi-level scores create problems in tun-
ing parsers to remove undesirable interactions,
both in the grammar and the preference system.
Even for interactions foreseen in advance, one
must remember or find out the sizes of the prefer-
ences involved, to decide how to compensate.
Yamabana et al. (1993) give as an example a bot-
tom-up parser, where an S constituent with a tran-
sitive verb head but lacking an object is initially
given a strong negative preference, but when it is
discovered that the constituent actually functions
as a relative clause, the appropriate compensation
must be found. (Their solution uses a vector of
preference scores, with the vector positions corre-
sponding to specific types of preference features,
together with an accumulator. It allows the content
of vector elements to be erased based on subse-
quently discovered compensating features.)

For unforeseen interactions, for example when a
review of parser outputs finds that the best parse is
not given the highest preference score, multi-level
contexted scoring requires complex tracing of the
contribution of each score to the total, remember-
ing at each point what the score should be, to de-
termine the necessary adjustments.

A different sort of problem of multi-level scor-
ing stems from the unavoidable incompleteness of
information. For example, in Figure 1, the attach-
ment of an object to the "guessed" verb "micro-

managed" is dispreferred because the verb is not
identified as transitive. Here, the correct reading
survives because there are no higher scoring ones.
But in some situations, if such a dispreference
were given a large negative score, the parser could
be forced into very odd readings not compensated
for by other factors.

2.4 Corpus-Based Preference

In the early 1990's, the increasing availability and
use of corpora, together with a sense that multi-
level symbolic preference scores were based on ad-
hoc judgments, led to experiments and systems that
used empirical methods to obtain preference
weights. Examples of this work include a system
by Liu et al (1990), and experiments by Hindle and
Rooth (1993), and Resnik and Hearst (1993).2

These efforts had mixed success, suggesting that
while multi-level preference scores are problem-
atic, integrating some corpus data does not solve
the problems. In light of later developments, this
might be expected. Full-scale contemporary sto-
chastic parsers use a broad range of interacting fea-
tures to obtain their fine-grained results; frequen-
cies of particular relationships are just one aspect.

2.5 OT-based Preference

A more recent approach to symbolic preference
adapts optimality theory to parser and generator
preference. Optimality Theory (OT) was origi-
nally developed to explain phonological rules
(Prince and Smolensky, 1993). In that use, poten-
tial rules are given one "optimality mark" for each
constraint they violate. The marks, all implicitly
negative, are ranked by level of severity. A best
rule R is one for which (a) the most severe level of
constraint violation L is ≤ the level violated by any
other rule, and (b) if other rules also violate level L
constraints, the number of such violations is ≥ the
number of violations by R.

As adapted for use in the XLE processor for
LFG (Frank et al. 1998) optimality marks are asso-
ciated with parser and generator outputs. Positive
marks are added, and also labeled inter-mark posi-
tions within the optimality mark ranking. The la-
beled positions influence processor behavior. For
generation, they are used to disprefer infelicitous
strings accepted in a parse direction. And for pars-

2 McCord (1993) also includes some corpus-based in-
formation, but to a very limited extent.

85

ing they can be used to disprefer (actually ignore)
rarely-applicable rules, in order to reduce parse
time (Kaplan et al, 2004).

However, because the optimality marks are
global, a single dispreference can rule out an entire
parse. To partially overcome this limitation, a fur-
ther extension (see XLE Online Documentation)
allows direct comparisons of alternative readings
for the same input extent. A different optimality
mark can be set for each reading, and the use of
one such mark in the ranking can be conditioned
on the presence of another particular mark for the
same extent. For example, a conditional disprefer-
ence can be set for an adjunct reading if an argu-
ment reading also exists. The extension does not
address more global interactions, and is said (Forst
et al. 2005) to be used mostly as a pre-filter to limit
the readings disambiguated by a follow-on stochas-
tic process.

2.6 A Slightly Different View

A slightly different view of preference–based pars-
ing is that the business of a preference system is to
work in tandem with a permissive syntactic gram-
mar, to manipulate outcomes.

The difference focuses on the pragmatic role of
preference in coercing the parser. In this light, the
principles of section 2.1 are guidelines for desired
outcomes, not bases for judging the goodness of a
relationship or setting preference values. Instead,
preference values should be set based on their ef-
fectiveness in isolating best parses. Also, in this
light, the utility of a preference system lies not
only in its contribution to accuracy, but also in its
software-engineering convenience. These consid-
erations led to the simpler, more practical scoring
system of the RH overlay parser, described in sec-
tion 4 below, in which contexted preference scores
CRS can have one of only 3 values, -1, 0, or +1.

3 Background: The RH Parser

The RH parser consists of three major components,
outlined below: the shallow parser, a mediating
"locator" phase, and the overlay parser.

3.1 Shallow Parser

The shallow parser used, XIP, was developed by
XRCE (Xerox Research Center Europe). It is
actually a full parser, whose per-sentence output
consists of a single tree of basic chunks, together

with identifications of (sometimes alternative)
typed dependences among the chunk heads (Ait-
Mokhtar et al. 2002, Gala 2004). But because the
XIP dependency analysis for English was not
mature at the time that work on RH began, and
because a classic parse tree annotated by syntactic
functions is more convenient for some
applications, we focused on the output chunks.

XIP is astonishingly fast, contributing very little
to parse times (about 20%). It consists of the XIP
processor, plus grammars for a number of
languages. The grammar for a particular language
consists of:
(a) a finite-state lexicon producing alternative

part-of-speech and morphological analyses for
each token, together with bit-expressed
subcategorization and control features, and
(some) semantic features,

(b) a substitutable tagger identifying the most
probable part of speech for each token, and

(c) sequentially applied rule sets that extend and
modify lexical information, disambiguate tags,
identify named entities and other multiwords,
and produce output chunks and inter-chunk
head dependences (the latter not used in the
hybrid).

Work on the hybrid parser has included large
scale extensions to the XIP English rule sets.

3.2 Locator phase

The locator phase accumulates and analyses some
of the shallow parser results to expedite the
grammar and preference tests of the overlay parser.

For preference tests, for any input position, the
positions of important leftward and rightward
tokens are identified. These "important" tokens
include commas, and leftward phrase heads that
might serve as alternative attachment points.

Special attention is given to coordination, a
constant source of inefficiency and inaccuracy for
all parsers. To limit this problem, an input string is
divided into spans ending at coordinating conjunc-
tions, and the chunks following a span are exam-
ined to determine what kinds of coordination might
be present in the span. For example, if a chunk
following a span Sp is a noun phrase, and there are
no verbs in the input following that noun phrase,
only noun phrase coordination is considered within
Sp. Also, with heuristic exceptions, the locator
phase disallows searching for appositives within

86

long sequences of noun and prepositional phrases
ending with a coordinating conjunction.

3.3 Overlay Parser

The overlay parser uses a top-down grammar,
expressed as a collection of ATN-like grammar
networks. A recursive control mechanism traverses
the grammar networks depth-first to build
constituents. The labels on the grammar network
arcs represent specialized categories, and are
associated with tests that, if successful, either
return a chunk or reinvoke the control to attempt
to build a constituents for the category. The label-
specific tests include both context-free tests, and
tests taking into account the current context. For
details see (Newman, 2007).

If an invocation of the control is successful, it
returns an output network containing one or more
paths, with each path representing an alternative
sequence of immediate children of the constituent.
An example output network is shown in figure 2.
Each arc of the network references either a basic
chunk, or a final state of a subordinate output net-
work. Unlike the source grammar networks, the
output networks do not contain cycles or converg-
ing arcs, so states represent unique paths.

The states contain both (a) information about
material already encountered along the path, in-
cluding syntactic functions and head features, and
(b) a preference score for the path to that point.
Thus the figure 2 network represents two
alternative noun phrases, one represented by the
path containing OS0 and OS1, and one containing
OS0, OS1, and OS2. State OS2 contains the
preference score (+1), because attaching a locative
pp to a feature of the landscape is preferred.

From To Cat Synfun Reference
OSo OS1 NP HEAD NPChunk

(The park)
OS1 OS2 PP NMOD Final state of

 PP net for
(in Paris)

States Score Final?
OS0 0 No
OS1 0 Yes
OS2 +1 Yes

Figure 2. Output network for "The park in Paris"

Before an output network is returned from an
invocation of the control mechanism, it is pruned
to remove lower-scoring paths, and cached.

Output from the overlay parser is a single tree
(Figure 1) derived from a highest scoring full path
(i.e. final state) of a topmost output network. If
there are several highest scoring paths, low attach
considerations select a "best" one. The preference
scores shown in Figure 1 in parentheses after the
category labels are the scores at the succeeding
states of the underlying output networks.

4 Preference System

Any path in an output network has the form:
S0, Ref1, S1, Ref2, …, Sn-1 , Refn, Sn

where Si is a state, and Refi labels an arc, and refer-
ences either a basic chunk, or a final state of an-
other output network. A state Si has total prefer-
ence score TPS(i) where:

• TPS(0) = 0
• TPS(i), i>0 =

 TPS(i-1) + PS(Refi) +CRS(Refi)
• PS(Refi) is the non-contexted score of the

constituent referenced by Refi, that is, the
score at the referenced final state.

• CRS(Refi) is the contexted score for Refi, in
the context of the network category and the
path ending at the previous state i-1.

For example, if Refi refers to a noun phrase con-
sidered a second object within a path, and the syn-
tactic head along the path does not expect a second
object, CRS(Refi) might be (-1).

Each value CRS is limited to values in {-1, 0,
+1}. Therefore, no judgment is needed to decide
the degree to which a contexted reference is to be
dispreferred or preferred. Also, if the desired parse
result does not receive the highest overall score, it
is relatively easy to trace the reason. Pruning (see
below) can be disabled and all parses can be dis-
played, as in Figure 1, which shows the scores
TPS(i) in parentheses after the category labels for
each Refi (with zero scores not shown). Then, if

TPS(i) > (TPS(i-1) + PS(Refi))
it is clear that the contexted reference is preferred.
If multi-level contexted scoring were used instead,
it would be necessary to determine whether the
reference was preferred to exactly the right degree.

87

Test Block
Type

Length
Independent?

Indexed By

Coordinate Y Parent syncat
Subcat Y No index
FN1 Y synfun
TAG1 Y syncat
FN2 N synfun
TAG2 N syncat
Table 1. Preference Test Block Types

4.1 Preference test organization

To compute the contexted score CRS for a refer-
ence, relevant tests are applied until either (a) a
score of -1 is obtained, which is used as CRS for
the reference, or (b) the tests are exhausted. In the
latter case, CRS is the higher of the values {0, +1}
returned by any test.

For purposes of efficiency, the preference tests
are divided into typed blocks, as shown in Table 1.
At most one block of each type can be applied to a
reference. Four of the blocks contain tests that are
independent of referenced constituent length. They
are applied at most once for a returned output net-
work and the results are assumed for all paths. The
other two blocks are length dependent.

Referring to Table 1, the length-independent co-
ordinate tests are applied only to non-first siblings
of coordinated constituents. The parent category
indicates the type of constituents being coordinated
and selects the appropriate test block. Tests in
these blocks focus on the semantic consistency of a
coordinated sibling with the first one.

Subcategorization tests are applied to preposi-
tional, particle, and clausal dependents of the cur-
rent head. These tests consist to a large extent of
bit-vector implemented operations, comparing the
expected dependent types of the head with lexical
features of the prospective dependent. The tests
are made somewhat more complex because of
various exceptions, such as (a) temporal and loca-
tive phrases, and (b) the presence of a nearer po-
tential head also expecting the dependent type.

The other test block types are selected and ac-
cessed either by the syntactic category or the syn-
tactic function of the reference, depending on the
focus of the test. The length-dependent tests in-
clude tests of noun-phrases within coordinations to
determine whether post modifiers should be ap-
plied to the individual phrase or to the coordination
as a whole.

The test blocks are expressed in procedural
code. This has allowed the parser to be developed
without advance prediction of the types of infor-
mation needed for the tests, and also has contrib-
uted some efficiency. The blocks, usually short
but occasionally long, generally consist of ordered
(if-then-else) subtests.

4.2 Preference test scope

A contexted preference test can refer to material on
three levels of the developing parse tree: (a) the
syntactic category of the parent (available because
of the top-down parser direction) (b) information
about the current output network path, including
head features, already-encountered syntactic func-
tions, and a small collection of special-purpose
information, and (c) information about the refer-
enced constituent, specifically its head and a list of
the immediately contained syntactic functions. The
tests can also reference lookahead information fur-
nished by the locator phase. This material is suffi-
cient for most purposes. Limiting the kind of ref-
erenced information, particularly not permitting
access to sibling constituents or deep elements of
the referenced constituent, contributes to perform-
ance.

4.3 Pruning

Before an output network is completed, it is pruned
to remove lower-scoring output network paths.
Any path with the same length as another but with
a lower score is pruned. Also, paths having other
lengths but considerably lower preference scores
than the best-scoring path are often pruned as well.

4.4 Usage Example

To illustrate how the simple scores and modular
tests are used to detect and repair problems in the
preference system, Figure 1 shows, as noted be-
fore, that the attachment of an object to the guessed
verb "micromanaged" is dispreferred. In this case
the probable reason is the lack of a transitive fea-
ture for the verb. To check this, we would look at
the FN1 test block for OBJ and find that in fact the
test assigns (-1) in this case. The required modifi-
cation is best made by adding a transitive feature to
guessed verbs.

But there is another problem here: the attach-
ment of the pp "over people" is not given a positive
preference. Checking the FN1 test block for

88

VMOD and the TAG1 test block for PP finds that
there is in fact no subtest that prefers combinations
of motion verbs and "over". While this doesn't
cause trouble in the example, it could if there were
a prior object in the verb phrase. A subtest or sub-
categorization feature could be added.

5 Training the Preference System

To obtain the preference system, an initial set of
tests is identified, based primarily on subcategori-
zation considerations, and then refined and ex-
tended based on manual "training" on large num-
bers of documents. Several problem situations
result in changes to the system, besides random
inspection of scores:
(a) the best parse identified is not the correct one,

either because the correct parse is not the high-
est scoring one, or because another parse with
the same score was considered "best" because
of low-attach considerations.

(b) The best parse obtained is the correct one, but
there are many other parses with the same
score, suggesting a need for refinement, both
to improve performance and to avoid errors in
related circumstances when the correct parse
does not "float" to the top.

(c) No parse is returned for an input, because of
imposed space constraints, which indirectly
control the amount of time that can be spent to
obtain a parse.

In some cases the above problems can be solved
by adjusting the base grammar, or by extending
lexical information to obtain the appropriate pref-
erences. For example, the preference scoring prob-
lems of Figure 1 can be corrected by adding sub-
categorization information, as described above.

 In other cases, one or more modifications to the
preference system are made, adding positive tests
to better distinguish best parses, adding negative
tests to disprefer incorrect parses, and/or refining
existing tests to narrow or expand applicability.

Positive tests often just give credit to expected
structures not previously considered to require rec-
ognition beyond acceptance by the grammar.
Negative tests fall into many classes, such as:
(a) Tests for "ungrammatical" phenomena that

should not be ruled out entirely by the gram-
mar. These include lack of agreement, lack of
expected punctuation, and presence of unex-
pected punctuation (such as a comma between

a subject and a verb when there is no comma
within the subject).

(b) Tests for probably incomplete constituents,
based on the chunk types that follow them.

(c) Tests for unexpected arguments, except in
some circumstances. For example, "benefac-
tive" indirect objects ("John baked Mary a
cake") are dispreferred if they are not in ap-
propriate semantic classes.

Also, a large, complex collection of positive and
negative tests, based on syntactic and semantic fac-
tors, are used to distinguish among coordinated and
appositive readings, and among alternative attach-
ments of appositives.

If the addition or modification of preference
tests does not solve a particular problem, then
some more basic changes can be made, such as the
introduction of new semantic classes. And, in rare
cases, new features are added to output network
states in order to make properties of non-head con-
stituents encountered along a path available for
testing both further along the path and in the de-
velopment of higher-level constituents. An exam-
ple is the person and number of syntactic subjects,
allowing contexted preference tests for finite verb
phrases to check for subject consistency.

5.1 Relationship to "supervised" training

To illustrate the relationship between the above
symbolic training method for preference scoring
and corpus-based methods, perhaps the easiest way
is to compare it to an adaptation (Collins and
Roark, 2004) of the perceptron training method to
the problem of obtaining a best parse (either di-
rectly, or for parse reranking), because the two
methods are analogous in a number of ways.

The basic adapted perceptron training assumes a
generator function producing parses for inputs.
Each such parse is associated with a vector of fea-
ture values that express the number of times the
feature appears in the input or parse. The features
used are those identified by Roark (2001) for a top-
down stochastic parser.

The training method obtains a weight vector W
(initially 0) for the feature values, by iterating mul-
tiple times over pairs <xi, yi> where xi is a training
input, and yi is the correct parse for xi. For each
pair, the best current parse zi for xi produced by the
generator, with feature value vector V(zi), is se-
lected based on the current value of (W · V(zi)).
Then if zi ≠ yi, W is incremented by V(yi), and dec-

89

remented by V(zi). After training, the weights in W
are divided by the number of training steps (# in-
puts * # iterations).

The method is analogous to the RH manual
training process for preference in a number of
ways. First, the features used were developed for
suitability to a top-down parser, for example taking
into account superordinate categories at several
levels, some lexical information associated with
non-head, left-side siblings of a node, and some
right-hand lookahead. Although only one su-
perordinate category is routinely used in RH pref-
erence tests, in order to allow caching of output
networks for a category, the preference system al-
lows for and occasionally uses the promotion of
non-head features of nested constituents to provide
similar capability.

Also, the feature weights obtained by the per-
ceptron training method can be seen to focus on
patterns that actually matter in distinguishing cor-
rect from incorrect parses, as does RH preference
training. Intuitively, the difference is that while
symbolic training for RH explicitly pinpoints pat-
terns that distinguish among parses, the perceptron
training method accomplishes something similar
by postulating some more general features as nega-
tive or positive based on particular examples, but
allowing the iterations over a large training set to
filter out potentially indicative patterns that do not
actually serve as such.

These analogies highlight the fact that prefer-
ence system training, whether symbolic or corpus-
based, is ultimately an empirical engineering exer-
cise.

6 Some Experimental Results

Tables 2, 3, and 4 summarize some recent results
as obtained by testing on Wall Street Journal sec-
tion 23 of the Penn Treebank (Marcus et al. 1994).
The RH results were obtained by about 8 weeks of
manual training on the genre.

Table 2 compares speed and coverage for RH
and Collins Model3 (Collins, 1999) run on the
same CPU. The table also extrapolates the results
to two other parsers, based on reported compari-
sons with Collins. One extrapolation is to a very
fast stochastic parser by Sagae and Lavie (2005).
The comparison indicates that the RH parser speed
is close to that of the best contemporary parsers.

 The second extrapolation is to the LFG XLE
parser (Kaplan et al. 2004) for English, consisting
of a highly developed symbolic parser and gram-
mar, an OT-based preference component, and a
stochastic back end to select among remaining al-
ternative parser outputs. Two sets of values are
given for XLE, one obtained using the full English
grammar, and one obtained using a reduced gram-
mar ignoring less-frequently applicable rules. The
extrapolation indicates that the coverage of RH is
quite good for a symbolic parser with limited train-
ing on an idiom.

While the most important factor in RH parser
speed is the enormous speed of the shallow parser,
the preference and pruning approach of the overlay
parser make contributions to both speed and cover-
age. This can be seen in Table 2 by the difference
between RH parser results with and without prun-
ing. Pruning increases coverage because without it
more parses exceed imposed resource limits.

Table 3 compares accuracy. The values for
Collins and Sagae/Lavie are based on comparison
with treebank data for the entire section 23. How-
ever, because RH does not produce treebank-style
tags, the RH values are based only on a random

 Time No full parse
Sagae/Lavie ~ 4 min 1.1%
RH Prune 5 min 14 sec 10.8%
RH NoPrune 7 min 5 sec 13.9 %
Collins m3 16 min .6%
XLE reduced ~24 minutes unknown
XLE full ~80 minutes ~21%
Table 2. Speeds and Extrapolated speeds

 Fully
accurate

F-score Avg cross
bkts

Sagae/Lavie unknwn 86% unknwn
Collins Lbl 33.6% 88.2% 1.05
CollinsNoLbl 35.4% 89.4 % 1.05
RH NoLbl 46% 86 % .59
Table 3. Accuracy Comparison

 Average Median
RH Base 137.10 11
RH Pref 5.04 2
Table 4. Highest Scoring Parses per Input

90

100-sentence sample from section 23, and com-
pared using a different unlabeled bracketing stan-
dard. For details see Newman (2007). For non-
parsed sentences the chunks are bracketed. Accu-
racy is not extrapolated to XLE because available
measurements give f-scores (all ≤ 80%) for de-
pendency relations rather than for bracketed con-
stituents.

As a partial indication of the role and effective-
ness of the RH preference system, if non-parsed
sentences are ignored, the percentage of fully accu-
rate bracketings shown in Table 3 rises to ap-
proximately 46/89 = 51.6% (it is actually larger
because coverage is higher on the 100-sentence
sample). As further indication, Table 4 compares,
for section 23, the average and median number of
parses per sentence obtained by the base grammar
alone (RH Base), and the base grammar plus the
preference system (RH Pref).3 The table demon-
strates that the preference system is a crucial parser
component. Also, the median of 2 parses per sen-
tence obtained using the preference system ex-
plains why the fallback low-attach strategy is suc-
cessful in many cases.

7 Summary and Directions

The primary contribution of this work is in demon-
strating the feasibility of a vastly simplified sym-
bolic preference scoring method. The preference
scores assigned are neither "principle-based", nor
"ad-hoc", but explicitly engineered to facilitate the
management of undesirable interactions in the
grammar and in the preference system itself. Re-
stricting individual contexted scores to {-1, 0, +1}
addresses the problems of multi-level contexted
scoring discussed in Section 2, as follows:

• No abstract judgment is required to assign a
value to a preference or dispreference.

• Information deficiencies contribute only
small dispreferences, so they can often be
overcome by preferences.

• Compensating for interactions that are fore-
seen does not require searching the rules to
find necessary compensating values.

• For unforeseen interactions discovered when
reviewing parser results, the simplified pref-

3 The values are somewhat inflated because they include
duplicate parses, which have not yet been entirely
eliminated.

erence scores facilitate finding the sources of
the problems and potential methods of solv-
ing them.

This approach to symbolic preference has facili-
tated development and maintenance of the RH
parser, and has enabled the production of results
with a speed and accuracy comparable to the best
stochastic parsers, even with limited training on an
idiom.

An interesting question is why this very simple
approach does not seem to have been used previ-
ously. Part of the answer may lie in the lack of
explicit recognition that symbolic preference scor-
ing is ultimately an engineering problem, and is
only indirectly based on cognitive principles or
approximations to frequencies of particular rela-
tionships.

Ongoing development of the RH preference sys-
tem includes continuing refinement based on
"manual" training, and continuing expansion of the
set of semantic features used as the parser is ap-
plied to new domains. Additional development
will also include more encoding of, and attention
to, the expected semantic features of arguments.
Experiments are also planned to examine the accu-
racy/performance tradeoffs of using additional
context information in the preference tests.

References

Salah Aït-Mokhtar, Jean-Pierre Chanod, Claude Roux.
2002. Robustness beyond shallowness: incremental
deep parsing, Natural Language Engineering 8:121-
144, Cambridge University Press.

Aoife Cahill, Michael Burke, Ruth O’Donovan, Josef
van Genabith, and Andy Way. 2004. Long-Distance
Dependency Resolution in Automatically Acquired
Wide-Coverage PCFG-Based LFG Approximations,
In Proc of the 42nd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL'04), Barce-
lona

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Michael Collins and Brian Roark. 2004. Incremental
Parsing with the Perceptron Algorithm. In Proc of the
42nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL'04), Barcelona.

Martin Forst, Jonas Kuhn, and Christian Rohrer. 2005.
Corpus-based Learning of OT Constraint Rankings
for Large-scale LFG Grammars. In Proc of the

91

LFG05 Conference, Bergen. Available at
http://cslipublications.stanford.edu/LFG/10/lfg05.pdf

Anette Frank., Tracy H. King, Jonas Kuhn, and John
Maxwell. 1998. Optimality theory style constraint
ranking in large-scale LFG grammars. In M. Butt and
T. H. King, Eds. Proc of the Third LFG Conference.
Available http://csli-publications.stanford.edu/LFG3/
Revised version in Peter Sells, ed. Formal and Theo-
retical Issues in Optimality Theoretic Syntax, CSLI
Publications, 2001.

Nuria Gala. 2004. Using a robust parser grammar to
automatically generate UNL graphs. In Proc Work-
shop on Robust Methods for Natural Language Data
at COLING'04, Geneva

Donald Hindle and Mats Rooth. 1993. Structural Ambi-
guity and Lexical Relations. Computational Linguis-
tics, 19:1,103–120.

Jerry R. Hobbs and John Bear. 1990. Two Principles of
Parse Preference. In Proceedings of the 13th Interna-
tional Conference on Computational Linguistics
(COLING'90), Helsinki, Finland, August 1990.

Jerry. R. Hobbs, Douglas E. Appelt, John Bear, Mabry
Tyson, and David Magerman. 1992. Robust process-
ing of real-world natural language texts. In Paul S.
Jacobs, ed., Text-Based Intelligent Systems: Current
Research and Practice in Information Extraction and
Retrieval. Lawrence Erlbaum, New Jersey, 1992.

Mark Johnson. 2002. A simple pattern-matching algo-
rithm for recovering empty nodes and their antece-
dents. Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL'02),
Philadelphia, July 2002, pp. 136-143.

Ronald M. Kaplan, Stephan Riezler, Tracy H. King,
John T. Maxwell, Alex Vasserman. 2004. Speed and
accuracy in shallow and deep stochastic parsing. In
Proc HLT/NAACL'04, Boston, MA.

Chao-Lin Liu, Jing-Shin Chang, and Keh-Yi Su. 1990.
The Semantic Score Approach to the Disambiguation
of PP Attachment Problem. In Proceedings of RO-
CLING-90, Taiwan

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1994. Building a large annotated
corpus of English: The Penn treebank. Computa-
tional Linguistics, 19(2) pp.313--330.

Michael C. McCord. 1993. Heuristics for Broad-
Coverage Natural Language Parsing. Proceedings of

the workshop on Human Language Technology 1993,
Princeton, NJ

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. Non-projective dependency parsing using
spanning tree algorithms. In Proceedings of the con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing
(EMNLP 2005), Vancouver.

Paula S. Newman. 2007. RH: A Retro-Hybrid Parser.
In Short Papers of Proceedings of NAACL/HLT
2007, Rochester NY

Alan Prince and Paul Smolensky (1993). Optimality
Theory: Constraint interaction in generative gram-
mar, Rutgers University Center for Cognitive Sci-
ence, New Brunswick, NJ. Report RuCCS-TR-2.
[Reprinted in John J McCarthy, ed., Optimality The-
ory in Phonology: A Book of Readings, Blackwell
(2003).]

Philip Resnik and Marti Hearst. 1993. Structural Ambi-
guity and Conceptual Relations, in Proc. of 1st
Workshop on Very Large Corpora, 1993.

Brian Roark. 2001. Probabilistic top-down parsing and
language modeling. In Computational Linguistics,
27(2), pages 249-276.

Kenji Sagae and Alon Lavie. 2005. A classifier-based
parser with linear run-time complexity. In Proc. 9th
Int'l Workshop on Parsing Technologies. Vancouver

Kristina Toutanova, Christopher D. Manning, Dan
Flickinger, and Stephan Oepen. 2005. Stochastic
HPSG Parse Disambiguation using the Redwoods
Corpus. Research in Language and Computation
2005.

Yorick A. Wilks. 1975. An Intelligent Analyzer and
Understander of English. Communications of the
ACM 18(5), pp.264-274

William Woods. 1970. Transition network grammars for
natural language analysis. Communications of the
ACM 13(10), pp.591-606

XLE Online Documentation. 2006. Available at
http://www2.parc.com/isl/groups/nltt/xle/doc/xle.htm
l#SEC15

Kiyoshi Yamabana, Shin'ichiro Kamei and Kazunori
Muraki. On Representation of Preference Scores. In
Proceedings of The Fifth International Conference
on Theoretical and Methodological Issues in Ma-
chine Translation (TMI-93), Kyoto, pp. 92-101

92

Proceedings of the 10th Conference on Parsing Technologies, page 93,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Synchronous Grammars and Transducers:
Good News and Bad News

Stuart M. Shieber
School of Engineering and Applied Sciences

Harvard University
Cambridge MA 02138

USA
shieber@seas.harvard.edu

Much of the activity in linguistics, especially
computational linguistics, can be thought of as char-
acterizing not languages simpliciter but relations
among languages. Formal systems for characteriz-
ing language relations have a long history with two
primary branches, based respectively on tree trans-
ducers and synchronous grammars. Both have seen
increasing use in recent work, especially in machine
translation. Indeed, evidence from millennia of ex-
perience with bilingual dictionaries argues for syn-
chronous grammars as an appropriate substrate for
statistical machine translation systems.

On the positive side, some new results have
integrated the two branches through the formal-
language-theoretic construct of the bimorphism. I
will present some background on this integration,
and briefly describe two applications of synchronous
grammars: to tree-adjoining grammar semantics and
to syntax-aware statistical machine translation.

On the negative side, algorithms for making use of
these formalisms are computationally complex, per-
haps prohibitively so. I will close with a plea for
novel research by the parsing technology commu-
nity in making the systems practical.

93

Proceedings of the 10th Conference on Parsing Technologies, pages 94–105,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Are Very Large Context-Free Grammars Tractable?

Pierre Boullier & Beno ı̂t Sagot
INRIA-Rocquencourt

Domaine de Voluceau, Rocquencourt BP 105
78153 Le Chesnay Cedex, France

{Pierre.Boullier,Benoit.Sagot}@inria.fr

Abstract

In this paper, we present a method which, in
practice, allows to use parsers for languages
defined by very large context-free grammars
(over a million symbol occurrences). The
idea is to split the parsing process in two
passes. A first pass computes a sub-grammar
which is a specialized part of the large gram-
mar selected by the input text and various
filtering strategies. The second pass is a tra-
ditional parser which works with the sub-
grammar and the input text. This approach
is validated by practical experiments per-
formed on a Earley-like parser running on
a test set with two large context-free gram-
mars.

1 Introduction

More and more often, in real-word natural lan-
guage processing (NLP) applications based upon
grammars, these grammars are no more written by
hand but are automatically generated, this has sev-
eral consequences. This paper will consider one of
these consequences: the generated grammars may
be very large. Indeed, we aim to deal with grammars
that have, say, over a million symbol occurrences
and several hundred thousands rules. Traditional
parsers are not usually prepared to handle them,
either because these grammars are simply too big
(the parser’s internal structures blow up) or the time
spent to analyze a sentence becomes prohibitive.

This paper will concentrate on context-free gram-
mars (CFG) and their associated parsers. However,

virtually all Tree Adjoining Grammars (TAG, see
e.g., (Schabes et al., 1988)) used in NLP applica-
tions can (almost) be seen as lexicalized Tree In-
sertion Grammars (TIG), which can be converted
into strongly equivalent CFGs (Schabes and Waters,
1995). Hence, the parsing techniques and tools de-
scribed here can be applied to most TAGs used for
NLP, with, in the worst case, a light over-generation
which can be easily and efficiently eliminated in a
complementary pass. This is indeed what we have
achieved with a TAG automatically extracted from
(Villemonte de La Clergerie, 2005)’s large-coverage
factorized French TAG, as we will see in Section 4.
Even (some kinds of) non CFGs may benefit from
the ideas described in this paper.

The reason why the run-time of context-free (CF)
parsers for large CFGs is damaged relies on a theo-
retical result. A well-known result is that CF parsers
may reach a worst-case running time ofO(|G|×n3)
where|G| is thesizeof the CFG andn is thelength
of the source text.1 In typical NLP applications
which mainly work at the sentence level, the length
of a sentence does not often go beyond a value of
say 100, while its average length is around 20-30
words.2 In these conditions, the size of the grammar,
despite its linear impact on the complexity, may be
the prevailing factor: in (Joshi, 1997), the author re-
marks that “the real limiting factor in practice is the
size of the grammar”.

The idea developed in this paper is to split the
parsing process in two passes. A first pass called
filtering pass computes a sub-grammar which is the

1These two notions will be defined precisely later on.
2At least for French, English and similar languages.

94

sub-part of the large input grammar selected by the
input sentence and various filtering strategies. The
second pass is a traditional parser which works with
the sub-grammar and the input sentence. The pur-
pose is to find a filtering strategy which, in typical
practical situations, minimizes on the average the
total run-time of the filtering pass followed by the
parser pass.

A filtering pass may be seen as a (filtering) func-
tion that uses the input sentence to select a sub-
grammar out of a large input CFG. Our hope, us-
ing such a filter, is that the time saved by the parser
pass which uses a (smaller) sub-grammar will not
totally be used by the filter pass to generate this sub-
grammar.

It must be clear that this method cannot improve
the worst-case parse-time because there exists gram-
mars for which the sub-grammar selected by the fil-
tering pass is the input grammar itself. In such a
case, the filtering pass is simply a waste of time. Our
purpose in this paper is to argue that this technique
may profit from typical grammars used in NLP. To
do that we put aside the theoretical view point and
we will consider instead the average behaviour of
our processors.

More precisely we will study on two large NL
CFGs the behaviour of our filtering strategies on a
set of test sentences. The purpose being to choose
thebestfiltering strategy, if any. By best, we mean
the one which, on the average, minimizes the total
run-time of both the filtering pass followed by the
parsing pass.

Useful formal notions and notations are recalled
in Section 2. The filtering strategies are presented
in Section 3 while the associated experiments are
reported in Section 4. This paper ends with some
concluding remarks in Section 5.

2 Preliminaries

2.1 Context-free grammars

A CFG G is a quadruple(N,T, P, S) whereN is
a non-empty finite set ofnonterminal symbols, T is
a finite set ofterminal symbols, P is a finite set of
(context-free rewriting)rules (or productions) and
S is a distinguished nonterminal symbol called the
axiom. The setsN andT are disjoint andV = N∪T
is thevocabulary. The rules inP have the formA→

α, with A ∈ N andα ∈ V ∗.
For a given stringα ∈ V ∗, its size (length)

is noted |α|. As an example, for the input string
w = a1 · · · an, ai ∈ T , we have|w| = n. The empty
string is denotedε and we have|ε| = 0. The size|G|
of a CFGG is defined by|G| =

∑
A→α∈P |Aα|.

For G, on strings ofV ∗, we define the binary re-

lation derive, noted⇒, by γ1Aγ2

A→α
⇒
G

γ1αγ2 if

A → α ∈ P and γ1, γ2 ∈ V ∗. The subscriptG
or even the superscriptA → α may be omitted. As
usual, its transitive (resp. reflexive transitive) clo-

sure is noted
+
⇒
G

(resp.
∗
⇒
G

). We callderivationany

sequence of the formγ1 ⇒
G
· · · ⇒

G
γ2. A complete

derivation is a derivation which starts with the ax-
iom and ends with a terminal stringw. In that case
we haveS

∗
⇒
G

γ
∗
⇒
G

w, andγ is asentential form.

The string languagedefined (generated, recog-
nized) byG is the set of all the terminal strings that

are derived from the axiom:L(G) = {w | S
+
⇒
G

w,w ∈ T ∗}. We say that a CFG is empty iff its
language is empty.

A nonterminal symbolA is nullable iff it can de-

rive the empty string (i.e.,A
+
⇒
G

ε). A CFG isε-free

iff its nonterminal symbols are non-nullable.
A CFG is reducediff every symbol of every pro-

duction is a symbol of at least one complete deriva-
tion. A reduced grammar is empty iff its production
set is empty (P = ∅). We say that a non-empty
reduced grammar is incanonical formiff its vocab-
ulary only contains symbols that appear in the pro-
ductions ofP .3,4

Two CFGsG and G′ are weakly equivalentiff
they generate the same string language. They are
strongly equivalentiff they generate the same set of
structural descriptions (i.e., parse trees). It is a well
known result (See Section 3.2) that every CFGG
can be transformed in time linear w.r.t.|G| into a
strongly equivalent (canonical) reduced CFGG′.

For a given input stringw ∈ T ∗, we define its

3We may say that the canonical form of the empty reduced
grammar is({S}, ∅, ∅, S) though the axiomS does not appear
in any production.

4Note that the pair(P, S) completely defines a reduced CFG
G = (N, T, P, S) in canonical form since we haveN = {X0 |
X0 → α ∈ P} ∪ {S}, T = {Xi | X0 → X1 · · ·Xp ∈
P ∧1 ≤ i ≤ p}−N . Thus, in the sequel, we often note simply
G = (P, S) grammars in canonical form.

95

rangesas the setRw = {[i..j] | 1 ≤ i ≤ j ≤
|w| + 1}. If w = w1tw3 ∈ T ∗ is a terminal string,
and if t ∈ T ∪ {ε} is a (terminal or empty) sym-
bol, the instantiation of t in w is the triple noted
t[i..j] where[i..j] is a range withi = |w1| + 1 and
j = i + |t|. More generally, theinstantiationof the
terminal stringw2 in w1w2w3 is notedw2[i..j] with
i = |w1| + 1 andj = i + |w2|. Obviously, the in-
stantiation ofw itself is thenw[1..1 + |w|].

Let us consider an input stringw = w1w2w3

and a CFGG. If we have a complete derivation

d = S
∗
⇒
G

w1Aw3

A→α
⇒
G

w1αw3

∗
⇒
G

w1w2w3, we

see thatA derivesw2 (we haveA
+
⇒
G

w2). More-

over, in this complete derivation, we also know a
range inRw, namely [i..j], which covers the sub-
string w2 which is derived byA (i = |w1| + 1
and j = i + |w2|). This is represented by thein-
stantiated nonterminal symbolA[i..j]. In fact, each
symbol which appears in a complete derivation may
be transformed into its instantiated counterpart. We
thus talk of instantiated productions or (complete)
instantiated derivations. For a given input textw,
and a CFGG, let Pw

G be the set of instantiated pro-
ductions that appears in all complete instantiated
derivations.5 The pair(Pw

G , S[1..|w|+ 1]) is the(re-
duced) shared parse forestin canonical form.6

2.2 Finite-state automata

A finite-state automaton(FSA) is the 5-tupleA =
(Q,Σ, δ, q0, F) whereQ is a non empty finite set
of states, Σ is a finite set ofterminal symbols, δ is
the transition relationδ = {(qi, t, qj)|qi, qj ∈ Q ∧
t ∈ T ∪ {ε}}, q0 is a distinguished element ofQ
called theinitial stateandF is a subset ofQ whose
elements are calledfinal states. The size ofA is
defined by|A| = |δ|.

As usual, we define both aconfigurationas an ele-
ment ofQ×T ∗ andderivea binary relation between

5For example, in the previous complete derivation
d, let the right-hand sideα be the (vocabulary) string
X1 · · ·Xk · · ·Xp in which each symbolXk derives the ter-
minal string xk ∈ T ∗ (we haveXk

∗

⇒
G

xk and w2 =

x1 · · ·xk · · ·xp), then the instantiated productionA[i0..ip] →
X1[i0..i1] · · ·Xk[ik−1..ik] · · ·Xp[ip−1..ip] with i0 = |w1| +
1, i1 = i0 + |x1|, . . . ,ik = ik−1 + |xk| . . . andip = i0 + |w2|
is an element ofP w

G .
6The popular notion of shared forests mainly comes from

(Billot and Lang, 1989).

configurations, noted⊢
A

by (q, tx) ⊢
A

(q′, x), iff

(q, t, q′) ∈ δ. If w′w′′ ∈ T ∗, we callderivationany
sequence of the form(q′, w′w′′) ⊢

A
· · · ⊢

A
(q′′, w′′).

If w ∈ T ∗, the initial configuration is notedc0 and
is the pair(q0, w). A final configurationis notedcf

and has the form(qf , ε) with qf ∈ F . A complete
derivation is a derivation which starts withc0 and
ends in a final configurationcf . In that case we have

c0

∗
⊢
A

cf .

