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Preface

Even though the statistical paradigm is dominant in research on spoken language processing, grammar
based approaches are used to a great extent in industry and are also a popular choice for building
command and control applications. They are particularly useful in situations where there is a lack of
appropriate training data for particular domains, or even in some cases for the language as a whole,
and when it is important to encode global structural constraints. Several platforms are now available
that support construction of grammar-based spoken dialogue systems, including SRI’s Gemini, NASA
and Geneva University’s Regulus and Chalmers and Gothenburg University’s GF, and a variety of
substantial applications have been built using these tools.

This workshop will provide an opportunity for researchers in this area to present results, compare
systems and exchange practical experience in grammar based development for spoken language
understanding systems.
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Abstract

This paper describes how grammar-based
language models for speech recognition sys-
tems can be generated from Grammatical
Framework (GF) grammars. Context-free
grammars and finite-state models can be
generated in several formats: GSL, SRGS,
JSGF, and HTK SLF. In addition, semantic
interpretation code can be embedded in the
generated context-free grammars. This en-
ables rapid development of portable, multi-
lingual and easily modifiable speech recog-
nition applications.

1 Introduction

Speech recognition grammars are used for guid-
ing speech recognizers in many applications. How-
ever, there are a number of problems associated
with writing grammars in the low-level, system-
specific formats required by speech recognizers.
This work addresses these problems by generat-
ing speech recognition grammars and semantic in-
terpretation components from grammars written in
Grammatical Framework (GF), a high-level, type-
theoretical grammar formalism. Compared to exist-
ing work on compiling unification grammars, such
as Regulus (Rayner et al., 2006), our work uses a
type-theoretical grammar formalism with a focus on
multilinguality and modular grammar development,
and supports multiple speech recognition grammar
formalisms, including finite-state models.

We first outline some existing problems in the de-
velopment and maintenance of speech recognition

grammars, and describe how our work attempts to
address these problems. In the following two sec-
tions we introduce speech recognition grammars and
Grammatical Framework. The bulk of the paper
then describes how we generate context-free speech
recognition grammars, finite-state language models
and semantic interpretation code from GF gram-
mars. We conclude by giving references to a number
of experimental dialogue systems which already use
our grammar compiler for generating speech recog-
nition grammars.

Expressivity Speech recognition grammars are
written in simple formalisms which do not have
the powerful constructs of high-level grammar for-
malisms. This makes speech recognition grammar
writing labor-intensive and error prone, especially
for languages with more inflection and agreement
than English.

This is solved by using a high-level grammar for-
malism with powerful constructs and a grammar
library which implements the domain-independent
linguistic details.

Duplicated work When speech recognition gram-
mars are written directly in the low-level format re-
quired by the speech recognizer, other parts of the
system, such as semantic interpretation components,
must often be constructed separately.

This duplicated work can be avoided by gener-
ating all the components from a single declarative
source, such as a GF grammar.

Consistency Because of the lack of abstraction
mechanisms and consistency checks, it is difficult
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to modify a system which uses hand-written speech
recognition grammars. The problem is multiplied
when the system is multilingual. The developer
has to modify the speech recognition grammar and
the semantic interpretation component manually for
each language. A simple change may require touch-
ing many parts of the grammar, and there are no au-
tomatic consistency checks.

The strong typing of the GF language enforces
consistency between the semantics and the concrete
representation in each language.

Localization With hand-written grammars, it is
about as difficult to add support for a new language
as it is to write the grammar and semantic interpre-
tation for the first language.

GF’s support for multilingual grammars and the
common interface implemented by all grammars in
the GF resource grammar library makes it easier to
translate a grammar to a new language.

Portability A grammar in any given speech recog-
nition grammar format cannot be used with a speech
recognizer which uses another format.

In our approach, a GF grammar is used as the
canonical representation which the developer works
with, and speech recognition grammars in many for-
mats can be generated automatically from this rep-
resentation.

2 Speech Recognition Grammars

To achieve acceptable accuracy, speech recognition
software is guided by a language model which de-
fines the language which can be recognized. A lan-
guage model may also assign different probabilities
to different strings in the language. A language
model can either be a statistical language model
(SLM), such as an n-gram model, or a grammar-
based language model, for example a context-free
grammar (CFG) or a finite-state automaton (FSA).
In this paper, we use the term speech recogni-
tion grammar (SRG) to refer to all grammar-based
language models, including context-free grammars,
regular grammars and finite-state automata.

3 Grammatical Framework

Grammatical Framework (GF) (Ranta, 2004) is a
grammar formalism based on constructive type the-

ory. In GF, an abstract syntax defines a seman-
tic representation. A concrete syntax declares how
terms in an abstract syntax are linearized, that is,
how they are mapped to concrete representations.
GF grammars can be made multilingual by having
multiple concrete syntaxes for a single abstract syn-
tax.

3.1 The Resource Grammar Library
The GF Resource Grammar Library (Ranta et al.,
2006) currently implements the morphological and
syntactic details of 10 languages. This library is in-
tended to make it possible to write grammars with-
out caring about the linguistic details of particular
languages. It is inspired by library-based software
engineering, where complex functionality is imple-
mented in reusable software libraries with simple in-
terfaces.

The resource grammar library is used through
GF’s facility for grammar composition, where the
abstract syntax of one grammar is used in the imple-
mentation of the concrete syntax of another gram-
mar. Thus, an application grammar writer who uses
a resource grammar uses its abstract syntax terms
to implement the linearizations in the application
grammar.

The resource grammars for the different lan-
guages implement a common interface, i.e. they
all have a common abstract syntax. This means
that grammars which are implemented using re-
source grammars can be easily localized to other
languages. Localization normally consists of trans-
lating the application-specific lexical items, and ad-
justing any linearizations which turn out to be uni-
diomatic in the language in question. For example,
when the GoTGoDiS (Ericsson et al., 2006) appli-
cation was localized to Finnish, only 3 out of 180
linearization rules had to be changed.

3.2 An Example GF Grammar
Figure 1 contains a small example GF abstract syn-
tax. Figure 2 defines an English concrete syntax
for it, using the resource grammar library. We will
use this grammar when we show examples of speech
recognition grammar generation later.

In the abstract syntax, cat judgements introduce
syntactic categories, and fun judgements declare
constructors in those categories. For example, the
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abstract Food = {
cat Order; Items; Item;Number;Size;
fun order : Items→ Order;

and : Items→ Items→ Items;
items : Item→ Number→ Size→ Items;
pizza,beer : Item;
one, two :Number;
small, large :Size;

}

Figure 1: Food.gf: A GF abstract syntax module.

concrete FoodEng of Food = open English in {
flags startcat = Order;
lincat Order = Utt; Items = NP;

Item = CN;Number = Det;
Size = AP;

lin order x = mkUtt x;
and x y = mkNP and Conj x y;
items x n s = mkNP n (mkCN s x);
pizza = mkCN (regN “pizza”);
beer = mkCN (regN “beer”);
one = mkDet one Quant;
two = mkDet n2;
small = mkAP (regA “small”);
large = mkAP (regA “large”);

}

Figure 2: FoodEng.gf: English concrete syntax for
the abstract syntax in Figure 1.

items constructor makes an Items term from an Item,
a Number and a Size. The term items pizza two small
is an example of a term in this abstract syntax.

In the concrete syntax, a lincat judgement de-
clares the type of the concrete terms generated from
the abstract syntax terms in a given category. The
linearization of each constructor is declared with a
lin judgement. In the concrete syntax in Figure 2,
library functions from the English resource gram-
mar are used for the linearizations, but it is also pos-
sible to write concrete syntax terms directly. The
linearization of the term items pizza two small is
{s = “two small pizzas”}, a record containing a sin-
gle string field.

By changing the imports and the four lexical
items, this grammar can be translated to any other
language for which there is a resource grammar.

For example, in the German version, we replace
(regN “beer”) with (reg2N “Bier” “Biere” neuter)
and so on. The functions regN and reg2N implement
paradigms for regular English and German nouns,
respectively. This replacement can be formalized
using GF’s parameterized modules, which lets one
write a common implementation that can be instan-
tiated with the language-specific parts. Note that the
application grammar does not deal with details such
as agreement, as this is taken care of by the resource
grammar.

4 Generating Context-free Grammars

4.1 Algorithm

GF grammars are converted to context-free speech
recognition grammars in a number of steps. An
overview of the compilation pipeline is show in Fig-
ure 3. The figure also includes compilation to finite-
state automata, as described in Section 5. Each step
of the compilation is described in more detail in the
sections below.

Conversion to CFG The GF grammar is first
converted into a context-free grammar annotated
with functions and profiles, as described by
Ljunglöf (2004).

Cycle elimination All directly and indirectly
cyclic productions are removed, since they cannot be
handled gracefully by the subsequent left-recursion
elimination. Such productions do not contribute to
the coverage to the grammar, only to the set of pos-
sible semantic results.

Bottom-up filtering Productions whose right-
hand sides use categories for which there are no pro-
ductions are removed, since these will never match
any input.

Top-down filtering Only productions for cate-
gories which can be reached from the start category
are kept. This is mainly used to remove parts of the
grammar which are unused because of the choice
of start category. One example where this is useful
is when a speech recognition grammar is generated
from a multimodal grammar (Bringert et al., 2005).
In this case, the start category is different from the
start category used by the parser, in that its lineariza-
tion only contains the speech component of the in-
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GF grammar

CFG conversion

Cycle elimination

Bottom-up filtering

Top-down filtering

Left-recursion
elimination

Identical category
elimination

EBNF compaction

SRGS/JSGF/GSL

Regular
approximation

FSA compilation

Minimization

SLF

Figure 3: Grammar compilation pipeline.

put. Top-down filtering then has the effect of ex-
cluding the non-speech modalities from the speech
recognition grammar.

The bottom-up and top-down filtering steps are it-
erated until a fixed point is reached, since both these
steps may produce new filtering opportunities.

Left-recursion elimination All direct and indi-
rect left-recursion is removed using the LCLR trans-
form described by Moore (2000). We have modi-
fied the LCLR transform to avoid adding productions
which use a category A−X when there are no pro-
ductions for A−X .