The languageL(A) defined(generated, recog-
nized) by the FSAA is the set of all terminal strings
w for which there exists a complete derivation. We
say that an FSA is empty iff its language is empty.
Two FSAsA andA′ areequivalentiff they defined
the same language.

An FSA isε-free iff its transition relation has the
form δ = {(qi, t, qj)|qi, qj ∈ Q, t ∈ Σ}, except per-
haps for a distinguished transition, theε-transition
which has the form(q0, ε, qf), qf ∈ F and allows
the empty stringε to be inL(A). Every FSA can be
transformed into an equivalentε-free FSA.

An FSAA = (Q,Σ, δ, q0, F) is reducediff every
element ofδ appears in a complete derivation. A
reduced FSA is empty iff we haveδ = ∅. We say
that a non-empty reduced FSA is incanonical form
iff its set of statesQ and its set of terminal symbols
Σ only contain elements that appear in the transition
relationδ.7 It is a well known result that every FSA
A can be transformed in time linear with|A| into an
equivalent (canonical) reduced FSAA′.

2.3 Input strings and input DAGs

In many NLP applications8 the source text cannot
be considered as a single string of terminal symbols
but rather as a finite set of terminal strings. These
sets are finite languages which can be defined by
particular FSAs. These particular type of FSAs are
called directed-acyclic graphs(DAGs). In a DAG
w = (Q,Σ, δ, q0, F), the initial stateq0 is 1 and we
assume that there is a single final statef (F = {f}),
Q is a finite subset of the positive integers less than
or equal tof : Q = {i|1 ≤ i ≤ f}, Σ is the set of
terminal symbols. For the transition relationδ, we

7We may say that the canonical form of the empty reduced
FSA is ({q0}, ∅, ∅, q0, ∅) though the initial stateq0 does not
appear in any transition.

8Speech processing, lexical ambiguity representation, . . .

96

require that its elements(i, t, j) are such thati < j
(there are no loops in a DAG). Without loss of gen-
erality, we will assume that DAGs areε-free reduced
FSAs in canonical form and that any DAGw is noted
by a triple(Σ, δ, f) since its initial state is always1
and its set of states is{i | 1 ≤ i ≤ f}.

For a given CFGG, the recognition of an input
DAG w is equivalent to the emptiness of its inter-
section withG. This problem can be solved in time
linear in|G| and cubic in|Q| the number of states of
w.

If the input text is a DAG, the previous notions of
range, instantiations and parse forest easily general-
ize: the indicesi andj which in the string case locate
the positions of substrings are changed in the DAG
case into DAG states. For example ifA[i0..ip] →
X1[i0..i1] · · ·Xp[ip−1..ip] is an instantiated produc-
tion of the parse forest forG = (N,T, P, S) and
w = (Σ, δ, f), we haveA → X1 · · ·Xp ∈ P and
there is a path in the input DAG from statei0 to state
ip via statesi1, . . . ,ip−1.

Of course, any nonempty terminal stringw ∈ T+,
may be viewed as a DAG(Σ, δ, f) whereΣ = {t |
w = w1tw2 ∧ t ∈ T}, δ = {(i, t, i + 1) | w =
w1tw2∧t ∈ T∧i = 1+|w1|} andf = 1+|w|. If the
input stringw is the empty stringε, the associated
DAG is (Σ, δ, f) whereΣ = ∅, δ = {(1, ε, 2)} and
f = 2. Thus, in the sequel, we will assume that the
inputs of our parsers are not strings but DAGs. As a
consequence the size (orlength) of a sentence is the
size of its DAG (i.e., its number of transitions).

3 Filtering Strategies

3.1 Gold Strategy

Let G = (N,T, P, S) be a CFG,w = (Σ, δ, f)
be an input DAG of sizen = |δ| and 〈Fw〉 =
(〈Pw〉, S[1..f]) be the reduced output parse for-
est in canonical form. From〈Pw〉, it is pos-
sible to extract a set of (reduced) uninstanti-
ated productionsP g

w = {A → X1 · · ·Xp |
A[i0..ip] → X1[i0..i1]X2[i1..i2] · · ·Xp[ip−1..ip] ∈
〈Pw〉}, which, together with the axiomS, defines a
new reduced CFGGg

w = (P g
w, S) in canonical form.

This grammar is called thegold grammar ofG for
w, hence the superscriptg. Now, if we useGg

w to
reparse the same input DAGw, we will get the same
output forest〈Fw〉. But in that case, we are sure that

every production inP g
w is used in at least one com-

plete derivation. Now, if this process is viewed as
a filtering strategy that computes a filtering function
as introduced in Section 1, it is clear that this strat-
egy issize-optimalin the sense thatP g

w is of minimal
size, we call it thegold strategy and the associated
gold filtering function is notedg. Since we do not
want that a filtering strategy looses parses, the result
Gf

w = (P f
w , S) of any filtering functionf must be

such that, for every sentencew, P f
w is a superset of

P g
w. In other words therecall scoreof any filtering

function f must be of 100%. We can note that the
parsing pass which generatesGg

w may be led by any
filtering strategyf .

As usual, theprecision score(precision for short)
of a filtering strategyf (w.r.t. the gold case) is, for
a givenw, defined by the quotient|P

g
w|

|P f
w|

which ex-

presses the number of useful productions selected by
f onw (for someG).

However, it is clear that we are interested in strate-
gies that aretime-optimaland size-optimal strategies
are not necessarily also time-optimal: the time taken
at filtering-time to get a smaller grammar will not
necessarily be won back at parse-time.

For a given CFGG, an input DAGw and a filter-
ing strategyc, we only have to plot the times taken
by the filtering pass and by the parsing pass to make
some estimations on their average (median, decile)
parse times and then to decide which is the winner.
However, it may well happens that a strategy which
has not received the award (with the sample of CFGs
and the test sets tried) would be the winner in an-
other context!

All the following filtering strategies exhibit nec-
essary conditions that any production must hold in
order to be in a parse.

3.2 Themake-a-reduced-grammar Algorithm

An algorithm which takes as input any CFG
G = (N,T, P, S) and generates as output a
strongly equivalentreduced CFG G′ and which
runs inO(|G|) can be found in many text books
(See (Hopcroft and Ullman, 1979) for example).

So as to eliminate from all our intermediate sub-
grammars all useless productions, each filtering
strategy will end by a call to such an algorithm
namedmake-a-reduced-grammar.

97

The make-a-reduced-grammaralgorithm works
as follows. It first finds allproductive9 symbols. Af-
terwards it finds allreachable10 symbols. A symbol
is useful(otherwiseuseless) if it is both productive
and reachable. A productionA→ X1 · · ·Xp is use-
ful (otherwiseuseless) iff all its symbols are useful.
A last scan over the grammar erases all useless pro-
duction and leaves the reduced form. Thecanonical
form is reached in only retaining in the nonterminal
and terminal sets of the sub-grammar the symbols
which occur in the (useful) production set.

3.3 Basic Filtering Strategy: b-filter

The basic filtering strategy (b-filter for short) which
is described in this section will always be tried the
first. Thus, its input is the couple(G,w) where
G = (N,T, P, S) is the large initial CFG and the in-
put sentencew is a reduced DAG in canonical form
w = (Σ, δ, f) of sizen. It generates a reduced CFG
in canonical form notedGb = (P b, S) in which the
references to bothG andw are assumed. Besides
this b-filter, we will examine in Sections 3.4 and 3.5
two others filtering strategies nameda andd. These
filters will always have as input a couple(Gc, w)
whereGc = (P c, S) is a reduced CFG in canonical
form which has already been filtered by a previous
sequence of strategies notedc. They generate a re-
duced CFG in canonical form notedGcf = (P cf , S)
with f = a or f = d respectively. Of course it may
happens thatGcf is identical toGc if the f -filter is
not effective. A filtering strategy or a combination of
filtering strategies may be applied several times and
lead to a filtered grammar of the form sayGba2da

in which the sequenceba2da explicits the order in
which the filtering strategies have been performed.
We may even repeatedly applya until a fixed point
is reached before applyingd, and thus get something
of the formGba∞d.

The idea behind theb-filter is very simple and has
largely been used in lexicalized formalisms parsing,
in particular in LTAG (Schabes et al., 1988) parsing.
The filter rejects productions ofP which contain ter-
minal symbols that do not occur inΣ (i.e., that are
not terminal symbols of the DAGw) and thus takes

9X ∈ V is productive iff we haveX
∗

⇒
G

w, w ∈ T ∗.
10X ∈ V is reachable iff we haveS

∗

⇒
G

w1Xw2, w1w2 ∈

T ∗.

S → AB (1)

S → BA (2)

A → a (3)

A → ab (4)

B → b (5)

B → bc (6)

Table 1: A simple grammar

O(|G|) time if we assume that the access to the ele-
ments of the terminal setΣ is performed in constant
time. Unlexicalizedproductions whose right-hand
sides are inN∗ are kept. It also rejects productions
in which several terminal symbol occurs, in an order
which is not compatible with the linear order of the
input.

Consider for example the set of productions
shown in Table 1 and assume that the source text
is the terminal stringab. It is clear that theb-filter
will erase production 6 sincec is not in the source
text.

The execution of theb-filter produces a (non-
reduced) CFGG′ such that|G′| ≤ |G|. However, it
may be the case that some productions ofG′ are use-
less, it will thus be the task of themake-a-reduced-
grammaralgorithm to transformG′ into its reduced
canonical formGb in timeO(|G′|). The worst-case
total running time of the wholeb-filter pass is thus
O(|G| × n).

We can remark that, after the execution of theb-
filter, the set of terminal symbols ofGb is a subset
of T ∩ Σ.

3.4 Adjacent Filtering Strategy: a-filter

As explained before, we assume that the input to
the adjacent filtering strategy (a-filter for short) de-
scribed in this section is a couple(Gc, w) where
Gc = (N c, T c, P c, S) is a reduced CFG in canon-
ical form. However, thea-filter would also work
for a non-reduced CFG. As usual, we define the
symbols ofGc as the elements of the vocabulary
V c = N c ∪ T c.

The idea is to erase productions that cannot be
part of any parses forw in using an adjacency crite-
ria: if two symbols are adjacent in a rule, they must

98

derive terminal symbols that are also adjacent inw.
To give a (very) simple practical idea of what we
mean by adjacency criteria, let us consider again the
source stringab and the grammar defined in Table 1
in which the last production has already been erased
by theb-filter.

The fact that theB-production ends with ab and
that theA-productions all start with ana, implies
that production 2 is in a complete parse only if the
source text is such thatb is immediately followed
by a. Since it is not the case, production 2 can be
erased.

More generally, consider a production of the form
A → · · ·XY · · · . If for each couple(a, b) ∈ T 2 in
whicha is a terminal symbol that can terminate (the
terminal strings generated by)X andb is a terminal
symbol that can lead (the terminal strings generated
by) Y , there is no transition onb that can follow a
transition ona in the DAGw, it is clear that the pro-
ductionA→ · · ·XY · · · can be safely erased.

Now assume that we have the following (left)
derivation Y

∗
⇒ Y1β1

∗
⇒ Yiβi · · · β1

∗
⇒

· · ·
Yp−1→αpYpβp

⇒ αpYpβp · · · β1

∗
⇒ Ypβp · · · β1,

with αp
∗
⇒ ε. If for each couple(a, b′) in which

a has the previous definition andb′ is a terminal
symbol that can lead (the terminal strings gener-
ated by)Yp, there is no transition onb′ that can fol-
low a transition ona in the DAGw, the production
Yp−1 → αpYpβp can be erased if it is not valid in
another context.

Moreover, consider a (right) derivation of the
form X

∗
⇒ α1X1

∗
⇒ α1 · · ·αiXi

∗
⇒

· · ·
Xp−1→αpXpβp

⇒ α1 · · ·αpXpβp
∗
⇒ α1 · · ·αpXp,

with βp
∗
⇒ ε. If for each couple(a′, b) in which b

has the previous definition anda′ is a terminal sym-
bol that can terminate (the terminal strings gener-
ated by)Xp, there is no transition onb that can fol-
low a transition ona′ in the DAGw, the production
Xp−1 → αpXpβp can be erased if it is not valid in
another context.

In order to formalize these notions we define sev-
eral binary relations together with their (reflexive)
transitive closure.

Within a CFGG = (N,T, P, S), we first define
left-corner notedx. Left-corner (Nederhof, 1993;

Moore, 2000), hereafterLC, is a well-known rela-
tion since many parsing strategies are based upon it.
We say thatX is in the LC ofA and we writeA x X

iff (A,X) ∈ {(B,Y) | B → αY β ∈ P ∧ α
∗
⇒
G

ε}.

We can writeA x

A→αXβ
X to enforce how the cou-

ple (A,X) may be produced.
For its dual relation,right-corner, notedy, we say

thatX is in the right corner ofA and we writeX y A

iff (X,A) ∈ {(Y,B) | B → αY β ∈ P ∧ β
∗
⇒
G

ε}. We can writeX y

A→αXβ
A to enforce how the

couple(X,A) may be produced.
We also define thefirst (resp. last) relation noted
→֒t (resp. ←֓ t) by →֒t= {(X, t) | X ∈ V ∧ t ∈

T ∧X
∗
⇒
G

tx ∧ x ∈ T ∗} (resp.←֓ t= {(X, t) | X ∈

V ∧ t ∈ T ∧X
∗
⇒
G

xt ∧ x ∈ T ∗}).

We define theadjacent ternary relation onV ×
N∗ × V noted↔ and we write X

σ
↔ Y iff

(X,σ, Y) ∈ {(U, β, V) | A→ αUβV γ ∈ P ∧β
∗
⇒
G

ε}. This means thatX andY occur in that order in
the right-hand side of some production and are sep-
arated by a nullable stringσ. Note thatX or Y may
or may not be nullable.

On the input DAGw = (Σ, δ, f), we define the
immediately precederelation noted< and we write

a < b for a, b ∈ Σ iff w1abw3 ∈ L(w), w1, w3 ∈

Σ∗.
We also define theprecederelation noted≪ and

we write a ≪ b for a, b ∈ Σ iff w1aw2bw3 ∈

L(w), w1, w2, w3 ∈ Σ∗.We can note that≪ is not

the transitive closure of<.11

For each productionA → αX0X1 · · ·Xp−1Xpγ
in P c and for each symbol pairs(X0,Xp) of non-

nullable symbols s.t.X1 · · ·Xp−1

∗
⇒
Gc

ε, we com-

pute two setsA1 andA2 of couples(a, b), a, b ∈ T c

defined byA1 = ∪0<i≤p = {(a, b) | a ←֓ t

X0

X1···Xi−1
↔ Xi →֒t b} and A2 = ∪0≤i<p =

{(a, b) | a ←֓ t Xi
Xi+1···Xp−1

↔ Xp →֒t b}. Any

11Consider the source stringbcab for which we havea
+

< c,

but nota ≪ c.

99

pair (a, b) of A1 is such that the terminal symbol
a may terminate a phrase ofX0 while the terminal
symbol b may lead a phrase ofX1 · · ·Xp. Since
X0 and Xp are not nullable,A1 is not empty. If
none of its elements(a, b) is such thata < b, the

productionA → αX0X1 · · ·Xp−1Xpγ is useless
and can be erased. Analogously, any pair(a, b) of
A2 is such that the terminal symbola may termi-
nate a phrase ofX0X1 · · ·Xp−1 while the terminal
symbol b may lead a phrase ofXp. SinceX0 and
Xp are not nullable,A2 is not empty. If none of
its elements(a, b) is such thata < b, the produc-

tion A → αX0X1 · · ·Xp−1Xpγ is useless and can
be erased. Of course ifX1 · · ·Xp−1 = ε, we have
A1 = A2.12

The previous method has checked some adjacent
properties inside the right-hand sides of productions.
The following will perform some analogous checks
but at the beginning and at the end of the right-hand
sides of productions.

Let us go back to Table 1 to illustrate our pur-
pose. Recall that, with source textab, productions 6
and 2 have already been erased. Consider produc-
tion 4 whose left-hand side is anA, the terminal
stringab that it generates ends byb. If we look for
the occurrences ofA in the right-hand sides of the
(remaining) productions, we only find production 1
which indicates thatA is followed byB. Since the
phrases ofB all start withb (See production 5) and
since in the source textb does not immediately fol-
low anotherb, production 4 can be erased.

In order to check that the input sentencew starts
and ends by valid terminal symbols, we augment
the adjacent relation with two elements($, ε, S) and
(S, ε, $) where$ is a new terminal symbol which is
supposed to start and to end every sentence.13

Let Z → αUβ be a production inP c in which U
is non-nullable andα

∗
⇒
Gc

ε. If X is a non-nullable

symbol, we compute the setL = {(a, b) | a ←֓ t

X
σ
↔ Y

∗
x Z x

Z→αUβ
U →֒t b}. SinceGc is reduced

and since$ < S, we are sure that the setX
σ
↔ Y

∗
x

12It can be shown that the previous check can be performed
on(Gc, w) in worst-case timeO(|Gc|×|Σ|3) (recall that|Σ| ≤
n). This time reduces toO(|Gc| × |Σ|2) if the input sentence
is not a DAG but a string.

13This is equivalent to assume the existence in the grammar
of asuper-productionwhose right-hand side has the formS.

Z is non-empty, thusL is also non-empty.14

We can associate with each couple(a, b) ∈
L at least one (left) derivation of the form
XσY

∗
⇒
Gc

w0aw1σY
∗
⇒
Gc

w0aw1w2Y
∗
⇒
Gc

w0aw1w2w3Zγ2

Z→αUβ
⇒
Gc

w0aw1w2w3αUβγ2

∗
⇒
Gc

w0aw1w2w3w4Uβγ2

∗
⇒
Gc

w0aw1w2w3w4w5bγ1βγ2

in which w1w2w3w4w5 ∈ T c∗. These derivations
contains all possible usages of the productionZ →
αUβ in a parse. If for every couple(a, b) ∈ L, the
statementa≪ b does not hold, we can conclude that

the productionZ → αUβ is not used in any parse
and can thus be deleted.

Analogously, we can check that the order of ter-
minal symbols is compatible with both a production
and its right grammatical context.

Let Z → αUβ be a production inP c in which U
is non-nullable andβ

∗
⇒
Gc

ε. If Y is a non-nullable

symbol, we compute the setR = {(a, b) | a ←֓ t

U y

Z→αUβ
Z

∗
y X

σ
↔ Y →֒t b}. SinceGc is reduced

and sinceS < $, we are sure that the setZ
∗
y X

σ
↔

Y is non-empty, thusR is also non-empty.14

To each couple(a, b) ∈ R we can asso-
ciate at least one (right) derivation of the form
XσY

∗
⇒
Gc

Xσw1bw0

∗
⇒
Gc

Xw2w1bw0

∗
⇒
Gc

γ1Zw3w2w1bw0

Z→αUβ
⇒
Gc

γ1αUβw3w2w1bw0

∗
⇒
Gc

γ1αUw4w3w2w1bw0

∗
⇒
Gc

γ1αγ2aw5w4w3w2w1bw0

in which w5w4w3w2w1 ∈ T c∗. These deriva-
tions contains all possible usages of the production
Z → αUβ in a partial parse. If for every couple
(a, b) ∈ L, the statementa ≪ b does not hold, we

can conclude that the productionZ → αUβ is not
used in any parse and can thus be deleted.

Now, a call to themake-a-reduced-grammaral-
gorithm produces a reduced CFG in canonical form
namedGca = (N ca, T ca, P ca, S).

14This statement does not hold any more if we exclude from
P c the productions that have been previously erased during the
currenta-filter. In that case, an empty set indicates that the
productionZ → αUβ can be erased.

100

3.5 Dynamic Set Automaton Filtering
Strategy: d-filter

In (Boullier, 2003) the author has presented a
method that takes a CFGG and computes a FSA
that defines a regular superset ofL(G). However his
method would produce intractable gigantic FSAs.
Thus he uses his method to dynamically compute
the FSA at parse time on a given source text. Based
on experimental results, he shows that his method
called dynamic set automaton(DSA) is tractable.
He uses it toguide an Earley parser (See (Ear-
ley, 1970)) and shows improvements over the non
guided version. The DSA method can directly be
used as a filtering strategy since the states of the un-
derlying FSA are in fact sets ofitems. For a CFG
G = (N,T, P, S), an item (or dotted production)
is an element of{[A → α.β] | A → αβ ∈ P}.
A completeitem has the form[A → γ.], it indi-
cates that the productionA → γ has been, in some
sense, recognized. Thus, the complete items of the
DSA states gives the set of productions selected by
the DSA. This selection can be further refined if we
also use the mirror DSA which processes the source
text from right to left and if we only select complete
items that both belong to the DSA and to its mirror.

Thus, if we assume that the input to the DSA fil-
tering strategy (d-filter) is a couple(Gc, w) where
Gc = (P c, S) is a reduced CFG in canonical form,
we will eventually get a set of productions which is
a subset ofP c. If it is a strict subset, we then ap-
ply the make-a-reduced-grammaralgorithm which
produces a reduced CFG in canonical form named
Gcd = (P cd, S).

The Section 4 will give measures that may help to
compare the practical merits of thea andd-filtering
strategies.

4 Experiments

The measures presented in this section have been
taken on a 1.7GHz AMD Athlon PC with 1.5 Gb
of RAM running Linux. All parsers are written in C
and have been compiled with gcc 2.96 with theO2
optimization flag.

4.1 Grammars and corpus

We have performed experiments with two large
grammars described below. The first one is an auto-

matically generated CFG, the other one is the CFG
equivalent of a TIG automatically extracted from a
factorized TAG.

The first grammar, namedGT>N , is a variant of
the CFG backbone of a large-coverage LFG gram-
mar for French used in the French LFG parser de-
scribed in (Boullier and Sagot, 2005). In this vari-
ant, the setT of terminal symbols is the whole set of
French inflected forms present in the Lefff , a large-
coverage syntactic lexicon for French (Sagot et al.,
2006). This leads to as many as 407,863 different
terminal symbols and 520,711 lexicalized produc-
tions (hence, the average number of categories —
which are here non-terminal symbols — for an in-
flected form is 1.27). Moreover, this CFG entails
a non-neglectible amount of syntactic constraints
(including over-generating sub-categorization frame
checking), which implies as many as|Pu| = 19, 028
non-lexicalized productions. All in all,GT>N has
539,739 productions.

The second grammar, namedGTIG, is a CFG
which represents a TIG. To achieve this, we applied
(Boullier, 2000)’s algorithm on the unfolded version
of (Villemonte de La Clergerie, 2005)’s factorized
TAG. The number of productions inGTIG is com-
parable to that ofGT>N . However, these two gram-
mars are completely different. First,GTIG has much
less terminal and non-terminal symbols thanGT>N .
This means that the basic filter may be less efficient
on GTIG than onGT>N . Second, the size ofGTIG

is enormous (more than 10 times that ofGT>N),
which shows that right-hand sides ofGTIG’s pro-
ductions are huge (the average number of right-hand
side symbols is more than 24). This may increase
the usefulness ofa- andd-filtering strategies.

Global quantitative data about these grammars is
shown in Table 2.

Both grammars, as evoked in the introduction,
have not been written by hand. On the contrary, they
are automatically generated from a more abstract
and more compact level (a meta-level over LFG for
GT>N , and a metagrammar forGTIG). These gram-
mars are not artificial grammars set up only for this
experiment. On the contrary, they are automatically
generated huge real-life CFGs that are variants of
grammars used in real NLP applications.

Our test suite is a set of 3093 French journalistic
sentences. These sentences are thegeneral lemonde

101

G |N | |T | |P | |Pu| |G|

GT>N 7,862 407,863 539,739 19,028 1,123,062

GTIG 448 173 493,408 4,338 12,455,767

Table 2: Sizes of the grammarsGT>N and GTIG

used in our experiments

part of the EASy parsing evaluation campaign cor-
pus. Raw sentences have been turned into DAGs
of inflected forms known by both grammar/lexicon
couples.15 This step has been achieved by the pre-
syntactic processing chain SXPipe (Sagot and Boul-
lier, 2005). They are all recognized by both gram-
mars.16 The resulting DAGs have a median size of
28 and an average size of 31.7.

Before entering into details, let us give here the
first important result of these experiments: it was
actually possible to build parsers out ofGT>N and
GTIG and to parse efficiently with the resulting
parsers (we shall detail later on efficiency results).
Given the fact that we are dealing with grammars
whose sizes are respectively over 1,000,000 and over
12,000,000, this is in itself a very satisfying result.

4.2 Precision results

Let us recall informally that the precision of a filter-
ing strategy is the proportion of productions in the
resulting sub-grammar that are in the gold grammar,
i.e., that have effectively instantiated counterparts in
the final parse forest.

We have applied different strategies so as to com-
pare their precisions. The results onGT>N and
GTIG are summed up in Table 3. These results give
several valuable results. First, as we expected, the
basicb-filter drastically reduces the size of the gram-
mar. The result is even better onGT>N thanks to its
large number of terminal symbols. Second, both the
adjacencya-filter and the DSAd-filter efficiently re-
duce the size of the grammar: onGT>N , thea-filter
eliminates 20% of the productions they receive as
input, a bit less for thed-filter. Indeed, thea-filter
performs better than thed-filter introduced in (Boul-

15As seen above, inflected forms are directly terminal sym-
bols of GT>N , while GTIG uses alexicon to map these in-
flected forms into its own terminal symbols, thereby possibly
introducing lexical ambiguity.

16Approx. 15% of the original set of sentences were not rec-
ognized, and required error recovery techniques; we decided to
discard them for this experiment.

Strategy Average precision
GT>N GTIG

no filter 0.04% 0.03%
b 62.87% 39.43%
bd 74.53% 66.56%
ba 77.31% 66.94%

ba∞ 77.48% 67.48%
bad 80.27% 77.16%

ba∞d 80.30% 77.41%
gold 100% 100%

Table 3: Average precision of six different filtering
strategies on our test corpus withGT>N andGTIG.

lier, 2003), at least as precision is concerned. We
shall see later that this is still the case on global
parsing times. However, applying thed-filter after
the a-filter still removes a non-neglectible amount
of productions:17 each technique is able to eliminate
productions that are kept by the other one. The result
of these filters is suprisingly good: in average, after
all filters, only approx. 20% of the productions that
have been kept will not be successfully instantiated
in the final parse forest. Third, the adjacency filter
can be used in its one-pass mode, since almost all
the benefit from the full (fix-point) mode is already
reached after the first application. This is practically
a very valuable result, since the one-pass mode is
obviously faster than the full mode.

However, all these filters do require computing
time, and it is necessary to evaluate not only the pre-
cision of these filters, but also their execution time
as well as the influence they have on the global (in-
cluding filtering) parsing time .

4.3 Parsing time and best filter

Filter execution times for the six filtering strategies
introduced in Table 3 are illustrated forGT>N in
Figure 1. These graphics show three extremely valu-
able pieces of information. First, filtering times are
extremely low: the average filtering time for the
slowest filter (ba∞d, i.e., basic plus full adjacency
plus DSA) on 40-word sentences is around 20 ms.
Second, on small sentences, filtering times are virtu-
ally zero. This is important, since it means that there

17Although not reported here, applying thea befored leads
to the same conclusion.

102

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

F
ilt

er
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

F
ilt

er
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

F
ilt

er
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

b-filter bd-filter ba-filter

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

F
ilt

er
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

F
ilt

er
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

F
ilt

er
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Median filtering time
Filtering time at percentile rank 90
Filtering time at percentile rank 10

ba∞-filter bad-filter ba∞d-filter

Figure 1: Filtering times for six different strategies withGT>N

is almost no fixed cost to pay when we use these
filters (let us recall that without any filter, building
efficient parsers for such a huge grammar is highly
problematic). Third, all these filters, at least when
used withGT>N , are executed in a time which is
linear w.r.t. the size of the input sentence (i.e., the
size of the input DAG).

The results onGTIG lead to the same conclusions,
with one exception: with this extremely huge gram-
mar with so long right-hand sides, the basic filter
is not as fast as onGT>N (and not as precise, as
we will see below, which slows down themake-a-
reduced-grammaralgorithm since it is applied on
a larger filtered grammars). For example, the me-
dian execution time for the basic filter on sentences
whose size is approximately 40 is 0.25 seconds,
to be compared with the 0.00 seconds reached on
GT>N (this zero value means a median time strictly
lower than 0.01 seconds, which is the granularity of
our time measurments).

Figure 2 and 3 show the global (filtering+parsing)
execution time for the 6 different filters. We only
show median times computed on classes of sen-
tences of length10i to 10(i + 1) − 1 and plotted
with a centeredx-coordinate (10(i + 1/2)), but re-
sults with other percentiles or average times on the
same classes draw the same overall picture.

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100

A
ve

ra
ge

 g
lo

ba
l e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Basic filter only
DSA filter

One-pass adjacency filter
Full adjacency filter

One-pass adjacency filter and DSA filter
Full adjacency filter and DSA filter

Figure 2: Global (filtering+parsing) times for six
different strategies withGT>N

One can see that the results are completely differ-
ent, showing a strong dependency on the character-
istics of the grammar. In the case ofGT>N , the huge
number of terminal symbols and the reasonable av-
erage size of right-hand sides of productions, the ba-
sic filtering strategy is the best strategy: although it
is fast because relatively simple, it reduces the gram-
mar extremely efficiently (it has a 60.56% precision,
to be compared with the precision of the void filter
which is 0.04%). Hence, forGT>N , our only result

103

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

A
ve

ra
ge

 g
lo

ba
l e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Sentence length

Basic filter only
DSA filter

One-pass adjacency filter
Full adjacency filter

One-pass adjacency filter and DSA filter
Full adjacency filter and DSA filter

Figure 3: Global (filtering+parsing) times for six
different strategies withGTIG

is that this basic filter does allow us to build an effi-
cient parser (the most efficient one), but that refined
additionnal filtering strategies are not useful.

The picture is completely different withGTIG.
Contrary toGT>N , this grammar has comparatively
very few terminal and non-terminal symbols, and
very long right-hand sides. These two facts lead
to a lower precision of the basic filter (39.43%),
which keeps many more productions when applied
on GTIG than when applied onGT>N , and leads,
when applied alone, to the less efficient parser. This
gives to the adjacency filter much more opportunity
to improve the global execution time. However, the
complexity of the grammar makes the construction
of the DSA filter relatively costly despite its preci-
sion, leading to the following conclusion: onGTIG

(and probably on any grammar with similar charac-
teristics), the best filtering strategy is the one-pass
adjacency strategy. In particular, this leads to an im-
provement over the work of (Boullier, 2003) which
only introduced the DSA filter. Incidentally, the
extreme size ofGTIG leads to much higher pars-
ing times, approximately 10 times higher than with
GT>N , which is consistent with the ratio between
the sizes of both involved grammars.

5 Conclusion

It is a well known result in optimization techniques
that the key to practically improve these processes is
to reduce their search space. This is also the case in
parsing and in particular in CF parsing.

Many parsers process their inputs from left to
right but we can find in the literature other parsing
strategies. In particular, in NLP, (van Noord, 1997)
and (Satta and Stock, 1994) propose bidirectional al-
gorithms. These parsers have the reputation to have
a better efficiency than their left-to-right counterpart.
This reputation is not only based upon experimental
results (van Noord, 1997) but also upon mathemat-
ical arguments in (Nederhof and Satta, 2000). This
is specially true when the productions of the CFG
strongly depend on lexical information. In that case
the parsing search space is reduced because the con-
straints associated to lexical elements are evaluated
as early as possible. We can note that our filtering
strategies try to reach the same purpose by a totally
different mean: we reduce the parsing search space
by eliminating as many productions as possible, in-
cluding possibly non-lexicalized productions whose
irrelevance to parse the current input can not be di-
rectly deduced from that input.

We can also remark that our results are not in con-
tradiction with the claims of (Nederhof and Satta,
2000) in which they argue that “Earley algorithm
and related standard parsing techniques [. . .] can-
not be directly extended to allow left-to-right and
correct-prefix-property parsing in acceptable time
bound”. First, as already noted in Section 1, our
method does not work for any large CFG. In order
to work well, the first step of our basic strategy must
filter out a great amount of (lexicalized) productions.
To do that, it is clear that the set of terminals in the
input text must select a small ratio of lexicalized pro-
ductions. To give a more concrete idea we advo-
cate that the selected productions produce roughly a
grammar ofnormal size out of the large grammar.
Second, our method as a whole clearly does not pro-
cess the input text from left-to-right and thus does
not enter in the categories studied in (Nederhof and
Satta, 2000). Moreover, the authors bring strong evi-
dences that in case of polynomial-time off-line com-
pilation of the grammar, left-to-right parsing cannot
be performed in polynomial time, independently of
the size of the lexicon. Once again, if our filter pass
is viewed as an off-line processing of the large input
grammar, our output is not a compilation of the large
grammar, but a (compilation of a) smaller grammar,
specialized in (some abstractions of) the source text
only. In other words their negative results do not

104

necessarily apply to our specific case.
The experiment campaign as been conducted in

using an Earley-like parser.18 We have also success-
fuly tried the coupling of our filtering strategies with
a CYK parser (Kasami, 1967; Younger, 1967) as
post-processor. However the coupling with a GLR
parser (See (Satta, 1992) for example) is perhaps
more problematic since the time taken to build up
the underlying nondeterministic LR automaton from
the sub-grammar can be prohibitive.

Though no definitive answer can be made to the
question asked in the title, we have shown that, in
some cases, the answer is certainlyyes.

References

Sylvie Billot and Bernard Lang. 1989. The structure of
shared forests in ambiguous parsing. InMeeting of
the Association for Computational Linguistics, pages
143–151.

Pierre Boullier and Benoı̂t Sagot. 2005. Efficient and ro-
bust LFG parsing: SxLfg. InProceedings of IWPT’05,
pages 1–10, Vancouver, Canada.

Pierre Boullier. 2000. On TAG parsing.Traitement Au-
tomatique des Langues (T.A.L.), 41(3):759–793.

Pierre Boullier. 2003. Guided Earley parsing. InPro-
ceedings of IWPT 03, pages 43–54, Nancy, France.

Jay Earley. 1970. An efficient context-free parsing algo-
rithm. Communication of the ACM, 13(2):94–102.

Jeffrey D. Hopcroft and John E. Ullman. 1979.Intro-
duction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, Reading, Mass.

Aravind Joshi. 1997. Parsing techniques. InSur-
vey of the state of the art in human language tech-
nology, pages 351–356. Cambridge University Press,
New York, NY, USA.

Tadao Kasami. 1967. An efficient recognition and syntax
algorithm for context-free languages. Scientific Re-
port AFCRL-65–758, Air Force Cambridge Research
Laboratory, Bedford, Massachusetts, USA.

Robert C. Moore. 2000. Improved left-corner
chart parsing for large context-free gram-
mars. In Proceedings of IWPT 2000, pages

18Contrarily to classical Earley parsers, itspredictor phase
uses a pre-computed structure which is roughly an LC relation.
Note that this feature forces our filters to compute an LC rela-
tion on the generated sub-grammar. This also shows that LC
parsers may also benefit from our filtering techniques.

171–182, Trento, Italy. Revised version at
http://www.cogs.susx.ac.uk/lab/nlp/
carroll/cfg-resources/iwpt2000-rev2.ps.

Mark-Jan Nederhof and Giorgio Satta. 2000. Left-to-
right parsing and bilexical context-free grammars. In
Proceedings of the first conference on North American
chapter of the ACL, pages 272–279, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Mark-Jan Nederhof. 1993. Generalized left-corner pars-
ing. In Proceedings of the sixth conference on Euro-
pean chapter of the ACL, pages 305–314, Morristown,
NJ, USA. ACL.

Benoı̂t Sagot and Pierre Boullier. 2005. From raw cor-
pus to word lattices: robust pre-parsing processing. In
Proceedings of L&TC 2005, pages 348–351, Poznań,
Poland.

Benoı̂t Sagot, Lionel Clément,́Eric Villemonte de La
Clergerie, and Pierre Boullier. 2006. The Lefff 2 syn-
tactic lexicon for french: architecture, acquisition, use.
In Proc. of LREC’06.

Giorgio Satta and Oliviero Stock. 1994. Bidirectional
context-free grammar parsing for natural language
processing.Artif. Intell., 69(1-2):123–164.

Giorgio Satta. 1992. Review of ”generalized lr parsing”
by masaru tomita. kluwer academic publishers 1991.
Comput. Linguist., 18(3):377–381.

Yves Schabes and Richard C. Waters. 1995. Tree in-
sertion grammar: Cubic-time, parsable formalism that
lexicalizes context-free grammar without changing the
trees produced.Comput. Linguist., 21(4):479–513.

Yves Schabes, Anne Abeillé, and Aravind K. Joshi.
1988. Parsing strategies with ’lexicalized’ grammars:
Application to tree adjoining grammars. InProceed-
ings of the 12th International Conference on Comput.
Linguist. (COLING’88), Budapest, Hungary.

Gertjan van Noord. 1997. An efficient implementation of
the head-corner parser.Comput. Linguist., 23(3):425–
456.

Éric Villemonte de La Clergerie. 2005. From metagram-
mars to factorized TAG/TIG parsers. InProceedings
of IWPT’05, pages 190–191, Vancouver, Canada.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in timen3. Information and
Control, 10(2):189–208.

105

Proceedings of the 10th Conference on Parsing Technologies, pages 106–108,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Pomset mcfgs

Michael J Pan
University of California Los Angeles

mjpan@cs.ucla.edu

Abstract

This paper identifies two orthogonal dimen-
sions of context sensitivity, the first being
context sensitivity in concurrency and the
second being structural context sensitivity.
We present an example from natural lan-
guage which seems to require both types of
context sensitivity, and introduce partially
ordered multisets (pomsets) mcfgs as a for-
malism which succintly expresses both.

Introduction

Researchers in computer science and formal lan-
guage theory have separately investigated context
sensitivity of languages, addressing disjoint dimen-
sions of context sensitivity. Researchers in paral-
lel computing have explored the addition of con-
currency and free word order to context free lan-
guages, i.e. a concurrency context sensitivity (Gis-
cher, 1981; Warmuth and Haussler, 1984; Pratt,
1985; Pratt, 1986; Lodaya and Weil, 2000). Com-
putational linguistis have explored adding cross-
ing dependency and discontinuous constituency, i.e.
a structural context sensitivity (Seki et al., 1991;
Vijay-Shanker et al., 1987; Stabler, 1996).

Research considering the combination of two di-
mensions of expressing context sensitivity have been
sparse, e.g. (Becker et al., 1991), with research ded-
icated to this topic virtually nonexistent. Natural
languages are not well expressed by either form of
context sensitivity alone. For example, in Table 1,
sentences 1-8 are valid, but 9, 10 are invalid con-
structions of Norwegian. In addition to the cross-
ing dependency between the determiner and adverb
phrase, this example can be described by either

Derfor ga Jens Kari kyllingen tydeligvis ikke lenger kald

Therefore gave Jens Kari the chicken evidently not longer cold

Derfor ga Jens Kari tydeligvis kyllingen ikke lenger kald

Derfor ga Jens tydeligvis Kari kyllingen ikke lenger kald

Derfor ga Jens tydeligvis Kari ikke kyllingen lenger kald

Derfor ga Jens tydeligvis Kari ikke lenger kyllingen kald

Derfor ga Jens tydeligvis ikke lenger Kari kyllingen kald

Derfor ga tydeligvis Jens ikke lenger Kari kyllingen kald

Derfor ga tydeligvis ikke Jens lenger Kari kyllingen kald

* Derfor ga Jens ikke tydeligvis Kari lenger kyllingen kald

* Derfor ga Jens ikke tydeligvis kyllingen lenger Kari kald

Table 1: Bobaljik’s paradox/shape conservation example

Bobaljik’s paradox (Bobaljik, 1999), which asserts
that relative ordering of clausal constituents are not
unambiguously determined by the phrase structure,
or shape conservation (Müller, 2000), i.e. that lin-
ear precedence is preserved despite movement op-
erations. In other words, the two structurally con-
text sensitive components (due to the crossing de-
pendency between them) can be shuffled arbitrarily,
leading to concurrent context sensitivity.

This paper proposes pomset mcfgs as a formal-
ism for perspicuously expressing both types of con-
text sensitivity. 1 The rest of the paper is organized
as follows. Section 1 introduces pomsets, pomset
operations, and pomset properties. Section 2 pro-
vides a definition of pomset mcfgs by extending the
standard definition of mcfgs, defined over tuples of
strings, to tuples of pomsets. Section 3 discusses
pomset mcfg parsing.

1Other pomset based formalisms (Lecomte and Retore,
1995; Basten, 1997; Nederhof et al., 2003) have been limited
to the use of pomsets in context free grammars only.

106

1 Pomsets

In this section, we define pomsets as a model for de-
scribing concurrency. A labelled partial order (LPO)
is a 4 tuple (V, Σ, �, µ) where V is a set of ver-
tices, Σ is the alphabet, � is the partial order on the
vertices, and µ is the labelling function µ:V→ Σ.
A pomset is a LPO up to isomorphism. The con-
catenation of pomsets p and q is defined as ;(p,q)
= (Vp∪Vq,Σp ∪ Σq,�p ∪ �q ∪Vp×Vq,µp ∪ µq).
The concurrency of pomsets p and q is defined
as ‖(p,q) = (Vp∪Vq,Σp ∪ Σq,�p ∪ �q,µp ∪ µq).
Pomset isolation (ι) is observed only in the con-
text of concurrency. The concurrence of an isolated
pomset with another pomset is defined as ‖(ιp,q) =
({vp}∪Vq,pλ ∪ Σq,�q,{(pλ,vp)}∪µq), where λp is
the set of linearizations for p, and pλ is a function
which returns an element of λp. Let ‖i be a pomset
concurrency operator restricted to an arity of i. Be-
cause concurrency is both associative and commu-
tative, without isolation, ‖m‖n = ‖n‖m = ‖m+n, de-
feating any arity restrictions. Isolation allows us to
restrict the arity of the concurrency operator, guaran-
teeing that in all linearizations of the pomset, the lin-
earizations of the isolated subpomsets are contigu-
ous.2 A mildly concurrent operator ι ‖n, i.e. an n-
concurrent operator, is a composite operator whose
concurrency is isolated and restricted to an arity of n,
such that it operates on at most n items concurrently.

2 Pomset mcfgs

There are many (structural) mildly context sensitive
grammar formalisms, e.g. mcfg, lcfrs, mg, and they
have been shown to be equivalent (Vijay-Shanker et
al., 1987). In this section we construct mcfgs over
pomsets (instead of strings) to define grammars with
both types of context sensitivity.

A pomset mcfg G is a 7-tuple (Σ,N,O,P,F,R,S)
such that Σ is a finite non-empty set of atoms, i.e.
terminal symbols, N is a finite non-empty set of non-
terminal symbols, where N∩Σ=∅, O is a set of valid
pomset operators, P is a set of i-tuples of pomsets
labelled by Σ∪N, F is a finite set of pomset rewrit-
ing functions from tuples of elements of P into ele-
ments in P, F⊆{ g:Pn →P | n>0 }, R is a finite set

2Pomset isolation is similar to proposals in for string iso-
lation in linear specification language (Goetz and Penn, 2000),
locking in idl-expressions (Nederhof and Satta, 2004), and in-
tegrity constraints in fo-tag (Becker et al., 1991).

of rewrite rules which pair n-ary elements of F with
n+1 nonterminals, and S∈N is the start symbol, and
d(S) = 1.

This definition extends the standard mcfg defini-
tion (Seki et al., 1991), with two main differences.
First, strings have been generalized to pomsets, i.e.
P is a set of i-tuples of pomsets instead of i-tuples of
strings. It follows that F, the set of functions, oper-
ate on tuples of pomsets instead of tuples of strings,
and so forth. Second, pomset mcfgs explicitly spec-
ify O, the set of possible operators over the pomsets,
e.g. {;, ι ‖2}; string mcfgs have an implied operator
set O={;} (i.e. just string concatenation).

Additionally, just as in mcfgs, where the arity of
string components are limited, we can limit the ar-
ity of the concurrency of pomsets. A n-concurrent
pomset mcfg is a pomset mcfg such that for all con-
currency operators ‖i in the grammar, i≤n. A pom-
set mcfg with no concurrency among its components
is a 1-concurrent pomset mcfg, just as a cfg is a 1-
mcfg.

3 Parsing

In this section we propose a strategy for parsing
pomset mcfgs, based on IDL parsing (Nederhof and
Satta, 2004). We define pomset graphs, which ex-
tend IDL graphs and pom-automata and are defined
over tuples of pomsets (or tuples of idl expressions),
rather than single pomsets or idl expressions. An in-
formal analysis of the computational complexity for
parsing pomset mcfgs follows.

Pomset graphs The construction is quite straight
forward, as pomsets themselves can already be con-
sidered as DAGs. However, in the pomset graph,
we add two vertices, the start and end vertices. We
then add precedence relations such that the start ver-
tex precedes all minimal vertices of the pomset, and
that the end vertex succeeds all maximal vertices of
the pomset. For any nonempty pomset, we define
Vmin ⊆V and Vmax ⊆V to be the minimal and
maximal, respectively, vertices of V. Informally, no
vertex in a pomset precede Vmin and none succeed
any in Vmax. Formally, ∀ v∈V, v’∈V,v’6=v, Vmin =
{ v | (v’,v) 6∈� } and Vmax = { v | (v,v’) 6∈� }. The
start vertex is then labelled with the empty string, ε,
and the end vertex is labelled with σ’, a symbol not
in Σ.

107

Given a pomset p= (Vp,Σ,�,µp), a pomset
graph for p is a vertex labelled graph γ(p) =
(Vγ ,E,µγ) where Vγ and E are a finite set of ver-
tices and edges, where Vγ=Vp∪{vs,ve} and E= �
∪vs×Vmin∪Vmax×ve, Σγ=Σ∪{ε,σ’}, where σ’ is
a symbol not in Σ, and µγ=µp∪{(vs,ε),(ve,σ’)} is
the vertex labelling function. Having defined the
pomset graph, we can apply the IDL parsing algo-
rithm to the graph.

Complexity While the complexity of the mem-
bership problem for pomset languages in general
is NP-complete (Feigenbaum et al., 1993), by re-
stricting the context sensitivity of the pomset gram-
mars, polynomial time complexity is achievable.
The complexity of the parsing of IDL graphs is
O(n3k) (Nederhof and Satta, 2004) where k is the
width of the graph, and the width is a measurement
of the number of paths being traversed in parallel,
i.e. the arity of the concurrent context sensitivity.
Our intuition is that the parameterization of the com-
plexity according to the number of parallel paths
applies even when structural context sensitivity is
added. Thus for a k-concurrent m-structural mcfg,
we conjecture that the complexity is O(n3km).

4 Conclusion

In this paper we identified two types of context sen-
sitivity, and provided a natural language example
which exhibits both types of context sensitivity. We
introduced pomset mcfgs as a formalism for describ-
ing grammars with both types of context sensitivity,
and outlined an informal proof of the its polynomial-
time parsing complexity.

References

Twan Basten. 1997. Parsing partially ordered multisets.
International Journal of Foundations of Computer Sci-
ence, 8(4):379–407.

Tilman Becker, Aravind K. Joshi, and Owen Rambow.
1991. Long distance scrambling and tree adjoining
grammars. In Proceedings of EACL-91, the 5th Con-
ference of the European Chapter of the Association for
Computational Linguistics.

Jonathan David Bobaljik. 1999. Adverbs: The hierarchy
paradox. Glot International, 4.

Joan Feigenbaum, Jeremy A. Kahn, and Carsten Lund.
1993. Complexity results for pomset languages. SIAM
Journal of Discrete Mathematics, 6(3):432–442.

Jay Gischer. 1981. Shuffle languages, Petri nets, and
context-sensitive grammars. Communications of the
ACM, 24(9):597–605, September.

Thilo Goetz and Gerald Penn. 2000. A proposed lin-
ear specification language. Technical Report 134, Ar-
beitspapiere des SFB 340.

A. Lecomte and C. Retore. 1995. Pomset logic as an
alternative categorial grammar. In Glyn Morrill and
Richard Oehrle, editors, Formal Grammar, pages 181–
196.

K. Lodaya and P. Weil. 2000. Series-parallel languages
and the bounded-width property. Theoretical Com-
puter Science, 237(1–2):347–380.

Gereon Müller. 2000. Shape conservation and remnant
movement. In Proceedings of NELS 30.

Mark-Jan Nederhof and Giorgio Satta. 2004. IDL-
expressions: A formalism for representing and parsing
finite languages in natural language processing. Jour-
nal of Artificial Intelligence Research, 21:287–317.

Mark-Jan Nederhof, Giorgio Satta, and Stuart M.
Shieber. 2003. Partially ordered multiset context-free
grammars and ID/LP parsing. In Proceedings of the
Eighth International Workshop on Parsing Technolo-
gies, pages 171–182, Nancy, France, April.

Vaughan R. Pratt. 1985. The pomset model of paral-
lel processes : Unifying the temporal and the spatial.
Technical report, Stanford University, January.

Vaughan R. Pratt. 1986. Modelling concurrency with
partial orders. International Journal of Parallel Pro-
gramming, 15(1):33–71.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context free gram-
mars. Theoretical Computer Science, 88:191–229.

Edward P. Stabler. 1996. Derivational minimalism.
In Christian Retoré, editor, LACL, volume 1328 of
Lecture Notes in Computer Science, pages 68–95.
Springer.

K. Vijay-Shanker, D. J. Weir, and A. K. Joshi. 1987.
Characterizing structural descriptions produced by
various grammatical formalisms. In Proceedings of
the ACL, pages 104–111, Stanford, CA.

Manfred K. Warmuth and David Haussler. 1984. On the
complexity of iterated shuffle. J. Comput. Syst. Sci.,
28(3):345–358.

108

Proceedings of the 10th Conference on Parsing Technologies, pages 109–120,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Modular and Efficient Top-Down Parsing for Ambiguous Left-Recursive
Grammars

Richard A. Frost and Rahmatullah Hafiz
School of Computer Science

University of Windsor
Canada

rfrost@cogeco.ca

Paul C. Callaghan
Department of Computer Science

University of Durham
U.K.

P.C.Callaghan@durham.ac.uk

Abstract

In functional and logic programming,
parsers can be built as modular executable
specifications of grammars, using parser
combinators and definite clause grammars
respectively. These techniques are based on
top-down backtracking search. Commonly
used implementations are inefficient for
ambiguous languages, cannot accommodate
left-recursive grammars, and require expo-
nential space to represent parse trees for
highly ambiguous input. Memoization is
known to improve efficiency, and work by
other researchers has had some success in
accommodating left recursion. This paper
combines aspects of previous approaches
and presents a method by which parsers can
be built as modular and efficient executable
specifications of ambiguous grammars
containing unconstrained left recursion.

1 Introduction

Top-down parsers can be built as a set of mutually-
recursive processes. Such implementations are mod-
ular in the sense that parsers for terminals and simple
non-terminals can be built and tested first. Subse-
quently, parsers for more complex non-terminals can
be constructed and tested. Koskimies (1990), and
Nederhof and Koster (1993) discuss this and other
advantages of top-down parsing.

In functional and logic programming, top-down
parsers can be built using parser combinators (e.g.
see Hutton 1992 for a discussion of the origins of

parser combinators, and Frost 2006 for a discussion
of their use in natural-language processing) and def-
inite clause grammars (DCGs) respectively. For ex-
ample, consider the following grammar, in which
s stands for sentence,np for nounphrase,vp for
verbphrase, anddet for determiner:

s ::= np vp
np ::= noun | det noun
vp ::= verb np
det ::= ’a’ | ’t’
noun ::= ’i’ | ’m’ | ’p’ | ’b’
verb ::= ’s’

A set of parsers for this grammar can be con-
structed in the Haskell functional programming lan-
guage as follows, whereterm, ‘orelse‘, and

‘thenS‘ are appropriately-defined higher-order
functions called parser combinators. (Note that
backquotes surround infix functions in Haskell).

s = np ‘thenS‘ vp
np = noun ‘orelse‘ (det ‘thenS‘ noun)
vp = verb ‘thenS‘ np
det = term ’a’ ‘orelse‘ term ’t’
noun = term ’i’ ‘orelse‘ term ’m’

‘orelse‘ term ’p’
‘orelse‘ term ’b’

verb = term ’s’

Note that the parsers are written directly in the
programming language, in code which is similar in
structure to the rules of the grammar. As such,
the implementation can be thought of as an exe-
cutable specification with all of the associated ad-
vantages. In particular, this approach facilitates
modular piecewise construction and testing of com-
ponent parsers. It also allows parsers to be defined
to return semantic values directly instead of inter-
mediate parse results, and parsers to be parameter-
ized in order to accommodate context-sensitive lan-

109

guages (e.g. Eijck 2003). Also, in functional pro-
gramming, the type checker can be used to catch er-
rors in parsers attributed with semantic actions.

Parser combinators and DCGs have been used ex-
tensively in applications such as prototyping of com-
pilers, and the creation of natural language inter-
faces to databases, search engines, and web pages,
where complex and varied semantic actions are
closely integrated with syntactic processing. How-
ever, both techniques are based on top-down re-
cursive descent search with backtracking. Com-
monly used implementations have exponential com-
plexity for ambiguous languages, cannot handle left-
recursion, and do not produce compact representa-
tions of parse trees. (Note, a left-recursive grammar
is one in which a non-terminalp derives an expan-
sion p .. headed with ap either directly or indi-
rectly. Application of a parser for such a grammar
results in infinite descent.) These shortcomings limit
the use of parser combinators and DCGs especially
in natural-language processing.

The problem of exponential time complexity in
top-down parsers constructed as sets of mutually-
recursive functions has been solved by Norvig
(1991) who uses memotables to achieve polynomial
complexity. Norvig’s technique is similar to the use
of dynamic programming and state sets in Earley’s
algorithm (1970), and tables in the CYK algorithm
of Cocke, Younger and Kasami. The basic idea in
Norvig’s approach is that when a parser is applied
to the input, the result is stored in a memotable for
subsequent reuse if the same parser is ever reapplied
to the same input. In the context of parser combina-
tors, Norvig’s approach can be implemented using a
functionmemoize to selectively “memoize” parsers.

In some applications, the problem of left-
recursion can be overcome by transforming the
grammar to a weakly equivalent non-left-recursive
form. (i.e. to a grammar which derives the same set
of sentences). Early methods of doing this resulted
in grammars that are significantly larger than the
original grammars. This problem of grammar size
has been solved by Moore (2000) who developed a
method, based on a left-corner grammar transforma-
tion, which produces non-left recursive grammars
that are not much larger than the originals. How-
ever, although converting a grammar to a weakly-
equivalent form is appropriate in some applications

(such as speech recognition) it is not appropriate in
other applications. According to Aho, Sethi, and
Ullman (1986) converting a grammar to non-left re-
cursive form makes it harder to translate expressions
containing left-associative operators. Also, in NLP
it is easier to integrate semantic actions with parsing
when both leftmost and rightmost parses of ambigu-
ous input are being generated. For example, con-
sider the first of the following grammar rules:

np ::= noun | np conj np
conj ::= "and" | "or"
noun ::= "jim" | "su" | "ali"

and its non-left-recursive weakly equivalent form:
np ::= noun np’
np’ ::= conj np np’ | empty

The non-left-recursive form loses the leftmost
parses generated by the left-recursive form. Inte-
grating semantic actions with the non-left-recursive
rule in order to achieve the two correct interpre-
tations of input such as["john", "and", "su",

"or", "ali"] is significantly harder than with the
left-recursive form.

Several researchers have recognized the impor-
tance of accommodating left-recursive grammars in
top-down parsing, in general and in the context of
parser combinators and DCGs in particular, and have
proposed various solutions. That work is described
in detail in section 3.

In this paper, we integrate Norvig’s technique
with aspects of existing techniques for dealing with
left recursion. In particular: a) we make use of the
length of the remaining input as does Kuno (1965),
b) we keep a record of how many times each parser
is applied to each input position in a way that is
similar to the use of cancellation sets by Neder-
hof and Koster (1993), c) we integrate memoization
with a technique for dealing with left recursion as
does Johnson (1995), and d) we store “left-recursion
counts” in the memotable, and encapsulate the mem-
oization process in a programming construct called
a monad, as suggested by Frost and Hafiz (2006).

Our method includes a new technique for accom-
modating indirect left recursion which ensures cor-
rect reuse of stored results created through curtail-
ment of left-recursive parsers. We also modify the
memoization process so that the memotable repre-
sents the potentially exponential number of parse
trees in a compact polynomial sized form using a

110

technique derived from the chart parsing methods of
Kay (1980) and Tomita (1986).

As an example use of our method, consider the
following ambiguous left-recursive grammar from
Tomita (1985) in whichpp stands for prepositional
phrase, andprep for preposition. This grammar is
left recursive in the rules fors andnp. Experimental
results using larger grammars are given later.

s ::= np vp | s pp
np ::= noun | det noun | np pp
pp ::= prep np
vp ::= verb np
det ::= ’a’ | ’t’
noun ::= ’i’ | ’m’ | ’p’ | ’b’
verb ::= ’s’
prep ::= ’n’ | ’w’

The Haskell code below defines a parser for the
above grammar, using our combinators:

s = memoize "s" ((np ‘thenS‘ vp)
‘orelse‘ (s ‘thenS‘ pp))

np = memoize "np" (noun
‘orelse‘ (det ‘thenS‘ noun)
‘orelse‘ (np ‘thenS‘ pp))

pp = memoize "pp" (prep ‘thenS‘ np)
vp = memoize "vp" (verb ‘thenS‘ np)
det = memoize "det" (term ’a’

‘orelse‘ term ’t’)
noun = memoize "noun" (term ’i’

‘orelse‘ term ’m’
‘orelse‘ term ’p’
‘orelse‘ term ’b’)

verb = memoize "verb" (term ’s’)
prep = memoize "prep" (term ’n’

‘orelse‘ term ’w’)

The following shows the output when the
parser functions is applied to the input string
"isamntpwab", representing the sentence “I saw a
man in the park with a bat”. It is a compact rep-
resentation of the parse trees corresponding to the
several ways in which the whole input can be parsed
as a sentence, and the many ways in which subse-
quences of it can be parsed as nounphrases etc. We
discuss this representation in more detail in subsec-
tion 4.4.
apply s "isamntpwab" =>

"noun"
1 ((1,2), [Leaf "i"])
4 ((4,5), [Leaf "m"])
7 ((7,8), [Leaf "p"])

10 ((10,11), [Leaf "b"])
"det"

3 ((3,4), [Leaf "a"])
6 ((6,7), [Leaf "t"])
9 ((9,10), [Leaf "a"])

"np"
1 ((1,2), [SubNode ("noun", (1,2))])
3 ((3,5), [Branch [SubNode ("det", (3,4)),

SubNode ("noun",(4,5))]])
((3,8), [Branch [SubNode ("np", (3,5)),

SubNode ("pp", (5,8))]])
((3,11),[Branch [SubNode ("np", (3,5)),

SubNode ("pp", (5,11))],
Branch [SubNode ("np", (3,8)),

SubNode ("pp", (8,11))]])
6 ((6,8), [Branch [SubNode ("det", (6,7)),

SubNode ("noun",(7,8))]])
((6,11),[Branch [SubNode ("np", (6,8)),

SubNode ("pp", (8,11))]])
9 ((9,11),[Branch [SubNode ("det", (9,10)),

SubNode ("noun",(10,11))]])
"prep"

5 ((5,6), [Leaf "n"])
8 ((8,9), [Leaf "w"])

"pp"
8 ((8,11),[Branch [SubNode ("prep",(8,9)),

SubNode ("np", (9,11))]])
5 ((5,8), [Branch [SubNode ("prep",(5,6)),

SubNode ("np", (6,8))]])
((5,11),[Branch [SubNode ("prep",(5,6)),

SubNode ("np", (6,11))]])
"verb"

2 ((2,3), [Leaf "s"])
"vp"

2 ((2,5), [Branch [SubNode ("verb",(2,3)),
SubNode ("np", (3,5))]])

((2,8), [Branch [SubNode ("verb",(2,3)),
SubNode ("np", (3,8))]])

((2,11),[Branch [SubNode ("verb",(2,3)),
SubNode ("np", (3,11))]])

"s"
1 ((1,5), [Branch [SubNode ("np", (1,2)),

SubNode ("vp", (2,5))]])
((1,8), [Branch [SubNode ("np", (1,2)),

SubNode ("vp", (2,8))],
Branch [SubNode ("s", (1,5)),

SubNode ("pp", (5,8))]])
((1,11),[Branch [SubNode ("np", (1,2)),

SubNode ("vp", (2,11))],
Branch [SubNode ("s", (1,5)),

SubNode ("pp", (5,11))],
Branch [SubNode ("s", (1,8)),

SubNode ("pp", (8,11))]]

Our method has two disadvantages: a) it has
O(n4) time complexity, for ambiguous grammars,
compared with O(n3) for Earley-style parsers (Ear-
ley 1970), and b) it requires the length of the input
to be known before parsing can commence.

Our method maintains all of the advantages of
top-down parsing and parser combinators discussed
earlier. In addition, our method accommodates ar-
bitrary context-free grammars, terminates correctly
and correctly reuses results generated by direct and
indirect left recursive rules. It parses ambiguous lan-
guages in polynomial time and creates polynomial-
sized representations of parse trees.

In many applications the advantages of our ap-
proach will outweigh the disadvantages. In particu-
lar, the additional time required for parsing will not
be a major factor in the overall time required when
semantic processing, especially of ambiguous input,
is taken into account.

111

We begin with some background material, show-
ing how our approach relates to previous work by
others. We follow that with a detailed description of
our method. Sections 5, 6, and 7 contain informal
proofs of termination and complexity, and a brief
description of a Haskell implementation of our al-
gorithm. Complete proofs and the Haskell code are
available from any of the authors.

We tested our implementation on four natural-
language grammars from Tomita (1986), and on
four abstract highly-ambiguous grammars. The re-
sults, which are presented in section 8, indicate that
our method is viable for many applications, espe-
cially those for which parser combinators and defi-
nite clause grammars are particularly well-suited.

We present our approach with respect to parser
combinators. However, our method can also be im-
plemented in other languages which support recur-
sion and dynamic data structures.

2 Top-Down Backtracking Recognition

Top-down recognizers can be implemented as a set
of mutually recursive processes which search for
parses using a top-down expansion of the gram-
mar rules defining non-terminals while looking for
matches of terminals with tokens on the input. To-
kens are consumed from left to right. Backtrack-
ing is used to expand all alternative right-hand-sides
of grammar rules in order to identify all possible
parses. In the following we assume that the input
is a sequence of tokensinput, of length l input

the members of which are accessed through an in-
dex j. Unlike commonly-used implementations of
parser combinators, which produce recognizers that
manipulate subsequences of the input, we assume,
as in Frost and Hafiz (2006), that recognizers are
functions which take an indexj as argument and
which return a set of indices as result. Each index
in the result set corresponds to the position at which
the recognizer successfully finished recognizing a
sequence of tokens that began at positionj . An
empty result set indicates that the recognizer failed
to recognize any sequence beginning at j. Multiple
results are returned for ambiguous input.

According to this approach, a recognizerterm t

for a terminalt is a function which takes an index
j as input, and ifj is greater thanl input, the rec-

ognizer returns an empty set. Otherwise, it checks
to see if the token at positionj in the input corre-
sponds to the terminalt. If so, it returns a singleton
set containingj + 1, otherwise it returns the empty
set. For example, a basic recognizer for the termi-
nal’s’ can be defined as follows (note that we use a
functional pseudo code throughout, in order to make
the paper accessible to a wide audience. We also use
a list lookup offset of 1):

term_s = term ’s’
where term t j
= {} , if j > l_input
= {j + 1}, if jth element of input = t
= {} , otherwise

Theempty recognizer is a function which always
succeeds returning its input index in a set:

empty j = {j}

A recognizer corresponding to a constructp | q

in the grammar is built by combining recognizers
for p andq, using the parser combinator‘orelse‘.
When the composite recognizer is applied to index
j, it appliesp to j, then it appliesq to j, and subse-
quently unites the resulting sets.:

(p ‘orelse‘ q) j = unite (p j) (q j)

e.g, assuming that the input is"ssss", then
(empty ‘orelse‘ term_s) 2 => {2, 3}

A composite recognizer corresponding to a se-
quence of recognizersp q on the right hand side of
a grammar rule, is built by combining those recog-
nizers using the parser combinator‘thenS‘. When
the composite recognizer is applied to an indexj, it
first appliesp to j, then it appliesq to each index in
the set of results returned byp. It returns the union
of these applications ofq.

(p ‘thenS‘ q) j = union (map q (p j))

e.g., assuming that the input is"ssss", then
(term_s ‘thenS‘ term_s) 1 => {3}

The combinators above can be used to define
composite mutually-recursive recognizers. For ex-
ample, the grammarsS ::= ’s’ sS sS | empty

can be encoded as follows:
sS = (term_s ‘thenS‘ sS ‘thenS‘ sS)

‘orelse‘ empty

Assuming that the input is"ssss", the recognizer
sS returns a set of five results, the first four corre-
sponding to proper prefixes of the input being rec-
ognized as ansS. The result5 corresponds to the
case where the whole input is recognized as ansS.

112

sS 1 => {1, 2, 3, 4, 5}

The method above does not terminate for left-
recursive grammars, and has exponential time
complexity with respect tol input for non-left-
recursive grammars. The complexity is due to the
fact that recognizers may be repeatedly applied to
the same index during backtracking induced by the
operator‘orelse‘. We show later how complexity
can be improved, using Norvig’s memoization tech-
nique. We also show, in section 4.4, how the com-
binatorsterm, ‘orelse‘, and ‘thenS‘ can be re-
defined so that the processors create compact repre-
sentations of parse trees in the memotable, with no
effect on the form of the executable specification.

3 Left Recursion and Top-Down Parsing

Several researchers have proposed ways in which
left-recursion and top-down parsing can coexist:

1) Kuno (1965) was the first to use the length of
the input to force termination of left-recursive de-
scent in top-down parsing. The minimal lengths of
the strings generated by the grammar on the contin-
uation stack are added and when their sum exceeds
the length of the remaining input, expansion of the
current non-terminal is terminated. Dynamic pro-
gramming in parsing was not known at that time,
and Kuno’s method has exponential complexity.

2) Shiel (1976) recognized the relationship be-
tween top-down parsing and the use of state sets
and tables in Earley and SYK parsers and developed
an approach in which procedures corresponding to
non-terminals are called with an extra parameter in-
dicating how many terminals they should read from
the input. When a procedure corresponding to a
non-terminaln is applied, the value of this extra pa-
rameter is partitioned into smaller values which are
passed to the component procedures on the right of
the rule definingn. The processor backtracks when
a procedure defining a non-terminal is applied with
the same parameter to the same input position. The
method terminates for left-recursion but has expo-
nential complexity.

3) Leermakers (1993) introduced an approach
which accommodates left-recursion through “recur-
sive ascent” rather than top-down search. Although
achieving polynomial complexity through memoiza-
tion, the approach no longer has the modularity and

clarity associated with pure top-down parsing. Leer-
makers did not extend his method to produce com-
pact representations of trees.

4) Nederhof and Koster (1993) introduced “can-
cellation” parsing in which grammar rules are trans-
lated into DCG rules such that each DCG non-
terminal is given a “cancellation set” as an extra
argument. Each time a new non-terminal is de-
rived in the expansion of a rule, this non-terminal
is added to the cancellation set and the resulting set
is passed on to the next symbol in the expansion.
If a non-terminal is derived which is already in the
set then the parser backtracks. This technique pre-
vents non-termination, but loses some parses. To
solve this, for each non-terminaln, which has a left-
recursive alternative 1) a function is added to the
parser which places a special tokenn at the front
of the input to be recognized, 2) a DCG correspond-
ing to the rulen ::= n is added to the parser, and
3) the new DCG is invoked after the left-recursive
DCG has been called. The approach accommodates
left-recursion and maintains modularity. An exten-
sion to it also accommodates hidden left recursion
which can occur when the grammar contains rules
with empty right-hand sides. The shortcoming of
Nederhof and Koster’s approach is that it is expo-
nential in the worst case and that the resulting code
is less clear as it contains additional production rules
and code to insert the special tokens.

5) Lickman (1995) defined a set of parser com-
binators which accommodate left recursion. The
method is based on an idea by Philip Wadler in an
unpublished paper in which he claimed that fixed
points could be used to accommodate left recursion.
Lickman implemented Wadler’s idea and provided
a proof of termination. The method accommodates
left recursion and maintains modularity and clarity
of the code. However, it has exponential complex-
ity, even for recognition.

6) Johnson (1995) appears to have been the first
to integrate memoization with a method for dealing
with left recursion in pure top-down parsing. The
basic idea is to use the continuation-passing style
of programming (CPS) so that the parser computes
multiple results, for ambiguous cases, incrementally.
There appears to have been no attempt to extend
Johnson’s approach to create compact representa-
tions of parse trees. One explanation for this could

113

be that the approach is somewhat convoluted and ex-
tending it appears to be very difficult. In fact, John-
son states, in his conclusion, that “an implemen-
tation attempt (to create a compact representation)
would probably be very complicated.”

7) Frost and Hafiz (2006) defined a set of parser
combinators which can be used to create polynomial
time recognizers for grammars with direct left recur-
sion. Their method stores left-recursive counts in the
memotable and curtails parses when a count exceeds
the length of the remaining input. Their method does
not accommodate indirect left recursion, nor does it
create parse trees.

Our new method combines many of the ideas de-
veloped by others: as with the approach of Kuno
(1965) we use the length of the remaining input to
curtail recursive descent. Following Shiel (1976),
we pass additional information to parsers which is
used to curtail recursion. The information that we
pass to parsers is similar to the cancellation sets
used by Nederhof and Koster (1993) and includes
the number of times a parser is applied to each input
position. However, in our approach this informa-
tion is stored in a memotable which is also used to
achieve polynomial complexity. Although Johnson
(1995) also integrates a technique for dealing with
left recursion with memoization, our method dif-
fers from Johnson’s O(n3) approach in the technique
that we use to accommodate left recursion. Also,
our approach facilitates the construction of com-
pact representations of parse trees whereas John-
son’s appears not to. In the Haskell implementation
of our algorithm, we use a functional programming
structure called a monad to encapsulate the details
of the parser combinators. Lickman’s (1995) ap-
proach also uses a monad, but for a different pur-
pose. Our algorithm stores “left-recursion counts”
in the memotable as does the approach of Frost
and Hafiz (2006). However, our method accommo-
dates indirect left recursion and can be used to create
parsers, whereas the method of Frost and Hafiz can
only accommodate direct left recursion and creates
recognizers not parsers.

4 The New Method

We begin by describing how we improve complex-
ity of the recognizers defined in section 2. We then

show how to accommodate direct and indirect left
recursion. We end this section by showing how rec-
ognizers can be extended to parsers.

4.1 Memoization

As in Norvig (1991) a memotable is constructed dur-
ing recognition. At first the table is empty. During
the process it is updated with an entry for each rec-
ognizer ri that is applied. The entry consists of a set
of pairs, each consisting of an indexj at which the
recognizer ri has been applied, and a set of results
of the application of ri to j.

The memotable is used as follows: whenever a
recognizer ri is about to be applied to an indexj,
the memotable is checked to see if that recognizer
has ever been applied to that index before. If so,
the results from the memotable are returned. If not,
the recognizer is applied to the input at indexj, the
memotable is updated, and the results are returned.
For non-left-recursive recognizers, this process en-
sures that no recognizer is ever applied to the same
index more than once.

The process of memoization is achieved through
the functionmemoize which is defined as follows,
where theupdate function stores the result of rec-
ognizer application in the table:

memoize label r_i j
= if lookup label j succeeds,

return memotable result
else apply r_i to j,

update table, and return results

Memoized recognizers, such as the following,
have cubic complexity (see later):

msS = memoize "msS"((ms ‘thenS‘ msS
‘thenS‘ msS)

‘orelse‘ empty)
ms = memoize "ms" term_s

4.2 Accommodating direct left recursion

In order to accommodate direct left recursion, we in-
troduce a set of values cij denoting the number of
times each recognizer ri has been applied to the in-
dexj. For non-left-recursive recognizers this “left-
rec count” will be at most one, as the memotable
lookup will prevent such recognizers from ever be-
ing applied to the same input twice. However, for
left-recursive recognizers, the left-rec count is in-
creased on recursive descent (owing to the fact that
the memotable is only updated on recursive ascent

114

after the recognizer has been applied). Application
of a recognizerr to an indexj is failed whenever the
left-rec count exceeds the number of unconsumed
tokens of the input plus 1. At this point no parse is
possible (other than spurious parses which could oc-
cur with circular grammars — which we want to re-
ject). As illustration, consider the following branch
being created during the parse of two remaining to-
kens on the input (whereN, P andQ are nodes in the
parse search space corresponding to non-terminals,
andA, B andC to terminals or non-terminals):

N
/ \

N A
/ \

N B
/ \

P C
/
Q

/
N

The last call of the parser forN should be failed
owing to the fact that, irrespective of whatA, B, and
C are, either they must require at least one input to-
ken, otherwise they must rewrite toempty. If they
all require a token, then the parse cannot succeed. If
any of them rewrite toempty, then the grammar is
circular (N is being rewritten toN) and the last call
should be failed in either case.

Note that failing a parse when a branch is longer
than the length of the remaining input is incorrect as
this can occur in a correct parse if recognizers are
rewritten into other recognizers which do not have
“token requirements to the right”. For example, we
cannot fail the parse atP or Q as these could rewrite
to empty without indicating circularity. Also note
that we curtail the recognizer when the left-rec count
exceeds the number of unconsumed tokensplus 1.
The plus 1 is necessary to accommodate the case
where the recognizer rewrites to empty on applica-
tion to the end of the input.

To make use of the left-rec counts, we simply
modify the memoize function to refer to an addi-
tional table calledctable which contains the left-
rec counts cij, and to check and increment these
counters at appropriate points in the computation:
if the memotable lookup for the recognizer ri and
the indexj produces a result, that result is returned.
However, if the memotable does not contain a result

for that recognizer and that index, cij is checked
to see if the recognizer should be failed because
it has descended too far through left-recursion. If
so,memoize returns an empty set as result with the
memotable unchanged. Otherwise, the counter cij

is incremented and the recognizer ri is applied toj,
and the memotable is updated with the result before
it is returned. The functionmemoize defined below,
can now be applied to rules with direct left recursion.

memoize label r_i j =
if lookup label j succeeds

return memotable results
else if c_ij > (l_input)-j+1, return {}

else increment c_ij, apply r_i to j,
update memotable,

and return results

4.3 Accommodating indirect left recursion

We begin by illustrating how the method described
above may return incomplete results for grammars
containing indirect left recursion.

Consider the following grammar, and subset of
the search space, where the left and right branches
represent the expansions of the first two alternate
right-hand-sides of the rule for the non terminalS,
applied to the same position on the input:

S ::= S then ..| Q | P | x S
P ::= S then . / \
Q ::= T S then .. Q
T ::= P | |

S then .. T
| |
P P
| |

S then.. S then ..
|

fail S

Suppose that the left branch occurs before the
right branch, and that the left branch was failed due
to the left-rec count forS exceeding its limit. The
results stored forP on recursive ascent of the left
branch would be an empty set. The problem is that
the later call ofP on the right branch should not reuse
the empty set of results from the first call ofP as they
are incomplete with respect to the position ofP on
the right branch (i.e. ifP were to be re-applied to the
input in the context of the right branch, the results
would not necessarily be an empty set). This prob-
lem is a result of the fact thatS caused curtailment
of the results forP as well as for itself. This problem
can be solved as follows:

115

1) Pass left-rec contexts down the parse space. We
need additional information when storing and con-
sidering results for reuse. We begin by defining the
“left-rec-context” of a node in the parse search space
as a list of the following type, containing for each in-
dex, the left-rec count for each recognizer, including
the current recognizer, which have been called in the
search branch leading to that node:

[(index,[(recog label,left rec count)])]

2) Generate the reasons for curtailment when
computing results. For each result we need to know
if the subtrees contributing to it have been curtailed
through a left-rec limits, and if so, which recogniz-
ers, at which indices, caused the curtailment. A list
of (recog label, index) pairs which caused cur-
tailment in any of the subtrees is returned with the
result.‘orelse‘ and‘thenS‘ are modified, accord-
ingly, to merge these lists, in addition to merging the
results from subtrees.

3) Store results in the memotable together with a
subset of the current left-rec context corresponding
to those recognizers which caused the curtailment.
When a result is to be stored in the memotable for
a recognizerP, the list of recognizers which caused
curtailment (if any) in the subtrees contributing to
this result is examined. For each recognizerS which
caused curtailment at some index, the current left-
rec counter forS at that index (in the left-rec context
for P) is stored with the result forP. This means that
the only part of the left-rec context of a node, that is
stored with the result for that node, is a list of those
recognizers and current left-rec counts which had an
effect on curtailing the result. The limited left-rec
context which is stored with the result is called the
“left-rec context of the result”.

4) Consider results for reuse. Whenever a mem-
otable result is being considered for reuse, the left-
rec-context of that result is compared with the left-
rec-context of the current node in the parse search.
The result is only reused if, for each recognizer and
index in the left-rec context of the result, the left-rec-
count is smaller than or equal to the left-rec-count
of that recognizer and index in the current context.
This ensures that a result stored for some application
P of a recognizer at indexj is only reused by a sub-
sequent applicationP’ of the same recognizer at the
same position, if the left-rec context forP’ would
constrain the result more, or equally as much, as it

had been constrained by the left-rec context forP at
j. If there were no curtailment, the left-rec context
of a result would be empty and that result can be
reused anywhere irrespective of the current left-rec
context.

4.4 Extending recognizers to parsers

Instead of returning a list of indices representing
successful end points for recognition, parsers also
return the parse trees. However, in order that these
trees be represented in a compact form, they are con-
structed with reference to other trees that are stored
in the memotable, enabling the explicit sharing of
common subtrees, as in Kay’s (1980) and Tomita’s
(1986) methods. The example in section 1 illustrates
the results returned by a parser.

Parsers for terminals return a leaf value together
with an endpoint, stored in the memotable as illus-
trated below, indicating that the terminal"s" was
identified at position 2 on the input:

"verb" 2 ((2,3),[Leaf "s"])

The combinator‘thenS‘ is extended so that
parsers constructed with it return parse trees which
are represented using reference to their immediate
subtrees. For example:

"np"
3 ((3,5),[Branch[SubNode("det", (3,4)),

SubNode("noun",(4,5))]])

This memotable entry shows that a parse tree for a
nounphrase"np" has been identified, starting at po-
sition 3 and finishing at position5, and which con-
sists of two subtrees, corresponding to a determiner
and a noun.

The combinator‘orelse‘ unites results from two
parsers and also groups together trees which have
the same begin and end points. For example:

"np"
3 ((3,5),[Branch[SubNode("det", (3,4)),

SubNode("noun",(4,5))]])
((3,8), [Branch[SubNode("np", (3,5)),

SubNode("pp", (5,8))]])
((3,11),[Branch[SubNode("np", (3,5)),

SubNode("pp", (5,11))],
Branch[SubNode("np", (3,8)),

SubNode("pp", (8,11))]])

116

which shows that four parses of a nounphrase"np"

have been found starting at position 3, two of which
share the endpoint 11.

An important feature is that trees for the same
syntactic category having the same start/end points
are grouped together and it is the group that is re-
ferred to by other trees of which it is a constituent.
For example, in the following the parse tree for a
"vp" spanning positions 2 to 11 refers to a group of
subtrees corresponding to the two parses of an"np"

both of which span positions 3 to 11:
"vp" 2 (["np"],[])
((2,5), [Branch[SubNode("verb",(2,3)),

SubNode("np", (3,5))]])
((2,8), [Branch[SubNode("verb",(2,3)),

SubNode("np", (3,8))]])
((2,11),[Branch[SubNode("verb",(2,3)),

SubNode("np", (3,11))]])

5 Termination

The only source of iteration is in recursive function
calls. Therefore, proof of termination is based on
the identification of a measure function which maps
the arguments of recursive calls to a well-founded
ascending sequence of integers.