Identical category elimination In this step, the
categories are grouped into equivalence classes by
their right-hand sides and semantic annotations. The
categories A1 . . .An in each class are replaced by a
single category A1+. . .+An throughout the grammar,
discarding any duplicate productions. This has the

effect of replacing all categories which have identi-
cal sets of productions with a single category. Con-
crete syntax parameters which do not affect inflec-
tion is one source of such redundancy; the LCLR

transform is another.

EBNF compaction The resulting context-free
grammar is compacted into an Extended Backus-
Naur Form (EBNF) representation. This reduces the
size and improves the readability of the final gram-
mar. The compaction is done by, for each cate-
gory, grouping all the productions which have the
same semantic interpretation, and the same sequence
of non-terminals on their right-hand sides, ignoring
any terminals. The productions in each group are
merged into one EBNF production, where the ter-
minal sequences between the non-terminals are con-
verted to regular expressions which are the unions of
the original terminal sequences. These regular ex-
pressions are then minimized.

Conversion to output format The resulting non-
left-recursive grammar is converted to SRGS, JSGF
or Nuance GSL format.

A fragment of a SRGS ABNF grammar generated
from the GF grammar in Figure 2 is shown below.
The left-recursive and rule was removed from the
grammar before compilation, as the left-recursion
elimination step makes it difficult to read the gen-
erated grammar. The fragment shown here is for the
singular part of the items rule.

$FE1 = $FE6 $FE9 $FE4;
$FE6 = one;
$FE9 = large | small;
$FE4 = beer | pizza;

The corresponding fragment generated from the
German version of the grammar is more complex,
since the numeral and the adjective must agree with
the gender of the noun.

$FG1 = $FG10 $FG13 $FG6 | $FG9 $FG12 $FG4;
$FG9 = eine; $FG10 = ein;
$FG12 = große | kleine;
$FG13 = großes | kleines;
$FG4 = Pizza; $FG6 = Bier;

4.2 Discussion

The generated grammar is an overgenerating ap-
proximation of the original GF grammar. This is
inevitable, since the GF formalism is stronger than
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context-free grammars, for example through its sup-
port for reduplication. GF’s support for dependently
typed and higher-order abstract syntax is also not
yet carried over to the generated speech recogni-
tion grammars. This could be handled in a subse-
quent semantic interpretation step. However, that
requires that the speech recognizer considers mul-
tiple hypotheses, since some may be discarded by
the semantic interpretation. Currently, if the abstract
syntax types are only dependent on finite types, the
grammar can be expanded to remove the dependen-
cies. This appears to be sufficient for many realistic
applications.

In some cases, empty productions in the gener-
ated grammar could cause problems for the cycle
and left-recursion elimination, though we have yet
to encounter this in practice. Empty productions can
be removed by transforming the grammar, though
this has not yet been implemented.

For some grammars, the initial CFG generation
can generate a very large number of productions.
While the resulting speech recognition grammars
are of a reasonable size, the large intermediate gram-
mars can cause memory problems. Further opti-
mization is needed to address this problem.

5 Finite-State Models

5.1 Algorithm

Some speech recognition systems use finite-state au-
tomata rather than context-free grammars as lan-
guage models. GF grammars can be compiled to
finite-state automata using the procedure shown in
Figure 3. The initial part of the compilation to
a finite-state model is shared with the context-free
SRG compilation, and is described in Section 4.

Regular approximation The context-free gram-
mar is approximated with a regular grammar, us-
ing the algorithm described by Mohri and Neder-
hof (2001).

Compilation to finite-state automata The reg-
ular grammar is transformed into a set of non-
deterministic finite automata (NFA) using a modi-
fied version of the make fa algorithm described by
Nederhof (2000). For realistic grammars, applying
the original make fa algorithm to the whole gram-
mar generates a very large automaton, since a copy

of the sub-automaton corresponding to a given cate-
gory is made for every use of the category.

Instead, one automaton is generated for each cat-
egory in the regular grammar. All categories which
are not in the same mutually recursive set as the
category for which the automaton is generated are
treated as terminal symbols. This results in a set
of automata with edges labeled with either terminal
symbols or the names of other automata.

If desired, the set of automata can be con-
verted into a single automaton by substituting each
category-labeled edge with a copy of the corre-
sponding automaton. Note that this always termi-
nates, since the sub-automata do not have edges la-
beled with the categories from the same mutually re-
cursive set.

Minimization Each of the automata is turned into
a minimal deterministic finite automaton (DFA) by
using Brzozowski’s (1962) algorithm, which min-
imizes the automaton by performing two deter-
minizations and reversals.

Conversion to output format The resulting finite
automaton can be output in HTK Standard Lattice
Format (SLF). SLF supports sub-lattices, which al-
lows us to convert our set of automata directly into a
set of lattices. Since SLF uses labeled nodes, rather
than labeled edges, we move the labels to the nodes.
This is done by first introducing a new labeled node
for each edge, and then eliminating all internal un-
labeled nodes. Figure 4 shows the SLF model gen-
erated from the example grammar. For clarity, the
sub-lattices have been inlined.

and one

two

pizzas

beers

pizza

beersmall

large

small

large

ENDSTART

Figure 4: SLF model generated from the grammar
in Figure 2.
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5.2 Discussion

Finite-state models are even more restrictive than
context-free grammars. This problem is handled
by approximating the context-free grammar with
an overgenerating finite-state automaton. This may
lead to failure in a subsequent parsing step, which,
as in the context-free case, is acceptable if the rec-
ognizer can return all hypotheses.

6 Semantic Interpretation

Semantic interpretation can be done as a separate
parsing step after speech recognition, or it can be
done with semantic information embedded in the
speech recognition grammar. The latter approach re-
sembles the semantic actions used by parser genera-
tors for programming languages. One formalism for
semantic interpretation is the proposed Semantic In-
terpretation for Speech Recognition (SISR) standard.
SISR tags are pieces of ECMAScript code embed-
ded in the speech recognition grammar.

6.1 Algorithm

The GF system can include SISR tags when gen-
erating speech recognitions grammars in SRGS
and JSGF format. The SISR tags are generated
from the semantic information in the annotated
CFG (Ljunglöf, 2004). The result of the semantic
interpretation is an abstract syntax term.

The left-recursion elimination step makes it
somewhat challenging to produce correct abstract
syntax trees. We have extended Moore’s (2000)
LCLR transform to preserve the semantic interpreta-
tion. The LCLR transform introduces new categories
of the form A−X where X is a proper left corner of
a category A. The new category A−X can be under-
stood as “the category A, but missing an initial X”.
Thus the semantic interpretation for a production in
A−X is the semantic interpretation for the original A-
production, abstracted (in the λ-calculus sense) over
the semantic interpretation of the missing X . Con-
versely, where-ever a category A−X is used, its re-
sult is applied to the interpretation of the occurrence
of X .

6.2 Discussion

As discussed in Section 4.2, the semantic interpre-
tation code could be used to implement the non-

context-free features of GF, but this is not yet done.
The slot-filling mechanism in the GSL format

could also be used to build semantic representations,
by returning program code which can then be ex-
ecuted. The UNIANCE grammar compiler (Bos,
2002) uses that approach.

7 Related Work

7.1 Unification Grammar Compilation
Compilation of unification grammars to speech
recognition grammars is well described in the liter-
ature (Moore, 1999; Dowding et al., 2001). Regu-
lus (Rayner et al., 2006) is perhaps the most ambi-
tious such system. Like GF, Regulus uses a general
grammar for each language, which is specialized to a
domain-specific one. Ljunglöf (Ljunglöf, 2007b) re-
lates GF and Regulus by showing how to convert GF
grammars to Regulus grammars. We carry composi-
tional semantic interpretation through left-recursion
elimination using the same idea as the UNIANCE
grammar compiler (Bos, 2002), though our version
handles both direct and indirect left-recursion.

The main difference between our work and the
existing compilers is that we work with type-
theoretical grammars rather than unification gram-
mars. While the existing work focuses on GSL
as the output language, we also support a number
of other formats, including finite-state models. By
using the GF resource grammars, speech recogni-
tion language models can be produced for more lan-
guages than with previous systems. One shortcom-
ing of our system is that it does not yet have support
for weighted grammars.

7.2 Generating SLMs from GF Grammars
Jonson (2006) has shown that in addition to gener-
ating grammar-based language models, GF can be
used to build statistical language models (SLMs). It
was found that compared to our grammar-based ap-
proach, use of generated SLMs improved the recog-
nition performance for out-of-grammar utterances
significantly.

8 Results

Speech recognition grammars generated from GF
grammars have already been used in a number of
research dialogue systems.
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GOTTIS (Bringert et al., 2005; Ericsson et al.,
2006), an experimental multimodal and multilingual
dialogue system for public transportation queries,
uses GF grammars for parsing multimodal input.
For speech recognition, it uses GSL grammars gen-
erated from the speech modality part of the GF
grammars.

DJ-GoDiS, GoDiS-deLUX, and GoTGoDiS (Er-
icsson et al., 2006) are three applications which use
GF grammars for speech recognition and parsing
together with the GoDiS implementation of issue-
based dialogue management (Larsson, 2002). GoT-
GoDiS has been translated to 7 languages using the
GF resource grammar library, with each new transla-
tion taking less than one day (Ericsson et al., 2006).

The DICO (Villing and Larsson, 2006) dialogue
system for trucks has recently been modified to
use GF grammars for speech recognition and pars-
ing (Ljunglöf, 2007a).

DUDE (Lemon and Liu, 2006) and its extension
REALL-DUDE (Lemon et al., 2006b) are environ-
ments where non-experts can develop dialogue sys-
tems based on Business Process Models describing
the applications. From keywords, prompts and an-
swer sets defined by the developer, the system gen-
erates a GF grammar. This grammar is used for pars-
ing input, and for generating a language model in
SLF or GSL format.

The Voice Programming system by Georgila and
Lemon (Georgila and Lemon, 2006; Lemon et al.,
2006a) uses an SLF language model generated from
a GF grammar.