Basic recognizers such asterm ’i’ and the rec-
ognizerempty have no recursion and clearly termi-
nate for finite input. Other recognizers that are de-
fined in terms of these basic recognizers, through
mutual and nested recursion, are applied by the
memoize function which takes a recognizer and an
indexj as input and which accesses thememotable.
An appropriate measure function maps the index and
the set of left–rec values to an integer, which in-
creases by at least one for each recursive call. The
fact that the integer is bounded by conditions im-
posed on the maximum value of the index, the max-
imum values of the left-rec counters, and the max-
imum number of left-rec contexts, establishes ter-
mination. Extending recognizers to parsers does
not involve any additional recursive calls and conse-
quently, the proof also applies to parsers. A formal
proof is available from any of the authors.

6 Complexity

The following is an informal proof. A formal proof
is available from any of the authors.

We begin by showing that memoized non-left-
recursive and left-recursive recognizers have a

worst-case time complexities of O(n3) and O(n4) re-
spectively, where n is the number of tokens in the
input. The proof proceeds as follows:‘orelse‘
requires O(n) operations to merge the results from
two alternate recognizers provided that the indices
are kept in ascending order.‘then‘ involves O(n2)
operations when applying the second recognizer in
a sequence to the results returned by the first rec-
ognizer. (The fact that recognizers can have mul-
tiple alternatives involving multiple recognizers in
sequence increases cost by a factor that depends on
the grammar, but not on the length of the input). For
non-left-recursive recognizers,memoize guarantees
that each recognizer is applied at most once to each
input position. It follows that non-left recursive rec-
ognizers have O(n3) complexity. Recognizers with
direct left recursion can be applied to the same input
position at mostn times. It follows that such recog-
nizers have O(n4) complexity. In the worst case a
recognizer with indirect left recursion could be ap-
plied to the same input positionn * nt times where
nt is the number of nonterminals in the grammar.
This worst case would occur when every nontermi-
nal was involved in the path of indirect recursion for
some nonterminal. Complexity remains O(n4).

The only difference between parsers and recog-
nizers is that parsers construct and store parts of
parse trees rather than end points. We extend the
complexity analysis of recognizers to that of parsers
and show that for grammars in Chomsky Normal
Form (CNF) (i.e. grammars whose right-hand-sides
have at most two symbols, each of which can be ei-
ther a terminal or a non-terminal), the complexity
of non-left recursive parsers is O(n3) and of left-
recursive parsers it is O(n4). The analysis begins by
defining a “parse tuple” consisting of a parser name
p, a start/end point pair(s, e), and a list of parser
names and end/point pairs corresponding to the first
level of the parse tree returned byp for the sequence
of tokens froms to e. (Note that this corresponds to
an entry in the compact representation). The anal-
ysis then considers the effect of manipulating sets
of parse tuples, rather than endpoints which are the
values manipulated by recognizers. Parsers corre-
sponding to grammars in CNF will return, in the
worst case, for each start/end point pair (s, e) ,(((e -

s) + 1) * t2) parse tuples, wheret is the number of ter-
minals and non-terminals in the grammar. It follows

117

that there are O(n) parse tuples for each parser and
begin/endpoint pair. Each parse tuple corresponds
to a bi-partition of the sequence starting ats and fin-
ishing ate by two parsers (possibly the same) from
the set of parsers corresponding to terminals and
non-terminals in the grammar. It is these parse tu-
ples that are manipulated by‘orelse‘ and‘thenS‘.
The only effect on complexity of these operations is
to increase the complexity of‘orelse‘ from O(n)
to O(n2), which is the same as the complexity of
‘thenS‘. Owing to the fact that the complexity of
‘thenS‘ had the highest degree in the application of
a compound recognizer to an index, increasing the
complexity of‘orelse‘ to the same degree in pars-
ing has no effect on the overall complexity of the
process.

The representation of trees in the memotable has
one entry for each parser. In the worst case, when
the parser is applied to every index, the entry has
n sub-entries, corresponding ton begin points. For
each of these sub-entries there are up ton sub-sub-
entries, each corresponding to an end point of the
parse. Each of these sub-entries contains O(n) parse
tuples as discussed above. It follows that the size of
the compact representation is O(n3).

7 Implementation

We have implemented our method in the pure func-
tional programming language Haskell. We use a
monad (Wadler 1995) to implement memoization.
Use of a monad allows the memotable to be sys-
tematically threaded through the parsers while hid-
ing the details of table update and reuse, allowing
a clean and simple interface to be presented to the
user. The complete Haskell code is available from
any of the authors.

8 Experimental Results

In order to provide evidence of the low-order poly-
nomial costs and scalability of our method, we con-
ducted a limited evaluation with respect to four
practical natural-language grammars used by Tomita
(Appendix F, 1986) when comparing his algorithm
with Earley’s, and four variants of an abstract highly
ambiguous grammar from Aho and Ullman (1972).
Our Haskell program was compiled using the Glas-
gow Haskell Compiler 6.6 (the code has not yet been

tuned to obtain the best performance from this pat-
form). We used a 3GHz/1GB PC in our experiments.

8.1 Tomita’s Grammars

The Tomita grammars used were: G1 (8 rules), G2
(40 rules), G3 (220 rules), and G4 (400 rules). We
used two sets of input: a) the three most-ambiguous
inputs from Tomita’s sentence set 1 (Appendix G)
of lengths19, 26, and 26 which we parsed with
G3 (as did Tomita), and b) three inputs of lengths
4, 10, and 40, with systematically increasing
ambiguity, chosen from Tomita’s sentence set 2,
which he generated automatically using the formula:

noun verb det noun (prep det noun)∗

The results, which are tabulated in figure 1,
show our timings and those recorded by Tomita for
his original algorithm and for an improved Earley
method, using a DEC-20 machine (Tomita 1986,
Appendix D).

Considered by themselves our timings are low
enough to suggest that our method is feasible for
use in small to medium applications, such as NL in-
terfaces to databases or rhythm analysis in poetry.
Such applications typically have modest grammars
(no more than a few hundred rules) and are not re-
quired to parse huge volumes of input.

Clearly there can be no direct comparison against
years-old DEC-20 times, and improved versions of
both of these algorithms do exist. However, we point
to some relevant trends in the results. The increases
in times for our method roughly mirror the increases
shown for Tomita’s algorithm, as grammar complex-
ity and/or input size increase. This suggests that our
algorithm scales adequately well, and not dissimi-
larly to the earlier algorithms.

8.2 Highly ambiguous abstract grammars

We defined four parsers as executable specifica-
tions of four variants of a highly-ambiguous gram-
mar introduced by Aho and Ullman (1972) when
discussing ambiguity: an unmemoized non-left–
recursive parsers, a memoized versionms, a memo-
ized left–recursive versionsml, and a left–recursive
version with all parts memoized. (This improves
efficiency similarly to converting the grammar to
Chomsky Normal Form.):

118

Input No. of Our algorithm (complete parsing)-PC Tomitas (complete parsing)-DEC 20 Earleys (recognition only)-DEC 20
length Parses G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4
Input from Tomitas sentence set 1. Timings are in seconds.
19 346 0.02 4.79 7.66
26 1,464 0.03 8.66 14.65
Input from Tomitas sentence set 2. Timings are in seconds.
22 429 0.00 0.00 0.03 0.05 2.80 6.40 4.74 19.93 2.04 7.87 7.25 42.75
31 16,796 0.00 0.02 0.05 0.09 6.14 14.40 10.40 45.28 4.01 14.09 12.06 70.74
40 742,900 0.03 0.08 0.11 0.14 11.70 28.15 18.97 90.85 6.75 22.42 19.12 104.91

Figure 1: Informal comparison with Tomita/Earley results

s = (term ’a’ ‘thenS‘ s ‘thenS‘ s)
‘orelse‘ empty

sm = memoize "sm"
((term ’a’ ‘thenS‘ sm ‘thenS‘ sm)
‘orelse‘ empty)

sml = memoize "sml"
((sml ‘thenS‘ sml

‘thenS‘ term ’a’)
‘orelse‘ empty)

smml = memoize "smml"
((smml ‘thenS‘
(memoize "smml_a"

(smml ‘thenS‘ term ’a’)))
‘orelse‘ empty)

We chose these four grammars as they are highly
ambiguous. According to Aho and Ullman (1972),
s generates over128 billion complete parses of an
input consisting of 24‘a’’s. Although the left-
recursive grammar does not generate exactly the
same parses, it generates the same number of parses,
as it matches a terminal at the end of the rule rather
than at the start.

Input No. of parses Seconds to generate the
length excluding packed representation

partial parses of full and partial parses
s sm sml smml

6 132 1.22 0.00 0.00 0.00
12 208,012 out of 0.00 0.00 0.02

space
24 1.29e+12 0.08 0.13 0.06
48 1.313e+26 0.83 0.97 0.80

Figure 2: Times to compute forest for n

These results show that our method can accom-
modate massively-ambiguous input involving the
generation of large and complex parse forests. For
example, the full forest forn=48 contains 1,225
choice nodes and 19,600 branch nodes. Note also
that the use of more memoization insmml reduces
the cost of left-rec checking.

9 Concluding Comments

We have extended previous work of others on mod-
ular parsers constructed as executable specifica-
tions of grammars, in order to accommodate am-
biguity and left recursion in polynomial time and
space. We have implemented our method as a set of
parser combinators in the functional programming
language Haskell, and have conducted experiments
which demonstrate the viability of the approach.

The results of the experiments suggest that our
method is feasible for use in small to medium ap-
plications which need parsing of ambiguous gram-
mars. Our method, like other methods which use
parser combinators or DCGs, allows parsers to be
created as executable specifications which are “em-
bedded” in the host programming language. It is
often claimed that this embedded approach is more
convenient than indirect methods which involve the
use of separate compiler tools such as yacc, for rea-
sons such as support from the host language (includ-
ing type checking) and ease of use. The major ad-
vantage of our method is that it increases the type
of grammars that can be accommodated in the em-
bedded style, by supporting left recursion and ambi-
guity. This greatly increases what can be done in
this approach to parser construction, and removes
the need for non-expert users to painfully rewrite
and debug their grammars to avoid left recursion.
We believe such advantages balance well against any
reduction in performance, especially when an appli-
cation is being prototyped.

The Haskell implementation is in its initial stage.
We are in the process of modifying it to improve ef-
ficiency, and to make better use of Haskell’s lazy
evaluation strategy (e.g. to return only the firstn

successful parses of the input).
Future work includes proof of correctness, analy-

sis with respect to grammar size, testing with larger
natural language grammars, and extending the ap-

119

proach so that language evaluators can be con-
structed as modular executable specifications of at-
tribute grammars.

Acknowledgements

Richard Frost acknowledges the support provided
by the Natural Sciences and Engineering Research
Council of Canada in the form of a discovery grant.

References
1. Aho, A. V. and Ullman, J. D. (1972)The Theory of

Parsing, Translation, and Compiling. Volume I: Parsing.
Prentice-Hall.

2. Aho, A. V., Sethi, R. and Ullman, J. D. (1986)Compil-
ers: Principles, Techniques and Tools. Addison-Wesley
Longman Publishing Co.

3. Camarao, C., Figueiredo, L. and Oliveira, R.,H. (2003)
Mimico: A Monadic Combinator Compiler Generator.
Journal of the Brazilian Computer Society9(1).

4. Earley, J. (1970) An efficient context-free parsing algo-
rithm.Comm. ACM13(2) 94–102.

5. Eijck, J. van (2003) Parser combinators for extraction. In
Paul Dekker and Robert van Rooy, editors,Proceedings
of the Fourteenth Amsterdam ColloqiumILLC, Univer-
sity of Amsterdam. 99–104.

6. Frost, R. A. (2006) Realization of Natural-Language In-
terfaces using Lazy Functional Programming.ACM Com-
put. Surv.38(4).

7. Frost, R. A. and Hafiz, R. (2006) A New Top-Down Pars-
ing Algorithm to Accommodate Ambiguity and Left Re-
cursion in Polynomial Time.SIGPLAN Notices42 (5)
46–54.

8. Hutton, G. (1992) Higher-order functions for parsing.J.
Functional Programming2 (3) 323–343.

9. Johnson, M. (1995) Squibs and Discussions: Memo-
ization in top-down parsing.Computational Linguistics
21(3) 405–417.

10. Kay, M. (1980) Algorithm schemata and data structures in
syntactic processing.Technical Report CSL-80–12,XE-
ROX Palo Alto Research Center.

11. Koskimies, K. (1990) Lazy recursive descent parsing for
modular language implementation.Software Practice
and Experience20 (8) 749–772.

12. Kuno, S. (1965) The predictive analyzer and a path elim-
ination technique.Comm. ACM8(7) 453–462.

13. Leermakers, R. (1993)The Functional Treatment of Pars-
ing. Kluwer Academic Publishers, ISBN0–7923–9376–
7.

14. Lickman, P. (1995) Parsing With Fixed Points.Master’s
Thesis, University of Cambridge.

15. Moore, R. C. (2000) Removing left recursion from
context-free grammars. InProceedings, 1st Meeting
of the North American Chapter of the Association for
Computational Linguistics, Seattle, Washington, ANLP–
NAACL 2000. 249–255.

16. Nederhof, M. J. and Koster, C. H. A. (1993) Top-Down
Parsing for Left-recursive Grammars.TechnicalReport
93–10 Research Institute for Declarative Systems, De-
partment of Informatics, Faculty of Mathematics and In-
formatics, Katholieke Universiteit, Nijmegen.

17. Norvig, P. (1991) Techniques for automatic memoisation
with applications to context-free parsing.Computational
Linguistics17(1) 91–98.

18. Shiel, B. A. (1976) Observations on context-free pars-
ing. Technical ReportTR 12–76, Center for Research
in Computing Technology, Aiken Computational Labo-
ratory, Harvard University.

19. Tomita, M. (1986)Efficient Parsing for Natural Lan-
guage: A Fast Algorithm for Practical Systems.Kluwer
Academic Publishers, Boston, MA.

20. Wadler, P. (1995) Monads for functional programming,
Proceedings of the Baastad Spring School on Advanced
Functional Programming,ed J. Jeuring and E. Meijer.
Springer Verlag LNCS 925.

120

Proceedings of the 10th Conference on Parsing Technologies, pages 121–132,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

On the Complexity of Non-Projective Data-Driven Dependency Parsing

Ryan McDonald
Google Inc.

76 Ninth Avenue
New York, NY 10028

ryanmcd@google.com

Giorgio Satta
University of Padua
via Gradenigo 6/A

I-35131 Padova, Italy
satta@dei.unipd.it

Abstract

In this paper we investigate several non-
projective parsing algorithms for depen-
dency parsing, providing novel polynomial
time solutions under the assumption that
each dependency decision is independent of
all the others, called here the edge-factored
model. We also investigate algorithms for
non-projective parsing that account for non-
local information, and present several hard-
ness results. This suggests that it is unlikely
that exact non-projective dependency pars-
ing is tractable for any model richer than the
edge-factored model.

1 Introduction

Dependency representations of natural language are
a simple yet flexible mechanism for encoding words
and their syntactic dependencies through directed
graphs. These representations have been thoroughly
studied in descriptive linguistics (Tesnière, 1959;
Hudson, 1984; Sgall et al., 1986; Meĺčuk, 1988) and
have been applied in numerous language process-
ing tasks. Figure 1 gives an example dependency
graph for the sentence Mr. Tomash will remain as a
director emeritus, which has been extracted from the
Penn Treebank (Marcus et al., 1993). Each edge in
this graph represents a single syntactic dependency
directed from a word to its modifier. In this rep-
resentation all edges are labeled with the specific
syntactic function of the dependency, e.g., SBJ for
subject and NMOD for modifier of a noun. To sim-
plify computation and some important definitions,

an artificial token is inserted into the sentence as the
left most word and will always represent the root of
the dependency graph. We assume all dependency
graphs are directed trees originating out of a single
node, which is a common constraint (Nivre, 2005).

The dependency graph in Figure 1 is an exam-
ple of a nested or projective graph. Under the as-
sumption that the root of the graph is the left most
word of the sentence, a projective graph is one where
the edges can be drawn in the plane above the sen-
tence with no two edges crossing. Conversely, a
non-projective dependency graph does not satisfy
this property. Figure 2 gives an example of a non-
projective graph for a sentence that has also been
extracted from the Penn Treebank. Non-projectivity
arises due to long distance dependencies or in lan-
guages with flexible word order. For many lan-
guages, a significant portion of sentences require
a non-projective dependency analysis (Buchholz et
al., 2006). Thus, the ability to learn and infer non-
projective dependency graphs is an important prob-
lem in multilingual language processing.

Syntactic dependency parsing has seen a num-
ber of new learning and inference algorithms which
have raised state-of-the-art parsing accuracies for
many languages. In this work we focus on data-
driven models of dependency parsing. These models
are not driven by any underlying grammar, but in-
stead learn to predict dependency graphs based on
a set of parameters learned solely from a labeled
corpus. The advantage of these models is that they
negate the need for the development of grammars
when adapting the model to new languages.

One interesting class of data-driven models are

121

Figure 1: A projective dependency graph.

Figure 2: Non-projective dependency graph.

those that assume each dependency decision is in-
dependent modulo the global structural constraint
that dependency graphs must be trees. Such mod-
els are commonly referred to as edge-factored since
their parameters factor relative to individual edges
of the graph (Paskin, 2001; McDonald et al.,
2005a). Edge-factored models have many computa-
tional benefits, most notably that inference for non-
projective dependency graphs can be achieved in
polynomial time (McDonald et al., 2005b). The pri-
mary problem in treating each dependency as in-
dependent is that it is not a realistic assumption.
Non-local information, such as arity (or valency)
and neighbouring dependencies, can be crucial to
obtaining high parsing accuracies (Klein and Man-
ning, 2002; McDonald and Pereira, 2006). How-
ever, in the data-driven parsing setting this can be
partially adverted by incorporating rich feature rep-
resentations over the input (McDonald et al., 2005a).

The goal of this work is to further our current
understanding of the computational nature of non-
projective parsing algorithms for both learning and
inference within the data-driven setting. We start by
investigating and extending the edge-factored model
of McDonald et al. (2005b). In particular, we ap-
peal to the Matrix Tree Theorem for multi-digraphs
to design polynomial-time algorithms for calculat-
ing both the partition function and edge expecta-
tions over all possible dependency graphs for a given
sentence. To motivate these algorithms, we show
that they can be used in many important learning
and inference problems including min-risk decod-
ing, training globally normalized log-linear mod-
els, syntactic language modeling, and unsupervised

learning via the EM algorithm – none of which have
previously been known to have exact non-projective
implementations.

We then switch focus to models that account for
non-local information, in particular arity and neigh-
bouring parse decisions. For systems that model ar-
ity constraints we give a reduction from the Hamilto-
nian graph problem suggesting that the parsing prob-
lem is intractable in this case. For neighbouring
parse decisions, we extend the work of McDonald
and Pereira (2006) and show that modeling vertical
neighbourhoods makes parsing intractable in addi-
tion to modeling horizontal neighbourhoods. A con-
sequence of these results is that it is unlikely that
exact non-projective dependency parsing is tractable
for any model assumptions weaker than those made
by the edge-factored models.

1.1 Related Work

There has been extensive work on data-driven de-
pendency parsing for both projective parsing (Eis-
ner, 1996; Paskin, 2001; Yamada and Matsumoto,
2003; Nivre and Scholz, 2004; McDonald et al.,
2005a) and non-projective parsing systems (Nivre
and Nilsson, 2005; Hall and Nóvák, 2005; McDon-
ald et al., 2005b). These approaches can often be
classified into two broad categories. In the first cat-
egory are those methods that employ approximate
inference, typically through the use of linear time
shift-reduce parsing algorithms (Yamada and Mat-
sumoto, 2003; Nivre and Scholz, 2004; Nivre and
Nilsson, 2005). In the second category are those
that employ exhaustive inference algorithms, usu-
ally by making strong independence assumptions, as
is the case for edge-factored models (Paskin, 2001;
McDonald et al., 2005a; McDonald et al., 2005b).
Recently there have also been proposals for exhaus-
tive methods that weaken the edge-factored assump-
tion, including both approximate methods (McDon-
ald and Pereira, 2006) and exact methods through in-
teger linear programming (Riedel and Clarke, 2006)
or branch-and-bound algorithms (Hirakawa, 2006).

For grammar based models there has been limited
work on empirical systems for non-projective pars-
ing systems, notable exceptions include the work
of Wang and Harper (2004). Theoretical studies of
note include the work of Neuhaus and Böker (1997)
showing that the recognition problem for a mini-

122

mal dependency grammar is hard. In addition, the
work of Kahane et al. (1998) provides a polynomial
parsing algorithm for a constrained class of non-
projective structures. Non-projective dependency
parsing can be related to certain parsing problems
defined for phrase structure representations, as for
instance immediate dominance CFG parsing (Barton
et al., 1987) and shake-and-bake translation (Brew,
1992).

Independently of this work, Koo et al. (2007) and
Smith and Smith (2007) showed that the Matrix-
Tree Theorem can be used to train edge-factored
log-linear models of dependency parsing. Both stud-
ies constructed implementations that compare favor-
ably with the state-of-the-art. The work of Meilă
and Jaakkola (2000) is also of note. In that study
they use the Matrix Tree Theorem to develop a
tractable bayesian learning algorithms for tree belief
networks, which in many ways are closely related
to probabilistic dependency parsing formalisms and
the problems we address here.

2 Preliminaries

Let L = {l1, . . . , l|L|} be a set of permissible syn-
tactic edge labels and x = x0x1 · · ·xn be a sen-
tence such that x0=root. From this sentence we con-
struct a complete labeled directed graph (digraph)
Gx = (Vx, Ex) such that,

• Vx = {0, 1, . . . , n}

• Ex = {(i, j)k | ∀ i, j ∈ Vx and 1 ≤ k ≤ |L|}

Gx is a graph where each word in the sentence is a
node, and there is a directed edge between every pair
of nodes for every possible label. By its definition,
Gx is a multi-digraph, which is a digraph that may
have more than one edge between any two nodes.
Let (i, j)k represent the kth edge from i to j. Gx en-
codes all possible labeled dependencies between the
words of x. Thus every possible dependency graph
of x must be a subgraph of Gx.

Let i →+ j be a relation that is true if and only
if there is a non-empty directed path from node i to
node j in some graph under consideration. A di-
rected spanning tree1 of a graph G, that originates

1A directed spanning tree is commonly referred to as a ar-
borescence in the graph theory literature.

out of node 0, is any subgraph T = (VT , ET) such
that,

• VT = Vx and ET ⊆ Ex

• ∀j ∈ VT , 0 →+ j if and only if j 6= 0

• If (i, j)k ∈ ET , then (i′, j)k′
/∈ ET , ∀i′ 6= i

and/or k′ 6= k.

Define T (G) as the set of all directed spanning trees
for a graph G. As McDonald et al. (2005b) noted,
there is a one-to-one correspondence between span-
ning trees of Gx and labeled dependency graphs
of x, i.e., T (Gx) is exactly the set of all possible
projective and non-projective dependency graphs for
sentence x. Throughout the rest of this paper, we
will refer to any T ∈ T (Gx) as a valid dependency
graph for a sentence x. Thus, by definition, every
valid dependency graph must be a tree.

3 Edge-factored Models

In this section we examine the class of models that
assume each dependency decision is independent.
Within this setting, every edge in an induced graph
Gx for a sentence x will have an associated weight
wk

ij ≥ 0 that maps the kth directed edge from node
i to node j to a real valued numerical weight. These
weights represents the likelihood of a dependency
occurring from word wi to word wj with label lk.
Define the weight of a spanning tree T = (VT , ET)
as the product of the edge weights

w(T) =
∏

(i,j)k∈ET

wk
ij

It is easily shown that this formulation includes
the projective model of Paskin (2001) and the non-
projective model of McDonald et al. (2005b).

The definition of wk
ij depends on the context in

which it is being used. For example, in the work of
McDonald et al. (2005b) it is simply a linear classi-
fier that is a function of the words in the dependency,
the label of the dependency, and any contextual fea-
tures of the words in the sentence. In a generative
probabilistic model (such as Paskin (2001)) it could
represent the conditional probability of a word wj

being generated with a label lk given that the word
being modified is wi (possibly with some other in-
formation such as the orientation of the dependency

123

or the number of words between wi and wj). We will
attempt to make any assumptions about the form wk

ij

clear when necessary.
For the remainder of this section we discuss three

crucial problems for learning and inference while
showing that each can be computed tractably for the
non-projective case.

3.1 Finding the Argmax
The first problem of interest is finding the highest
weighted tree for a given input sentence x

T = argmax
T∈T (Gx)

∏
(i,j)k∈ET

wk
ij

McDonald et al. (2005b) showed that this can be
solved in O(n2) for unlabeled parsing using the
Chu-Liu-Edmonds algorithm for standard digraphs
(Chu and Liu, 1965; Edmonds, 1967). Unlike most
exact projective parsing algorithms, which use effi-
cient bottom-up chart parsing algorithms, the Chu-
Liu-Edmonds algorithm is greedy in nature. It be-
gins by selecting the single best incoming depen-
dency edge for each node j. It then post-processes
the resulting graph to eliminate cycles and then con-
tinues recursively until a spanning tree (or valid
dependency graph) results (see McDonald et al.
(2005b) for details).

The algorithm is trivially extended to the multi-
digraph case for use in labeled dependency parsing.
First we note that if the maximum directed spanning
tree of a multi-digraph Gx contains any edge (i, j)k,
then we must have k = k∗ = argmaxk wk

ij . Oth-
erwise we could simply substitute (i, j)k∗

in place
of (i, j)k and obtain a higher weighted tree. There-
fore, without effecting the solution to the argmax
problem, we can delete all edges in Gx that do not
satisfy this property. The resulting digraph is no
longer a multi-digraph and the Chu-Liu-Edmonds
algorithm can be applied directly. The new runtime
is O(|L|n2).

As a side note, the k-best argmax problem for di-
graphs can be solved in O(kn2) (Camerini et al.,
1980). This can also be easily extended to the multi-
digraph case for labeled parsing.

3.2 Partition Function
A common step in many learning algorithms is to
compute the sum over the weight of all the possi-

ble outputs for a given input x. This value is often
referred to as the partition function due to its sim-
ilarity with a value by the same name in statistical
mechanics. We denote this value as Zx,

Zx =
∑

T∈T (Gx)

w(T) =
∑

T∈T (Gx)

∏
(i,j)k∈ET

wk
i,j

To compute this sum it is possible to use the Matrix
Tree Theorem for multi-digraphs,

Matrix Tree Theorem (Tutte, 1984): Let G be a
multi-digraph with nodes V = {0, 1, . . . , n} and
edges E. Define (Laplacian) matrix Q as a (n +
1)×(n + 1) matrix indexed from 0 to n. For all i and
j, define:

Qjj =
∑

i6=j,(i,j)k∈E

wk
ij & Qij =

∑
i6=j,(i,j)k∈E

−wk
ij

If the ith row and column are removed from Q to
produce the matrix Qi, then the sum of the weights of
all directed spanning trees rooted at node i is equal
to |Qi| (the determinant of Qi).

Thus, if we construct Q for a graph Gx, then the de-
terminant of the matrix Q0 is equivalent to Zx. The
determinant of an n×n matrix can be calculated in
numerous ways, most of which take O(n3) (Cormen
et al., 1990). The most efficient algorithms for cal-
culating the determinant of a matrix use the fact that
the problem is no harder than matrix multiplication
(Cormen et al., 1990). Matrix multiplication cur-
rently has known O(n2.38) implementations and it
has been widely conjectured that it can be solved in
O(n2) (Robinson, 2005). However, most algorithms
with sub-O(n3) running times require constants that
are large enough to negate any asymptotic advantage
for the case of dependency parsing. As a result, in
this work we use O(n3) as the runtime for comput-
ing Zx.

Since it takes O(|L|n2) to construct the matrix Q,
the entire runtime to compute Zx is O(n3 + |L|n2).

3.3 Edge Expectations
Another important problem for various learning
paradigms is to calculate the expected value of each
edge for an input sentence x,

〈(i, j)k〉x =
∑

T∈T (Gx)

w(T)× I((i, j)k, T)

124

Input: x = x0x1 · · ·xn

1. Construct Q O(|L|n2)
2. for j : 1 .. n O(n)
3. Q′

jj = Qjj and Q′
ij = Qij , 0 ≤ ∀i ≤ n O(n)

4. Qjj = 1 and Qij = 0, 0 ≤ ∀i ≤ n O(n)
5. for i : 0 .. n & i 6= j O(n)
6. Qij = −1 O(1)
7. Zx = |Q0| O(n3)
8. 〈(i, j)k〉x = wk

ijZx, ∀1 ≤ k ≤ |L| O(|L|)
9. end for
10. Qjj = Q′

jj and Qij = Q′
ij , 0 ≤ ∀i ≤ n O(n)

11. end for

Figure 3: Algorithm to calculate 〈(i, j)k〉x in
O(n5 + |L|n2).

where I((i, j)k, T) is an indicator function that is
one when the edge (i, j)k is in the tree T .

To calculate the expectation for the edge (i, j)k,
we can simply eliminate all edges (i′, j)k′ 6= (i, j)k

from Gx and calculate Zx. Zx will now be equal
to the sum of the weights of all trees that con-
tain (i, j)k. A naive implementation to compute
the expectation of all |L|n2 edges takes O(|L|n5 +
|L|2n4), since calculating Zx takes O(n3 + |L|n2)
for a single edge. However, we can reduce this con-
siderably by constructing Q a single time and only
making modifications to it when necessary. An al-
gorithm is given in Figure 3.3 that has a runtime of
O(n5 + |L|n2). This algorithm works by first con-
structing Q. It then considers edges from the node i
to the node j. Now, assume that there is only a single
edge from i to j and that that edge has a weight of 1.
Furthermore assume that this edge is the only edge
directed into the node j. In this case Q should be
modified so that Qjj = 1, Qij = −1, and Qi′j = 0,
∀i′ 6= i, j (by the Matrix Tree Theorem). The value
of Zx under this new Q will be equivalent to the
weight of all trees containing the single edge from i
to j with a weight of 1. For a specific edge (i, j)k its
expectation is simply wk

ijZx, since we can factor out
the weight 1 edge from i to j in all the trees that con-
tribute to Zx and multiply through the actual weight
for the edge. The algorithm then reconstructs Q and
continues.

Following the work of Koo et al. (2007) and Smith
and Smith (2007), it is possible to compute all ex-
pectations in O(n3 + |L|n2) through matrix inver-
sion. To make this paper self contained, we report
here their algorithm adapted to our notation. First,

consider the equivalence,

∂ log Zx

∂wk
ij

=
∂ log Zx

∂Zx

∂Zx

∂wk
ij

=
1

Zx

∑
T∈T (Gx)

w(T)
wk

ij

× I((i, j)k, T)

As a result, we can re-write the edge expectations as,

〈(i, j)k〉 = Zxwk
ij

∂ log Zx

∂wk
ij

= Zxwk
ij

∂ log |Q0|
∂wk

ij

Using the chain rule, we get,

∂ log |Q0|
∂wk

ij

=
∑

i′,j′≥1

∂ log |Q0|
∂(Q0)i′j′

∂(Q0)i′j′

∂wk
ij

We assume the rows and columns of Q0 are in-
dexed from 1 so that the indexes of Q and Q0 co-
incide. To calculate 〈(i, j)k〉 when i, j > 0, we can
use the fact that ∂ log |X|/Xij = (X−1)ji and that
∂(Q0)i′j′/∂wk

ij is non zero only when i′ = i and
j′ = j or i′ = j′ = j to get,

〈(i, j)k〉 = Zxwk
ij [((Q

0)−1)jj − ((Q0)−1)ji]

When i = 0 and j > 0 the only non zero term of
this sum is when i′ = j′ = j and so

〈(0, j)k〉 = Zxwk
0j((Q

0)−1)jj

Zx and (Q0)−1 can both be calculated a single time,
each taking O(n3). Using these values, each expec-
tation is computed in O(1). Coupled with with the
fact that we need to construct Q and compute the
expectation for all |L|n2 possible edges, in total it
takes O(n3 + |L|n2) time to compute all edge ex-
pectations.

3.4 Comparison with Projective Parsing
Projective dependency parsing algorithms are well
understood due to their close connection to phrase-
based chart parsing algorithms. The work of Eis-
ner (1996) showed that the argmax problem for di-
graphs could be solved in O(n3) using a bottom-
up dynamic programming algorithm similar to CKY.
Paskin (2001) presented an O(n3) inside-outside al-
gorithm for projective dependency parsing using the
Eisner algorithm as its backbone. Using this al-
gorithm it is trivial to calculate both Zx and each

125

Projective Non-Projective
argmax O(n3 + |L|n2) O(|L|n2)

Zx O(n3 + |L|n2) O(n3 + |L|n2)
〈(i, j)k〉x O(n3 + |L|n2) O(n3 + |L|n2)

Table 1: Comparison of runtime for non-projective
and projective algorithms.

edge expectation. Crucially, the nested property of
projective structures allows edge expectations to be
computed in O(n3) from the inside-outside values.
It is straight-forward to extend the algorithms of Eis-
ner (1996) and Paskin (2001) to the labeled case
adding only a factor of O(|L|n2).

Table 1 gives an overview of the computational
complexity for the three problems considered here
for both the projective and non-projective case. We
see that the non-projective case compares favorably
for all three problems.

4 Applications

To motivate the algorithms from Section 3, we
present some important situations where each cal-
culation is required.

4.1 Inference Based Learning
Many learning paradigms can be defined as
inference-based learning. These include the per-
ceptron (Collins, 2002) and its large-margin vari-
ants (Crammer and Singer, 2003; McDonald et al.,
2005a). In these settings, a models parameters are
iteratively updated based on the argmax calculation
for a single or set of training instances under the
current parameter settings. The work of McDon-
ald et al. (2005b) showed that it is possible to learn
a highly accurate non-projective dependency parser
for multiple languages using the Chu-Liu-Edmonds
algorithm for unlabeled parsing.

4.2 Non-Projective Min-Risk Decoding
In min-risk decoding the goal is to find the depen-
dency graph for an input sentence x, that on average
has the lowest expected risk,

T = argmin
T∈T (Gx)

∑
T ′∈T (Gx)

w(T ′)R(T, T ′)

where R is a risk function measuring the error be-
tween two graphs. Min-risk decoding has been

studied for both phrase-structure parsing and depen-
dency parsing (Titov and Henderson, 2006). In that
work, as is common with many min-risk decoding
schemes, T (Gx) is not the entire space of parse
structures. Instead, this set is usually restricted to
a small number of possible trees that have been pre-
selected by some baseline system. In this subsection
we show that when the risk function is of a specific
form, this restriction can be dropped. The result is
an exact min-risk decoding procedure.

Let R(T, T ′) be the Hamming distance between
two dependency graphs for an input sentence x =
x0x1 · · ·xn,

R(T, T ′) = n −
∑

(i,j)k∈ET

I((i, j)k, T ′)

This is a common definition of risk between two
graphs as it corresponds directly to labeled depen-
dency parsing accuracy (McDonald et al., 2005a;
Buchholz et al., 2006). Some algebra reveals,

T = argmin
T∈T (Gx)

X
T ′∈T (Gx)

w(T
′
)R(T, T

′
)

= argmin
T∈T (Gx)

X
T ′∈T (Gx)

w(T
′
)[n −

X
(i,j)k∈ET

I((i, j)
k
, T

′
)]

= argmin
T∈T (Gx)

−
X

T ′∈T (Gx)

w(T
′
)

X
(i,j)k∈ET

I((i, j)
k
, T

′
)

= argmin
T∈T (Gx)

−
X

(i,j)k∈ET

X
T ′∈T (Gx)

w(T
′
)I((i, j)

k
, T

′
)

= argmax
T∈T (Gx)

X
(i,j)k∈ET

X
T ′∈T (Gx)

w(T
′
)I((i, j)

k
, T

′
)

= argmax
T∈T (Gx)

Y
(i,j)k∈ET

e
P

T ′∈T (Gx) w(T ′)I((i,j)k,T ′)

= argmax
T∈T (Gx)

Y
(i,j)k∈ET

e
〈(i,j)k〉x

By setting the edge weights to wk
ij = e〈(i,j)

k〉x we
can directly solve this problem using the edge ex-
pectation algorithm described in Section 3.3 and the
argmax algorithm described in Section 3.1.

4.3 Non-Projective Log-Linear Models

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are global discriminative learning algorithms
for problems with structured output spaces, such as
dependency parsing. For dependency parsing, CRFs
would define the conditional probability of a depen-
dency graph T for a sentence x as a globally nor-

126

malized log-linear model,

p(T |x) =

∏
(i,j)k∈ET

ew·f(i,j,k)∑
T ′∈T (Gx)

∏
(i,j)k∈ET ′ ew·f(i,j,k)

=

∏
(i,j)k∈ET

wk
ij∑

T ′∈T (Gx)

∏
(i,j)k∈ET ′ wk

ij

=
w(T)
Zx

Here, the weights wk
ij are potential functions over

each edge defined as an exponentiated linear classi-
fier with weight vector w ∈ RN and feature vector
f(i, j, k) ∈ RN , where fu(i, j, k) ∈ R represents a
single dimension of the vector f. The denominator,
which is exactly the sum over all graph weights, is a
normalization constant forcing the conditional prob-
ability distribution to sum to one.

CRFs set the parameters w to maximize the log-
likelihood of the conditional probability over a train-
ing set of examples T = {(xα, Tα)}|T |

α=1,

w = argmax
w

∑
α

log p(Tα|xα)

This optimization can be solved through a vari-
ety of iterative gradient based techniques. Many
of these require the calculation of feature expecta-
tions over the training set under model parameters
for the previous iteration. First, we note that the
feature functions factor over edges, i.e., fu(T) =∑

(i,j)k∈ET
fu(i, j, k). Because of this, we can use

edge expectations to compute the expectation of ev-
ery feature fu. Let 〈fu〉xα represent the expectation
of feature fu for the training instance xα,

〈fu〉xα =
X

T∈T (Gxα)

p(T |xα)fu(T)

=
X

T∈T (Gxα)

p(T |xα)
X

(i,j)k∈ET

fu(i, j, k)

=
X

T∈T (Gxα)

w(T)

Zx

X
(i,j)k∈ET

fu(i, j, k)

=
1

Zx

X
(i,j)k∈Exα

X
T∈T (Gx)

w(T)I((i, j)
k
, T)fu(i, j, k)

=
1

Zx

X
(i,j)k∈Exα

〈(i, j)
k〉xα fu(i, j, k)

Thus, we can calculate the feature expectation per
training instance using the algorithms for comput-
ing Zx and edge expectations. Using this, we can

calculate feature expectations over the entire train-
ing set,

〈fu〉T =
∑
α

p(xα)〈fu〉xα

where p(xα) is typically set to 1/|T |.

4.4 Non-projective Generative Parsing Models
A generative probabilistic dependency model over
some alphabet Σ consists of parameters pk

x,y asso-
ciated with each dependency from word x ∈ Σ to
word y ∈ Σ with label lk ∈ L. In addition, we im-
pose 0 ≤ pk

x,y ≤ 1 and the normalization conditions∑
y,k pk

x,y = 1 for each x ∈ Σ. We define a gen-
erative probability model p over trees T ∈ T (Gx)
and a sentence x = x0x1 · · ·xn conditioned on the
sentence length, which is always known,

p(x, T |n) = p(x|T, n)p(T |n)

=
∏

(i,j)k∈ET

pk
xi,xj

p(T |n)

We assume that p(T |n) = β is uniform. This model
is studied specifically by Paskin (2001). In this
model, one can view the sentence as being generated
recursively in a top-down process. First, a tree is
generated from the distribution p(T |n). Then start-
ing at the root of the tree, every word generates all of
its modifiers independently in a recursive breadth-
first manner. Thus, pk

x,y represents the probability
of the word x generating its modifier y with label
lk. This distribution is usually smoothed and is of-
ten conditioned on more information including the
orientation of x relative to y (i.e., to the left/right)
and distance between the two words. In the super-
vised setting this model can be trained with maxi-
mum likelihood estimation, which amounts to sim-
ple counts over the data. Learning in the unsuper-
vised setting requires EM and is discussed in Sec-
tion 4.4.2.