Perera and Ranta (2007) have studied how GF
grammars can be used for localization of dialogue
systems. A GF grammar was developed and local-
ized to 4 other languages in significantly less time
than an equivalent GSL grammar. They also found
the GSL grammar generated by GF to be much
smaller than the hand-written GSL grammar.

9 Conclusions

We have shown how GF grammars can be compiled
to several common speech recognition grammar for-
mats. This has helped decrease development time,
improve modifiability, aid localization and enable
portability in a number of experimental dialogue
systems.

Several systems developed in the TALK and
DICO projects use the same GF grammars for
speech recognition, parsing and multimodal fu-
sion (Ericsson et al., 2006). Using the same gram-
mar for multiple system components reduces devel-
opment and modification costs, and makes it easier
to maintain consistency within the system.

The feasibility of rapid localization of dialogue
systems which use GF grammars has been demon-
strated in the GoTGoDiS (Ericsson et al., 2006) sys-
tem, and in experiments by Perera and Ranta (2007).

Using speech recognition grammars generated by
GF makes it easy to support different speech rec-
ognizers. For example, by using the GF grammar
compiler, the DUDE (Lemon and Liu, 2006) system
can support both the ATK and Nuance recognizers.

Implementations of the methods described in this
paper are freely available as part of the GF distribu-
tion1.
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Burden, Ann C. Forslund, David Hjelm, Rebecca Jon-
son, Staffan Larsson, Peter Ljunglöf, Pilar Manchón,
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Abstract

We present an algorithm for converting
Grammatical Framework grammars (Ranta,
2004) into the Regulus unification-based
framework (Rayner et al., 2006). The main
purpose is to take advantage of the Regulus-
to-Nuance compiler for generating opti-
mized speech recognition grammars. But
there is also a theoretical interest in knowing
how similar the two grammar formalisms
are.

Since Grammatical Framework is more ex-
pressive than Regulus, the resulting Regu-
lus grammars can be overgenerating. We
therefore describe a subclass of Grammati-
cal Framework for which the algorithm re-
sults in an equivalent Regulus grammar.

1 Background

In this section we describe the grammar formalism
Grammatical Framework (GF), and discuss its ex-
pressive power and the present options for creat-
ing speech recognition grammars (SRGs). The main
problem is that the size of the grammar can explode
when inflectional parameters are expanded. In this
paper we try to solve this problem by converting to
a formalism for which there is an optimized SRG
compiler. This formalism is Regulus, which is de-
scribed together with its SRG compiler.

The formal details are left out of the descriptions
in this section and can instead be found in section 2.
In section 3 the conversion algorithm is presented in
detail, and in section 4 there is a short discussion.

1.1 Grammatical Framework
Grammatical Framework (Ranta, 2004) is a gram-
mar formalism based on type theory. The main fea-
ture is the separation of abstract and concrete syn-
tax, which makes it very suitable for writing mul-
tilingual grammars. A rich module system also fa-
cilitates grammar writing as an engineering task, by
reusing common grammars.

1.1.1 Separating abstract and concrete syntax
The main idea of GF is the separation of ab-

stract and concrete syntax, a distinction which is
shared with several other grammar formalisms such
as Abstract Categorial Grammars (de Groote, 2001),
Lambda Grammar (Muskens, 2003) and Higher Or-
der Grammar (Pollard, 2004). The abstract part of
a grammar defines a set of abstract syntactic struc-
tures, called abstract terms or trees; and the concrete
part defines a relation between abstract structures
and concrete structures.

GF has a linearization perspective to grammar
writing, where the relation between abstract and
concrete is viewed as a mapping from abstract to
concrete structures, called linearization terms. In
some cases the mapping can be partial or even many-
valued.

Although not exploited in many well-known
grammar formalisms, a clear separation between ab-
stract and concrete syntax gives some advantages.

High-level language descriptions: When describ-
ing the abstract syntax, the grammar writer can
choose not to care about language specific de-
tails, such as inflection and word order.

Multilingual grammars: It is possible to define
different concrete syntaxes for one particular
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abstract syntax. Multilingual grammars can be
used as a model for interlingua translation, but
also to simplify localization of language tech-
nology applications.

Resource grammars: The abstract syntax of one
grammar can be used as a concrete syntax of
another grammar. This makes it possible to im-
plement grammar resources to be used in sev-
eral different application domains.

These points are currently exploited in the GF Re-
source Grammar Library (Ranta et al., 2006), which
is a multilingual GF grammar with a common ab-
stract syntax for 13 languages. The grammati-
cal coverage is similar to the Core Language En-
gine (Rayner et al., 2000). The main purpose of
the Grammar Library is as a resource for writing
domain-specific grammars.

1.1.2 Abstract syntax
The abstract theory of GF is a version of Martin-

Löf’s (1984) dependent type theory. A grammar
consists of declarations of categories and functions.
Categories can depend on other categories. Func-
tion declarations can bind variables to be used in de-
pendent types, and also take functions as arguments,
thus giving rise to higher-order functions. Since the
abstract syntax also permits function definitions, the
expressive power of GF abstract syntax is Turing-
complete.

In this article we restrict ourselves to an impor-
tant subclass of GF, where there are no dependent
types and no higher-order functions. This subclass
is called context-free GF, and is an instance of Gen-
eralized Context-Free Grammar (Pollard, 1984).

The abstract syntax of a context-free GF grammar
consists of a set of function typings of the form

f : A1 → · · · → Aδ → A

This typing says that f is a function taking δ argu-
ments with categories A1 . . . Aδ and returning a cat-
egory A. This is equivalent to a context-free gram-
mar without terminal symbols. Note however, that
the function f would be written A → A1 . . . Aδ as
an ordinary context-free rule. I.e., the left-hand side
of a context-free rule corresponds to the result of the

function, which is written to the right. The restric-
tion to a context-free backbone is not severe, since
the concrete syntax is so expressive.

1.1.3 Concrete syntax
Linearizations are written as terms in a typed

functional programming language, which is limited
to ensure decidability in generation and in parsing.
The language has records and finite-domain func-
tions (called tables); and the basic types are termi-
nal lists (called strings) and finite data types (called
parameter types). There are also local definitions,
lambda-abstractions and global function definitions.
The parameters are declared by the grammar; they
can be hierarchical but not recursive, to ensure finite-
ness.

The language of linearization terms is quite com-
plex, but it can be compiled to a normalized form
which is called canonical GF. In this paper we as-
sume that all linearizations are in canonical form.
A canonical concrete GF grammar contains declara-
tions of all parameter types, and linearization defini-
tions for all abstract functions.

1.1.4 Expressive power
The expressive power of context-free GF solely

depends on the possibility of discontinuous con-
stituents. This means that one grammatical phrase
can be split into several parts occurring in different
places in the sentence. Discontinuous constituents
permit a simple and compositional way of treating,
e.g., German compound verbs, where the particle
commonly is moved to the end of the sentence.

Ljunglöf (2004) showed that context-free GF is
equivalent to Multiple Context-Free Grammar (Seki
et al., 1991), which is known to be parseable in time
polynomial in the length of the input string. From a
converted Multiple CFG, each constituent can be ex-
tracted as a context-free rule, which will result in a
possibly overgenerating context-free grammar. This
context-free grammar can be output from the GF
system in several different speech recognition for-
mats, as described by Bringert (2007).

There is a severe problem with the conversion
from GF to Multiple CFG however – the size of
the resulting grammar tend to explode when the in-
flectional parameters are expanded. Large gram-
mars such as many of the languages in the Resource
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Grammar Library simply cannot be converted. One
solution would be to optimize the conversion algo-
rithm, e.g., by interleaving parameter expansion and
grammar compaction. Another solution would be
to translate into a grammar formalism which does
not have this size explosion. This is where Regulus
comes in – if we could translate GF grammars into
Regulus grammars, we could make use of the re-
search already put into the Regulus-to-Nuance com-
piler, and would not have to reinvent the wheel.

1.2 Regulus

Regulus is an open-source toolkit for writing
grammar-based speech recognition systems (Rayner
et al., 2006).1 The central part is the Regulus gram-
mar formalism and a compiler for creating speech
recognition grammars. The toolkit has been en-
hanced with templates for developing e.g., speech
translation systems and dialogue systems. There is
also an English resource grammar, which can be
used for grammar specialization using explanation-
based learning (Rayner et al., 2006, chapters 9–10).

1.2.1 Unification of finite parameters

The Regulus formalism is a context-free gram-
mar, enhanced with unification of finite parameters.
This means that the formalism is equivalent to a
context-free grammar.

Each context-free category (e.g., Noun) has a
number of features (e.g., Number and Gender)
with a finite domain of values (e.g., Sg/Pl and
Masc/Fem/Neutr). The feature values are specified
using a record paired with the grammatical category.
Logical variables can be used for unifying features
of different constituents in the rule. It is possible to
define macros for simplifying common tasks, e.g.,
when implementing a lexicon.

Compared to Grammatical Framework, the Regu-
lus formalism is quite restricted. There is no clear
distinction between abstract and concrete syntax,
and there is no advanced module system in which to
define grammatical resources. Also, Regulus lacks
discontinuous constituents, which reduces the ex-
pressive power considerably.

1More information about Regulus, including download in-
formation, can be found on the project homepage: http:
//www.issco.unige.ch/projects/regulus/

1.2.2 Compiling Regulus to Nuance GSL
Nuance Communications (2003) has developed

a context-free grammar format for speech recogni-
tion, which has become one of the de facto stan-
dards for speech recognition. The grammar format
is called Nuance Grammar Specification Language
(GSL). The format has some special features, such
as semantic tagging and probabilistic grammar rules.
There are also restrictions in the format, most no-
tably that the grammars must not be left-recursive.

The Regulus formalism is designed to be able to
make use of the special features in Nuance GSL, and
the compiler can always create correct GSL gram-
mars without left-recursion.

2 Formal definitions

In this section we give formal definitions of rules and
linearization terms in GF, grammar rules and terms
in Regulus, and the intermediate structures we will
be using.

2.1 GF grammar rules

Since we are only interested in GF grammars with
a context-free backbone, the abstract syntax is a
context-free grammar where each rule has a unique
name. The rules are written as typings in a func-
tional language:

f : A1 → · · · → Aδ → A

As mentioned earlier, this declaration corresponds to
the context-free rule A → A1 . . . Aδ.

Linearizations are written as function definitions,
f x1 . . . xδ = t, where x1 . . . xδ are variables that
occur in the linearization term t. An alternative way
of writing this is to name the variables consistently
for each rule, and then the linearization term t it-
self is sufficient as a linearization definition. We
adopt this idea and use the uniform variable names
$1 . . . $δ in each linearization. With this approach
we also distinguish the argument variables from the
parameter variables which get bound in tables.

2.2 GF linearization terms and substructures

A parameter type P is just a set of parameter values
{p1, . . . , pn}. Note that all parameter types must
be disjoint, i.e., each parameter should belong to
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exactly one parameter type. Linearizations are de-
fined by association linearization terms to the ab-
stract functions. Note that the definition of terms is
slightly more general than the definition in GF, since
we want to include reduced terms in the definition.
The relation between the introduced classes are as
follows:

P ⊂ VPar

VStr

}
⊂ V ⊂ T

Terms (t ∈ T) are defined inductively as follows:

t ::= $n argument
| ”s” string
| t ++ t′ concatenation
| p pattern
| {r1 = t1; . . . ; rn = tn} record
| t.r projection
| [p1 ⇒ t1; . . . ; pn ⇒ tn] table
| t1!t2 selection

where n > 0 is a positive integer, p ∈ P is a pattern,
and r ∈ R is a record label. The class R of record
labels is just a finite class of atomic values. The ar-
gument reference $n denotes the nth argument of
the linearization function.

Patterns (p ∈ P) are pairs x@π of variables, x,
and sets of parameters, π = {p1 . . . pn}. The pa-
rameters p1 . . . pn all must belong to the same pa-
rameter type P, i.e., π ⊆ P. The meaning of the
pattern is that x is bound to one of the parameters in
π. If π = P we can skip that part and simply write
x. Conversely, if x is not used elsewhere in the term,
we can skip it and simply write π.

Note that a pattern is a term in itself, but in GF
it will always occur as a single variable x or as a
single parameter p. However, after the conversion
algorithm has transformed tables into records, pat-
terns will become first class terms.

Reduced terms (v ∈ V) are subterms of ordinary
terms. A reduced term is a term which does not
contain a table or a selection, and where projections
only occur in the form $n.ρ, where ρ ∈ R∗ is a se-

quence of labels:

v ::= $n.ρ

| ”s”
| v ++ v′

| p

| {r1 = v1; . . . ; rn = vn}

Reduced parameter terms (vp ∈ VPar) are sub-
terms of reduced terms, which correspond to param-
eters:

vp ::= $n.ρ | p

Reduced string terms (vs ∈ VStr) are subterms
of reduced terms, which correspond to strings:

vs ::= $n.ρ | ”s” | vs ++ v′
s

Note that this is equivalent to a sequence of argu-
ment projections and string constants, which in turn
is equivalent to a right-hand side in a context-free
rule.

2.3 Regulus grammar rules and terms
A Regulus grammar is a unification-based phrase-
structure grammar. It consists of grammar rules,
which in turn is built up using Regulus terms.

Regulus rules are regular context-free grammar
rules, where each category is augmented with a Reg-
ulus term:

A:v → σ0 A1:v1 σ1 . . . Aδ:vδ σδ

where each Ai is a context-free category, each vi is
a Regulus term, and each σi is a (possibly empty)
sequence of terminal tokens.

Regulus terms are flat records where all values
are patterns (pi = xi@πi):2

vr ::= {r1 = p1; . . . ; rn = pn}

In this sense, Regulus terms are just subterms of re-
duced terms. However, a Regulus term can include
one of the two special labels sem and gsem, cor-
responding to return values and global slot-filling
in Nuance GSL, respectively. They can contain
complex structures, such as deeply nested lists and
records. Using these it is possible to define the syn-
tactical structure of a phrase.

2This is a slight abuse of syntax – in Regulus the record row
ri = xi@πi is written as two separate rows ri = xi; ri = πi.
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3 Converting GF to Regulus

In this section we describe an algorithm for convert-
ing any context-free GF rule into a set of Regulus
rules. This conversion is done in three steps:

1. Tables and table selections are removed from
the GF term, resulting in several reduced terms
and sets of constraints.

2. The results are massaged into Regulus terms
for the left-hand side and the right-hand side.

3. Finally, GF abstract syntax is used to create the
final Regulus rules.

In the final step, the abstract syntax is added as a se-
mantic value in the Regulus rules. This makes it pos-
sible to get back the GF abstract syntax tree, when
using Regulus (or Nuance) for parsing the grammar.

Example As a running example we will use a stan-
dard English GF rule for combining transitive verbs
with noun phrases:

vp : TV → NP → VP

= {s = [n ⇒ $1.s!n ++ $2.s]}

The idea is that a verb phrase has a parametrical
number (n), which it inherits from the verb. When
the verb phrase is used in a sentence, the number
will depend on the inherent number of the subject.

3.1 Converting tables to unification-based
records

The main difference between GF and Regulus is that
the former has tables and the latter has unification.
The problem when converting from GF to Regulus
is therefore how to get rid of the tables and selec-
tions. We present an algorithm for removing tables
and selections, by replacing them with logical vari-
ables and equality constraints.

The basic idea is to translate each row pi ⇒ ti
in a table into a record {p = pi;v = ti}. The
variables in ti which are bound by pi become log-
ical variables. Thus the original table gives rise to n
different records (if n is the number of table rows),
which in the end becomes n different Regulus terms.

A table selection t!t′ then has to be translated into
the value t.v of the table, and a constraint is added
that the selection term t′ and the pattern t.p of the
table should be unified.

Step 1: Removing tables and selections

We define a nondeterministic reduction operation
=⇒ . The meaning of t =⇒ v/Γ is that the term t ∈
T is converted to the reduced term v ∈ V together
with the set of constraints Γ ⊆ VPar × VPar. Each
constraint in Γ is of the form vp

.= v′
p, where vp and

v′
p are reduced parameter terms.

• Each row pi ⇒ ti in a table is reduced to a
record containing the pattern pi and the reduced
value vi:

ti =⇒ vi/Γi

[. . . ; pi ⇒ ti; . . .] =⇒ {p = pi;v = vi}/Γi

Note that this rule is nondeterministic – the ta-
ble is reduced to n different terms, where n is
the number of table rows.

• A table selection t!t′ is reduced to the value v.v,
with the added constraint that the pattern v.p
and the selection term v′ should unify:

t =⇒ v0/Γ t′ =⇒ v′
p/Γ′

t!t′ =⇒ v / ΓΓ′(vp
.= v′

p)
vp = prj(v0,p)
v = prj(v0,v)

Note that since t′ denotes a parameter, it will be
reduced to a parameter term, v′

p ∈ VPar.

• A record projection t.r is reduced to a projec-
tion v.r:

t =⇒ v/Γ
t.r =⇒ vr/Γ

vr = prj(v, r)

• All other term constructors are reduced com-
positionally, i.e., by reducing the internal terms
recursively.

The function prj(v, r) calculates the projection of
r on the simple term v. Since there are only two
reduced term constructors that can correspond to a
record, there are only two cases in the definition:

prj({. . . ; r = vr; . . .}, r) = vr

prj($n.ρ , r) = $n.ρr
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Example The original linearization term of the ex-
ample contains one table and one selection. The
selection $1.s!n is reduced to $1.sv with the added
constraint $1.sp .= n. And since there is only one
row in the table, the example term is reduced to one
single term vvp with the constraints Γvp:

vvp = {s = {p = n;v = $1.sv ++ $2.s}}
Γvp = $1.sp .= n

3.2 Building Regulus terms
The reduced term and the constraints from the first
step do not constitute a Regulus grammar rule, but
they have to be massaged into the correct form. This
is done in four small steps below.

Step 2a: Flattening the reduced term
After the conversion t =⇒ v/Γ, we have a re-

duced term v ∈ V and a set of constraints Γ ∈
VPar × VPar. Now we convert v into a set of con-
straints and add to the constraint store Γ:

• For each subterm v′ in v denoting a parameter,
add $0.ρ

.= v′ to Γ. The path ρ is the sequence
of labels for getting from v to v′, i.e., v′ = v.ρ.

We also create a set of “proto rules” Σ ∈ R∗×VStr:

• For each subterm v′ in v denoting a string, add
ρ → v′ to Σ. The path ρ is the same as above.

Example There is one subterm in vvp denoting a
parameter, so we add $0.sp .= n to Γvp. There is
one subterm in vvp that denotes a string, so we let
Σvp contain sv → $1.sv ++ $2.s.

Step 2b: Simplifying the constraints
Now we have two constraint stores, Σ and Γ, of

which the latter can be partially evaluated into a sim-
pler form.

1. For each constraint of the form $n1.ρ1
.=

$n2.ρ2, we replace it with two new constraints
$ni.ρi

.= x, where x is a fresh variable.3

2. For each constraint of the form x1@π1
.=

x2@π2 , there are two possibilities:
3Recall that x is just a shorthand for x@π, where π is the set

of all parameters.

• If π1 and π2 are disjoint, then the con-
straint is contradictive and we remove v,
Γ and Σ from the list of results.

• Otherwise, we replace each occurrence of
xi@πi in v and in Γ, by x@π, where x is a
fresh variable and π = π1 ∩ π2.

Example We do not have to do anything to Γvp,
since all constraints already are in simplified form.

Step 2c: Building Regulus terms

Now Γ only contains constraints of the form
$n.ρ

.= p where p = x@π. We transform these
constraints into the Regulus records T0, T1, . . . , Tδ

in the following way:

• For each constraint $n.ρ
.= p, add the record

row {ρ = p} to Tn.

Note that the labels in the Regulus terms are se-
quences of GF labels.