Another generative dependency model of interest
is that given by Klein and Manning (2004). In this
model the sentence and tree are generated jointly,
which allows one to drop the assumption that p(T |n)
is uniform. This requires the addition to the model
of parameters px,STOP for each x ∈ Σ, with the nor-
malization condition px,STOP +

∑
y,k pk

x,y = 1. It is
possible to extend the model of Klein and Manning

127

(2004) to the non-projective case. However, the re-
sulting distribution will be over multisets of words
from the alphabet instead of strings. The discus-
sion in this section is stated for the model in Paskin
(2001); a similar treatment can be developed for the
model in Klein and Manning (2004).

4.4.1 Language Modeling
A generative model of dependency structure

might be used to determine the probability of a sen-
tence x by marginalizing out all possible depen-
dency trees,

p(x|n) =
∑

T∈T (Gx)

p(x, T |n)

=
∑

T∈T (Gx)

p(x|T, n)p(T |n)

= β
∑

T∈T (Gx)

∏
(i,j)k∈ET

pk
xi,xj

= βZx

This probability can be used directly as a non-
projective syntactic language model (Chelba et al.,
1997) or possibly interpolated with a separate n-
gram model.

4.4.2 Unsupervised Learning
In unsupervised learning we train our model on

a sample of unannotated sentences X = {xα}|X |
α=1.

Let |xα| = nα and p(T |nα) = βα. We choose the
parameters that maximize the log-likelihood

|X |∑
α=1

log(p(xα|nα)) =

=
|X |∑
α=1

log(
∑

T∈T (Gxα)

p(xα|T, nα)) +
|X |∑
α=1

log(βα),

viewed as a function of the parameters and subject
to the normalization conditions, i.e.,

∑
y,k pk

x,y = 1
and pk

x,y ≥ 0.
Let xαi be the ith word of xα. By solving the

above constrained optimization problem with the
usual Lagrange multipliers method one gets

pk
x,y =

=

∑|X |
α=1

1
Zxα

∑
i : xαi = x,
j : xαj = y

〈(i, j)k〉xα∑|X |
α=1

1
Zxα

∑
y′,k′

∑
i : xαi = x,
j′ : xαj′ = y′

〈(i, j′)k′〉xα

,

where for each xα the expectation 〈(i, j)k〉xα is de-
fined as in Section 3, but with the weight w(T) re-
placed by the probability distribution p(xα|T, nα).

The above |L| · |Σ|2 relations represent a non-
linear system of equations. There is no closed form
solution in the general case, and one adopts the ex-
pectation maximization (EM) method, which is a
specialization of the standard fixed-point iteration
method for the solution of non-linear systems. We
start with some initial assignment of the parameters
and at each iteration we use the induced distribu-
tion p(xα|T, nα) to compute a refined value for the
parameters themselves. We are always guaranteed
that the Kullback-Liebler divergence between two
approximated distributions computed at successive
iterations does not increase, which implies the con-
vergence of the method to some local maxima (with
the exception of saddle points).

Observe that at each iteration we can compute
quantities 〈(i, j)k〉xα and Zxα in polynomial time
using the algorithms from Section 3 with pk

xαi,xαj

in place of wk
i,j . Furthermore, under some standard

conditions the fixed-point iteration method guaran-
tees a constant number of bits of precision gain for
the parameters at each iteration, resulting in overall
polynomial time computation in the size of the input
and in the required number of bits for the precision.
As far as we know, this is the first EM learning algo-
rithm for the model in Paskin (2001) working in the
non-projective case. The projective case has been
investigated in Paskin (2001).

5 Beyond Edge-factored Models

We have shown that several computational problems
related to parsing can be solved in polynomial time
for the class of non-projective dependency models
with the assumption that dependency relations are
mutually independent. These independence assump-
tions are unwarranted, as it has already been estab-
lished that modeling non-local information such as
arity and nearby parsing decisions improves the ac-
curacy of dependency models (Klein and Manning,
2002; McDonald and Pereira, 2006).

In the spirit of our effort to understand the nature
of exact non-projective algorithms, we examine de-
pendency models that introduce arity constraints as
well as permit edge decisions to be dependent on a

128

limited neighbourhood of other edges in the graph.
Both kinds of models can no longer be considered
edge-factored, since the likelihood of a dependency
occurring in a particular analysis is now dependent
on properties beyond the edge itself.

5.1 Arity

One feature of the edge-factored models is that no
restriction is imposed on the arity of the nodes in the
dependency trees. As a consequence, these models
can generate dependency trees of unbounded arity.
We show below that this is a crucial feature in the
development of the complexity results we have ob-
tained in the previous sections.

Let us assume a graph G
(φ)
x = (Vx, Ex) defined

as before, but with the additional condition that each
node i ∈ Vx is associated with an integer value
φ(i) ≥ 0. T (G(φ)

x) is now defined as the set of all
directed spanning trees for G

(φ)
x rooted in node 0,

such that every node i ∈ Vx has arity smaller than or
equal to φ(i). We now introduce a construction that
will be used to establish several hardness results for
the computational problems discussed in this paper.
Recall that a Hamiltonian path in a directed graph
G is a directed path that visits all of the nodes of G
exactly once.

Let G be some directed graph with set of nodes
V = {1, 2, . . . , n}. We construct a target graph
G

(φ)
x = (Vx, Ex) with Vx = V ∪ {0} (0 the root

node) and |L| = 1. For each i, j ∈ Vx with i 6= j,
we add an edge (i, j)1 to Ex. We set w1

i,j = 1 if
there is an edge from i to j in G, or else if i or j
is the root node 0, and w1

i,j = 0 otherwise. Fur-
thermore, we set φ(i) = 1 for each i ∈ Vx. This
construction can be clearly carried out in log-space.

Note that each T ∈ T (G(φ)
x) must be a monadic

tree with weight equal to either 0 or 1. It is not dif-
ficult to see that if w(T) = 1, then when we remove
the root node 0 from T we obtain a Hamiltonian path
in G. Conversely, each Hamiltonian path in G can
be extended to a spanning tree T ∈ T (G(φ)

x) with
w(T) = 1, by adding the root node 0.

Using the above observations, it can be shown that
the solution of the argmax problem for G

(φ)
x pro-

vides some Hamiltonian directed path in G. The lat-
ter search problem is FNP-hard, and is unlikely to
be solved in polynomial time. Furthermore, quan-

tity Zx provides the count of the Hamiltonian di-
rected paths in G, and for each i ∈ V , the expecta-
tion 〈(0, i)1〉x provides the count of the Hamiltonian
directed paths in G starting from node i. Both these
counting problems are #P-hard, and very unlikely to
have polynomial time solutions.

This result helps to relate the hardness of data-
driven models to the commonly known hardness
results in the grammar-driven literature given by
Neuhaus and Böker (1997). In that work, an arity
constraint is included in their minimal grammar.

5.2 Vertical and Horizontal Markovization
In general, we would like to say that every depen-
dency decision is dependent on every other edge in
a graph. However, modeling dependency parsing in
such a manner would be a computational nightmare.
Instead, we would like to make a Markov assump-
tion over the edges of the tree, in a similar way that
a Markov assumption can be made for sequential
classification problems in order to ensure tractable
learning and inference.

Klein and Manning (2003) distinguish between
two kinds of Markovization for unlexicalized CFG
parsing. The first is vertical Markovization, which
makes the generation of a non-terminal dependent
on other non-terminals that have been generated at
different levels in the phrase-structure tree. The
second is horizontal Markovization, which makes
the generation of a non-terminal dependent on other
non-terminals that have been generated at the same
level in the tree.

For dependency parsing there are analogous no-
tions of vertical and horizontal Markovization for a
given edge (i, j)k. First, let us define the vertical and
horizontal neighbourhoods of (i, j)k. The vertical
neighbourhood includes all edges in any path from
the root to a leaf that passes through (i, j)k. The hor-
izontal neighbourhood contains all edges (i, j′)k′

.
Figure 4 graphically displays the vertical and hor-
izontal neighbourhoods for an edge in the depen-
dency graph from Figure 1.

Vertical and horizontal Markovization essentially
allow the score of the graph to factor over a larger
scope of edges, provided those edges are in the same
vertical or horizontal neighbourhood. A dth order
factorization is one in which the score factors only
over the d nearest edges in the neighbourhoods. In

129

Figure 4: Vertical and Horizontal neighbourhood for
the edge from will to remain.

McDonald and Pereira (2006), it was shown that
non-projective dependency parsing with horizontal
Markovization is FNP-hard. In this study we com-
plete the picture and show that vertical Markoviza-
tion is also FNP-hard.

Consider a first-order vertical Markovization in
which the score for a dependency graph factors over
pairs of vertically adjacent edges2,

w(T) =
∏

(h,i)k,(i,j)k′∈ET

k
hiw

k′
ij

where k
hiw

k′
ij is the weight of including both edges

(h, i)k and (i, j)k′
in the dependency graph. Note

that this formulation does not include any contribu-
tions from dependencies that have no vertically adja-
cent neighbours, i.e., any edge (0, i)k such that there
is no edge (i, j)k′

in the graph. We can easily rec-
tify this by inserting a second root node, say 0′, and
including the weights k

0′0w
k′
0i . To ensure that only

valid dependency graphs get a weight greater than
zero, we can set k

hiw
k′
ij = 0 if i = 0′ and k

0′iw
k′
ij = 0

if i 6= 0.
Now, consider the NP-complete 3D-matching

problem (3DM). As input we are given three sets
of size m, call them A, B and C, and a set S ⊆
A×B ×C. The 3DM problem asks if there is a set
S′ ⊆ S such that |S′| = m and for any two tuples
(a, b, c), (a′, b′, c′) ∈ S′ it is the case that a 6= a′,
b 6= b′, and c 6= c′.

2McDonald and Pereira (2006) define this as a second-order
Markov assumption. This is simply a difference in terminology
and does not represent any meaningful distinction.

We can reduce the 3D-matching problem to the
first-order vertical Markov parsing problem by con-
structing a graph G = (V,E), such that L =
A ∪ B ∪ C, V = {0′, 0} ∪ A ∪ B ∪ C and E =
{(i, j)k | i, j ∈ V, k ∈ L}. The set E contains mul-
tiple edges between ever pair of nodes, each edge
taking on a label representing a single element of
the set A ∪ B ∪ C. Now, define k

0′0w
k′
0a = 1, for all

a ∈ A and k, k′ ∈ A ∪ B ∪ C, and b
0aw

c
ab = 1, for

all a ∈ A and b ∈ B and c ∈ C, and c
abw

c
bc = 1, for

all (a, b, c) ∈ S. All other weights are set to zero.
We show below that there exists a bijection be-

tween the set of valid 3DMs for S and the set of non-
zero weighted dependency graphs in T (G). First, it
is easy to show that for any 3DM S′, there is a rep-
resentative dependency graph that has a weight of
1. This graph simply consists of the edges (0, a)b,
(a, b)c, and (b, c)c, for all (a, b, c) ∈ S′, plus an ar-
bitrarily labeled edge from 0′ to 0.

To prove the reverse, consider a graph with weight
1. This graph must have a weight 1 edge into the
node a of the form (0, a)b since the graph must be
spanning. By the definition of the weight function,
in any non-zero weighted tree, a must have a sin-
gle outgoing edge, and that edge must be directed
into the node b. Let’s say that this edge is (a, b)c.
Then again by the weighting function, in any non-
zero weighted graph, b must have a single outgoing
edge that is directed into c, in particular the edge
(b, c)c. Thus, for any node a, there is a single path
directed out of it to a single leaf c ∈ C. We can
then state that the only non-zero weighted depen-
dency graph is one where each a ∈ A, b ∈ B and
c ∈ C occurs in exactly one of m disjoint paths from
the root of the form 0 → a → b → c. This is be-
cause the label of the single edge going into node a
will determine exactly the node b that the one outgo-
ing edge from a must go into. The label of that edge
determines exactly the single outgoing edge from b
into some node c. Now, since the weighting func-
tion ensures that the only non-zero weighted paths
into any leaf node c correspond directly to elements
of S, each of the m disjoint paths represent a single
tuple in a 3DM. Thus, if there is a non-zero weighted
graph in T (G), then it must directly correspond to a
valid 3DM, which concludes the proof.

Note that any dth order Markovization can be em-
bedded into a d + 1th Markovization. Thus, this re-

130

sult also holds for any arbitrary Markovization.

6 Discussion

In this paper we have shown that many important
learning and inference problems can be solved effi-
ciently for non-projective edge-factored dependency
models by appealing to the Matrix Tree Theorem
for multi-digraphs. These results extend the work
of McDonald et al. (2005b) and help to further our
understanding of when exact non-projective algo-
rithms can be employed. When this analysis is cou-
pled with the projective parsing algorithms of Eisner
(1996) and Paskin (2001) we begin to get a clear pic-
ture of the complexity for data-driven dependency
parsing within an edge-factored framework. To fur-
ther justify the algorithms presented here, we out-
lined a few novel learning and inference settings in
which they are required.

However, for the non-projective case, moving
beyond edge-factored models will almost certainly
lead to intractable parsing problems. We have pro-
vided further evidence for this by proving the hard-
ness of incorporating arity constraints and hori-
zontal/vertical edge Markovization, both of which
incorporate information unavailable to an edge-
factored model. The hardness results provided
here are also of interest since both arity constraints
and Markovization can be incorporated efficiently
in the projective case through the straight-forward
augmentation of the underlying chart parsing algo-
rithms used in the projective edge-factored models.
This highlights a fundamental difference between
the nature of projective parsing algorithms and non-
projective parsing algorithms. On the projective
side, all algorithms use a bottom-up chart parsing
framework to search the space of nested construc-
tions. On the non-projective side, algorithms are
either greedy-recursive in nature (i.e., the Chu-Liu-
Edmonds algorithm) or based on the calculation of
the determinant of a matrix (i.e., the partition func-
tion and edge expectations).

Thus, the existence of bottom-up chart parsing
algorithms for projective dependency parsing pro-
vides many advantages. As mentioned above, it
permits simple augmentation techniques to incorpo-
rate non-local information such as arity constraints
and Markovization. It also ensures the compatibility

of projective parsing algorithms with many impor-
tant natural language processing methods that work
within a bottom-up chart parsing framework, includ-
ing information extraction (Miller et al., 2000) and
syntax-based machine translation (Wu, 1996).

The complexity results given here suggest that
polynomial chart-parsing algorithms do not exist
for the non-projective case. Otherwise we should
be able to augment them and move beyond edge-
factored models without encountering intractability
– just like the projective case. An interesting line
of research is to investigate classes of non-projective
structures that can be parsed with chart-parsing algo-
rithms and how these classes relate to the languages
parsable by other syntactic formalisms.

Acknowledgments
Thanks to Ben Taskar for pointing out the work of
Meilă and Jaakkola (2000). Thanks to David Smith,
Noah Smith and Michael Collins for making drafts
of their EMNLP papers available.

References
G. E. Barton, R. C. Berwick, and E. S. Ristad. 1987.

Computational Complexity and Natural Language.
MIT Press, Cambridge, MA.

C. Brew. 1992. Letting the cat out of the bag: Generation
for Shake-and-Bake MT. In Proc. COLING.

S. Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski.
2006. CoNLL-X shared task on multilingual depen-
dency parsing. In Proc. CoNLL.

P. M. Camerini, L. Fratta, and F. Maffioli. 1980. The k
best spanning arborescences of a network. Networks,
10(2):91–110.

C. Chelba, D. Engle, F. Jelinek, V. Jimenez, S. Khudan-
pur, L. Mangu, H. Printz, E.S. Ristad, R. Rosenfeld,
A. Stolcke, and D. Wu. 1997. Structure and per-
formance of a dependency language model. In Eu-
rospeech.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica, 14:1396–
1400.

M. Collins. 2002. Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. In Proc. EMNLP.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. 1990. In-
troduction to Algorithms. MIT Press/McGraw-Hill.

131

K. Crammer and Y. Singer. 2003. Ultraconservative on-
line algorithms for multiclass problems. JMLR.

J. Edmonds. 1967. Optimum branchings. Journal of Re-
search of the National Bureau of Standards, 71B:233–
240.

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: An exploration. In Proc. COLING.

K. Hall and V. Nóvák. 2005. Corrective modeling for
non-projective dependency parsing. In Proc. IWPT.

H. Hirakawa. 2006. Graph branch algorithm: An opti-
mum tree search method for scored dependency graph
with arc co-occurrence constraints. In Proc. ACL.

R. Hudson. 1984. Word Grammar. Blackwell.

S. Kahane, A. Nasr, and O Rambow. 1998. Pseudo-
projectivity: A polynomially parsable non-projective
dependency grammar. In Proc. ACL.

D. Klein and C.D. Manning. 2002. Fast exact natu-
ral language parsing with a factored model. In Proc.
NIPS.

D. Klein and C. Manning. 2003. Accurate unlexicalized
parsing. In Proc. ACL.

D. Klein and C. Manning. 2004. Corpus-based induc-
tion of syntactic structure: Models of dependency and
constituency. In Proc. ACL.

T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007.
Structured prediction models via the matrix-tree theo-
rem. In Proc. EMNLP.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. ICML.

M. Marcus, B. Santorini, and M. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguistics,
19(2):313–330.

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. In Proc
EACL.

R. McDonald, K. Crammer, and F. Pereira. 2005a. On-
line large-margin training of dependency parsers. In
Proc. ACL.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005b.
Non-projective dependency parsing using spanning
tree algorithms. In Proc. HLT/EMNLP.

M. Meilă and T. Jaakkola. 2000. Tractable Bayesian
learning of tree belief networks. In Proc. UAI.

I.A. Meĺčuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

S. Miller, H. Fox, L.A. Ramshaw, and R.M. Weischedel.
2000. A novel use of statistical parsing to extract in-
formation from text. In Proc NAACL, pages 226–233.

P. Neuhaus and N. Böker. 1997. The complexity
of recognition of linguistically adequate dependency
grammars. In Proc. ACL.

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proc. ACL.

J. Nivre and M. Scholz. 2004. Deterministic dependency
parsing of english text. In Proc. COLING.

J. Nivre. 2005. Dependency grammar and dependency
parsing. Technical Report MSI report 05133, Växjö
University: School of Mathematics and Systems Engi-
neering.

M.A. Paskin. 2001. Cubic-time parsing and learning al-
gorithms for grammatical bigram models. Technical
Report UCB/CSD-01-1148, Computer Science Divi-
sion, University of California Berkeley.

S. Riedel and J. Clarke. 2006. Incremental integer linear
programming for non-projective dependency parsing.
In Proc. EMNLP.

S. Robinson. 2005. Toward an optimal algorithm for
matrix multiplication. News Journal of the Society for
Industrial and Applied Mathematics, 38(9).

P. Sgall, E. Hajičová, and J. Panevová. 1986. The Mean-
ing of the Sentence in Its Pragmatic Aspects. Reidel.

D.A. Smith and N.A. Smith. 2007. Probabilistic models
of nonprojective dependency trees. In Proc. EMNLP.

L. Tesnière. 1959. Éléments de syntaxe structurale. Edi-
tions Klincksieck.

I. Titov and J. Henderson. 2006. Bayes risk minimiza-
tion in natural language parsing. University of Geneva
technical report.

W.T. Tutte. 1984. Graph Theory. Cambridge University
Press.

W. Wang and M. P. Harper. 2004. A statistical constraint
dependency grammar (CDG) parser. In Workshop on
Incremental Parsing: Bringing Engineering and Cog-
nition Together (ACL).

D. Wu. 1996. A polynomial-time algorithm for statisti-
cal machine translation. In Proc. ACL.

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
IWPT.

132

Proceedings of the 10th Conference on Parsing Technologies, pages 133–143,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Dependency Parsing with Second-Order Feature Maps and Annotated
Semantic Information

Massimiliano Ciaramita
Yahoo! Research
Ocata 1, S-08003
Barcelona, Spain

massi@yahoo-inc.com

Giuseppe Attardi
Dipartimento di Informatica

Università di Pisa
L. B. Pontecorvo 3, I-56127

Pisa, Italy
attardi@di.unipi.it

Abstract

This paper investigates new design options
for the feature space of a dependency parser.
We focus on one of the simplest and most
efficient architectures, based on a determin-
istic shift-reduce algorithm, trained with the
perceptron. By adopting second-order fea-
ture maps, the primal form of the perceptron
produces models with comparable accuracy
to more complex architectures, with no need
for approximations. Further gains in accu-
racy are obtained by designing features for
parsing extracted from semantic annotations
generated by a tagger. We provide experi-
mental evaluations on the Penn Treebank.

1 Introduction

A dependency tree represents a sentence as a labeled
directed graph encoding syntactic and semantic in-
formation. The labels on the arcs can represent ba-
sic grammatical relations such as “subject” and “ob-
ject”. Dependency trees capture grammatical struc-
tures that can be useful in several language process-
ing tasks such as information extraction (Culotta &
Sorensen, 2004) and machine translation (Ding &
Palmer, 2005). Dependency treebanks are becoming
available in many languages, and several approaches
to dependency parsing on multiple languages have
been evaluated in the CoNLL 2006 and 2007 shared
tasks (Buchholz & Marsi, 2006; Nivre et al., 2007).

Dependency parsing is simpler than constituency
parsing, since dependency trees do not have extra
non-terminal nodes and there is no need for a gram-
mar to generate them. Approaches to dependency

parsing either generate such trees by considering all
possible spanning trees (McDonald et al., 2005), or
build a single tree by means of shift-reduce parsing
actions (Yamada & Matsumoto, 2003). Determinis-
tic dependency parsers which run in linear time have
also been developed (Nivre & Scholz, 2004; Attardi,
2006). These parsers process the sentence sequen-
tially, hence their efficiency makes them suitable for
processing large amounts of text, as required, for ex-
ample, in information retrieval applications.

Recent work on dependency parsing has high-
lighted the benefits of using rich feature sets
and high-order modeling. Yamada and Mat-
sumoto (2003) showed that learning an SVM model
in the dual space with higher-degree polynomial ker-
nel functions improves significantly the parser’s ac-
curacy. McDonald and Pereira (2006) have shown
that incorporating second order features relating to
adjacent edge pairs improves the accuracy of max-
imum spanning tree parsers (MST). In the SVM-
based approach, if the training data is large, it is not
feasible to train a single model. Rather, Yamada and
Matsumoto (see also (Hall et al., 2006)) partition the
training data in different sets, on the basis of Part-
of-Speech, then train one dual SVM model per set.
While this approach simplifies the learning task it
makes the parser more sensitive to the error rate of
the POS tagger. The second-order MST algorithm
has cubic time complexity. For non-projective lan-
guages the algorithm is NP-hard and McDonald and
Pereira (2006) introduce an approximate algorithm
to handle such cases.

In this paper we extend shift reduce parsing with
second-order feature maps which explicitly repre-

133

sent all feature pairs. Also the augmented fea-
ture sets impose additional computational costs.
However, excellent efficiency/accuracy trade-off is
achieved by using the perceptron algorithm, with-
out the need to resort to approximations, producing
high-accuracy classifiers based on a single model.

We also evaluate a novel set of features for pars-
ing. Recently various forms of shallow semantic
processing have been investigated such as named-
entity recognition (NER), semantic role labeling
(SRL) and relation extraction. Syntactic parsing can
provide useful features for these tasks; e.g., Pun-
yakanok et al. (2005) show that full parsing is effec-
tive for semantic role labeling (see also related ap-
proaches evaluated within the CoNNL 2005 shared
task (Carreras et al., 2005)). However, no evidence
has been provided so far that annotated semantic
information can be leveraged for improving parser
performance. We report experiments showing that
adding features extracted by an entity tagger im-
proves the accuracy of a dependency parser.

2 Dependency parsing

A dependency parser takes as input a sentence s and
returns a dependency graph d. Figure 1 shows a de-
pendency tree for the sentence “Last week CBS Inc.
canceled ’The People Next Door’.”1. Dependencies
are represented as labeled arrows from the head of
the relation to the modifier word; thus, in the exam-
ple, “Inc.” is the modifier of a dependency labeled
“SUB” (subject) to the main verb, the head, “can-
celed”.

In statistical syntactic parsing a generator (e.g.,
a PCFG) is used to produce a number of candi-
date trees (Collins, 2000) with associated proba-
bility scores. This approach has been used also
for dependency parsing, generating spanning trees
as candidates and computing the maximum span-
ning tree (MST) using discriminative learning algo-
rithms (McDonald et al., 2005). Second-order MST
dependency parsers currently represent the state of
the art in terms of accuracy. Yamada and Mat-
sumoto (2003) proposed a deterministic classifier-
based parser. Instead of learning directly which
tree to assign to a sentence, the parser learns which

1The figure also contains entity annotations which will be
explained below in Section 4.1.

Shift/Reduce actions to use in building the tree. Pars-
ing is cast as a classification problem: at each step
the parser applies a classifier to the features rep-
resenting its current state to predict which action
to perform on the tree. Similar deterministic ap-
proaches to parsing have been investigated also in
the context of constituent parsing (Wong & Wu,
1999; Kalt, 2004).

Nivre and Scholz (2004) proposed a variant of the
model of Yamada and Matsumoto that reduces the
complexity, from the worst case quadratic to linear.
Attardi (2006) proposed a variant of the rules that
handle non-projective relations while parsing deter-
ministically in a single pass. Shift-reduce algorithms
are simple and efficient, yet competitive in terms
of accuracy: in the CoNLL-X shared task, for sev-
eral languages, there was no statistically significant
difference between second-order MST parsers and
shift-reduce parsers.

3 A shift-reduce parser

We build upon DeSR, the shift-reduce parser de-
scribed in (Attardi, 2006). This and Nivre and
Scholz’s (2004) provide among the simplest and
most efficient methods. This parser constructs de-
pendency trees by scanning input sentences in a
single left-to-right pass and performing shift/reduce
parsing actions. The parsing algorithm is fully de-
terministic and has linear complexity. The parser’s
behavior can be described as repeatedly selecting
and applying a parsing rule to transform its state,
while advancing through the sentence. Each to-
ken is analyzed once and a decision is made lo-
cally concerning the action to take, that is, without
considering global properties of the tree being built.
Nivre (2004) investigated the issue of (strict) incre-
mentality for this type of parsers; i.e., if at any point
of the analysis the processed input forms one con-
nected structure. Nivre found that strict incremen-
tality is not guaranteed within this parsing frame-
work, although for correctly parsed trees the prop-
erty holds in almost 90% of the cases.

3.1 Parsing algorithm

The state of the parser is represented by a triple
〈S, I,A〉, where S is the stack, I is the list of input
tokens that remain to be processed and A is the arc

134

Figure 1. A dependency tree from the Penn Treebank, with additional entity annotation from the BBN corpus.

relation for the dependency graph, which consists of
a set of labeled arcs (wi, r, wj), where wi, wj ∈ W
(the set of tokens), d ∈ D (the set of dependencies).
Given an input sentence s, the parser is initialized
to 〈∅, s, ∅〉, and terminates at configuration 〈s, ∅, A〉.
There are three parsing schemata:

Shift 〈S,n|I,A〉
〈n|S,I,A〉(1)

Rightr
〈s|S,n|I,A〉

〈S,n|I,A∪{(s,r,n)}〉(2)

Leftr
〈s|S,n|I,A〉

〈S,s|I,A∪{(n,r,s)}〉(3)

The Shift rule advances on the input; each Leftr and
Rightr rule creates a link r between the next input
token n and the top token on the stack s. For produc-
ing labeled dependencies the rules Leftr and Rightr
are instantiated several times once for each depen-
dency label.

Additional parsing actions (cf. (Attardi, 2006))
have been introduced for handling non-projective
dependency trees: i.e., trees that cannot be drawn
in the plane without crossing edges. However, they
are not needed in the experiments reported here,
because in the Penn Treebank used in our experi-
ments dependencies are extracted without consider-
ing empty nodes and the resulting trees are all pro-
jective2.

The pseudo code in Algorithm 1 reproduces
schematically the parsing process.

The function getContext() extracts a vector of
features x relative to the structure built up to that
point from the context of the current token, i.e., from
a subset of I , S and A. The step estimateAction()
predicts a parsing action y, given a trained model α

2Instead, the version of the Penn Treebank used for the
CoNLL 2007 shared task includes also non-projective represen-
tations.

Algorithm 1: DeSR: Dependency Shift Reduce
parser.

input: s = w1, w2, ..., wn

begin
S ← 〈〉
I ← 〈w1, w2, ..., wn〉
A← 〈〉
while I 6= 〈〉 do

x← getContext(S, I,A)
y ← estimateAction(x, α)
performAction(y, S, I, A)

end

and x. The final step performAction() updates the
state according to the predicted parsing rule.

3.2 Features

The set of features used in this paper were chosen
with a few simple experiments on the development
data as a variant of a generic model. The only fea-
tures of the tokens used are “Lemma”, “Pos” and
“Dep”: “Lemma” refers to the morphologically sim-
plified form of the token, “Pos” is the Part-of-Speech
and “Dep” is the label on a dependency. “Child”
refers to the child of a node (right or left): up to
two furthest children of a node are considered. Ta-
ble 1 lists which feature is extracted for which to-
ken: negative numbers refer to tokens on the stack,
positive numbers refer to input tokens. As an exam-
ple, POS(-1) is the Part-of-Speech of the token on
the top of the stack, while Lemma(0) is the lemma
of the next token in the input, PosLeftChild(-1) ex-
tracts the Part-of-Speech of the leftmost child of the
token on the top of the stack, etc.

135

TOKEN
FEATURES Stack Input
Lemma -2 -1 0 1 2 3
Pos -2 -1 0 1 2 3
LemmaLeftChild -1 0
PosLeftChild -1 0
DepLeftChild -1 0
LemmaRightChild -1 0
PosRightChild -1 0
DepRightChild -1
LemmaPrev 0
PosSucc -1

Table 1. Configuration of the feature parameters used in
the experiments.

3.3 Learning a parsing model with the
perceptron

The problem of learning a parsing model can be
framed as a classification task where each class
yi ∈ Y represents one of k possible parsing actions.
Each of such actions is associated with a weight vec-
tor αk ∈ IRd. Given a datapoint x ∈ X , a d-
dimensional vector of binary features in the input
space X , a parsing action is chosen with a winner-
take-all discriminant function:

estimateAction(x, α) = arg max
k

f(x, αk) (4)

when using a linear classifier, such as the perceptron
or SVM, f(u,v) = 〈u,v〉 is the inner product be-
tween vectors u and v.

We learn the parameters α from the training data
with the perceptron (Rosemblatt, 1958), in the on-
line multiclass formulation of the algorithm (Cram-
mer & Singer, 2003) with uniform negative updates.
The perceptron has been used in previous work on
dependency parsing by Carreras et al. (2006), with
a parser based on Eisner’s algorithm (Eisner, 2000),
and also on incremental constituent parsing (Collins
& Roark, 2006). Also the MST parser of McDonald
uses a variant of the perceptron algorithm (McDon-
ald, 2006). The choice is motivated by the simplicity
and performance of perceptrons, which have proved
competitive on a number of tasks; e.g., in shallow
parsing, where perceptron’s performance is com-
parable to that of Conditional Random Field mod-
els (Sha & Pereira, 2003).

The only adjustable parameter of the model is the
number of instances T to use for training. We fixed
T using the development portion of the data. In

our experiments, the best value is between 20 and
30 times the size of the training data. To regularize
the model we take as the final model the average of
all weight vectors posited during training (Collins,
2002). Algorithm 2 illustrates the perceptron learn-
ing procedure. The final average model can be com-
puted efficiently during training without storing the
individual α vectors (e.g., see (Ciaramita & Johnson,
2003)).

Algorithm 2: Average multiclass perceptron

input : S = (xi, yi)N ;α0
k = ~0, ∀k ∈ Y

for t = 1 to T do
choose j
Et = {r ∈ Y : 〈xj , α

t
r〉 ≥ 〈xj , α

t
yj
〉}

if |Et| > 0 then
αt+1

r = αt
r −

xj

|Et| , ∀r ∈ Et

αt+1
yj

= αt
yj

+ xj

output: αk = 1
T

∑
t αt

k, ∀k ∈ Y

3.4 Higher-order feature spaces

Yamada and Matsumoto (2003) and McDonald and
Pereira (2006) have shown that higher-order fea-
ture representations and modeling can improve pars-
ing accuracy, although at significant computational
costs. To make SVM training feasible in the dual
model with polynomial kernels, Yamada and Mat-
sumoto split the training data into several sets, based
on POS tags, and train a parsing model for each
set. McDonald and Pereira’s second-order MST
parser has O(n3) complexity, while for handling
non-projective trees, otherwise an NP-hard problem,
the parser resorts to an approximate algorithm. Here
we discuss how the feature representation can be
enriched to improve parsing while maintaining the
simplicity of the shift-reduce architecture, and per-
forming discriminative learning without partitioning
the training data.

The linear classifier (see Equation 4) learned with
the perceptron is inherently limited in the types of
solutions it can learn. As originally pointed out by
Minsky and Papert (1969), there are problems which
require non-linear solutions that cannot be learned
by such models. A simple workaround this limi-
tation relies on feature maps Φ : IRd → IRh that

136

map the input vectors x ∈ X into some higher h-
dimensional representation Φ(X) ⊂ IRh, the fea-
ture space. The feature space can represent, for ex-
ample, all combinations of individual features in the
input space. We define a feature map which ex-
tracts all second order features of the form xixj ;
i.e., Φ(x) = (xi, xj |i = 1, ..., d, j = i, ..., d). The
linear perceptron working in Φ(X) effectively im-
plements a non-linear classifier in the original in-
put space X . One shortcoming of this approach is
that it inflates considerably the feature representa-
tion and might not scale. In general, the number of
features of degree g over an input space of dimen-
sion d is

(
d+g−1

g

)
. In practice, a second-order fea-

ture map can be handled with reasonable efficiency
by the perceptron. We call this the 2nd-order model,
which uses a modified scoring function:

g(x, αk) = f(Φ(x), αk) (5)

where also αk is h-dimensional. The proposed fea-
ture map is equivalent to a polynomial kernel func-
tion of degree two. Yamada and Matsumoto (2003)
have shown that the degree two polynomial ker-
nel has superior accuracy than the linear model and
polynomial kernels of higher degrees. However, us-
ing the dual model is not always practical for depen-
dency parsing. The discriminant function of the dual
model is defined as:

f ′(x, α) = arg max
k

N∑
i=1

αk,i〈x,xi〉g (6)

where the weights α are associated with class-
instance pairs rather than class-feature pairs. With
respect to the discriminant function of equation (4)
there is an additional summation. In principle, the
inner products can be cached in a Kernel matrix to
speed up training.

There are two shortcomings to using such a model
in dependency parsing. First, if the amount of train-
ing data is large it might not be feasible to store the
Kernel matrix; which for a dataset of size N requires
O(N3) computations and O(N2) space. As an ex-
ample, the number of training instances N in the
Penn Treebank is over 1.8 million, caching the Ker-
nel matrix would require several Terabytes of space.
The second shortcoming is independent of training.
In predicting a tree for unseen sentences the model

will have to recompute the inner products between
the observation and all the support vectors; i.e., all
class-instance pairs with αk,i > 0. The second-order
feature map with the perceptron is more efficient and
allows faster training and prediction. Training a sin-
gle parsing model avoids a potential loss of accuracy
that occurs when using the technique of partitioning
the training data according to the POS. Inaccurate
predictions of the POS can affect significantly the
accuracy of the actions predicted, while the single
model is more robust, since the POS is just one of
the many features used in prediction.

4 Semantic features

Semantic information is used implicitly in parsing.
For example, conditioning on lexical heads pro-
vides a source of semantic information. There have
been a few attempts at using semantic information
more explicitly. Charniak’s 1997 parser (1997), de-
fined probability estimates backed off to word clus-
ters. Collins and Koo (Collins & Koo, 2005) in-
troduced an improved reranking model for parsing
which includes a hidden layer of semantic features.
Yi and Palmer (2005) retrained a constituent parser
in which phrases were annotated with argument in-
formation to improve SRL, however this didn’t im-
prove over the output of the basic parser.

In recent years there has been a significant
amount of work on semantic annotation tasks such
as named-entity recognition, semantic role labeling
and relation extraction. There is evidence that de-
pendency and constituent parsing can be helpful in
these and other tasks; e.g., by means of tree ker-
nels in question classification and semantic role la-
beling (Zhang & Lee, 2003; Moschitti, 2006).

It is natural to ask if also the opposite holds:
whether semantic annotations can be used to im-
prove parsing. In particular, it would be interesting
to know if entity-like tags can be used for this pur-
pose. One reason for this is that entity tagging is ef-
ficient and does not seem to need parsing for achiev-
ing top performance. Beyond improving traditional
parsing, independently learned semantic tags might
be helpful in adapting a parser to a new domain. To
the best of our knowledge, no evidence has been pro-
duced yet that annotated semantic information can
improve parsing. In the following we investigate

137

adding entity tags as features of our parser.

4.1 BBN Entity corpus

The BBN corpus (BBN, 2005) supplements the Wall
Street Journal Penn Treebank with annotation of a
large set of entity types. The corpus includes an-
notation of 12 named entity types (Person, Facility,
Organization, GPE, Location, Nationality, Product,
Event, Work of Art, Law, Language, and Contact-
Info), nine nominal entity types (Person, Facility,
Organization, GPE, Product, Plant, Animal, Sub-
stance, Disease and Game), and seven numeric types
(Date, Time, Percent, Money, Quantity, Ordinal and
Cardinal). Several of these types are further divided
into subtypes3. This corpus provides adequate sup-
port for experimenting semantic features for parsing.

Figure 1 illustrates the annotation layer provided
by the BBN corpus4. It is interesting to notice one
apparent property of the combination of semantic
tags and dependencies. When we consider segments
composed of several words there is exactly one de-
pendency connecting a token outside the segment
with a token inside the segment; e.g., “CBS Inc.” is
connected outside only through the token “Inc.”, the
subject of the main verb. With respect to the rest of
the tree, segments tend to form units, with their own
internal structure. Intuitively, this information seems
relevant for parsing. This locally-structured patterns
could help particularly simple algorithms like ours,
which have limited knowledge of the global struc-
ture being built.

Table 2 lists the 40 most frequent categories in
sections 2 to 21 of the BBN corpus, and the per-
centage of all entities they represent – together more
than 97%. Sections 2-21 are comprised of 949,853
tokens, 23.5% of the tokens have a non-null BBN
entity tag, on average there is one tagged token every
four. The total number of entities is 139,029, 70.5%
of which are named entities and nominal concepts,
17% are numerical types and the remaining 12.5%
describe time entities.

We designed three new features which extract
simple properties of entities from the semantic an-
notation information:

3BBN Corpus documentation.
4The full label for “ORG” is “ORG:Corporation”, and

“WOA” stands for “WorkOfArt:Other”.

TOKEN
FEATURES Stack Input
AS-0 = EOS+BIO+TAG 0
AS-1 = EOS+BIO+TAG -1 0 1
AS-2 = EOS+BIO+TAG -2 -1 0 1 2
EOS -2 -1 0 1 2
BIO -2 -1 0 1 2
TAG -2 -1 0 1 2

Table 3. Additional configurations for the models with
BBN entity features.

• EOS: Distance to the end of the segment; e.g.,
EOS(“Last”) = 1, EOS(“canceled”) = 0;

• BIO: The first character of the BBN label
for a token; e.g., BIO(“CBS”) = “B”, and
BIO(“canceled”) = 0;

• TAG: Full BBN tag for the token; e.g.,
TAG(“CBS”) = “B-ORG:Corporation”,
TAG(“week”) = “I-DATE”.

The feature EOS provides information about the rel-
ative position of the token within a segment with re-
spect to the end of the segment. The feature BIO dis-
criminates tokens with no semantic annotation as-
sociated, from tokens within a segment and token
which start a segment. Finally the feature TAG iden-
tifies the full semantic tag associated with the token.
With respect to the former two features this bears
the most fine-grained semantics. Table 3 summa-
rizes six additional models we implemented. The
first three use all additional features together, ap-
plied to different sets of tokens, while the last three
apply only one feature, on top of the base model,
relative to the next token in the input, the following
two tokens in the input, and the previous two tokens
on the stack.

4.2 Corpus pre-processing

The original BBN corpus has its own tokeniza-
tion which often does not reflect the Penn Tree-
bank tokenization; e.g., when an entity intersects
an hyphenated compound, thus “third-highest” be-
comes “thirdORDINAL - highest”. This is problem-
atic for combining entity annotation and dependency
trees. Since our main focus is parsing we re-aligned
the BBN Corpus with the Treebank tokenization.
Thus, for example, when an entity splits a Tree-
bank token we extend the entity boundary to contain

138

WSJ-BBN Corpus Categories
Tag % Tag % Tag % Tag %
PER DESC 15.5 ORG:CORP 13.7 DATE:DATE 9.2 ORG DESC:CORP 8.9
PERSON 8.13 MONEY 6.5 CARDINAL 6.0 PERCENT 3.5
GPE:CITY 3.12 GPE:COUNTRY 2.9 ORG:GOV 2.6 NORP:NATION-TY 1.9
DATE:DURATION 1.8 GPE:PROVINCE 1.5 ORG DESC:GOV 1.4 FAC DESC:BLDG 1.1
ORG:OTHER 0.7 PROD DESC:VEHICLE 0.7 ORG DESC:OTHER 0.6 ORDINAL 0.6
TIME 0.5 GPE DESC:COUNTRY 0.5 SUBST:OTHER 0.5 SUBST:FOOD 0.5
DATE:OTHER 0.4 NORP:POLITICAL 0.4 DATE:AGE 0.4 LOC:REGION 0.3
SUBST:CHEM 0.3 WOA:OTHER 0.3 FAC DESC:OTHER 0.3 SUBST:DRUG 0.3
ANIMAL 0.3 GPE DESC:PROVINCE 0.2 PROD:VEHICLE 0.2 GPE DESC:CITY 0.2
PRODUCT:OTHER 0.2 LAW 0.2 ORG:POLITICAL 0.2 ORG:EDU 0.2

Table 2. The 40 most frequent labels in sections 2 to 21 of the Wall Street Journal BBN Corpus and the percentage of
tags occurrences.

the whole original Treebank token, thus obtaining
“third-highestORDINAL” in the example above.

4.3 Semantic tagger

We treated semantic tags as POS tags. A tagger
was trained on the BBN gold standard annotation
and used it to annotate development and evaluation
data. We briefly describe the tagger (see (Ciaramita
& Altun, 2006) for more details), a Hidden Markov
Model trained with the perceptron algorithm intro-
duced in (Collins, 2002). The tagger uses Viterbi
decoding. Label to label dependencies are limited to
the previous tag (first order HMM). A generic fea-
ture set for NER based on words, lemmas, POS tags,
and word shape features was used.

The tagger is trained on sections 2-21 of the BBN
corpus. As before, section 22 of the BBN corpus
is used for choosing the perceptron’s parameter T .
The tagger’s model is regularized as described for
Algorithm 2. The full BBN tagset is comprised
of 105 classes organized hierarchically, we ignored
the hierarchical organization and treated each tag as
an independent class in the standard BIO encoding.
The tagger evaluated on section 23 achieves an F-
score of 86.8%. The part of speech for the evalua-
tion/development sections was produced with Tree-
Tagger. As a final remark we notice that the tagger’s
complexity, linear in the length of the sentence, pre-
serves the parser’s complexity.

5 Parsing experiments

5.1 Data and setup

We used the standard partitions of the Wall Street
Journal Penn Treebank (Marcus et al., 1993); i.e.,
sections 2-21 for training, section 22 for develop-

ment and section 23 for evaluation. The constituent
trees were transformed into dependency trees by
means of a program created by Joakim Nivre that
implements the rules proposed by Yamada and Mat-
sumoto, which in turn are based on the head rules
of Collins’ parser (Collins, 1999)5. The lemma for
each token was produced using the “morph” func-
tion of the WordNet (Fellbaum, 1998) library6. The
data in the WSJ sections 22 and 23, both for the
parser and for the semantic tagger, was POS-tagged
using TreeTagger7, which has an accuracy of 97.0%
on section 23.

Training a parsing model on the Wall Street Jour-
nal requires a set of 22 classes: 10 of the 11 labels
in the dependency corpus generated from the Penn
Treebank (e.g., subj, obj, sbar, vmod, nmod, root,
etc.) are paired with both a Left and Right actions.
In addition, there is in one rule for the “root” label
and one for the Shift action. The total number of
features found in training ranges from two hundred
thousand for the 1st-order model to approximately
20 million of the 2nd-order models.

We evaluated several models, each trained with
1st-order and 2nd-order features. The base model
(BASE) only uses the traditional set of features (cf.
Table 1). Models EOS, BIO and TAG each use only
one type of semantic feature with the configuration
described in Table 3. Models AS-0, AS-1, and AS-2
use all three semantic features for the token on the
stack in AS-0, plus the previous token on the stack
and the new token in the input in AS-1, plus an addi-

5The script is available from
http://w3.msi.vxu.se/%7enivre/research/Penn2Malt.html

6http://wordnet.princeton.edu
7TreeTagger is available from http://www.ims.uni-

stuttgart.de/projekte/corplex/TreeTagger/

139

1st-order scores 2nd-order scores
DeSR MODEL LAS UAS Imp LAC LAS UAS Imp LAC
BASE 84.01 85.56 - 88.24 89.20 90.55 - 92.22
EOS 84.89 86.37 +5.6 88.94 89.36 90.64 +1.0 92.37
BIO 84.95 86.37 +6.6 89.06 89.63 90.89 +3.6 92.55
TAG 84.76 86.26 +4.8 88.80 89.54 90.81 +2.8 92.55
AS-0 84.40 85.95 +2.7 88.38 89.41 90.72 +1.8 92.38
AS-1 85.13 86.52 +6.6 89.11 89.57 90.77 +2.3 92.49
AS-2 85.32 86.71 +8.0 89.25 89.87 91.10 +5.8 92.68

Table 4. Results of the different models on WSJ section 23 using the CoNLL scores Labeled attachment score (LAS),
Unlabeled attachment score (UAS), and Label accuracy score (LAC). The column labeled “Imp” reports the improve-
ment in terms of relative error reduction with respect to the BASE model for the UAS score. In bold the best results.

tional token from the stack and an additional token
from the input for AS-2 (cf. Table 3).

5.2 Results of 2nd-order models

Table 4 summarizes the results of all experiments.
We report the following scores, obtained with the
CoNLL-X scoring script: labeled attachment score
(LAS), unlabeled attachment score (UAS) and label
accuracy score (LAC). For the UAS score, the most
frequently reported, we include the improvement in
relative error reduction.

The 2nd-order base model improves on all mea-
sures over the 1st-order model by approximately
5%. The UAS score is 90.55%, with an improve-
ment of 4.9%. The magnitude of the improve-
ment is remarkable and reflects the 4.6% improve-
ment that Yamada and Matsumoto (Yamada & Mat-
sumoto, 2003) report going from the linear SVM to
the polynomial of degree two. Our base model’s ac-
curacy (90.55% UAS) compares well with the ac-
curacy of the parsers based on the polynomial ker-
nel trained with SVM of Yamada and Matsumoto
(UAS 90.3%), and Hall et al. (2006) (UAS 89.4%).
We notice in particular that, given the lack of non-
projective cases/rules, the parser of Hall et al. (2006)
is almost identical to our parser, hence the differ-
ence in accuracy (+1.1%) might effectively be due
to a better classifier. Yamada & Matsumoto’s parser
is slightly more complex than our parser, and has
quadratic worst-case complexity. Overall, the accu-
racy of the 2nd-order parser is comparable to that of
the 1st-order MST parser (90.7%).

There is no direct evidence that our perceptron
produces better classifiers than SVM. Rather, the

pattern of results produced by the perceptron seems
comparable to that of SVM (Yamada & Matsumoto,
2003). This is a useful finding in itself, given that
the former is more efficient: perceptron’s update is
linear while SVM solves a quadratic problem at each
update. However, one major difference between the
two approaches lies in the fact that learning with the
primal model does not require splitting the model
by Part-of-Speech, or other means. As a conse-
quence, beyond the greater simplicity, our method
might benefit from not depending so strongly on the
quality of POS tagging. POS information is encoded
as a feature and contributes its weight to the selec-
tion of the parsing action, together with all addi-
tionally available information. In the SVM-trained
methods the model that makes the prediction for the
parsing rule is essentially chosen by an oracle, the
prediction of the POS tagger. Furthermore, it might
be argued that learning a single model makes a bet-
ter use of the training data by exploiting the cor-
relations between all datapoints, while in the dual
split-training case the interaction is limited to dat-
apoints in the same partition. In any case, second-
order feature maps could be used also with SVM or
other classifiers. The advantage of using the per-
ceptron lies in the unchallenged accuracy/efficiency
trade-off. Finally, we recall that training in the pri-
mal model can be performed fully on-line without
affecting the resulting model nor the complexity of
the algorithm.

5.3 Results of models with semantic features

All models based on semantic features improve over
the base model on all measures. The best configura-

140

Parser UAS
Hall et al. ’06 89.4
Yamada & Matsumoto ’03 90.3
DeSR 90.55
McDonald & Pereira 1st-order MST 90.7
DeSR AS-2 91.1
McDonald & Pereira 2nd-order MST 91.5
Sagae & Lavie ’06 92.7

Table 5. Comparison of main results on the Penn Tree-
bank dataset.

tion is that of model AS-2 which extracts all seman-
tic features from the widest context. In the 1st-order
AS-2 model the improvement, 86.71% UAS (+8%
relative error reduction) is more marked than in the
2nd-order AS-2 model, 91.1% UAS (+5.8% error
reduction). A possible simple exaplanation is that
some information captured by the semantic features
is correlated with other higher-order features which
do not occur in the 1st-order encoding. Overall the
accuracy of the DeSR parser with semantic informa-
tion is slightly inferior to that of the second-order
MST parser (McDonald & Pereira, 2006) (91.5%
UAS). The best result on this dataset to date (92.7%
UAS) is that of Sagae and Lavie (Sagae & Lavie,
2006) who use a parser which combines the predic-
tions of several pre-existing parsers, including Mc-
Donald’s and Nivre’s parsers. Table 5 lists the main
results to date on the version of the Penn Treebank
for dependency parsing task used in this paper.

In Table 4 we also evaluate the gain obtained by
adding one semantic feature type at a time (cf. rows
EOS/BIO/TAG). These results show that all seman-
tic features provide some improvement (with the du-
bious case of EOS in the 2nd-order model). The
BIO encoding seems to produce the most accurate
features. This could be promising because it sug-
gests that the benefit does not depend only on the
specific tags, but that the segmentation in itself is
important. Hence tagging could improve the adapta-
tion of parsers to new domains even if only generic
tagging methods are available.

5.4 Remarks on efficiency

All experiments were performed on a 2.4GHz AMD
Opteron CPU machine with 32GB RAM. The 2nd-
order parser uses almost 3GB of memory. While

Parsing time/sec
Parser English Chinese
MST 2n-order 97.52 59.05
MST 1st-order 76.62 49.13
DeSR 36.90 21.22

Table 6. Parsing times for the CoNNL 2007 English and
Chinese datasets for MST and DeSR.

it is several times slower and larger than the 1st-
order model8 the 2nd-order model performance is
still competitive. It takes 3 minutes (user time) to
parse section 23, POS tagging included. In train-
ing, the model takes about 1 hour to process the full
dataset once. As a comparison, Hall et al. (2006)
reports 1.5 hours for training the partitioned SVM
model and 10 minutes for parsing the evaluation set
on the same Penn Treebank data. We also compared
directly the parsing time of our parser with that of
the MST parser using the version 0.4.3 of MST-
Parser9. For these experiments we used two datasets
from the CoNLL 2007 shared task for English and
Chinese. Table 6 reports the times, in seconds, to
parse the test sets for these languages on a 3.3GHz
Xeon machine with 4 GB Ram, of the MST 1st and
2nd-order parser and DeSR parser (without semantic
features).

The architecture of the model presented here of-
fers several options for optimization. For exam-
ple, implementing the α models with full vectors
rather than hash tables speeds up parsing by a factor
of three, at the expense of memory. Alternatively,
memory load in training can be reduced, at the ex-
pense of time, by using on-line training. However,
the most valuable option for space need reduction
might be to filter out low-frequency second-order
features. Since the frequency of such features seems
to follow a power law distribution, this reduces sig-
nificantly the feature space size even for low thresh-
olds at small accuracy expense. In this paper how-
ever we focused on the full model, no approxima-
tions were required to run the experiments.

8The 1st-order parser takes 7 seconds (user time) to process
Section 23.

9Available from sourceforge.net.

141

6 Conclusion

We explored the design space of a dependency
parser by modeling and extending the feature repre-
sentation, while adopting one of the simplest parsing
architecture: a single-pass deterministic shift-reduce
algorithm trained with a regularized multiclass per-
ceptron. We showed that with the perceptron it is
possible to adopt higher-order feature maps equiva-
lent to polynomial kernels without need of approx-
imating the model (although this remains an option
for optimization). The resulting models achieve ac-
curacies comparable (or better) to more complex ar-
chitectures based on dual SVM training, and faster
parsing on unseen data. With respect to learning, it is
possible that more sophisticated formulations of the
perceptron (e.g. MIRA (Crammer & Singer, 2003))
could provide further gains in accuracy, as shown
with the MST parser (McDonald et al., 2005).

We also experimented with novel types of se-
mantic features, extracted from the annotations pro-
duced by an entity tagger trained on the BBN cor-
pus. This model further improves over the standard
model yielding an additional 5.8% relative error re-
duction. Although the magnitude of the improve-
ment is not striking, to the best of our knowledge
this is the first encouraging evidence that annotated
semantic information can improve parsing and sug-
gests several options for further research. For exam-
ple, this finding might indicate that this type of ap-
proach, which combines semantic tagging and pars-
ing, is viable for the adaptation of parsing to new
domains for which semantic taggers exist. Seman-
tic features could be also easily included in other
types of dependency parsing algorithms, e.g., MST,
and in current methods for constituent parse rerank-
ing (Collins, 2000; Charniak & Johnson, 2005).

For future research several issues concerning the
semantic features could be tackled. We notice that
more complex semantic features can be designed
and evaluated. For example, it might be useful to
guess the “head” of segments with simple heuris-
tics, i.e., the guess the node which is more likely to
connect the segment with the rest of the tree, which
all internal components of the entity depend upon.
It would be also interesting to extract semantic fea-
tures from taggers trained on different datasets and
based on different tagsets.

Acknowledgments

The first author would like to thank Thomas Hof-
mann for useful inputs concerning the presentation
of the issue of higher-order feature representations
of Section 3.4. We would also like to thank Brian
Roark and the anonymous reviewers for useful com-
ments and pointers to related work.

References
G. Attardi. 2006. Experiments with a Multilanguage

Non-Projective Dependency Parser. In Proceedings of
CoNNL-X 2006.

BBN. 2005. BBN Pronoun Coreference and Entity Type
Corpus. Linguistic Data Consortium (LDC) catalog
number LDC2005T33.

S. Buchholz and E. Marsi. 2006. Introduction to
CoNNL-X Shared Task on Multilingual Dependency
Parsing. In Proceedings of CoNNL-X 2006.

X. Carreras and L. Màrquez. 2005. Introduction to the
CoNLL-2005 Shared Task: Semantic Role Labeling.
In Proceedings of CoNLL 2005.

X. Carreras, M. Surdeanu, and L. Màrquez. 2006 Pro-
jective Dependency Parsing with Perceptron. In Pro-
ceedings of CoNLL-X.

E. Charniak. 1997. Statistical Parsing with a Context-
Free Grammar and Word Statistics. In Proceedings of
the Fourteenth National Conference on Artificial Intel-
ligence AAAI.

E. Charniak and M. Johnson. 2005. Coarse-to-Fine n-
Best Parsing and MaxEnt Discriminative Reranking.
In Proceedings of ACL 2005.

M. Ciaramita and Y. Altun. 2006. Broad-Coverage Sense
Disambiguation and Information Extraction with a Su-
persense Sequence Tagger. In Proceedings of EMNLP
2006.

M. Ciaramita and M. Johnson. 2003. Supersense Tag-
ging of Unknown Nouns in WordNet. In Proceedings
of EMNLP 2003.

M. Collins. 1999. Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. Thesis, University
of Pennsylvania.

M. Collins. 2000. Discriminative Reranking for Natural
Language Parsing. In Proceedings of ICML 2000.

M. Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. In Proceedings of
EMNLP 2002.

142

M. Collins and T. Koo. 2005. Hidden-Variable Mod-
els for Discriminative Reranking. In Proceedings of
EMNLP 2005.

M. Collins and B. Roark. 2004. Incremental Parsing
with the Perceptron Algorithm. In Proceedings of ACL
2004.

K. Crammer and Y. Singer. 2003. Ultraconservative On-
line Algorithms for Multiclass Problems. Journal of
Machine Learning Research 3: pp.951-991.

A. Culotta and J. Sorensen. 2004. Dependency Tree Ker-
nels for Relation Extraction. In Proceedings of ACL
2004.

Y. Ding and M. Palmer. 2005. Machine Translation us-
ing Probabilistic Synchronous Dependency Insertion
Grammars. In Proceedings of ACL 2005.

J. Eisner. 2000. Bilexical Grammars and their Cubic-
Time Parsing Algorithms. In H.C. Bunt and A. Ni-
jholt, eds. New Developments in Natural Language
Parsing, pp. 29-62. Kluwer Academic Publishers.

C. Fellbaum. 1998. WordNet: An Electronic Lexical
Database MIT Press, Cambridge, MA. 1969.

J. Hall, J. Nivre and J. Nilsson. 2006. Discriminative
Classifiers for Deterministic Dependency Parsing. In
Proceedings of the COLING/ACL 2006.

T. Kalt. 2004. Induction of Greedy Controllers for Deter-
ministic Treebank Parsers. In Proceedings of EMNLP
2004.

M. Marcus, B. Santorini and M. Marcinkiewicz. 1993.
Building a Large Annotated Corpus of English: The
Penn Treebank. Computational Linguistics, 19(2): pp.
313-330.

R. McDonald. 2006. Discriminative Training and Span-
ning Tree Algorithms for Dependency Parsing. Ph.D.
Thesis, University of Pennsylvania.

R. McDonald, F. Pereira, K. Ribarov and J. Hajic̆. 2005.
Non-projective Dependency Parsing using Spanning
Tree Algorithms. In Proceedings of HLT-EMNLP
2005.

R. McDonald and F. Pereira. 2006. Online Learning
of Approximate Dependency Parsing Algorithms. In
Proceedings of EACL 2006.

M.L. Minsky and S.A. Papert. 1969. Perceptrons: An
Introduction to Computational Geometry. MIT Press,
Cambridge, MA. 1969.

A. Moschitti. 2006. Efficient Convolution Kernels for
Dependency and Constituent Syntactic Trees. In Pro-
ceedings of ECML 2006.

J. Nivre. 2004. Incrementality in Deterministic Depen-
dency Parsing. In Incremental Parsing: Bringing En-
gineering and Cognition Together. Workshop at ACL-
2004.Spain, 50-57.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel and D. Yuret. 2007. The CoNLL 2007
Shared Task on Dependency Parsing, In Proceedings
of EMNLP-CoNLL 2007.

J. Nivre and M. Scholz. 2004. Deterministic Depen-
dency Parsing of English Text. In Proceedings of
COLING 2004.

V. Punyakanok, D. Roth, and W. Yih. 2005. The Neces-
sity of Syntactic Parsing for Semantic Role Labeling.
In Proceedings of IJCAI 2005.

F. Rosemblatt. 1958. The Perceptron: A Probabilistic
Model for Information Storage and Organization in the
Brain. Psych. Rev., 68: pp. 386-407.

K. Sagae and A. Lavie. 2005. Parser Combination by
Reparsing. In Proceedings of HLT-NAACL 2006.

F. Sha and F. Pereira. 2003. Shallow Parsing with Condi-
tional Random Fields. In Proceedings of HLT-NAACL
2003.

H. Yamada and Y. Matsumoto. 2003. Statistical De-
pendency Analysis with Support Vector Machines. In
Proceedings of the Eighth International Workshop on
Parsing Technologies. Nancy, France.

S. Yi and M. Palmer. 2005. The Integration of Syntactic
Parsing and Semantic Role Labeling. In Proceedings
of CoNLL 2005.

A. Wong and D. Wu. 1999. Learning a Lightweight De-
terministic Parser. In Proceedings of EUROSPEECH
1999.

D. Zhang and W.S. Less. 2003. Question Classification
using Support Vector Machines. In Proceedings of SI-
GIR 2003.

143

Proceedings of the 10th Conference on Parsing Technologies, pages 144–155,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

A Latent Variable Model for Generative Dependency Parsing

Ivan Titov
University of Geneva

24, rue Général Dufour
CH-1211 Genève 4, Switzerland
ivan.titov@cui.unige.ch

James Henderson
University of Edinburgh

2 Buccleuch Place
Edinburgh EH8 9LW, United Kingdom
james.henderson@ed.ac.uk

Abstract

We propose a generative dependency pars-
ing model which uses binary latent variables
to induce conditioning features. To define
this model we use a recently proposed class
of Bayesian Networks for structured predic-
tion, Incremental Sigmoid Belief Networks.
We demonstrate that the proposed model
achieves state-of-the-art results on three dif-
ferent languages. We also demonstrate that
the features induced by the ISBN’s latent
variables are crucial to this success, and
show that the proposed model is particularly
good on long dependencies.

1 Introduction

Dependency parsing has been a topic of active re-
search in natural language processing during the last
several years. The CoNLL-X shared task (Buch-
holz and Marsi, 2006) made a wide selection of
standardized treebanks for different languages avail-
able for the research community and allowed for
easy comparison between various statistical meth-
ods on a standardized benchmark. One of the sur-
prising things discovered by this evaluation is that
the best results are achieved by methods which
are quite different from state-of-the-art models for
constituent parsing, e.g. the deterministic parsing
method of (Nivre et al., 2006) and the minimum
spanning tree parser of (McDonald et al., 2006).
All the most accurate dependency parsing models
are fully discriminative, unlike constituent parsing
where all the state of the art methods have a genera-

tive component (Charniak and Johnson, 2005; Hen-
derson, 2004; Collins, 2000). Another surprising
thing is the lack of latent variable models among
the methods used in the shared task. Latent vari-
able models would allow complex features to be in-
duced automatically, which would be highly desir-
able in multilingual parsing, where manual feature
selection might be very difficult and time consum-
ing, especially for languages unknown to the parser
developer.

In this paper we propose a generative latent vari-
able model for dependency parsing. It is based on
Incremental Sigmoid Belief Networks (ISBNs), a
class of directed graphical model for structure pre-
diction problems recently proposed in (Titov and
Henderson, 2007), where they were demonstrated
to achieve competitive results on the constituent
parsing task. As discussed in (Titov and Hender-
son, 2007), computing the conditional probabili-
ties which we need for parsing is in general in-
tractable with ISBNs, but they can be approximated
efficiently in several ways. In particular, the neu-
ral network constituent parsers in (Henderson, 2003)
and (Henderson, 2004) can be regarded as coarse ap-
proximations to their corresponding ISBN model.

ISBNs use history-based probability models. The
most common approach to handling the unbounded
nature of the parse histories in these models is to
choose a pre-defined set of features which can be
unambiguously derived from the history (e.g. (Char-
niak, 2000; Collins, 1999; Nivre et al., 2004)). De-
cision probabilities are then assumed to be indepen-
dent of all information not represented by this finite
set of features. ISBNs instead use a vector of binary

144

latent variables to encode the information about the
parser history. This history vector is similar to the
hidden state of a Hidden Markov Model. But un-
like the graphical model for an HMM, which speci-
fies conditional dependency edges only between ad-
jacent states in the sequence, the ISBN graphical
model can specify conditional dependency edges be-
tween states which are arbitrarily far apart in the
parse history. The source state of such an edge is de-
termined by the partial output structure built at the
time of the destination state, thereby allowing the
conditional dependency edges to be appropriate for
the structural nature of the problem being modeled.
This structure sensitivity is possible because ISBNs
are a constrained form of switching model (Mur-
phy, 2002), where each output decision switches the
model structure used for the remaining decisions.

We build an ISBN model of dependency parsing
using the parsing order proposed in (Nivre et al.,
2004). However, instead of performing determin-
istic parsing as in (Nivre et al., 2004), we use this
ordering to define a generative history-based model,
by integrating word prediction operations into the
set of parser actions. Then we propose a simple, lan-
guage independent set of relations which determine
how latent variable vectors are interconnected by
conditional dependency edges in the ISBN model.
ISBNs also condition the latent variable vectors on a
set of explicit features, which we vary in the experi-
ments.

In experiments we evaluate both the performance
of the ISBN dependency parser compared to previ-
ous work, and the ability of the ISBN model to in-
duce complex history features. Our model achieves
state-of-the-art performance on the languages we
test, significantly outperforming the model of (Nivre
et al., 2006) on two languages out of three and
demonstrating about the same results on the third.
In order to test the model’s feature induction abili-
ties, we train models with two different sets of ex-
plicit conditioning features: the feature set individu-
ally tuned by (Nivre et al., 2006) for each considered
language, and a minimal set of local features. These
models achieve comparable accuracy, unlike with
the discriminative SVM-based approach of (Nivre et
al., 2006), where careful feature selection appears to
be crucial. We also conduct a controlled experiment
where we used the tuned features of (Nivre et al.,

2006) but disable the feature induction abilities of
our model by elimination of the edges connecting
latent state vectors. This restricted model achieves
far worse results, showing that it is exactly the ca-
pacity of ISBNs to induce history features which is
the key to its success. It also motivates further re-
search into how feature induction techniques can be
exploited in discriminative parsing methods.

We analyze how the relation accuracy changes
with the length of the head-dependent relation,
demonstrating that our model very significantly out-
performs the state-of-the-art baseline of (Nivre et
al., 2006) on long dependencies. Additional exper-
iments suggest that both feature induction abilities
and use of the beam search contribute to this im-
provement.

The fact that our model defines a probability
model over parse trees, unlike the previous state-of-
the-art methods (Nivre et al., 2006; McDonald et al.,
2006), makes it easier to use this model in appli-
cations which require probability estimates, e.g. in
language processing pipelines. Also, as with any
generative model, it may be easy to improve the
parser’s accuracy by using discriminative retraining
techniques (Henderson, 2004) or data-defined ker-
nels (Henderson and Titov, 2005), with or even with-
out introduction of any additional linguistic features.
In addition, there are some applications, such as lan-
guage modeling, which require generative models.
Another advantage of generative models is that they
do not suffer from the label bias problems (Bot-
tou, 1991), which is a potential problem for con-
ditional or deterministic history-based models, such
as (Nivre et al., 2004).

In the remainder of this paper, we will first review
general ISBNs and how they can be approximated.
Then we will define the generative parsing model,
based on the algorithm of (Nivre et al., 2004), and
propose an ISBN for this model. The empirical part
of the paper then evaluates both the overall accuracy
of this method and the importance of the model’s
capacity to induce features. Additional related work
will be discussed in the last section before conclud-
ing.

145

2 The Latent Variable Architecture

In this section we will begin by briefly introduc-
ing the class of graphical models we will be us-
ing, Incremental Sigmoid Belief Networks (Titov
and Henderson, 2007). ISBNs are designed specif-
ically for modeling structured data. They are latent
variable models which are not tractable to compute
exactly, but two approximations exist which have
been shown to be effective for constituent parsing
(Titov and Henderson, 2007). Finally, we present
how these approximations can be trained.

2.1 Incremental Sigmoid Belief Networks

An ISBN is a form of Sigmoid Belief Network
(SBN) (Neal, 1992). SBNs are Bayesian Networks
with binary variables and conditional probability
distributions in the form:

P (Si = 1|Par(Si)) = σ(
∑

Sj∈Par(Si)

JijSj),

where Si are the variables, Par(Si) are the variables
which Si depends on (its parents), σ denotes the lo-
gistic sigmoid function, and Jij is the weight for the
edge from variable Sj to variable Si in the graphi-
cal model. SBNs are similar to feed-forward neural
networks, but unlike neural networks, SBNs have a
precise probabilistic semantics for their hidden vari-
ables. ISBNs are based on a generalized version of
SBNs where variables with any range of discrete val-
ues are allowed. The normalized exponential func-
tion (’soft-max’) is used to define the conditional
probability distributions at these nodes.

To extend SBNs for processing arbitrarily long se-
quences, such as a parser’s sequence of decisions
D1, ..., Dm, SBNs are extended to a form of Dy-
namic Bayesian Network (DBN). In DBNs, a new
set of variables is instantiated for each position in
the sequence, but the edges and weights are the same
for each position in the sequence. The edges which
connect variables instantiated for different positions
must be directed forward in the sequence, thereby
allowing a temporal interpretation of the sequence.

Incremental Sigmoid Belief Networks (Titov and
Henderson, 2007) differ from simple dynamic SBNs
in that they allow the model structure to depend on
the output variable values. Specifically, a decision is
allowed to effect the placement of any edge whose

destination is after the decision. This results in a
form of switching model (Murphy, 2002), where
each decision switches the model structure used for
the remaining decisions. The incoming edges for
a given position are a discrete function of the se-
quence of decisions which precede that position.
This makes the ISBN an “incremental” model, not
just a dynamic model. The structure of the model is
determined incrementally as the decision sequence
proceeds.

ISBNs are designed to allow the model structure
to depend on the output values without overly com-
plicating the inference of the desired conditional
probabilities P (Dt|D1, . . . , Dt−1), the probability
of the next decision given the history of previous de-
cisions. In particular, it is never necessary to sum
over all possible model structures, which in general
would make inference intractable.

2.2 Modeling Structures with ISBNs

ISBNs are designed for modeling structured data
where the output structure is not given as part of
the input. In dependency parsing, this means they
can model the probability of an output dependency
structure when the input only specifies the sequence
of words (i.e. parsing). The difficulty with such
problems is that the statistical dependencies in the
dependency structure are local in the structure, and
not necessarily local in the word sequence. ISBNs
allow us to capture these statistical dependencies in
the model structure by having model edges depend
on the output variables which specify the depen-
dency structure. For example, if an output specifies
that there is a dependency arc from word wi to word
wj , then any future decision involving wj can di-
rectly depend on its head wi. This allows the head
wi to be treated as local to the dependent wj even if
they are far apart in the sentence.

This structurally-defined notion of locality is par-
ticularly important for the model’s latent variables.
When the structurally-defined model edges connect
latent variables, information can be propagated be-
tween latent variables, thereby providing an even
larger structural domain of locality than that pro-
vided by single edges. This provides a poten-
tially powerful form of feature induction, which is
nonetheless biased toward a notion of locality which
is appropriate for the structure of the problem.

146

2.3 Approximating ISBNs

(Titov and Henderson, 2007) proposes two approxi-
mations for inference in ISBNs, both based on vari-
ational methods. The main idea of variational meth-
ods (Jordan et al., 1999) is, roughly, to construct a
tractable approximate model with a number of free
parameters. The values of the free parameters are set
so that the resulting approximate model is as close as
possible to the original graphical model for a given
inference problem.

The simplest example of a variation method is the
mean field method, which uses a fully factorized dis-
tribution Q(H|V) =

∏
i Qi(hi|V) as the approxi-

mate model, where V are the visible (i.e. known)
variables, H = h1, . . . , hl are the hidden (i.e. la-
tent) variables, and each Qi is the distribution of an
individual latent variable hi. The free parameters of
this approximate model are the means µi of the dis-
tributions Qi.

(Titov and Henderson, 2007) proposes two ap-
proximate models based on the variational approach.
First, they show that the neural network of (Hen-
derson, 2003) can be viewed as a coarse mean field
approximation of ISBNs, which they call the feed-
forward approximation. This approximation im-
poses the constraint that the free parameters µi of
the approximate model are only allowed to depend
on the distributions of their parent variables. This
constraint increases the potential for a large approx-
imation error, but it significantly simplifies the com-
putations by allowing all the free parameters to be
set in a single pass over the model.

The second approximation proposed in (Titov and
Henderson, 2007) takes into consideration the fact
that, after each decision is made, all the preceding
latent variables should have their means µi updated.
This approximation extends the feed-forward ap-
proximation to account for the most important com-
ponents of this update. They call this approxima-
tion the mean field approximation, because a mean
field approximation is applied to handle the statisti-
cal dependencies introduced by the new decisions.
This approximation was shown to be a more accu-
rate approximation of ISBNs than the feed-forward
approximation, but remain tractable. It was also
shown to achieve significantly better accuracy on
constituent parsing.

2.4 Learning

Training these approximations of ISBNs is done to
maximize the fit of the approximate models to the
data. We use gradient descent, and a regularized
maximum likelihood objective function. Gaussian
regularization is applied, which is equivalent to the
weight decay standardly used in neural networks.
Regularization was reduced through the course of
learning.

Gradient descent requires computing the deriva-
tives of the objective function with respect to the
model parameters. In the feed-forward approxima-
tion, this can be done with the standard Backpropa-
gation learning used with neural networks. For the
mean field approximation, propagating the error all
the way back through the structure of the graphical
model requires a more complicated calculation, but
it can still be done efficiently (see (Titov and Hen-
derson, 2007) for details).

3 The Dependency Parsing Algorithm

The sequences of decisions D1, ..., Dm which we
will be modeling with ISBNs are the sequences of
decisions made by a dependency parser. For this we
use the parsing strategy for projective dependency
parsing introduced in (Nivre et al., 2004), which
is similar to a standard shift-reduce algorithm for
context-free grammars (Aho et al., 1986). It can
be viewed as a mixture of bottom-up and top-down
parsing strategies, where left dependencies are con-
structed in a bottom-up fashion and right dependen-
cies are constructed top-down. For details we refer
the reader to (Nivre et al., 2004). In this section we
briefly describe the algorithm and explain how we
use it to define our history-based probability model.

In this paper, as in the CoNLL-X shared task,
we consider labeled dependency parsing. The state
of the parser is defined by the current stack S, the
queue I of remaining input words and the partial la-
beled dependency structure constructed by previous
parser decisions. The parser starts with an empty
stack S and terminates when it reaches a configura-
tion with an empty queue I . The algorithm uses 4
types of decisions:

1. The decision Left-Arcr adds a dependency arc
from the next input word wj to the word wi on
top of the stack and selects the label r for the

147

relation between wi and wj . Word wi is then
popped from the stack.

2. The decision Right-Arcr adds an arc from the
word wi on top of the stack to the next input
word wj and selects the label r for the relation
between wi and wj .

3. The decision Reduce pops the word wi from
the stack.

4. The decision Shiftwj
shifts the word wj from

the queue to the stack.

Unlike the original definition in (Nivre et al., 2004)
the Right-Arcr decision does not shift wj to the
stack. However, the only thing the parser can do
after a Right-Arcr decision is to choose the Shiftwj

decision. This subtle modification does not change
the actual parsing order, but it does simplify the def-
inition of our graphical model, as explained in sec-
tion 4.

We use a history-based probability model, which
decomposes the probability of the parse according
to the parser decisions:

P (T) = P (D1, ..., Dm) =
∏

t

P (Dt|D1, . . . , Dt−1),

where T is the parse tree and D1, . . . , Dm is its
equivalent sequence of parser decisions. Since we
need a generative model, the action Shiftwj

also pre-
dicts the next word in the queue I , wj+1, thus the
P (Shiftwi

|D1, . . . , Dt−1) is a probability both of
the shift operation and the word wj+1 conditioned
on current parsing history.1

Instead of treating each Dt as an atomic decision,
it is convenient to split it into a sequence of elemen-
tary decisions Dt = dt

1, . . . , d
t
n:

P (Dt|D1, . . . , Dt−1) =
∏

k

P (dt
k|h(t, k)),

1In preliminary experiments, we also considered look-
ahead, where the word is predicted earlier than it appears at the
head of the queue I , and “anti-look-ahead”, where the word is
predicted only when it is shifted to the stack S. Early predic-
tion allows conditioning decision probabilities on the words in
the look-ahead and, thus, speeds up the search for an optimal
decision sequence. However, the loss of accuracy with look-
ahead was quite significant. The described method, where a
new word is predicted when it appears at the head of the queue,
led to the most accurate model and quite efficient search. The
anti-look-ahead model was both less accurate and slower.

Figure 1: An ISBN for estimating P (dt
k|h(t, k)).

where h(t, k) denotes the parsing history
D1, . . . , Dt−1, dt

1, . . . , d
t
k−1. We split Left-Arcr

and Right-Arcr each into two elementary decisions:
first, the parser decides to create the corresponding
arc, then, it decides to assign a relation r to the
arc. Similarly, we decompose the decision Shiftwj

into an elementary decision to shift a word and a
prediction of the word wj+1. In our experiments we
use datasets from the CoNLL-X shared task, which
provide additional properties for each word token,
such as its part-of-speech tag and some fine-grain
features. This information implicitly induces word
clustering, which we use in our model: first we
predict a part-of-speech tag for the word, then a set
of word features, treating feature combination as an
atomic value, and only then a particular word form.
This approach allows us to both decrease the effect
of sparsity and to avoid normalization across all the
words in the vocabulary, significantly reducing the
computational expense of word prediction.

4 An ISBN for Dependency Parsing

In this section we define the ISBN model we use for
dependency parsing. An example of this ISBN for
estimating P (dt

k|h(t, k)) is illustrated in figure 1. It
is organized into vectors of variables: latent state
variable vectors St′ = st′

1 , . . . , st′

n , representing an
intermediate state at position t′, and decision vari-
able vectors Dt′ , representing a decision at position
t′, where t′ ≤ t. Variables whose value are given at
the current decision (t, k) are shaded in figure 1, la-
tent and current decision variables are left unshaded.

As illustrated by the edges in figure 1, the prob-
ability of each state variable st′

i (the individual cir-
cles in St′) depends on all the variables in a finite
set of relevant previous state and decision vectors,

148

but there are no direct dependencies between the dif-
ferent variables in a single state vector. For each
relevant decision vector, the precise set of decision
variables which are connected in this way can be
adapted to a particular language. As long as these
connected decisions include all the new information
about the parse, the performance of the model is not
very sensitive to this choice. This is because ISBNs
have the ability to induce their own complex features
of the parse history, as demonstrated in the experi-
ments in section 6.

The most important design decision in building
an ISBN model is choosing the finite set of relevant
previous state vectors for the current decision. By
connecting to a previous state, we place that state in
the local context of the current decision. This speci-
fication of the domain of locality determines the in-
ductive bias of learning with ISBNs. When deciding
what information to store in its latent variables, an
ISBN is more likely to choose information which
is immediately local to the current decision. This
stored information then becomes local to any fol-
lowing connected decision, where it again has some
chance of being chosen as relevant to that decision.
In this way, the information available to a given deci-
sion can come from arbitrarily far away in the chain
of interconnected states, but it is much more likely
to come from a state which is relatively local. Thus,
we need to choose the set of local (i.e. connected)
states in accordance with our prior knowledge about
which previous decisions are likely to be particularly
relevant to the current decision.

To choose which previous decisions are particu-
larly relevant to the current decision, we make use
of the partial dependency structure which has been
decided so far in the parse. Specifically, the current
latent state vector is connected to a set of 7 previous
latent state vectors (if they exist) according to the
following relationships:

1. Input Context: the last previous state with the
same queue I .

2. Stack Context: the last previous state with the
same stack S.

3. Right Child of Top of S: the last previous state
where the rightmost right child of the current
stack top was on top of the stack.

4. Left Child of Top of S: the last previous state
where the leftmost left child of the current stack
top was on top of the stack.