Example The constraints in Γvp now give rise to
the Regulus terms:

Tvp,0 = {sp = n}
Tvp,1 = {sp = n}
Tvp,2 = {}

3.3 Building a Regulus grammar

To be able to create Regulus grammar rules from the
Regulus terms T0 . . . Tδ, we need to look at the ab-
stract syntax in the GF grammar. In this section we
will assume that the typing of the linearization in
question is f : A1 → · · · → Aδ → A.

Regulus (and Nuance GSL) permits the use of ar-
bitrary nested lists in the special sem feature. We
will use the nested list for representing a GF abstract
syntax tree which then will be returned directly by
Nuance after the parsing has succeeded. This is im-
portant since the arguments to the function can be
permuted in the linearization, which then means that
the arguments in the Regulus rule are permuted as
well.
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Step 3a: Adding GF abstract syntax to the
Regulus terms

The abstract syntax tree of the original rule is put
as a sem value in the left-hand side term T0:

• Add the row {sem=[f x1 . . . xδ]} to T0.

• For each 1 ≤ i ≤ δ, add {sem=xi} to Ti.

Note that the x1 . . . xδ should be fresh variables, not
used elsewhere in the terms.

Example After adding semantics, the example
terms become:

Tvp,0 = {sp = n; sem = [vp x y]}
Tvp,1 = {sp = n; sem = x}
Tvp,2 = {sem = y}

Step 3b: Building Regulus grammar rules
Finally, we can transform the proto rules in Σ into

Regulus grammar rules:

• For each proto rule ρ0 → v1 ++ · · · ++ vm in
Σ, create a new Regulus rule:

A ρ0 : T0 → v◦
1 . . . v◦

m

where the terms in the right-hand side are cal-
culated as follows:

(”s”)◦ = ”s”
($n.ρ)◦ = An ρ : Tn

Example From the single proto rule in Σvp we cre-
ate the Regulus rule:

VPsv : Tvp,0 → TVsv : Tvp,1 NPs : Tvp,2

where the terms Tvp,i are described above.

4 Discussion

We have presented an algorithm for converting
GF grammars with a context-free backbone into
unification-based Regulus grammars. The algorithm
is simple and straightforward, which is an indication
that the formalisms are more similar than one might
have guessed beforehand.

4.1 Equivalence of the grammars

The presented algorithm does not necessarily yield
an equivalent grammar. This is a consequence of the
fact that context-free GF is equivalent to Multiple
CFG, and that Multiple CFG is much more expres-
sive than context-free grammars.

However, if the original grammar does not make
use of multiple constituents, the conversion is equiv-
alent. Note that the grammar might very well con-
tain multiple constituents, but if there is no right-
hand side that refers to both constituents simultane-
ously the equivalence is still preserved.

4.2 Complexity issues

As mentioned earlier, each GF function might give
rise to several Regulus rules, so in one sense the re-
sulting grammar is bigger than the original. How-
ever, the actual size in terms of memory usage does
not differ (except maybe linear because of differ-
ences in syntax).

4.2.1 The number of rules
The number of Regulus rules for one single GF

linearization term is equal to:

|Σ|
∏
φ

|φ|

where |Σ| is the number of discontinuous con-
stituents, and φ ranges over all tables in the lin-
earization term. This is easy to see, since it is
only tables that are reduced nondeterministically,
and each proto rule in Σ gives rise to one Regulus
rule.

4.2.2 The size of the grammar
The total size of the final grammar can be larger

than the original GF grammar. This is because the
Regulus grammar will contain lots of copies of the
same structures, e.g., everything outside of a table
has to be duplicated in for each table row. The the-
oretical limit is the same as above – the number of
constituents, times the the total product of all table
rows – but in practice the grammar explosion is not
that extreme.

Since the increase in size is due to copying, the
Regulus grammar can be compacted by the use of
macros (Rayner et al., 2006, section 4.5). This could
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probably be implemented in the algorithm directly,
but we have not yet investigated this idea.

4.2.3 Time complexity
The time complexity of the algorithm is approxi-

mately equivalent to the size of the resulting Regu-
lus grammar. The first step (in section 3.1), can be
implemented as a single pass through the term and
is therefore linear in the size of the resulting terms.
The post-processing steps (in section 3.2) are also
linear in the size of the terms and constraints. Fi-
nally, the steps for building grammar rules does not
depend on the term size at all. Thus, the time com-
plexity is linear in the size of the final Regulus gram-
mar.

4.3 Using Regulus as a compiler for speech
recognition grammars

By presenting an algorithm for converting GF gram-
mars into Regulus, it is possible to further use the
Regulus-to-Nuance compiler for getting an opti-
mized speech recognition grammar. The advantage
to compiling Nuance grammars directly from GF is
clear: the Regulus project has developed and imple-
mented several optimizations (Rayner et al., 2006,
chapter 8), which would have to be reimplemented
in a direct GF-to-Nuance compiler.

As previously mentioned in section 1.1.4, there is
a speech recognition grammar compiler already im-
plemented in GF (Bringert, 2007), which uses the
equivalence of GF and Multiple CFG. An interest-
ing future investigation would be to compare the two
approaches on realistic grammars.

References
Björn Bringert. 2007. Speech recognition grammar com-

pilation in Grammatical Framework. Submitted to
SpeechGram 2007.

Philippe de Groote. 2001. Towards abstract categorial
grammars. In 39th Meeting of the Association for
Computational Linguistics, Toulouse, France.

Peter Ljunglöf. 2004. Expressivity and Complexity of
the Grammatical Framework. Ph.D. thesis, Göteborg
University and Chalmers University of Technology,
November.

Per Martin-Löf. 1984. Intuitionistic Type Theory. Bib-
liopolis, Napoli.

Reinhard Muskens. 2003. Language, lambdas, and logic.
In Geert-Jan Kruijff and Richard Oehrle, editors, Reo-
surce Sensitivity in Binding and Anaphora, pages 23–
54. Kluwer.

Nuance Communications, Inc., 2003. Nuance Speech
Recognition System 8.5: Grammar Developer’s
Guide, December.

Carl Pollard. 1984. Generalised Phrase Structure Gram-
mars, Head Grammars and Natural Language. Ph.D.
thesis, Stanford University.

Carl Pollard. 2004. Higher-order categorial grammar. In
Michel Moortgat, editor, International Conference on
Categorial Grammars, Montpellier, France.

Aarne Ranta, Ali El-Dada, and Janna Khegai,
2006. The GF Resource Grammar Library.
Can be downloaded from the GF homepage
http://www.cs.chalmers.se/~aarne/GF

Aarne Ranta. 2004. Grammatical Framework, a type-
theoretical grammar formalism. Journal of Functional
Programming, 14(2):145–189.

Manny Rayner, Dave Carter, Pierrette Bouillon, Vassilis
Digalakis, and Mats Wirén. 2000. The Spoken Lan-
guage Translator. Cambridge University Press.

Manny Rayner, Beth Ann Hockey, and Pierrette Bouil-
lon. 2006. Putting Linguistics into Speech Recogni-
tion: The Regulus Grammar Compiler. CSLI Publica-
tions.

Hiroyuki Seki, Takashi Matsumara, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88:191–229.

16



Proceedings of SPEECHGRAM 2007, pages 17–24,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Dialogue System Localization with the GF Resource Grammar Library

Nadine Perera
Department of Man Machine Interaction
BMW Group Research and Technology

Munich, Germany
nadine.perera@bmw.de

Aarne Ranta
Department of Computing Science
Chalmers University of Technology
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Abstract

We present two experiments in the localiza-
tion of spoken dialogue systems. The do-
main of the dialogue system is an MP3 ap-
plication for automobiles. In the first expe-
riment, a grammar in Nuance GSL format
was rewritten in Grammatical Framework
(GF). Within GF, the grammar was extended
from two to six languages, giving a baseline
for semantically complete grammars. In the
second experiment, the German version of
this baseline GF grammar was extended with
the goal to restore the coverage of the origi-
nal Nuance grammar.

1 Credits

Part of this work was done under the TALK1 re-
search project, funded by EU FP6 [ref. 507802].
The Nuance grammar was written by Jochen
Steigner, Peter Poller, and Rosemary Stegmann. The
first GF experiment was made together with Björn
Bringert. The Spanish grammar was written to-
gether with Libertad Tansini.

2 Introduction

Spoken dialogue systems for cars emerged in the late
1990s with the appearance of advanced information
and communication systems. Driving a car is a clas-
sical visual manual task, as the driver should keep
his hands on the steering wheel and his glance on the
surrounding traffic and the street. Speech interaction
is very well-suited for secondary-level tasks such as
handling information and entertainment systems.

The current spoken dialogue system in
the automobiles of the BMW Group is a

1Tools for Ambient Linguistic Knowledge, www.talk-
project.org

Command&Control-based system (Hagen et
al., 2004). For the interaction with the entertain-
ment and information functions of the iDrive system
(Haller, 2003), the paradigm pursued is You-Can-
Speak-What-You-See, i.e. every menu item or
option that is shown on screen can be spoken.
The localization of that spoken dialogue system
for currently eight languages is done manually by
translators, without advanced automation methods
or special tools. The Command&Control-based
approach has its disadvantages, as the system can
only handle a fix set of commands. This makes
it difficult for system novices to interact with the
dialogue system because they may not know the
commands they need to say to reach their goal.

Advanced conversational dialogue systems that
allow a more flexible input and let the user decide
about the form and the amount of the communi-
cated information are being investigated. In order
to implement such a flexible spoken dialogue sys-
tem in the automobiles of the BMW Group, not only
one dialogue system, but at least eight would have
to be built - one for each language. The different,
localized versions of the system would have to be
designed in a way that allows for the generic ad-
dition of use cases, i.e. changes and additions to
the German grammar (which is viewed as the ini-
tial source grammar) must be ported to the localized
versions consistently and without the need to change
the whole localized grammar.

2.1 Grammar Writing

Linguistic experts who write grammars for compa-
nies whose focus is not in language technology usu-
ally have to possess profound technical competence
and programming skills in addition to linguistic ex-
pertise. For those grammar engineers who are com-
puter scientists or engineers with little university ed-
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ucation in linguistics, a programming paradigm en-
abling them to avoid dealing with the morphologi-
cal inflection paradigms of several languages would
certainly be welcome. Writing consistent grammars
for multiple languages is quite challenging: Writing
one grammar requires the grammar engineer to be
at least a fluent speaker of the language the gram-
mar covers. If he also knows another language quite
well, he may be able to localize a grammar from that
language to his native language. This implies that
for every language which requires a localized gram-
mar, a person who knows the source language and is
a native speaker of the target language is needed. At
the moment, there is no commercial tool available
that helps grammar engineers with the localization
of spoken dialogue systems.

2.2 The Nuance SAMMIE grammar

Within the TALK project, an in-car spoken dialogue
system for the MP3 domain was created and inte-
grated into a BMW 3-Series Coupe (Becker et al.,
2007). For the speech understanding component,
a German corpus named SAMMIE (SAarbrücken
Multi-Modal Interface Experiment) was collected
by Saarland University and DFKI2 using a Wizard
of Oz experiment.

A grammar in Nuance GSL format was written to
specify well-formed sentences complying with the
corpus data. The GSL formalism is a variant of
BNF (context-free grammar), with Extended BNF
additions such as disjunctions and Kleene closures.
The grammar was structured according to syntacti-
cal motivations and interaction type coherence. To
minimize overgeneration, nonterminals were instan-
tiated with usual grammatical features. For instance,
genitive definite forms of artist expressions were
generated by the disjunction

NP_ARTIST_CASE_GEN[
(DET_NUM_SING_CASE_GEN_GEND_NEUT
N_ARTIST_NUM_SING_CASE_GEN_GEND_MASC)

(DET_NUM_SING_CASE_GEN_GEND_FEM
N_ARTIST_NUM_SING_CASE_DATIV_GEND_FEM)]

For a more detailed description of the grammar, see
(Becker et al., 2007).

The German Sammie grammar in Nuance for-
mat (NuanceGer) was checked and extended contin-
uously while the dialogue system was built. User

2German Research Center for Artificial Intelligence

evaluation results were analyzed and missing utter-
ances were added to the grammar. In addition to
that, an English version of the grammar, called ”Nu-
anceEng” here, was built by a near-native speaker of
English. This grammar is the starting point for our
experiments. Figure 1 shows a graph of the gram-
mar development for the first experiment, Figure 2
for the second experiment.

2.3 Outline of the paper
Section 3 gives an introduction to GF and its re-
source grammar library, by working through the im-
plementation of a fragment of the Sammie gram-
mar. Section 4 describes the first experiment, in
which a baseline Sammie grammar was ported to six
languages. Section 5 describes the second experi-
ment, in which the German grammar was extended
towards the coverage of the original grammar. Sec-
tion 6 concludes with statistics on the experiments,
related work, and some general lessons learnt.

3 Multilingual grammars in GF

GF (Grammatical Framework, (Ranta, 2004)) is a
grammar formalism based on ideas from type the-
ory and functional programming. Originally de-
signed for written technical documents, GF focuses
on language-independent semantic representations
and their multilingual renderings. These features
have proved useful in dialogue systems as well, and
a support for dialogue applications is completed by
translators from GF to various speech recognition
formats, such as Nuance (Bringert, 2007).

A grammar, in the sense of GF, has an abstract
syntax and a set of concrete syntaxes. The abstract
syntax is a semantic description of an application
domain. Each concrete syntax is a mapping of the
semantics into a language, typically a natural lan-
guage. To give an example from the GF implemen-
tation of the Sammie grammar, the abstract syntax
has objects such as

identify ( currently_playing_object )

The six concrete syntaxes map the abstract object
into the strings

vad heter den här sången
wie heißt dieses lied
comment s’appelle cette chanson
como se llama esta canción
mikä on tämän laulun nimi
what is the name of this song
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of Swedish, German, French, Spanish, Finnish, and
English, respectively.

The abstract syntax is specified by a set of cate-
gories (cat) and constructor functions (fun), in
the same way as an inductive family of datatypes in
a functional programming language. Here is a frag-
ment of the Sammie abstract syntax, with five cate-
gories and five constructor functions:
cat

Action ; ToIdentify ; Object ;
Playlist ; Artist ;

fun
create : Action ;
identify : ToIdentify -> Action ;
play : Object -> Action ;
remove : Playlist -> Object -> Action ;
currently_playing_object : ToIdentify ;

The concrete syntax is specified by defining a lin-
earization type (lincat) for each category, as
well as a linearization function (lin) for each con-
structor. A baseline concrete syntax can be obtained
by just assigning the type of strings to each category,
and defining:
lincat

Action, ToIdentify,
Object, Playlist, Artist = Str ;

lin
create = ["create a new playlist"] ;
identify x = x ;
play = "play" ++ x :
remove x y = "remove"++ y ++"from"++ x ;
currently_playing_object =

["what is the name of this song"] ;

A concrete syntax like this is essentially a system
of templates with chunks of canned text. While it
is easy to produce for small applications, it does
not scale up well, especially in languages that have
rich morphology and require agreement in syntactic
structures. Thus GF also supports user-defined pa-
rameter types, which can be used to control inflec-
tion and word order in linearization. For instance,
the German version of the above grammar needs a
type of Case, and the linearization of Object and
Playlist depends on case:
lincat

Object, Playlist = Case => Str ;
lin

remove x y = "nimm" ++ y ! Acc ++
"aus" ++ x ! Dat ++ "heraus"

3.1 The GF resource grammar library
Having to think about parameters requires linguis-
tic knowledge from the grammar writer. Moreover,

accurate descriptions tend to become long and com-
plex. The GF solution to this problem is a resource
grammar library. Like any software library, this
library can be used via a high-level API (an abstract
syntax for linguistic structures) that hides the im-
plementation details (the concrete syntaxes for each
language). The GF resource grammar library is cur-
rently available for 10–15 languages (10 languages
support the full API, 5 just parts of it). Its first ap-
plications were in the domain of written technical
language (Burke and Johannisson, 2005, Caprotti et
al., 2006), but its use was extended to spoken dia-
logue systems in the TALK project (Johansson 2006,
Ljunglöf & al. 2006).

Let us rewrite the Sammie grammar fragment by
using the library,
lincat

Action = Phr ; -- phrase
ToIdentify = QS ; -- question
Object, Playlist,

Artist = NP ; -- noun phrase
lin

create = imperative (mkVP create_V2
(indef (mkCN new_A playlist_N))) ;

identify x = mkPhr x ;
play x = imperative (mkVP play_V2 x) ;
remove x y =

imperative (mkVP remove_V3 y x);
currently_playing_object =

mkQS whatSg_IP (mkNP name_N2
(mkNP this_Quant song_N)) ;

This grammar uses the language-independent
resource grammar API with categories such
as Phr, QS, NP and constructors such as
mkVP, indef, this_Quant. The ones
provided by the resource grammar are syntactic
combination rules and structural words, which are
independent of the domain of application.

In addition to the resource API ele-
ments, a concrete syntax also needs a lex-
icon of domain-specific words, such as
new_A, play_V2, remove_V3 above.
The resource library provides for each language
a set of operations for constructing lexical entries
with all morphosyntactic information they need.
Thus the three mentioned objects are defined as
follows in English:

new_A = regA "new" ;
play_V2 = dirV2 (regV "play") ;
remove_V3 = dirV3

(regV "remove") from_Prep ;

Here are the German definitions:
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new_A = regA "neu" ;
play_V2 = dirV2 (regV "spielen") ;
remove_V3 = dirV3

(prefixV "heraus" nehmen_V) aus_Prep ;

The lexicon definitions are gathered into a separate
interface module, which the concrete syntax mod-
ule depends on. All that is needed to add a new lan-
guage to the system is a new implementation of the
interface module, with lexical entries belonging to
that language.

3.2 Beyond baseline grammars
A baseline multilingual grammar system can be
obtained by defining the syntax in a language-
independent way using the resource API, and only
letting the lexical entries vary from one language
to another. Such a system is guaranteed to be
grammatically correct, as regards to word order
and agreement. But the different languages of-
ten come out unidiomatic. For instance, the
above rule for currently_playing_object
produces the translations

vad är namnet på den här sången
was ist der name von diesem lied
quel est le nom de cette chanson
mikä on tämän laulun nimi
what is the name of this song

These translations are OK for Finnish and English,
but very clumsy for the rest of the languages, which
have special verbs for expressing the name of a sub-
ject (the proper forms were shown above; the clos-
est corresponding English idiom is what is this song
called).

Fortunately, GF is a functional programming lan-
guage that permits functions, instead of just words,
to appear in an interface. An improved way to im-
plement the rule above is
lin currently_playing_object =

mkQS (what_name
(mkNP this_Quant song_N))

where the function what_name has different im-
plementations in different languages: here, for in-
stance, German and English:

what_name x =
mkQCl how_IAdv (pred heißen_V x)

what_name x =
mkQCl whatSg_IP (mkNP (regN2 "name") x)

A similar refinement is needed in the GF Sam-
mie grammar to express imperatives. A baseline,
language-independent definition would be

imperative vp = UttImpSg vp

which produces the second-person singular impera-
tive form of a verb phrase. In German, as shown by
the corpus collected for Sammie, both the familiar
singular and the polite imperative are appropriate,
and should be accepted in user input. GF has the
variants construct to express such free variation:

imperative vp = variants {
UttImpSg vp ;
UttImpPol vp
}

When extending the different languages of the Sam-
mie grammar in GF, above the baseline, adding vari-
ants was the prominent method used.

3.3 Using GF in dialogue systems
In the TALK project, GF was used for building vari-
ous components of dialogue systems at three differ-
ent sites. The most relevant features of GF in this
work were the following:

• a common abstract syntax guarantees that the
same semantics is implemented for all lan-
guages

• the resource grammar library makes it easier to
port systems to new languages

• the GF grammar compiler supports the produc-
tion of many other formats from the GF source

The first two features have been covered in the pre-
ceding sections. The third feature, the grammar
compiler, is what in practice can integrate GF in the
work flow of different projects. Language models
for speech recognition are the most crucial formats
in dialogue systems. GF supports several such for-
mats, including the GSL format used in the Nuance
system, which in turn is used in the Sammie dia-
logue system. Porting the Sammie grammar to new
languages with GF would thus automatically pro-
duce the required speech recognition grammars.