5. Left Child of Front of I2 : the last previous
state where the leftmost child of the front ele-
ment of I was on top of the stack.

6. Head of Top: the last previous state where the
head word of the current stack top was on top
of the stack.

7. Top of S at Front of I: the last previous state
where the current stack top was at the front of
the queue.

Each of these 7 relations has its own distinct weight
matrix for the resulting edges in the ISBN, but the
same weight matrix is used at each position where
the relation is relevant.

All these relations but the last one are motivated
by linguistic considerations. The current decision is
primarily about what to do with the current word on
the top of the stack and the current word on the front
of the queue. The Input Context and Stack Context
relationships connect to the most recent states used
for making decisions about each of these words. The
Right Child of Top of S relationship connects to a
state used for making decisions about the most re-
cently attached dependent of the stack top. Simi-
larly, the Left Child of Front of I relationship con-
nects to a state for the most recently attached depen-
dent of the queue front. The Left Child of Top of S

is the first dependent of the stack top, which is a par-
ticularly informative dependent for many languages.
Likewise, the Head of Top can tell us a lot about the
stack top, if it has been chosen already.

A second motivation for including a state in the
local context of a decision is that it might contain in-
formation which has no other route for reaching the
current decision. In particular, it is generally a good
idea to ensure that the immediately preceding state is
always included somewhere in the set of connected
states. This requirement ensures that information, at
least theoretically, can pass between any two states
in the decision sequence, thereby avoiding any hard

2We refer to the head of the queue as the front, to avoid
unnecessary ambiguity of the word head in the context of de-
pendency parsing.

149

independence assumptions. The last relation, Top of
S at Front of I , is included mainly to fulfill this re-
quirement. Otherwise, after a Shiftwj

operation, the
preceding state would not be selected by any of the
relationships.

As indicated in figure 1, the probability of each
elementary decision dt′

k depends both on the current
state vector St′ and on the previously chosen ele-
mentary action dt′

k−1 from Dt′ . This probability dis-
tribution has the form of a normalized exponential:

P (dt′

k = d|St′ , dt′

k−1)=
Φh(t′,k) (d) e

∑
j

Wdjst′

j

∑
d′Φh(t′,k) (d′) e

∑
j

Wd′jst′

j

,

where Φh(t′,k) is the indicator function of the set of
elementary decisions that may possibly follow the
last decision in the history h(t′, k), and the Wdj are
the weights. Now it is easy to see why the origi-
nal decision Right-Arcr (Nivre et al., 2004) had to
be decomposed into two distinct decisions: the de-
cision to construct a labeled arc and the decision to
shift the word. Use of this composite Right-Arcr

would have required the introduction of individual
parameters for each pair (w, r), where w is an arbi-
trary word in the lexicon and r - an arbitrary depen-
dency relation.

5 Searching for the Best Tree

ISBNs define a probability model which does not
make any a-priori assumptions of independence be-
tween any decision variables. As we discussed in
section 4 use of relations based on partial output
structure makes it possible to take into account sta-
tistical interdependencies between decisions closely
related in the output structure, but separated by mul-
tiple decisions in the input structure. This property
leads to exponential complexity of complete search.
However, the success of the deterministic parsing
strategy which uses the same parsing order (Nivre et
al., 2006), suggests that it should be relatively easy
to find an accurate approximation to the best parse
with heuristic search methods. Unlike (Nivre et al.,
2006), we can not use a lookahead in our generative
model, as was discussed in section 3, so a greedy
method is unlikely to lead to a good approximation.
Instead we use a pruning strategy similar to that de-
scribed in (Henderson, 2003), where it was applied

to a considerably harder search problem: constituent
parsing with a left-corner parsing order.

We apply fixed beam pruning after each deci-
sion Shiftwj

, because knowledge of the next word
in the queue I helps distinguish unlikely decision
sequences. We could have used best-first search be-
tween Shiftwj

operations, but this still leads to rela-
tively expensive computations, especially when the
set of dependency relations is large. However, most
of the word pairs can possibly participate only in a
very limited number of distinct relations. Thus, we
pursue only a fixed number of relations r after each
Left-Arcr and Right-Arcr operation.

Experiments with a variety of post-shift beam
widths confirmed that very small validation perfor-
mance gains are achieved with widths larger than 30,
and sometimes even a beam of 5 was sufficient. We
found also that allowing 5 different relations after
each dependency prediction operation was enough
that it had virtually no effect on the validation accu-
racy.

6 Empirical Evaluation

In this section we evaluate the ISBN model for
dependency parsing on three treebanks from the
CoNLL-X shared task. We compare our genera-
tive models with the best parsers from the CoNLL-
X task, including the SVM-based parser of (Nivre et
al., 2006) (the MALT parser), which uses the same
parsing algorithm. To test the feature induction abil-
ities of our model we compare results with two fea-
ture sets, the feature set tuned individually for each
language by (Nivre et al., 2006), and another fea-
ture set which includes only obvious local features.
This simple feature set comprises only features of
the word on top of the stack S and the front word
of the queue I . We compare the gain from using
tuned features with the similar gain obtained by the
MALT parser. To obtain these results we train the
MALT parser with the same two feature sets.3

In order to distinguish the contribution of ISBN’s
feature induction abilities from the contribution of

3The tuned feature sets were obtained from
http://w3.msi.vxu.se/˜nivre/research/MaltParser.html. We
removed lookahead features for ISBN experiments but
preserved them for experiments with the MALT parser. Anal-
ogously, we extended simple features with 3 words lookahead
for the MALT parser experiments.

150

our estimation method and search, we perform an-
other experiment. We use the tuned feature set and
disable the feature induction abilities of the model
by removing all the edges between latent variables
vectors. Comparison of this restricted model with
the full ISBN model shows how important the fea-
ture induction is. Also, comparison of this restricted
model with the MALT parser, which uses the same
set of features, indicates whether our generative esti-
mation method and use of beam search is beneficial.

6.1 Experimental Setup

We used the CoNLL-X distributions of Danish
DDT treebank (Kromann, 2003), Dutch Alpino tree-
bank (van der Beek et al., 2002) and Slovene SDT
treebank (Dzeroski et al., 2006). The choice of these
treebanks was motivated by the fact that they all
are freely distributed and have very different sizes
of their training sets: 195,069 tokens for Dutch,
94,386 tokens for Danish and only 28,750 tokens for
Slovene. As it is generally believed that discrimina-
tive models win over generative models with a large
amount of training data, so we expected to see simi-
lar trend in our results. Test sets are about equal and
contain about 5,000 scoring tokens.

We followed the experimental setup of the shared
task and used all the information provided for the
languages: gold standard part-of-speech tags and
coarse part-of-speech tags, word form, word lemma
(lemma information was not available for Danish)
and a set of fine-grain word features. As we ex-
plained in section 3, we treated these sets of fine-
grain features as an atomic value when predicting
a word. However, when conditioning on words, we
treated each component of this composite feature in-
dividually, as it proved to be useful on the develop-
ment set. We used frequency cutoffs: we ignored
any property (e.g., word form, feature or even part-
of-speech tag4) which occurs in the training set less
than 5 times. Following (Nivre et al., 2006), we used
pseudo-projective transformation they proposed to
cast non-projective parsing tasks as projective.

ISBN models were trained using a small devel-
opment set taken out from the training set, which
was used for tuning learning parameters and for

4Part-of-speech tags for multi-word units in the Danish tree-
bank were formed as concatenation of tags of the words, which
led to quite sparse set of part-of-speech tags.

early stopping. The sizes of the development sets
were: 4,988 tokens for larger Dutch corpus, 2,504
tokens for Danish and 2,033 tokens for Slovene.
The MALT parser was trained always using the en-
tire training set. We expect that the mean field ap-
proximation should demonstrate better results than
feed-forward approximation on this task as it is the-
oretically expected and confirmed on the constituent
parsing task (Titov and Henderson, 2007). How-
ever, the sizes of testing sets would not allow us
to perform any conclusive analysis, so we decided
not to perform these comparisons here. Instead we
used the mean field approximation for the smaller
two corpora and used the feed-forward approxima-
tion for the larger one. Training the mean field ap-
proximations on the larger Dutch treebank is feasi-
ble, but would significantly reduce the possibilities
for tuning the learning parameters on the develop-
ment set and, thus, would increase the randomness
of model comparisons.

All model selection was performed on the devel-
opment set and a single model of each type was
applied to the testing set. We used a state vari-
able vector consisting of 80 binary variables, as it
proved sufficient on the preliminary experiments.
For the MALT parser we replicated the parameters
from (Nivre et al., 2006) as described in detail on
their web site.

The labeled attachment scores for the ISBN with
tuned features (TF) and local features (LF) and
ISBN with tuned features and no edges connect-
ing latent variable vectors (TF-NA) are presented
in table 1, along with results for the MALT parser
both with tuned and local feature, the MST parser
(McDonald et al., 2006), and the average score
(Aver) across all systems in the CoNLL-X shared
task. The MST parser is included because it demon-
strated the best overall result in the task, non signif-
icantly outperforming the MALT parser, which, in
turn, achieved the second best overall result. The la-
beled attachment score is computed using the same
method as in the CoNLL-X shared task, i.e. ignor-
ing punctuation. Note, that though we tried to com-
pletely replicate training of the MALT parser with
the tuned features, we obtained slightly different re-
sults. The original published results for the MALT
parser with tuned features were 84.8% for Danish,
78.6% for Dutch and 70.3% for Slovene. The im-

151

Danish Dutch Slovene
ISBN TF 85.0 79.6 72.9

LF 84.5 79.5 72.4
TF-NA 83.5 76.4 71.7

MALT TF 85.1 78.2 70.5
LF 79.8 74.5 66.8

MST 84.8 79.2 73.4
Aver 78.3 70.7 65.2

Table 1: Labeled attachment score on the testing sets
of Danish, Dutch and Slovene treebanks.

provement of the ISBN models (TF and LF) over
the MALT parser is statistically significant for Dutch
and Slovene. Differences between their results on
Danish are not statistically significant.

6.2 Discussion of Results

The ISBN with tuned features (TF) achieved signif-
icantly better accuracy than the MALT parser on 2
languages (Dutch and Slovene), and demonstrated
essentially the same accuracy on Danish. The results
of the ISBN are among the two top published results
on all three languages, including the best published
results on Dutch. All three models, MST, MALT and
ISBN, demonstrate much better results than the av-
erage result in the CoNLL-X shared task. These re-
sults suggest that our generative model is quite com-
petitive with respect to the best models, which are
both discriminative.5 We would expect further im-
provement of ISBN results if we applied discrimina-
tive retraining (Henderson, 2004) or reranking with
data-defined kernels (Henderson and Titov, 2005),
even without introduction of any additional features.

We can see that the ISBN parser achieves about
the same results with local features (LF). Local fea-
tures by themselves are definitely not sufficient for
the construction of accurate models, as seen from
the results of the MALT parser with local features
(and look-ahead). This result demonstrates that IS-
BNs are a powerful model for feature induction.

The results of the ISBN without edges connecting
latent state vectors is slightly surprising and suggest
that without feature induction the ISBN is signifi-
cantly worse than the best models. This shows that

5Note that the development set accuracy predicted correctly
the testing set ranking of ISBN TF, LF and TF-NA models on
each of the datasets, so it is fair to compare the best ISBN result
among the three with other parsers.

to root 1 2 3 - 6 > 6
Da ISBN 95.1 95.7 90.1 84.1 74.7

MALT 95.4 96.0 90.8 84.0 71.6
Du ISBN 79.8 92.4 86.2 81.4 71.1

MALT 73.1 91.9 85.0 76.2 64.3
Sl ISBN 76.1 92.5 85.6 79.6 54.3

MALT 59.9 92.1 85.0 78.4 47.1
Av ISBN 83.6 93.5 87.3 81.7 66.7

MALT 76.2 93.3 87.0 79.5 61.0
Improv 7.5 0.2 0.4 2.2 5.7

Table 2: F1 score of labeled attachment as a function
of dependency length on the testing sets of Danish,
Dutch and Slovene.

the improvement is coming mostly from the abil-
ity of the ISBN to induce complex features and not
from either using beam search or from the estima-
tion procedure. It might also suggest that genera-
tive models are probably worse for the dependency
parsing task than discriminative approaches (at least
for larger datasets). This motivates further research
into methods which combine powerful feature in-
duction properties with the advantage of discrimina-
tive training. Although discriminative reranking of
the generative model is likely to help, the derivation
of fully discriminative feature induction methods is
certainly more challenging.

In order to better understand differences in per-
formance between ISBN and MALT, we analyzed
how relation accuracy changes with the length of
the head-dependent relation. The harmonic mean
between precision and recall of labeled attachment,
F1 measure, for the ISBN and MALT parsers with
tuned features is presented in table 2. F1 score is
computed for four different ranges of lengths and
for attachments directly to root. Along with the re-
sults for each of the languages, the table includes
their mean (Av) and the absolute improvement of
the ISBN model over MALT (Improv). It is easy
to see that accuracy of both models is generally sim-
ilar for small distances (1 and 2), but as the distance
grows the ISBN parser starts to significantly outper-
form MALT, achieving 5.7% average improvement
on dependencies longer than 6 word tokens. When
the MALT parser does not manage to recover a long
dependency, the highest scoring action it can choose
is to reduce the dependent from the stack without
specifying its head, thereby attaching the dependent

152

to the root by default. This explains the relatively
low F1 scores for attachments to root (evident for
Dutch and Slovene): though recall of attachment to
root is comparable to that of the ISBN parser (82.4%
for MALT against 84.2% for ISBN, on average over
3 languages), precision for the MALT parser is much
worse (71.5% for MALT against 83.1% for ISBN,
on average).

The considerably worse accuracy of the MALT
parser on longer dependencies might be explained
both by use of a non-greedy search method in the
ISBN and the ability of ISBNs to induce history fea-
tures. To capture a long dependency, the MALT
parser should keep a word on the stack during a
long sequence of decision. If at any point during
the intermediate steps this choice seems not to be
locally optimal, then the MALT parser will choose
the alternative and lose the possibility of the long
dependency.6 By using a beam search, the ISBN
parser can maintain the possibility of the long de-
pendency in its beam even when other alternatives
seem locally preferable. Also, long dependences are
often more difficult, and may be systematically dif-
ferent from local dependencies. The designer of a
MALT parser needs to discover predictive features
for long dependencies by hand, whereas the ISBN
model can automatically discover them. Thus we
expect that the feature induction abilities of ISBNs
have a strong effect on the accuracy of long depen-
dences. This prediction is confirmed by the differ-
ences between the results of the normal ISBN (TF)
and the restricted ISBN (TF-NA) model. The TF-
NA model, like the MALT parser, is biased toward
attachment to root; it attaches to root 12.0% more
words on average than the normal ISBN, without
any improvement of recall and with a great loss of
precision. The F1 score on long dependences for the
TF-NA model is also negatively effected in the same
way as for the MALT parser. This confirms that the
ability of the ISBN model to induce features is a ma-
jor factor in improving accuracy of long dependen-
cies.

6The MALT parser is trained to keep the word as long as
possible: if both Shift and Reduce decisions are possible during
training, it always prefers to shift. Though this strategy should
generally reduce the described problem, it is evident from the
low precision score for attachment to root, that it can not com-
pletely eliminate it.

7 Related Work

There has not been much previous work on latent
variable models for dependency parsing. Depen-
dency parsing with Dynamic Bayesian Networks
was considered in (Peshkin and Savova, 2005), with
limited success. Roughly, the model considered
the whole sentence at a time, with the DBN being
used to decide which words correspond to leaves
of the tree. The chosen words are then removed
from the sentence and the model is recursively ap-
plied to the reduced sentence. Recently several la-
tent variable models for constituent parsing have
been proposed (Koo and Collins, 2005; Matsuzaki
et al., 2005; Prescher, 2005; Riezler et al., 2002).
In (Matsuzaki et al., 2005) non-terminals in a stan-
dard PCFG model are augmented with latent vari-
ables. A similar model of (Prescher, 2005) uses a
head-driven PCFG with latent heads, thus restrict-
ing the flexibility of the latent-variable model by us-
ing explicit linguistic constraints. While the model
of (Matsuzaki et al., 2005) significantly outperforms
the constrained model of (Prescher, 2005), they both
are well below the state-of-the-art in constituent
parsing. In (Koo and Collins, 2005), an undirected
graphical model for constituent parse reranking uses
dependency relations to define the edges. Thus, it
should be easy to apply a similar method to rerank-
ing dependency trees.

Undirected graphical models, in particular Condi-
tional Random Fields, are the standard tools for shal-
low parsing (Sha and Pereira, 2003). However, shal-
low parsing is effectively a sequence labeling prob-
lem and therefore differs significantly from full pars-
ing. As discussed in (Titov and Henderson, 2007),
undirected graphical models do not seem to be suit-
able for history-based parsing models.

Sigmoid Belief Networks (SBNs) were used orig-
inally for character recognition tasks, but later a dy-
namic modification of this model was applied to the
reinforcement learning task (Sallans, 2002). How-
ever, their graphical model, approximation method,
and learning method differ significantly from those
of this paper. The extension of dynamic SBNs with
incrementally specified model structure (i.e. Incre-
mental Sigmoid Belief Networks, used in this pa-
per) was proposed and applied to constituent parsing
in (Titov and Henderson, 2007).

153

8 Conclusions

We proposed a latent variable dependency parsing
model based on Incremental Sigmoid Belief Net-
works. Unlike state-of-the-art dependency parsers,
it uses a generative history-based model. We demon-
strated that it achieves state-of-the-art results on a
selection of languages from the CoNLL-X shared
task. The parser uses a vector of latent variables
to represent an intermediate state and uses rela-
tions defined on the output structure to construct the
edges between latent state vectors. These proper-
ties make it a powerful feature induction method
for dependency parsing, and it achieves competi-
tive results even with very simple explicit features.
The ISBN model is especially accurate at modeling
long dependences, achieving average improvement
of 5.7% over the state-of-the-art baseline on depen-
dences longer than 6 words. Empirical evaluation
demonstrates that competitive results are achieved
mostly because of the ability of the model to in-
duce complex features and not because of the use of
a generative probability model or a specific search
method. As with other generative models, it can be
further improved by the application of discrimina-
tive reranking techniques. Discriminative methods
are likely to allow it to significantly improve over
the current state-of-the-art in dependency parsing.7

Acknowledgments

This work was funded by Swiss NSF grant 200020-
109685, UK EPSRC grant EP/E019501/1, and EU
FP6 grant 507802 for project TALK. We thank
Joakim Nivre and Sandra Kübler for an excellent
tutorial on dependency parsing given at COLING-
ACL 2006.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986.
Compilers: Principles, Techniques and Tools. Addi-
son Wesley.

Leon Bottou. 1991. Une approche théoretique de
l’apprentissage connexionniste: Applications à la re-
connaissance de la parole. Ph.D. thesis, Université de
Paris XI, Paris, France.

7The ISBN dependency parser will be soon made download-
able from the authors’ web-page.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proc. of the Tenth Conference on Computational Nat-
ural Language Learning, New York, USA.

Eugene Charniak and Mark Johnson. 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative rerank-
ing. In Proc. 43rd Meeting of Association for Compu-
tational Linguistics, pages 173–180, Ann Arbor, MI.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proc. 1st Meeting of North American
Chapter of Association for Computational Linguistics,
pages 132–139, Seattle, Washington.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania, Philadelphia, PA.

Michael Collins. 2000. Discriminative reranking for nat-
ural language parsing. In Proc. 17th Int. Conf. on Ma-
chine Learning, pages 175–182, Stanford, CA.

S. Dzeroski, T. Erjavec, N. Ledinek, P. Pajas, Z. Zabokrt-
sky, and A. Zele. 2006. Towards a Slovene depen-
dency treebank. In Proc. Int. Conf. on Language Re-
sources and Evaluation (LREC), Genoa, Italy.

James Henderson and Ivan Titov. 2005. Data-defined
kernels for parse reranking derived from probabilis-
tic models. In Proc. 43rd Meeting of Association for
Computational Linguistics, Ann Arbor, MI.

James Henderson. 2003. Inducing history representa-
tions for broad coverage statistical parsing. In Proc.
joint meeting of North American Chapter of the Asso-
ciation for Computational Linguistics and the Human
Language Technology Conf., pages 103–110, Edmon-
ton, Canada.

James Henderson. 2004. Discriminative training of
a neural network statistical parser. In Proc. 42nd
Meeting of Association for Computational Linguistics,
Barcelona, Spain.

M. I. Jordan, Z.Ghahramani, T. S. Jaakkola, and L. K.
Saul. 1999. An introduction to variational methods for
graphical models. In Michael I. Jordan, editor, Learn-
ing in Graphical Models. MIT Press, Cambridge, MA.

Terry Koo and Michael Collins. 2005. Hidden-variable
models for discriminative reranking. In Proc. Conf. on
Empirical Methods in Natural Language Processing,
Vancouver, B.C., Canada.

Matthias T. Kromann. 2003. The Danish dependency
treebank and the underlying linguistic theory. In Pro-
ceedings of the 2nd Workshop on Treebanks and Lin-
guistic Theories (TLT), Vaxjo, Sweden.

154

Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.
2005. Probabilistic CFG with latent annotations. In
Proceedings of the 43rd Annual Meeting of the ACL,
Ann Arbor, MI.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proc. of the Tenth Con-
ference on Computational Natural Language Learn-
ing, New York, USA.

Kevin P. Murphy. 2002. Dynamic Belief Networks:
Representation, Inference and Learning. Ph.D. thesis,
University of California, Berkeley, CA.

Radford Neal. 1992. Connectionist learning of belief
networks. Artificial Intelligence, 56:71–113.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proc. of the
Eighth Conference on Computational Natural Lan-
guage Learning, pages 49–56, Boston, USA.

Joakim Nivre, Johan Hall, Jens Nilsson, Gulsen Eryigit,
and Svetoslav Marinov. 2006. Pseudo-projective de-
pendency parsing with support vector machines. In
Proc. of the Tenth Conference on Computational Nat-
ural Language Learning, pages 221–225, New York,
USA.

Leon Peshkin and Virginia Savova. 2005. Dependency
parsing with dynamic Bayesian network. In AAAI,
20th National Conference on Artificial Intelligence,
Pittsburgh, Pennsylvania.

Detlef Prescher. 2005. Head-driven PCFGs with latent-
head statistics. In Proc. 9th Int. Workshop on Parsing
Technologies, Vancouver, Canada.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan,
Richard Crouch, John T. Maxwell, and Mark John-
son. 2002. Parsing the Wall Street Journal using a
Lexical-Functional Grammar and discriminative esti-
mation techniques. In Proc. 40th Meeting of Associa-
tion for Computational Linguistics, Philadelphia, PA.

Brian Sallans. 2002. Reinforcement Learning for Fac-
tored Markov Decision Processes. Ph.D. thesis, Uni-
versity of Toronto, Toronto, Canada.

Fei Sha and Fernando Pereira. 2003. Shallow parsing
with conditional random fields. In Proc. joint meet-
ing of North American Chapter of the Association for
Computational Linguistics and the Human Language
Technology Conf., Edmonton, Canada.

Ivan Titov and James Henderson. 2007. Constituent
parsing with incremental sigmoid belief networks. In
Proc. 45th Meeting of Association for Computational
Linguistics, Prague, Czech Republic.

L. van der Beek, G. Bouma, J. Daciuk, T. Gaustad,
R. Malouf, G van Noord, R. Prins, and B. Villada.
2002. The Alpino dependency treebank. Computa-
tional Linguistic in the Netherlands (CLIN).

155

Proceedings of the 10th Conference on Parsing Technologies, pages 156–167,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Three-Dimensional Parametrization for Parsing
Morphologically Rich Languages

Reut Tsarfaty and Khalil Sima’an
Institute for Logic, Language and Computation

University of Amsterdam
Plantage Muidergracht 24, 1018TV Amsterdam, The Netherlands

{rtsarfat,simaan}@science.uva.nl

Abstract

Current parameters of accurate unlexical-
ized parsers based on Probabilistic Context-
Free Grammars (PCFGs) form a two-
dimensional grid in which rewrite events
are conditioned on both horizontal (head-
outward) and vertical (parental) histories.
In Semitic languages, where arguments
may move around rather freely and phrase-
structures are often shallow, there are ad-
ditional morphological factors that govern
the generation process. Here we pro-
pose that agreement features percolated up
the parse-tree form a third dimension of
parametrization that is orthogonal to the pre-
vious two. This dimension differs from
mere “state-splits” as it applies to a whole
set of categories rather than to individual
ones and encodes linguistically motivated
co-occurrences between them. This paper
presents extensive experiments with exten-
sions of unlexicalized PCFGs for parsing
Modern Hebrew in which tuning the param-
eters in three dimensions gradually leads to
improved performance. Our best result in-
troduces a new, stronger, lower bound on the
performance of treebank grammars for pars-
ing Modern Hebrew, and is on a par with
current results for parsing Modern Standard
Arabic obtained by a fully lexicalized parser
trained on a much larger treebank.

1 Dimensions of Unlexicalized Parsing

Probabilistic Context Free Grammars (PCFGs) are
the formal backbone of most high-accuracy statisti-
cal parsers for English, and a variety of techniques
was developed to enhance their performance rela-
tive to the naı̈ve treebank implementation — from
unlexicalized extensions exploiting simple category
splits (Johnson, 1998; Klein and Manning, 2003)
to fully lexicalized parsers that condition events be-
low a constituent upon the head and additional lexi-
cal content (Collins, 2003; Charniak, 1997). While
it is clear that conditioning on lexical content im-
proves the grammar’s disambiguation capabilities,
Klein and Manning (2003) demonstrate that a well-
crafted unlexicalized PCFG can close the gap, to a
large extent, with current state-of-the-art lexicalized
parsers for English.

The factor that sets apart vanilla PCFGs (Char-
niak, 1996) from their unlexicalized extensions pro-
posed by, e.g., (Johnson, 1998; Klein and Manning,
2003), is the choice for statistical parametrization
that weakens the independence assumptions implicit
in the treebank grammar. Studies on accurate unlex-
icalized parsing models outline two dimensions of
parametrization. The first, proposed by (Johnson,
1998), is the annotation of parental history, and the
second encodes a head-outward generation process
(Collins, 2003). Johnson (1998) augments node la-
bels with the label of their parent, thus incorporat-
ing a dependency on the node’s grandparent. Collins
(2003) proposes to generate the head of a phrase first
and then generate its sisters using Markovian pro-
cesses, thereby exploiting head/sister-dependencies.

156

Klein and Manning (2003) systematize the dis-
tinction between these two forms of parametrization
by drawing them on a horizontal-vertical grid: par-
ent encoding is vertical (external to the rule) whereas
head-outward generation is horizontal (internal to
the rule). By varying the value of the parame-
ters along the grid, Klein and Manning (2003) tune
their treebank grammar to achieve improved perfor-
mance. This two-dimensional parametrization has
been instrumental in devising parsing models that
improve disambiguation capabilities for English as
well as other languages, such as German (Dubey and
Keller, 2003) Czech (Collins et al., 1999) and Chi-
nese (Bikel and Chiang, 2000). However, accuracy
results for parsing languages other than English still
lag behind.1

We propose that for various languages includ-
ing the Semitic family, e.g. Modern Hebrew (MH)
and Modern Standard Arabic (MSA), a third di-
mension of parametrization is necessary for encod-
ing linguistic information relevant for breaking false
independence assumptions. In Semitic languages,
arguments may move around rather freely and the
phrase-structure of clause-level categories is often
shallow. For such languages agreement features play
a role in disambiguation at least as important as the
vertical and horizontal conditioning. We propose a
third dimension of parameterizations that encodes
morphological features such as those realizing syn-
tactic agreement. These features are percolated from
surface forms in a bottom-up fashion and express
information that is complementary to the horizon-
tal and vertical generation histories proposed before.
Such morphological information refines syntactic
categories based on their morpho-syntactic role, and
captures linguistically motivated co-occurrences and
dependencies manifested via, e.g., morpho-syntactic
agreement.

This work aims at parsing MH and explores the
empirical contribution of the three dimensions of
parameters specified above. We present extensive
experiments that gradually lead to improved perfor-
mance as we extend the degree to which the three
dimensions are exploited. Our best model uses all
three dimensions of parametrization, and our best re-

1The learning curves over increasing training data (e.g., for
German (Dubey and Keller, 2003)) show that treebank size can-
not be the sole factor to account for the inferior performance.

sult is on a par with those achieved for MSA using a
fully lexicalized parser and a much larger treebank.
The remainder of this document is organized as fol-
lows. In section 2 we review characteristic aspects
of MH (and other Semitic languages) and illustrate
the special role of morphology and dependencies
displayed by morpho-syntactic processes using the
case of syntactic definiteness in MH. In section 3 we
define our three-dimensional parametrization space.
In section 4 we spell out the method and procedure
for the empirical evaluation of one, two and three
parametrization dimensions, and in section 5 we re-
port and analyze results for different parametrization
choices. Finally, section 6 discusses related work
and in section 7 we summarize and conclude.

2 Dimensions of Modern Hebrew Syntax

Parsing MH is in its infancy. Although a syntacti-
cally annotated corpus has been available for quite
some time (Sima’an et al., 2001), we know of only
two studies attempting to parse MH using statistical
methods (see section 6). One reason for the sparse-
ness in this field is that the adaptation of existing
models to parsing MH is technically involved yet
does not guarantee to yield comparable results as
the processes that license grammatical structures of
phrases and sentences in MH differ from those as-
sumed for English. This section outlines differences
between English and MH and discusses their reflec-
tion in the MH treebank annotation scheme. We
argue that on top of syntactic processes exploited
by current parsers there is an orthogonal morpho-
syntactic dimension which is invaluable for syntac-
tic disambiguation, and it can be effectively learned
using simple treebank grammars.

2.1 Modern Hebrew Structure

Phrases and sentences in MH, as well as in Arabic
and other Semitic languages, have a relatively flexi-
ble phrase structure. Subjects, verbs and objects can
be inverted and prepositional phrases, adjuncts and
verbal modifiers can move around rather freely. The
factors that affect word-order in the language are not
exclusively syntactic and have to do with rhetorical
and pragmatic factors as well.2

2See, for instance, (Melnik, 2002) for an Information
Structure-syntactic account of verb initial sentences.

157

(a) S

NP.MP-SBJ

CD.MP

sni

two.MP

N.MP

hildim

the-children.MP

VP.MP

V.MP

aklw

ate.MP

NP.FS-OBJ

N.FS

ewgh

cake.FS

(b) S

NP.FS-OBJ

N.FS

ewgh

cake.FS

VP.MP

V.MP

aklw

ate.MP

NP.MP-SBJ

CD.MP

sni

two.MP

N.MP

hildim

the-children.MP

Figure 1: Word Order and Agreement Features in MH
Phrases: Agreement onMP features reveals the subject-
predicate dependency between surface forms and their dom-
inating constituents in a variable phrase-structure (marking
M (asculine),F(eminine),S(ingular),P(lural).)

It would be too strong a claim, however, to clas-
sify MH (and similar languages) as a free-word-
order language in the canonical sense. The level of
freedom in the order and number of internal con-
stituents varies between syntactic categories. Within
a verb phrase or a sentential clause, for instance,
the order of constituents obeys less strict rules than
within, e.g., a noun phrase.3 Figure 1 illustrates two
syntactic structures that express the same grammat-
ical relations yet vary in their internal order of con-
stituents. Within the noun phrase constituents, how-
ever, determiners always precede nouns.

Within the flexible phrase structure it is typically
morphological information that provides cues for the
grammatical relations between surface forms. In
figure 1, for example, it is agreement on gender
and number that reveals the subject-predicate depen-
dency between surface forms. Figure 1 also shows
that agreement features help to reveal such relations
between higher levels of constituents as well.

Determining the child constituents that contribute
each of the features is not a trivial matter either. To
illustrate the extent and the complexity of that matter
let us considerdefinitenessin MH, which is morpho-
logically marked (as anh prefix to the stem, glossed
here explicitly as “the-”) and behaves as a syntactic

3See (Wintner, 2000) and (Goldberg et al., 2006) for formal
and statistical accounts (respectively) of noun phrases inMH.

(a) NP.FS.D

NP.FS.D

sganit hmnhl

deputy.FS the-manager.MS.D

ADJP.FS.D

hmswrh

the-dedicated.FS.D

(a) S

NP.FS.D

sganit hmnhl

deputy.FS the-manager.MS.D

PREDP.FS

mswrh

dedicated.FS

Figure 2:Definiteness in MH as a Phrase-Level Agreement
Feature: Agreement on definiteness helps to determine the in-
ternal structure of a higher level NP (a), and the absence thereof
helps to determine the attachment to a predicate in a verb-less
sentence (b) (markingD(efiniteness))

(a) S

NP.FS.D

NNT.FS

sganit

deputy.FS

N.MS.D

hmnhl

the-manager.MS.D

VP.FS

V.FS

htpjrh

resigned.FS

(b) S〈V〉

NP〈NNT〉.FS.D

NNT.FS

sganit

deputy.FS

N.MS.D

hmnhl

the-manager.MS.D

VP〈V〉).FS

V.FS

htpjrh

resigned.FS

Figure 3: Phrase-Level Agreement Features and Head-
Dependencies in MH:The direction of percolating definiteness
in MH is distinct of that of the head (marking〈head-tag〉)

property (Danon, 2001). Definite noun-phrases ex-
hibit agreement with other modifying phrases, and
such agreement helps to determine the internal struc-
ture, labels, and the correct level of attachment as
illustrated in figure 2. The agreement on definite-
ness helps to determine the internal structure of noun
phrases 2(a), and the absence thereof helps in de-
termining the attachment to predicates in verb-less
sentences, as in 2(b). Finally, definiteness may be
percolated from a different form than the one deter-
mining the gender and number of a phrase. In figure
3(a), for instance, the definiteness feature (marked
as D) percolates from ‘hmnhl ’ (the-manager.MS.D)
while the gender and number are percolated from
‘sganit ’ (deputy.FS). The direction of percolation
of definiteness may be distinct of that of percolat-
ing head information, as can be seem in figure 3(b).
(The direction of head-dependencies in MH typi-
cally coincides with that of percolating gender.)

To summarize, agreement features are helpful in
analyzing and disambiguating syntactic structures in
MH, not only at the lexical level, but also at higher
levels of constituency. In MH, features percolated
from different surface forms jointly determine the
features of higher-level constituents, and such fea-
tures manifest multiple dependencies, which in turn
cannot be collapsed onto a single head.

158

2.2 The Modern Hebrew Treebank Scheme

The annotation scheme of version 2.0 of the MH
treebank (Sima’an et al., 2001)4 aims to capture the
morphological and syntactic properties of MH just
described. This results in several aspects that dis-
tinguish the MH treebank from, e.g., the WSJ Penn
treebank annotation scheme (Marcus et al., 1994).

The MH treebank is built over word segments.
This means that the yields of the syntactic trees do
not correspond to space delimited words but rather
to morphological segments that carry distinct syn-
tactic roles, i.e., each segment corresponds to a sin-
gle POS tag. (This in turn means that prefixes
marking determiners, relativizers, prepositions and
definite articles are segmented away and appear as
leaves in a syntactic parse tree.) The POS categories
assigned to segmented words are decorated with fea-
tures such as gender, number, person and tense, and
these features are percolated higher up the tree ac-
cording to pre-defined syntactic dependencies (Kry-
molowski et al., 2007). Since agreement features
of non-terminal constituents may be contributed by
more than one child, the annotation scheme defines
multiple dependency labels that guide the percola-
tion of the different features higher up the tree. Def-
initeness in the MH treebank is treated as a segment
at the POS tags level and as a feature at the level of
non-terminals. As any other feature, it is percolated
higher up the tree according to marked dependency
labels. Table 1 lists the features and values annotated
on top of syntactic categories and table 2 describes
the dependencies according to which these features
are percolated from child constituents to their par-
ents.

In order to comply with the flexible phrase struc-
ture in MH, clausal categories (S, SBAR and FRAG
and their corresponding interrogatives SQ, SQBAR
and FRAGQ) are annotated as flat structures. Verbs
(VB tags) always attach to a VP mother, however
only non-finite VBs can accept complements un-
der the same VP parent, meaning that all inflected
verb forms are represented as unary productions
under an inflected VP. NP and PP are annotated

4Version 2.0 of the MH treebank is publicly available
at http://mila.cs.technion.ac.il/english/
index.html along with a complete overview of the MH
annotation scheme and illustrative examples (Krymolowskiet
al., 2007).

Feature:Value Value Encoded

gender:Z masculine
gender:N feminine
gender:B both

number:Y singular
number:R plural
number:B both

definiteness:H definite
definiteness:U underspecified

Table 1:Features and Values in the MH Treebank

Dependency Type Features Percolated

DEP HEAD all
DEP MAJOR at least gender
DEP NUMBER number
DEP DEFINITE definiteness
DEP ACCUSATIVE case
DEP MULTIPLE all (e.g., conjunction)

Table 2:Dependency Labels in the MH Treebank

as nested structures capturing the recursive struc-
ture of construct-state nouns, numerical expressions
and possession. An additional category, PREDP, is
added in the treebank scheme to account for sen-
tences in MH that lack a copular element, and it may
also be decorated with inflectional features agreeing
with the subject. The MH treebank scheme also fea-
tures null elements that mark traces and additional
labels that mark functional features (e.g., SBJ,OBJ)
which we strip off and ignore throughout this study.

Morphological features percolated up the tree
manifest dependencies that are marked locally yet
have a global effect. We propose to learn treebank
grammars in which the syntactic categories are aug-
mented with morphological features at all levels of
the hierarchy. This allows to learn finer-grained
categories with subtle differences in their syntactic
behavior and to capture non-independence between
certain parts of the syntactic parse-tree.

3 Refining the Parameter Space

(Klein and Manning, 2003) argue that parent en-
coding on top of syntactic categories and RHS
markovization of CFG productions are two instances
of the same idea, namely that of encoding the gener-
ation history of a node to a varying degree. They
subsequently describe two dimensions that define
their parameters’ space. Thevertical dimension (v),
capturing the history of the node’s ancestors in a top-

159

down generation process (e.g., its parent and grand-
parent), and thehorizontaldimension (h), capturing
the previously generated horizontal ancestors of a
node (effectively, its sisters) in a head-outward gen-
eration process. By varying the value ofh and v

along this two-dimensional grid they improve per-
formance of their induced treebank grammar.

Formally, the probability of a parse treeπ is cal-
culated as the probability of its derivation, the se-
quential application of rewrite rules. This in turn
is calculated as the product of rules’ probabilities,
approximated by assuming independence between
themP (π) =

∏
i P (ri|r1 ◦ ... ◦ ri−1) ≈

∏
i P (ri).

The vertical dimensionv can be thought of as a func-
tion Ψ0 selecting features from the generation his-
tory of the constituent thus restoring selected depen-
dencies:

P (ri) = P (ri|Ψ0(r1 ◦ .. ◦ ri−1))

The horizontal dimensionh can be thought of as two
functionsΨ1,Ψ2 over decomposed rules, whereΨ1

selects hidden internal features of the parent, and
Ψ2 selects previously generated sisters in a head-
outward Markovian process (we retain here the as-
sumption that the head child H always matters).

P (ri) = Ph(H|Ψ1(LHS(ri)))

×
∏

C∈RHS(ri)−H

PC(C|Ψ2(RHS(ri)),H)

The fact that the default notion of a treebank
grammar takesv = 1 (i.e., Ψ0(r1 ◦ .. ◦ ri−1) = ∅)
andh = ∞ (RHS cannot decompose) is, according
to Klein and Manning (2003), a historical accident.

We claim that languages with freeer word order
and richer morphology call for an additional dimen-
sion of parametrization. The additional parameter
shows to what extent morphological features en-
coded in a specialized structure back up the deriva-
tion of the tree. This dimension can be thought of
as a functionΨ3 selecting aspects of morphological
orthogonal analysis of the rules, whereMA denotes
morphological analysis of the syntactic categories in
bothLHS andRHS of the rule.