4 The first experiment

The starting point of the work was Nuance-Sammie,
a pair of hand-written Nuance grammars used in the
Sammie system, one for English (NuanceEng) and
one for German (NuanceGer). The goal was to pro-
duce GF-Sammie, a GF grammar with the same cov-
erage as Nuance-Sammie, but for more languages.
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This was to be produced by using the resource gram-
mar library, and share as much code as possible be-
tween the languages.

The experiment was aimed to test the hypotheses
that a grammar for basic communication is easy to
produce using the library; adding a new language
should be a matter of a few hours.

Figure 1: First experiment: The baseline grammar
development. The modules on the left are hand-
written Nuance grammars used in the Sammie sys-
tem. The module in the middle is a GF abstract
syntax defining the semantics implicit in the Nuance
grammars. The modules on the right are GF con-
crete syntaxes implementing the semantics in a min-
imal but complete way.

4.1 The phases of the work

Before the baseline grammar, an abstract syntax
must of course be produced. It was written by Björn
Bringert on the basis of NuanceEng, which was
richly commented with information indicating what
actions should be covered by the grammar. The ab-
stract syntax was produced in five hours, which in-
cludes the work needed to write a string-based En-
glish concrete syntax to test the abstract syntax.

To prepare for a multilingual localization, the
string-based English concrete syntax was first glob-
alized by rewriting it in terms of the recource gram-
mar API and moving lexical items and some other
obviously English-dependent constructs to an inter-
face. This work took two hours.

After the globalization, the grammar was local-
ized by writing new instances of the interface. This
was done for Swedish, Finnish, French, and Ger-
man. The work took half an hour for each language.

Did we now have a satisfactory baseline gram-
mar for five languages? This was tested by gen-
erating sentences in all languages, and led to some

fine-tuning to get satisfactory (grammatical and id-
iomatic) results. But now we did have a grammar
that permitted user input in five languages, with the
same semantics as NuanceEng, but with more lim-
ited variation in expressions. Spanish was added
later to the system. Summary of the time consump-
tion for this work is as follows:

• abstract syntax and string-based English: 5h

• globalized English by use of resource API: 2h

• five new languages: 5h

A baseline grammar, as we have defined it, covers
the abstract syntax with a minimal, grammatically
correct and stylistically acceptable concrete syntax.
Such a grammar can be used for communication by
users who are willing to learn to speak in a certain
way. Notice that this can still be richer than a Com-
mand&Control system, because the dialogue man-
ager is based on the language-independent abstract
syntax and works quite as well with a minimal con-
crete syntax.

The next phase was to grow the coverage of one
of the baseline grammars, SammieGer Baseline, to
match the corpus defined by NuanceGer. This work
was expected to take a few days, as carried out by a
non-linguist programmer who first had to learn GF.

5 The second experiment

As expected, the SammieGer Baseline grammar
covered less user utterances than the NuanceGer
grammar. The purpose of our experiment was to find
out how much time and effort a GF-novice grammar
engineer needed to extend the SammieGer Baseline
grammar to match the coverage of the NuanceGer
grammar. The top level grammars involved can be
seen in Figure 2.

Figure 2: Second experiment: The SammieGer
Baseline was extended to SammieGer Extended, to
match the coverage of the original NuanceGer.
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5.1 Experimental plan

For the extension of the SammieGer Baseline gram-
mar, we were in the fortunate position of already
having a grammar at hand that defined the termi-
nal symbols and the grammar rules which the Sam-
mieGer Extended grammar would have to include.
We planned the extension experiment in the follow-
ing way: Comparing the coverage of SammieGer
with the original NuanceGer grammar by generating
sentences from the Nuance grammar and checking
if they are covered by the GF grammar. If a gener-
ated sentence is grammatically correct but contains
words that are missing in the lexicon, the GF lexicon
has to be extended. If the syntactic structure is not
covered, the concrete syntax has to be extended, and
if the semantic structure of the sentence is missing
in the abstract grammar, it has to be added.

5.2 Adding words to the lexicon

Before generating sentences from the NuanceGer
grammar, we started with a simple word count. The
NuanceGer grammar contained 463 single words,
counting all inflected forms of the same stem indi-
vidually. The SammieGer Baseline grammar con-
tained 100 words, so it was clear that our first action
had to be the extension of the SammieGer lexicon.
Wherever this was possible using the variants con-
struct (cf. Section 3.2), i.e. when adding a word that
is a synonym of a word which was already modeled
in the SammieGer grammar, this was most comfort-
able. 46 words could be added in this fashion, this
time counting morphological infinitive forms that
added more than one inflected form to the grammar.
In fact, the 46 infinitive forms extended the word
count to 215, so that the adding of 46 infinitives ex-
tended the grammar by 115 inflected word forms.

Some of these words had to be added because
the starting point for the SammieGer Baseline gram-
mar was in fact an English (NuanceEng) grammar.
When translating from German to English, some
words got lost, for instance, the words ”Sänger” and
”Sängerin” united to the word ”singer” in English,
as there is no gender distinction in English. The
word ”Sängerin” is missing in the SammieGer Base-
line grammar, as ”Sänger” only becomes translated
to ”singer”.

Another source of words are verbs with their re-

spective removable prefixes. German is rich in pre-
fixes that can be combined with verbs to gain new
meanings, for instance ”an-gehen”, ”auf-gehen”,
”aus-gehen” [...], which are all related verbs shar-
ing word stem and inflection paradigms, but each
mean something else. These prefixes can be severed
from the verb in certain utterances, and fortunately,
GF accounts for that. By extending play V (cmp.
above) to:
play_V2 = variants {

dirV2 (regV "spielen") ;
dirV2 (prefixV "ab" (regV "spielen"))
} ;

the extended grammar is able to parse an utterance
like ”spiele einen Titel von U2 ab” (”play a title by
U2”), as well as an utterance without the ”ab” in the
end. The linearization rules in GF place the severed
prefix in the syntactically correct position.

There were also words missing from the Sam-
mieGer Baseline grammar that could not be included
with a simple variants construct. They were added to
the lexicon under new identifiers and integrated into
the concrete grammar by writing new linearization
rules. In order to accomodate some of the missing
words, new abstract syntax rules had to be defined.

5.3 Adding rules to the concrete grammar

One example of additions to the concrete syntax are
the rules for interrogative and infinitive forms. Ut-
terances follow certain patterns which are also re-
flected in the NuanceGer grammar (see Table 1 for
an overview). In the Baseline SammieGer, only
the imperative construct was modeled. The detour
we took in localizing the system over English ac-
counts for one missing utterance type: the infinitive
and the imperative type are identical in English, but
not in German. The interrogative forms are phrased
like questions, but contain an implicit but politely
expressed imperative. We managed to include the
other utterance types by adding four rules to the con-
crete SammieGer grammar and renaming rule iden-
tifiers in one referenced library grammar.

5.4 Adding rules to the abstract grammar

Some user intentions modeled in the NuanceGer
grammar were missing in the abstract SammieGer
Baseline grammar, for instance scrolling a list pre-
sented on the screen up or down. These additions

22



Table 1: Utterances Types. The types of user utterances for German and English. Note that the imperative
and the infitive forms in are the same in English, but not in German.

Type German Example English Example
Imperative Spiele Vertigo von U2. Play Vertigo by U2.
Interrogative Kannst du Vertigo von U2 spielen? Can you play Vertigo by U2?
Indicative Ich möchte Vertigo von U2 hören. I want to listen to Vertigo by U2.
Infinitive Vertigo von U2 spielen. Play Vertigo by U2.

took one day to accomplish. Summary of the time
needed for the grammar extension is as follows:

• Installing and learning GF: 4 days

• Adding words: 3 days

• Adding concrete syntax rules: 3 days

• Adding abstract syntax rules: 1 day

6 Results

In this section, we compare the SammieGer Base-
line/Extended and the NuanceGer grammar.

The goal set for the first experiment to build pro-
totypical grammars for six languages was fulfilled
quite successfully. However, the aim of the second
experiment to match the coverage of the NuanceGer
grammar with the SammieGer Extended grammar
was not reached as quickly as we had hoped. It
took a substantial time for the programmer to learn
GF well, and the the development cycle was slowed
down by fairly long compilation times. The resource
library was difficult to navigate and contained some
bugs that were fixed during the experiment, which
caused waiting time. Nevertheless, the SammieGer
Extended grammar’s coverage increased consider-
ably compared to SammieGer Baseline. Moreover,
most of the extensions made to the German gram-
mar can be ported to the other languages with very
little work, due to the common resource library API.

6.1 Statistics

The original German grammar NuanceGer was writ-
ten in approximately 18 days. In the GF experi-
ments, 12 hours were needed to create the six base-
line grammars from the NuanceEng original, and
about 7 days for the SammieGer Extended grammar
(not counting the time needed for installation and

learning to use GF). If we sum up the SammieGer
Baseline and the SammieGer Extended grammar
writing time, we end up with 8 days for the Sam-
mieGer combined. This is faster than the 18 days
spent on the original NuanceGer grammar, but we
had of course the advantage of already having Nu-
anceGer available: its authors had to start from
scratch and continuously add words and rules af-
ter user evaluations. Moreover, the full coverage
of NuanceGer was not reached, mostly because of
colloquial forms of speech that were not covered by
the resource library. Statistics of the coverage of the
three grammars (SammieGer Baseline, SammieGer
Extended, and NuanceGer) can be seen in Table 2.

6.2 Related work

The idea of generating speech recognition gram-
mars from higher-level formats was first imple-
mented in the Regulus system (Rayner et al., 2006).
The source format of Regulus is a unification-based
grammar formalism, and the target is GSL (the for-
mat used in Nuance); GF supports many other for-
mats as well, such as the SLF format used in HTK
(Young et al., 2005); see (Bringert, 2007). Regulus
also has a resource grammar library currently cover-
ing five languages.