P (ri) = P (ri|Ψ3(MA(ri)))

The fact that in current parsersΦ3(MA(ri)) = ∅ is,
we claim, another historical accident. Parsing En-
glish is quite remarkable in that it can be done with

Figure 4:The Three-Dimensional Parametrization Space

impoverished morphological treatment, but for lan-
guages in which morphological processes are more
pertinent, we argue, bi-dimensional parametrization
shall not suffice.

The emerging picture is as follows. Bare-category
skeletons reside in a bi-dimensional parametrization
space (figure 3(a)) in which the vertical (figure 3(b))
and horizontal (figure 3(c)) parameter instantiations
elaborate the generation history of a non-terminal
node. Specialized structures enriched with (an in-
creasing amount of) morphological features reside
deeper along a third dimension we refer to asdepth
(d). Figure 4 illustrates an instantiation ofd = 1
with a single definiteness feature. Higherd values
would imply adding more (accumulating) features.

Klein and Manning (2003) view thevertical
and horizontal parametrization dimensions as im-
plementingexternaland internal annotation strate-
gies respectively. External parameters indicate fea-
tures of the external environment that influence the
node’s expansion possibilities, and internal parame-
ters mark aspects of hidden internal content which
influence constituents’ external distribution. We
view the third dimension of parametrization as im-
plementing arelational strategy of annotation en-
coding the way different constituents may combine
to form phrases and sentences. In a bottom up pro-
cess this annotation strategy imposes soft constraints
on a the top-down head-outward generation process.
Figure 6(a) focuses on a selected NP node high-
lighted in figure 4 and shows its expansion possibil-
ities in three dimensions. Figure 6(b) illustrates how
the depth expansion interacts with both parent anno-

160

(a) The horizontal/verticalGrid (b) The vertical dimension (c) The horizontaldimension

Figure 5:The Two-Dimensional Space:The horizontal and vertical dimensions outlined by (Klein and Manning, 2003)

tation and neighbor dependencies thereby affecting
both distributions.

3.1 A Note on State-Splits

Recent studies (Klein and Manning, 2003; Mat-
suzaki et al., 2005; Prescher, 2005; Petrov et al.,
2006) suggest that category-splits help in enhanc-
ing the performance of treebank grammars, and a
previous study on MH (Tsarfaty, 2006) outlines spe-
cific POS-tags splits that improve MH parsing ac-
curacy. Yet, there is a major difference between
category-splits, whether manually or automatically
acquired, and the kind of state-splits that arise from
agreement features that refine phrasal categories.
While category-splits aim at each category in iso-
lation, agreement features apply to a whole set
of categories all at once, thereby capturing refine-
ment of the categories as well as linguistically mo-
tivated co-occurrences between them. Individual
category-splits are viewed as taking place in a two-
dimensional space and it is hard to analyze and em-
pirically evaluate their interaction with other annota-
tion strategies. Here we propose a principled way to
statistically model the interaction between different
linguistic processes that license grammatical struc-
tures and empirically contrast their contribution.

3.2 A Note on Stochastic AV grammars

The practice of having morphological features or-
thogonal to a constituency structure is not a new
one and is familiar from formal theories of syntax
such as HPSG (Sag et al., 2003) and LFG (Ka-
plan and Bresnan, 1982). Here we propose to re-
frame systematic morphological decoration of syn-
tactic categories at all levels of the hierarchy as

(a) (b)

Figure 6: The Expansion Possibilities of a Non-Terminal
Node: Expanding the NP from figure 4 in a three-dimensional
parameterization Space

an additional dimension of statistical estimation for
learning unlexicalized treebank PCFGs. Our pro-
posal deviates from various stochastic extensions of
such constraints-based grammatical formalisms (cf.
(Abney, 1997)) and has the advantage of elegantly
bypassing the issue of loosing probability mass to
failed derivations due to unification failures. To the
best of our knowledge, this proposal has not been
empirically explored before.

4 Experimental Setup

Our goal is to determine the optimal strategy for
learning treebank grammars for MH and to contrast
it with bi-dimensional strategies explored for En-
glish. The methodology we use is adopted from
(Klein and Manning, 2003) and our procedure is
identical to the one described in (Johnson, 1998).
We define transformations over the treebank that ac-
cept as input specific points in the(h, v, d) space de-
picted in figure 7. We use the transformed training
sets for learning different treebank PCFGs which we
then used to parse unseen sentences, and detrans-
form the parses for the purpose of evaluation.5

5Previous studied on MH used different portions of the tree-
bank and its annotation scheme due to its gradual development

161

Data We use version 2.0 of the MH treebank
which consists of 6501 sentences from the daily
newspaper ‘Ha’aretz’. We employ the syntactic cat-
egories, POS categories and morphological features
annotated therein. The data set is split into 13 sec-
tions consisting of 500 sentences each. We use the
first section (section 0) as our development set and
the last section (section 12) as our test set. The re-
maining sentences (sections 1–11) are all used for
training. After removing empty sentences, sentences
with uneven bracketing and sentences that do not
match the annotation scheme6 we remain with ade-
vsetof 483 sentences (average length in word seg-
ments 48), atrainset of 5241 sentences (53) and
a testsetof 496 sentences (58). Since this work
is only the first step towards the development of a
broad-coverage statistical parser for MH (and other
Semitic languages) we use the development set for
parameter-tuning and error analysis and use the test
set only for confirming our best results.

Models The models we implement use one-, two-
or three-dimensional parametrization and different
instantiation of values thereof. (Due to the small
size of our data set we only use the values{0, 1}
as possible instantiations.)

The v dimension is implemented using a trans-
form as in (Johnson, 1998) wherev = 0 corresponds
to bare syntactic categories andv = 1 augments
node labels with the label of their parent node.

Theh dimension is peculiar in that it distinguishes
PCFGs (h = ∞), where RHS cannot decompose,
from their head-driven unlexicalized variety. To im-
plementh 6= ∞ we use a PCFG transformation em-
ulating (Collins, 2003)’s first model, in which sisters
are generated conditioned on the head tag and a sim-
ple ‘distance’ function (Hageloh, 2007).7 The in-

process. As the MH treebank is approaching maturity we feel
that the time is ripe to standardize its use for MH statistical
parsing. The software we implemented will be made available
for non-commercial use upon request to the author(s) and the
feature percolation software by (Krymolowski et al., 2007)is
publicly available through the Knowledge Center for Process-
ing Hebrew. By this we hope to increase the interest in MH
within the parsing community and to facilitate the application
of more sophisticated models by cutting down on setup time.

6Marked as “NOMATCH” in the treebank.
7A formal overview of the transformation and its corre-

spondence to (Collins, 2003)’s models is available at (Hageloh,
2007). We use the distance function defined therein, marking
the direction and whether it is the first node to be generated.

stantiated value ofh then selects the number of pre-
viously generated (non-head) sisters to be taken into
account when generating the next sister in a Marko-
vian process (Ψ2 in our formal exposition).

Thed dimension we proposed is implemented us-
ing a transformation that augments syntactic cate-
gories with morphological features percolated up the
tree. We used = 0 to select bare syntactic cate-
gories and instantiated = 1 with the definiteness
feature. The decision to select definiteness (rather
than, e.g., gender or number) is rather pragmatic as
its direction of percolation may be distinct of head
information and the question remains whether the
combination of such non-overlapping dependencies
is instrumental for parsing MH.

Our baseline model is a vanilla treebank PCFG
as described in (Charniak, 1996) which we locate
on the (∞, 0, 0) point of our coordinates-system.
In a first set of experiments we implement simple
PCFG extensions of the treebank trees based on se-
lected points on the(∞, v, d) plain. In a second
set of experiments we use an unlexicalized head-
driven baseline à la (Collins, 2003) located on the
(0, 0, 0) coordinate. We transform the treebank trees
in correspondence with different points in the three-
dimensional space defined by(h, v, d). The models
we implement are marked in the coordinate-system
depicted in figure 7. The implementation details of
the transformations we use are spelled out in tables
3–4.

Procedure We implement different models that
correspond to different instantiations ofh, v andd.
For each instantiation we transform the training set
and learn a PCFG using Maximum Likelihood es-
timates, and we use BitPar (Schmidt, 2004), an ef-
ficient general-purpose parser, to parse unseen sen-
tences. The input to the parser is a sequence of word
segments where each segment corresponds to a sin-
gle POS tag, possibly decorated with morphologi-
cal features. This setup assumes partial morpholog-
ical disambiguation (namely, segmentation) but cru-
cially we donot disambiguate their respective POS
categories. This setup is more appropriate for us-
ing general-purpose parsing tools and it makes our
results comparable to studies in other languages.8

8Our working assumption is that better performance of a
parsing model in our setup will improve performance also

162

Transliterate The lexical items (leaves) in the MH treebank are written left-to-write and are encoded
in utf8. A transliteration software is used to convert the utf encoding into Latin characters and to reverse
their order, essentially allowing for standard left-to-right processing.
Correct The manual annotation resulted in unavoidable errors in theannotation scheme, such as typos
(e.g., SQBQR instead of SQBAR) wrong delimiters (e.g., “-” instead of “”) or wrong feature order (e.g.,
number-gender instead of gender-number). We used an automatic script to detect these error, we manually
determine their correction. Then we created an automatic script to apply all fixes (57 errors in 1% sentences).
Re-attachVB elements are attached by convention to a VP which inheritsits morphological features.
9 VB instances in the treebank are mistakenly attached to an Sparent without an intermediate VP level.
Our software re-attaches those VB elements to a VP parent andpercolates its morphological features.
Disjoint Due to recursive processes of generating noun phrases and numerical expression (smixut)
in MH the sets of POS and syntactic categories are not disjoint. This is a major concern for PCFG parsers
that assume disjoint sets of pre- and non-terminals. The overlap between the sets also introduces additional
infinite derivations to which we loose probability mass. Oursoftware takes care to decorate POS categories
used as non-terminal with an additional “P”, creating a new set of categories encoding partial derivations.
Lexicalize A pre-condition for applying horizontal parameterizations à la Collins is the annotation of
heads of syntactic phrases. The treebank provided by the knowledge center does not define unique heads,
but rather, mark multiple dependencies for some categoriesand none for others. Our software uses rules
for choosing the syntactic head according to specified dependencies and a head table when none are specified.
Linearize In order to implement the head-outward constituents’ generation process we use software made
available to us by (Hageloh, 2007) which converts PCFG production such as the generation of a head is followed by left and right
markovized derivation processes. We used two versions of Markovization, one which conditions only on the
head and a distance function, and another which conditions also on immediately neighboring sister(s).
DecorateOur software implements an additional general transform which selects the features that are to be
annotated on top of syntactic categories to implement various parametrization decisions. This transform can be
used for, e.g., displaying parent information, selecting morphological features, etc.

Table 3:Transforms over the MH Treebank: We clean and correct the treebank usingTransliterate, Correct, Re-attach and
Disjoint , and transform the training set according to certain parametrization decisions usingLexicalize, LinearizeandDecorate.

Smoothing pre-terminal rules is done explicitly by
collecting statistics on “rare word” occurrences and
providing the parser with possible open class cat-
egories and their corresponding frequency counts.
The frequency threshold defining “rare words” was
tuned empirically and set to 1. The resulting test
parses are detransformed and to skeletal constituent
structures, and are compared against the gold parses
to evaluate parsing accuracy.

Evaluation We evaluate our models using EVALB
in accordance with standard PARSEVAL evaluation
metrics. The evaluation of all models focuses on
Labeled Precision and Recall considering bare syn-
tactic categories (stripping off all morphological or
parental features and removing intermediate nodes
for linearization). We report the average F-measure
for sentences of length up to 40 and for all sentences
(F≤40 andFAll respectively). We report the results

within an integrated model for morphological and syntacticdis-
ambiguation in the spirit of (Tsarfaty, 2006). We conjecture
that the kind of models developed here which takes into account
morphological information is more appropriate for the morpho-
logical disambiguation task defined therein.

for two evaluation options, once including punctua-
tion marks (WP) and once excluding them (WOP).

5 Results

Our baseline for the first set of experiments is
a vanilla PCFG as described in (Charniak, 1996)
(without a preceding POS tagging phase and without
right branching corrections). We transform the tree-
bank trees based on various points in the(∞, v, d)
two-dimensional space to evaluate the performance
of the resulting PCFG extensions.

Table 5 reports the accuracy results for all models
on section 0 (devset) of the treebank. The accuracy
results for the vanilla PCFG are approximately 10%
lower than reported by (Charniak, 1996) for English
demonstrating that parsing MH using the currently
available treebank is a harder task. For all unlexical-
ized extensions learned from the transfromed tree-
banks, the resulting grammars show enhanced dis-
ambiguation capabilities and improved parsing ac-
curacy. We observe that the vertical dimension con-
tributes the most from both one-dimensional mod-

163

Name Params Description Transforms used

DIST h = 0 0-order Markov process Lexicalize(category), Linearize(distance)
MRK h = 1 1-order Markov process Lexicalize(category), Linearize(distance, neighbor)
PA v = 1 Parent Annotation Decorate(parent)
DEF d = 1 Definiteness feature percolationDecorate(definiteness)

Table 4:Implementing Different Parametrization Options using Transforms

Implementation (h, v, d) FALL F≤40 FALL F≤40

WP WP WOP WOP

PCFG (∞, 0, 0) 65.17 66.63 66.17 67.7
PA (∞, 0, 1) 70.6 71.96 70.96 72.18
DEF (∞, 1, 0) 67.53 68.78 68.82 70.06
PA+DEF (∞, 1, 1) 72.63 73.89 73.01 74.11

Table 5:PCFG Two-Dimensional Extensions:Accuracy re-
sults for parsing thedevest(section 0)

els. A qualitative error analysis reveals that parent
annotation strategy distinguishes effectively various
kinds of distributions clustered together under a sin-
gle category. For example, S categories that appear
under TOP tend to be more flat than S categories ap-
pearing under SBAR (SBAR clauses typically gen-
erate a non-finite VP node under which additional
PP modifiers can be attached).

Orthogonal morphological marking provide addi-
tional information that is indicative of the kind of
dependencies that exist between a category and its
various child constituents, and we see that thed di-
mension instantiated withdefinitenessnot only con-
tribute more than 2% to the overall parsing accuracy
of a vanilla PCFG, but also contributes as much to
the improvement obtained from a treebank already
annotated with the vertical dimension. The contribu-
tions are thus additive providing preliminary empir-
ical support to our claim that these two dimensions
provide information that is complementary.

In our next set of experiments we evaluate the
contribution of the depth dimension to extensions of
the head-driven unlexicalized variety à la (Collins,
2003). We set our baseline at the(0, 0, 0) coordi-
nate and evaluate models that combine one, two and
three dimensions of parametrization. Table 6 shows
the accuracy results for parsing section 0 using the
resulting models.

The first outcome of these experiments is that our
new baseline improves on the accuracy results of
a simple treebank PCFG. This result indicates that

head-dependencies which play a role in determin-
ing grammatical structures in English are also in-
strumental for parsing MH. However, the marginal
contribution of the head-driven variation is surpris-
ingly low. Next we observe that for one-dimensional
models the vertical dimension still contributes the
most to parsing accuracy. However, morphologi-
cal information represented by the depth dimension
contributes more to parsing accuracy than informa-
tion concerning immediately preceding sisters on
the horizontal dimension. This outcome is consis-
tent with our observation that the grammar of MH
puts less significance on the position of constituents
relative to one others and that morphological in-
formation is more indicative of the kind of syntac-
tic relations that appear between them. For two-
dimensional models, incorporating the depth dimen-
sion (orthogonal morphological marking) is better
than not doing so, and relying solely on horizon-
tal/vertical parameters performs slightly worse than
the vertical/depth combination. The best performing
model for two-dimensional head-driven extensions
is the one combining vertical history and morpho-
logical depth. This is again consistent with the prop-
erties of MH highlighted in section 2 — parental in-
formation gives cues about the possible expansion
on the current node, and morphological information
indicates possible interrelation between child con-
stituents that may be generated in a flexible order.

Our second set of experiments shows that a three-
dimensional annotation strategy strikes the best bal-
ance between bias and variance and achieves the best
accuracy results among all models. Different dimen-
sions provide different sorts of information which
are complementary, resulting in a model that is ca-
pable of generalizing better. The total error reduc-
tion from a plain PCFG is more than 20%, and our
best result is on a par with those achieved for other
languages (e.g., 75% for MSA).

164

Implementation Params FALL F≤40 FALL F≤40

(h, v, d) WP WP WOP WOP

DIST (0, 0, 0) 66.56 68.20 67.59 69.24

MRK (1, 0, 0) 66.69 68.14 67.93 69.37
PA (0, 1, 0) 68.87 70.48 69.64 70.91
DEF (0, 0, 1) 68.85 69.92 70.42 71.45

PA+MRK (1, 1, 0) 69.97 71.48 70.69 71.98
MRK+DEF (1, 0, 1) 69.46 70.79 71.05 72.37
PA+DEF (0, 1, 1) 71.15 72.34 71.98 72.91

PA+MRK+DEF (1, 1, 1) 72.34 73.63 73.27 74.41

Table 6:Head-Driven Three-Dimensional Extensions:Ac-
curacy results for parsing thedevest(section 0)

Implementation Params FALL F≤40 FALL F≤40

(h, v, d) WP WP WOP WOP

PCFG (∞, 0, 0) 65.08 67.31 65.82 68.22
PCFG+PA+DEF (∞, 1, 1) 72.26 74.46 72.42 74.52

DIST (0, 0, 0) 66.33 68.79 67.06 69.47
PA+MRK+DEF (1, 1, 1) 72.64 74.64 73.21 75.25

Table 7:PCFG and Head-Driven Unlexicalized Models:

Accuracy Results for parsing thetestst(section 12)

Figure 8 shows theFAll(WOP) results for all
models we implemented. In general, we see that for
parsing MH higher dimensionality is better. More-
over, we see that for all points on the(v, h, 0) plain
the corresponding models on the(v, h, 1) plain al-
ways perform better. We further see that the contri-
bution of the depth dimension to a parent annotated
PCFG can compensate, to a large extent on the lack
of head-dependency information. These accumula-
tive results, then, provide empirical evidence to the
importance of morphological and morpho-syntactic
processes such as definiteness for syntactic analysis
and disambiguation as argued for in section 2.

We confirm our results on thetestsetand report
in table 7 our results on section 12 of the treebank.
The performance has slightly increased and we ob-
tain better results for our best strategy. We retain the
high error-reduction rate and propose our best result,
75.25% for sentences of length≤ 40, as an empiri-
cally established string baseline on the performance
of treebank grammars for MH.

6 Related Work

The MH treebank (Sima’an et al., 2001), a mor-
phologically and syntactically annotated corpus, has

been successfully used for various NLP tasks such as
morphological disambiguation, POS tagging (Bar-
Haim et al., 2007) and NP chunking (Goldberg et
al., 2006). However its use for statistical parsing has
been more scarce and less successful. The only pre-
vious studies attempting to parse MH we know of
are (Sima’an et al., 2001), applying a variation of the
DOP tree-gram model to 500 sentences, and (Tsar-
faty, 2006), using a treebank PCFG in an integrated
system for morphological and syntactic disambigua-
tion.9 The adaptation of state-of-the-art parsing
models to MH is not immediate as the flat variable
structures of phrases are hard to parse and a plen-
tiful of morphological features that would facilitate
disambiguation are not exploited by currently avail-
able parsers. Also, the MH treebank is much smaller
than the ones for, e.g., English (Marcus et al., 1994)
and Arabic (Maamouri and Bies, 2004), making it
hard to apply data-intensive methods such as the all-
subtrees approach (Bod, 1992) or full lexicalization
(Collins, 2003). Our best performing model incor-
porates three dimensions of parametrization and our
best result (75.25%) is similar to the one obtained
by the parser of (Bikel, 2004) for Modern Standard
Arabic (75%) using a fully lexicalized model and
a training corpus about three times as large as our
newest MH treebank.

This work has shown that devising an adequate
baseline for parsing MH requires more than sim-
ple category-splits and sophisticated head-driven ex-
tensions, and our results provide preliminary evi-
dence for the variation in performance of different
parametrization strategies relative to the properties
and structure of a given language. The compari-
son with parsing accuracy for MSA suggests that
parametrizing an orthogonal depth dimension may
be able to compensate, to some extent, on the lack
of sister-dependencies, lexical information, and per-
haps even the lack of annotated data, but establish-
ing empirically its contribution to parsing MSA is a
matter for further research. In the future we intend
to further investigate the significance of the depth di-
mension by extending our models to include more
morphological features, more variation in the pa-

9Both studies acheived between 60%–70% accuracy, how-
ever the results are not comparable to our study because of the
use of different training sets, different annotation conventions,
and different evaluation schemes.

165

Figure 7:All Models: Locating Unlexicalized Parsing Models
in a Three-Dimensional Parametrization Space

Figure 8:All Results: Parsing Results for Unlexicalized Mod-
els in a Three-Dimensional Parametrization Space

rameter space, and applications to more languages.

7 Conclusion

Morphologically rich languages introduce a new di-
mension into the expansion possibilities of a non-
terminal node in a syntactic parse tree. This di-
mension is orthogonal to the vertical (Collins, 2003)
and horizontal (Johnson, 1998) dimensions previ-
ously outlined by Klein and Manning (2003), and
it cannot be collapsed into any one of the previous
two. These additional dependencies exist alongside
the syntactic head dependency and are attested using
morphosyntactic phenomena such as long distance
agreement. We demonstrate using syntactic defi-
niteness in MH that incorporating morphologically
marked features as a third, orthogonal dimension
for annotating syntactic categories is invaluable for
weakening the independence assumptions implicit
in a treebank PCFG and increasing the model’s dis-
ambiguation capabilities. Using a three-dimensional
model we establish a new, stronger, lower bound on
the performance of unlexicalized parsing models for
Modern Hebrew, comparable to those achieved for
other languages (Czech, Chinese, German and Ara-
bic) with much larger corpora.

Tuning the dimensions and value of the parame-
ters for learning treebank grammars is largely an em-
pirical matter, and we do not wish to claim here that
a three-dimensional annotation strategy is the best
for any given language. Rather, we argue that for
different languages different optimal parametriza-
tion strategies may apply. MH is not a free-word-

order language in the canonical sense, and our qual-
itative analysis shows that all dimensions contribute
to the models’ disambiguation capabilities. Orthog-
onal dimensions provide complementary informa-
tion that is invaluable for the parsing process to the
extent that the relevant linguistic phenomena license
grammatical structures in the language. Our results
point out a principled way to quantitatively charac-
terizing differences between languages, thus guid-
ing the selection of parameters for the development
of annotated resources, custom parsers and cross-
linguistic robust parsing engines.

Acknowledgments We thank the Knowledge
Center for Processing Hebrew and Dalia Bojan for
providing us with the newest version of the MH
treebank. We are particularly grateful to the devel-
opment team of version 2.0, Adi Mile’a and Yuval
Krymolowsky, supervised by Yoad Winter for con-
tinued collaboration and technical support. We fur-
ther thank Felix Hageloh for allowing us to use the
software resulting from his M.Sc. thesis work. We
also like to thank Remko Scha, Jelle Zuidema, Yoav
Seginer and three anonymous reviewers for helpful
comments on the text, and Noa Tsarfaty for techni-
cal help in the graphical display. The work of the
first author is funded by the Netherlands Organiza-
tion for Scientific Research (NWO), grant number
017.001.271, for which we are grateful.

166

References

S. Abney. 1997. Stochastic Attribute-Value Grammars.
Computational Linguistics, 23 (4):597–618.

R. Bar-Haim, K. Sima’an, and Y. Winter. 2007. Part-of-
Speech Tagging of Modern Hebrew Text.Journal of
Natural Language Engineering.

D. Bikel and D. Chiang. 2000. Two Statistical Parsing
Models Applied to the Chinese Treebank. InSecond
Chinese Language Processing Workshop, Hong Kong.

D. Bikel. 2004. Intricacies of Collins’ Parsing Model.
Computational Linguistics, 4(30).

R. Bod. 1992. Data Oriented Parsing. InProceedings of
COLING.

E. Charniak. 1996. Tree-Bank Grammars. In
AAAI/IAAI, Vol. 2, pages 1031–1036.

E. Charniak. 1997. Statistical Parsing with a Context-
Free Grammar and Word Statistics. InAAAI/IAAI,
pages 598–603.

M. Collins, J. Hajic, L. Ramshaw, and C. Tillmann. 1999.
A Statistical Parser for Czech. InProceedings of ACL,
College Park, Maryland.

M. Collins. 2003. Head-Driven Statistical Models for
Natural Language Parsing.Computational Linguis-
tics, 29(4).

G. Danon. 2001. Syntactic Definiteness in the Grammar
of Modern Hebrew.Linguistics, 6(39):1071–1116.

A. Dubey and F. Keller. 2003. Probabilistic Parsing for
German using Sister-Head Dependencies. InProceed-
ings of ACL.

Y. Goldberg, M. Adler, and M. Elhadad. 2006. Noun
Phrase Chunking in Hebrew: Influence of Lexical and
Morphological Features. InProceedings of COLING-
ACL.

F. Hageloh. 2007. Parsing using Transforms over Tree-
banks. Master’s thesis, University of Amsterdam.

M. Johnson. 1998. PCFG Models of Linguistic
Tree Representations. Computational Linguistics,
24(4):613–632.

R. Kaplan and J. Bresnan. 1982. Lexical-Functional
Grammar: A formal system for grammatical represen-
tation. In J. Bresnan, editor,The Mental Representa-
tion of Grammatical Relations, Cambridge, MA. The
MIT Press.

D. Klein and C. Manning. 2003. Accurate Unlexicalized
Parsing. InProceedings of ACL, pages 423–430.

Y. Krymolowski, Y. Adiel, N. Guthmann, S. Kenan,
A. Milea, N. Nativ, R. Tenzman, and P. Veisberg.
2007. Treebank Annotation Guide. MILA, Knowl-
edge Center for Hebrew Processing.

M. Maamouri and A. Bies. 2004. Developing an Ara-
bic Treebank: Methods, Guidelines, Procedures, and
Tools. InProceedings of COLING.

M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn Treebank: Annotating Predicate-
Argument Structure.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis-
tic CFG with Latent Annotations. InProceedings of
ACL’05.

N. Melnik. 2002. Verb-Initial Constructions in Modern
Hebrew. Ph.D. thesis, Berkeley University of Califor-
nia.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006.
Learning Accurate, Compact, and Interpretable Tree
Annotation. InProceedings of ACL-COLING, pages
433–440, Sydney, Australia, July.

D. Prescher. 2005. Head-Driven PCFGs with Latent-
Head Statistics. InIn Proceedings of the International
Workshop on Parsing Technologies.

I. A. Sag, T. Wasow, and E. M. Bender. 2003.Syntactic
Theory: A Formal Introduction. CSLI Publications,
address, second edition.

H. Schmidt. 2004. Efficient Parsing of Highly Ambigu-
ous Context-Free Grammars with Bit Vectors. InPro-
ceedings of COLING, Geneva, Switzerland.

K. Sima’an, A. Itai, Y. Winter, A. Altman, and N. Nativ.
2001. Building a Tree-Bank of Modern Hebrew Text.
In Traitment Automatique des Langues.

R. Tsarfaty. 2006. Integrated Morphological and Syntac-
tic Disambiguation for Modern Hebrew. InProceed-
ing of SRW COLING-ACL.

S. Wintner. 2000. Definiteness in the Hebrew Noun
Phrase.Journal of Linguistics, 36:319–363.

167

Proceedings of the 10th Conference on Parsing Technologies, pages 168–170,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Data-Driven Dependency Parsing across Languages and Domains:
Perspectives from the CoNLL 2007 Shared Task

Joakim Nivre
Växjö University, School of Mathematics and Systems Engineering

Uppsala University, Department of Linguistics and Philology
E-mail: nivre@msi.vxu.se

Abstract

The Conference on Computational Natural
Language Learning features a shared task, in
which participants train and test their learn-
ing systems on the same data sets. In 2007,
as in 2006, the shared task has been devoted
to dependency parsing, this year with both a
multilingual track and a domain adaptation
track. In this paper, I summarize the main
findings from the 2007 shared task and try
to identify major challenges for the parsing
community based on these findings.

1 Introduction

The annual Conference on Computational Natural
Language Learning (CoNLL) has for the past nine
years organized a shared task, where participants
train and test their learning systems on the same
data sets. In 2006, the shared task was multilin-
gual dependency parsing, where participants had to
train and test a parser on data from thirteen differ-
ent languages (Buchholz and Marsi, 2006). In 2007,
the task was extended by adding a second track for
(monolingual) domain adaptation.

The CoNLL 2007 shared task on dependency
parsing featured two tracks:

• In the multilingual track, the task was to train a
parser using labeled data from Arabic, Basque,
Catalan, Chinese, Czech, English, Greek, Hun-
garian, Italian, and Turkish.

• In the domain adaptation track, the task was
to adapt a parser for English news text to other

domains using unlabeled data from the target
domains: biomedical and chemical abstracts,
parent-child dialogues.1 In the closed class, the
base parser had to be trained using the English
training set for the multilingual track and no
external resources were allowed. In the open
class, any base parser could be used and any
external resources were allowed.

Both tracks used the same column-based format for
labeled data with six input columns and two output
columns for each word of a sentence:

• Input: word-id, word form, lemma, coarse part
of speech, fine part-of-speech, morphosyntactic
features.

• Output: head (word-id), dependency label.

The main evaluation metric for both tracks was the
labeled attachment score (LAS), i.e., the percentage
of words that have been assigned the correct head
and dependency label. For more information about
the setup, see Nivre et al. (2007)

In this paper, I will summarize the main findings
from the CoNLL 2007 shared task, starting with
a characterization of the different approaches used
(section 2), and moving on to the most interesting
results in the multilingual track (section 3) and the
domain adaptation track (section 4). Finally, based
on these findings, I will try to identify some im-
portant challenges for the wider parsing community
(section 5).

1The biomedical domain was the development domain,
which means that a small labeled development set was available
for this domain. The final testing was only done on chemical
abstracts and (optionally) parent-child dialogues.

168

2 Approaches

In total, test runs were submitted for twenty-three
systems in the multilingual track, and ten systems in
the domain adaptation track (six of which also par-
ticipated in the multilingual track). The majority of
these systems used models belonging to one of the
two dominant approaches in data-driven dependency
parsing in recent years (McDonald and Nivre, 2007):

• In graph-based models, every possible depen-
dency graph for a given input sentence is given
a score that decomposes into scores for the arcs
of the graph. The optimal parse can be found
using a spanning tree algorithm (Eisner, 1996;
McDonald et al., 2005).

• In transition-based models, dependency graphs
are modeled by sequences of parsing actions
(or transitions) for building them. The search
for an optimal parse is often deterministic and
guided by classifiers (Yamada and Matsumoto,
2003; Nivre, 2003).

The majority of graph-based parsers in the shared
task were based on what McDonald and Pereira
(2006) call the first-order model, where the score
of each arc is independent of every other arc, but
there were also attempts at exploring higher-order
models, either with exact inference limited to pro-
jective dependency graphs (Carreras, 2007), or with
approximate inference (Nakagawa, 2007). Another
innovation was the use of k-best spanning tree algo-
rithms for inference with a non-projective first-order
model (Hall et al., 2007b).

For transition-based parsers, the trend was clearly
to move away from deterministic parsing by adding
a probability model for scoring a set of candidate
parses typically derived using a heuristic search
strategy. The probability model may be either con-
ditional (Duan et al., 2007) or generative (Titov and
Henderson, 2007).

An interesting way of combining the two main
approaches is to use a graph-based model to build
an ensemble of transition-based parsers. This tech-
nique, first proposed by Sagae and Lavie (2006), was
used in the highest scoring system in both the mul-
tilingual track (Hall et al., 2007a) and the domain
adaptation track (Sagae and Tsujii, 2007).

3 Multilingual Parsing

The ten languages involved in the multilingual track
can be grouped into three classes with respect to the
best parsing accuracy achieved:

• Low (LAS = 76.3–76.9):
Arabic, Basque, Greek

• Medium (LAS = 79.2–80.2):
Czech, Hungarian, Turkish

• High (LAS = 84.4–89.6):
Catalan, Chinese, English, Italian

To a large extent, these classes appear to be definable
from typological properties. The class with the high-
est top scores contains languages with a rather im-
poverished morphology. Medium scores are reached
by the two agglutinative languages, Hungarian and
Turkish, as well as by Czech. The most difficult lan-
guages are those that combine a relatively free word
order with a high degree of inflection. Based on
these characteristics, one would expect to find Czech
in the last class. However, the Czech training set
is four times the size of the training set for Arabic,
which is the language with the largest training set
of the difficult languages. On the whole, however,
training set size alone is a poor predictor of parsing
accuracy, which can be seen from the fact that the
Italian training set is only about half the size of the
Arabic one and only one sixth of Czech one. Thus,
there seems to be a need for parsing methods that
can cope better with richly inflected languages.

4 Domain Adaptation

One result from the domain adaptation track that
may seem surprising at first was the fact that the
best closed class systems outperformed the best
open class systems on the official test set containing
chemical abstracts. To some extent, this may be ex-
plained by the greater number of participants in the
closed class (eight vs. four). However, it also seems
that the major problem in adapting existing, often
grammar-based, parsers to the new domain was not
the domain as such but the mapping from the native
output of the parser to the kind of annotation pro-
vided in the shared task data sets. In this respect,
the closed class systems had an advantage by having
been trained on exactly this kind of annotation. This

169

result serves to highlight the fact that domain adapta-
tion, as well as the integration of grammar-based and
data-driven methods, often involves transformations
between different kinds of linguistic representations.

The best performing (closed class) system in the
domain adaptation track used a combination of co-
learning and active learning by training two different
parsers on the labeled training data, parsing the un-
labeled domain data with both parsers, and adding
parsed sentences to the training data only if the two
parsers agreed on their analysis (Sagae and Tsujii,
2007). This resulted in a LAS of 81.1 on the test set
of chemical abstracts, to be compared with 89.0 for
the English test set in the multilingual track.

5 Conclusion

Based on the results from the CoNLL 2007 shared
task, it is clear that we need to improve our methods
for parsing richly inflected languages. We also need
to find better ways of integrating parsers developed
within different frameworks, so that they can be
reused effectively for, among other things, domain
adaptation. More generally, we need to increase our
knowledge of the multi-causal relationship between
language characteristics, syntactic representations,
and parsing and learning methods. In order to do
this, perhaps we also need a shared task at the Inter-
national Conference on Parsing Technologies.

Acknowledgments

I want to thank my fellow organizers of the shared
task, Johan Hall, Sandra Kübler, Ryan McDonald,
Jens Nilsson, Sebastian Riedel, and Deniz Yuret,
who are also co-authors of the longer paper on which
this paper is partly based (Nivre et al., 2007). I am
also indebted to all the people who have contributed
to the shared task by providing data or participating.

References

S. Buchholz and E. Marsi. 2006. CoNLL-X shared
task on multilingual dependency parsing. In Proc. of
CoNLL, 149–164.

X. Carreras. 2007. Experiments with a high-order pro-
jective dependency parser. In Proc. of EMNLP-CoNLL
(Shared Task).

X. Duan, J. Zhao, and B. Xu. 2007. Probabilistic parsing
action models for multi-lingual dependency parsing.
In Proc. of EMNLP-CoNLL (Shared Task).

J. M. Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proc. of COL-
ING, 340–345.

J. Hall, J. Nilsson, J. Nivre, G. Eryigit, B. Megyesi,
M. Nilsson, and M. Saers. 2007a. Single malt or
blended? A study in multilingual parser optimization.
In Proc. of EMNLP-CoNLL (Shared Task).

K. Hall, J. Havelka, and D. Smith. 2007b. Log-linear
models of non-projective trees, k-best MST parsing
and tree-ranking. In Proc. of EMNLP-CoNLL (Shared
Task).

R. McDonald and J. Nivre. 2007. Characterizing the
errors of data-driven dependency parsing models. In
Proc. of EMNLP-CoNLL.

R. McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithms. In Proc.
of EACL, 81–88.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
Non-projective dependency parsing using spanning
tree algorithms. In Proc. of HLT/EMNLP, 523–530.

T. Nakagawa. 2007. Multilingual dependency parsing
using gibbs sampling. In Proc. of EMNLP-CoNLL
(Shared Task).

J. Nivre and J. Nilsson. 2005. Pseudo-projective depen-
dency parsing. In Proc. of ACL, 99–106.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007. The CoNLL
2007 shared task on dependency parsing. In Proc. of
EMNLP-CoNLL (Shared Task).

J. Nivre. 2003. An efficient algorithm for projective de-
pendency parsing. In Proc. of IWPT, 149–160.

K. Sagae and A. Lavie. 2006. Parser combination by
reparsing. In Proc. of HLT-NAACL (Short Papers),
129–132.

K. Sagae and J. Tsujii. 2007. Dependency parsing and
domain adaptation with LR models and parser ensem-
bles. In Proc. of EMNLP-CoNLL (Shared Task).

I. Titov and J. Henderson. 2007. Fast and robust mul-
tilingual dependency parsing with a generative latent
variable model. In Proc. of EMNLP-CoNLL (Shared
Task).

H. Yamada and Y. Matsumoto. 2003. Statistical depen-
dency analysis with support vector machines. In Proc.
of IWPT, 195–206.

170

Author Index

Attardi, Giuseppe, 133

Baldwin, Timothy, 36
Boullier, Pierre, 94
Briscoe, Ted, 23

Callaghan, Paul, 109
Carroll, John, 23, 48
Ciaramita, Massimiliano, 133
Clark, Stephen, 39
Curran, James, 39

Djordjevic, Bojan, 39
Dras, Mark, 36

Foster, Jennifer, 33
Frost, Richard, 109

Hafiz, Rahmatullah, 109
Hara, Tadayoshi, 11
Henderson, James, 144
Hockenmaier, Julia, 36
Holloway King, Tracy, 36

Matsuzaki, Takuya, 60
McDonald, Ryan, 121
Miyao, Yusuke, 11, 60

Newman, Paula, 83
Ninomiya, Takashi, 60
Nivre, Joakim, 168

Oepen, Stephan, 48

Pan, Michael, 106

Sagot, Benoit, 94
Satta, Giorgio, 121
Seddah, Djam, 33
Shi, Xiaodong, 80
Shieber, Stuart, 93

Sima’an, Khalil, 156
Sofkova Hashemi, Sylvana, 69

Titov, Ivan, 144
Tsarfaty, Reut, 156
Tsujii, Jun’ichi, 11, 60

van Genabith, Josef, 33
van Noord, Gertjan, 1, 36

Wagner, Joachim, 33
Watson, Rebecca, 23

Zhang, Yi, 48

171

 A C L 2 0 0 7

PRAGUE

ISBN 978-1-932432-90-9

	Program
	Using Self-Trained Bilexical Preferences to Improve Disambiguation Accuracy
	Evaluating Impact of Re-training a Lexical Disambiguation Model on Domain Adaptation of an HPSG Parser
	Semi-supervised Training of a Statistical Parser from Unlabeled Partially-bracketed Data
	Adapting WSJ-Trained Parsers to the British National Corpus using In-Domain Self-Training
	The Impact of Deep Linguistic Processing on Parsing Technology
	Improving the Efficiency of a Wide-Coverage CCG Parser
	Efficiency in Unification-Based N-Best Parsing
	A log-linear model with an n-gram reference distribution for accurate HPSG parsing
	Ambiguity Resolution by Reordering Rules in Text Containing Errors
	Nbest Dependency Parsing with linguistically rich models
	Symbolic Preference Using Simple Scoring
	Synchronous Grammars and Transducers: Good News and Bad News
	Are Very Large Context-Free Grammars Tractable?
	Pomset mcfgs
	Modular and Efficient Top-Down Parsing for Ambiguous Left-Recursive Grammars
	On the Complexity of Non-Projective Data-Driven Dependency Parsing
	Dependency Parsing with Second-Order Feature Maps and Annotated Semantic Information
	A Latent Variable Model for Generative Dependency Parsing
	Three-Dimensional Parametrization for Parsing Morphologically Rich Languages
	Data-Driven Dependency Parsing across Languages and Domains: Perspectives from the CoNLL-2007 Shared task