GF was previously used for dialogue system lo-
calization in the TALK project, where seven lan-
guages were covered (Johansson, 2006, Ljunglöf et
al., 2006).

6.3 Conclusion

GF provides elegant solutions for many grammar
writing challenges. Based on the concept of one ab-
stract and many concrete grammars for different lan-
guages, GF is well-suited for localization tasks and
fast prototyping in multiple languages. One disad-
vantage of GF is that it is quite difficult to get a grasp
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Table 2: Statistics of SammieGer Baseline, SammieGer Extended, and the original Nuance.

Grammar Baseline Extended Original
top-level constructors 18 23 ∼23
syntactic categories 17 17 419
German - specific source code 4kB 18kB 200kB
German + generic source code 14kB 33kB 200kB
Nuance code 18kB 31kB 200kB
distinct words 100 325 463

of the framework quickly, compared to the concept
of a context free grammar format in BNF or EBNF
form which is easier to understand, for computer sci-
entists as well as for linguists. As GF is more of
a programming language than a grammar format, it
implements much more constructs than BNF, which
also makes it more powerful. That power can be
seen in the comparison of source code size between
NuanceGer and SammieGer Extended in Table 2.

The elegance of the many resource files that hide
the complexity leads to difficulties in error detection,
as there is a tree of resource grammars referencing
other grammars and to the novice programmer, it is
not always transparent where an error occurred. This
is of course a problem with all high-level program-
ming languages using libraries. A more intuitive
IDE and faster compilation times could improve the
system’s usability significantly.

Grammatically correct utterances can be modeled
nicely in the GF resource grammar library, which
also eliminated some of the grammatical errors
present in the original hand-coded Nuance grammar.
However, some spoken language oriented rules were
not covered by the library, and were implemented
by brute force by using strings in GF. In this expe-
riment, the resource grammar was taken as it was
(apart from bug fixes), and no new functions were
added to it.
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ter’s thesis, Göteborg University.
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P. Manchón, G. Pérez, and A. Ranta. 2006. Multi-
modal Grammar Library. TALK Talk and Look: Tools
for Ambient Linguistic Knowledge IST-507802 Deliv-
erable 1.2b

M. Rayner, P. Bouillon, B. A. Hockey, and N.
Chatzichrisafis. 2006. REGULUS: A Generic Mul-
tilingual Open Source Platform for Grammar-Based
Speech Applications. In Proceedings of LREC, 24-26
May 2006, Genoa, Italy.

S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw,
G. Moore, J. Odell., D. Ollason, D. Povey, V. Valtchev,
and P. Woodland. 2005. The HTK Book (for HTK Ver-
sion 3.3). Cambridge University Engineering Depart-
ment.

24



Proceedings of SPEECHGRAM 2007, pages 25–32,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Grammar-based context-specific statistical language modelling

Rebecca Jonson
Department of Linguistics, Göteborg University & GSLT
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Abstract

This paper shows how we can combine
the art of grammar writing with the power
of statistics by bootstrapping statistical lan-
guage models (SLMs) for Dialogue Systems
from grammars written using the Grammati-
cal Framework (GF) (Ranta, 2004). Further-
more, to take into account that the probabil-
ity of a user’s dialogue moves is not static
during a dialogue we show how the same
methodology can be used to generate dia-
logue move specific SLMs where certain di-
alogue moves are more probable than others.
These models can be used at different points
of a dialogue depending on contextual con-
straints. By using grammar generated SLMs
we can improve both recognition and un-
derstanding performance considerably over
using the original grammar. With dialogue
move specific SLMs we would be able to
get a further improvement if we had an op-
timal way of predicting the correct language
model.

1 Introduction

Speech recognition (ASR) for dialogue systems is
often caught in the trap of the sparse data problem
which excludes the possibility of using statistical
language models (SLMs). A common approach is
to write a grammar for the domain either as a speech
recognition grammar (SRG) or as an interpreta-
tion grammar which can be compiled into a speech
recognition grammar (SRG) using some grammar

development platform such as Gemini, Regulus or
GF (Rayner et al., 2000; Rayner et al., 2006; Ranta,
2004). The last option will assure that the linguis-
tic coverage of the ASR and interpretation are kept
in sync. ASR for commercial dialogue systems has
mainly focused on grammar-based approaches de-
spite the fact that SLMs seem to have a better over-
all performance (Knight et al., 2001; Bangalore and
Johnston, 2003). This probably depends on the time-
consuming work of collecting corpora for training
SLMs compared with the more rapid and straight-
forward development of SRGs. However, SLMs are
more robust for out-of-coverage input, perform bet-
ter in difficult conditions and seem to work better
for naive users as shown in (Knight et al., 2001).
SRGs on the other hand are limited in their coverage
depending on how well grammar writers succeed in
predicting what users may say.

An approach taken in both dialogue systems and
dictation applications is to write a grammar for the
particular domain and generate an artificial corpus
from the grammar to be used as training corpus for
SLMs (Galescu et al., 1998; Bangalore and John-
ston, 2003; Jonson, 2006). These grammar-based
models are not as accurate as the ones built from
real data as the estimates are artificial, lacking a re-
alistic distribution. However, as has been shown in
(Bangalore and Johnston, 2003; Jonson, 2006) these
grammar-based statistical models seem to have a
much more robust behaviour than their correspond-
ing grammars which leaves us with a much better
starting point in the first development stage in a di-
alogue system. It is a way of compromising be-
tween the ease of grammar writing and the robust-
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ness of SLMs. With this methodology we can use
the knowledge and intuition we have about the do-
main and include it in our first SLM and get a much
more robust behaviour than with a grammar. From
this starting point we can then collect more data
with our first prototype of the system to improve our
SLM. In this paper the advantage of this method is
shown further by evaluating a different domain in
greater detail.

Context-specific models have shown important
recognition performance gain (Baggia et al., 1997;
Riccardi et al., 1998; Xu and Rudnicky, 2000;
Lemon and Gruenstein, 2004) and have usually been
of two types: created as state-specific grammars or
built from collected data partitioned according to di-
alogue states. Both methods have their disadvan-
tages. In the first case, we constrain the user heavily
which makes them unsuitable for use in a more flex-
ible system such as an information-state based sys-
tem. This can be solved by having a back-off method
but leaves us with extra processing (Lemon and Gru-
enstein, 2004). In the latter case, we have an even
more severe sparse data problem than when creat-
ing a general SLM as we need enough data to get a
good distribution of data over dialogue states. In an
information-state based system where the user is not
restricted to only a few dialogue states this problem
gets even worse. In addition, why we chose to work
with grammar-based SLMs in the first place was be-
cause data is seldom available in the first stage of di-
alogue system development. This leaves us with the
requirement of an SLM that although being context-
specific does not constrain the user and which as-
sures a minimal coverage of expressions for a cer-
tain context. In (Gruenstein et al., 2005) this is ac-
complished by dynamically populating a class-based
SLMs with context-sensitive content words and ut-
terances. In this paper, we will show how we can
use the same methodology as in (Jonson, 2006) to
create context-specific SLMs from grammars based
on dialogue moves that match these criteria.

This study is organized as follows. First, we in-
troduce our methodology for developing SLMs from
grammars. Section 3 describes the data collection of
test utterances and how we have partitioned the data
into different test sets depending on grammar cov-
erage, types of users and types of dialogue moves.
In section 4, we show and discuss the results of the

different models for different test sets and finally we
draw some conclusions from the experiments.

2 Grammar-based SLMs

In (Jonson, 2006) we described how we could gen-
erate an SLM from an interpretation grammar writ-
ten in GF for an MP3 player application and get
a much more robust behaviour than by using the
original grammar for ASR. In this study, we ap-
proach a different domain using a GF grammar writ-
ten for a dialogue system application called Agen-
daTalk (Ericsson et al., 2006). It is one of several
applications that has been developed in the TALK
project (www.talk-project.org) and has been built
with the TrindiKit toolkit and the GoDiS dialogue
system (Larsson, 2002) as a GoDiS application. It
works as a voice interface to a graphical calendar.
Apart from evaluating a different domain in a more
extensive way to see if the tendency we found in
(Jonson, 2006) is consisting over domains, we have
driven the methodology a bit further to be able to
generate context-specific SLMs that favour certain
parts of the grammar, in our case certain dialogue
moves. We call these SLMs “dialogue move spe-
cific SLMs” (DMSLMs). Both types of models are
obtained by generating all possible utterances from
a GF grammar, building trigram SLMs from the
grammar-based corpus using the SRI language mod-
elling toolkit (Stolcke, 2002) and compiling them
into recognition packages. For comparison we have
also compiled the GF grammar directly into a Nu-
ance speech recognition grammar using the GF com-
piler.

2.1 Building a general SLM from
grammar-based corpora

The GF grammar written for the calendar domain
consists of 500 GF functions (rules) where 220 are
domain-specific and 280 inherited from a domain-
independent grammar. It exists in two equivalent
language versions that share the same GF functions:
English and Swedish. We have used GF’s facili-
ties to generate a corpus from the Swedish version
consisting of all possible meaningful utterances gen-
erated by the grammar to a certain depth of the
analysis trees in GF’s abstract syntax. The gram-
mar is written on the phrase level accepting spoken
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language utterances such as e.g. “add a booking
please”. The resulting corpus consists of 1.7 million
utterances and 19 million words with a vocabulary
of only 183 words. All utterances in the corpus oc-
cur exactly once. However, all grammar rules are
not expanded which leaves us with a class-tagged
corpus without e.g. all variants of date expressions
but with the class date. What we get in the end is
therefore a class-based SLM that we compile into a
recognition package together with a rule-based de-
scription of these classes. The SLM has 3 differ-
ent classes: time, date and event and the do-
main vocabulary when including all distinct words
in these classes make up almost 500 words.

Adding real speech corpora
In (Jonson, 2006) we saw that the use of real cor-

pora in interpolation with our artificial corpus was
only valuable as long as the real corpora approxi-
mated the language of use. The big news corpus we
had available did not give any significant improve-
ment but the transcribed Swedish speech corpus we
used was much more helpful. In this study we have
therefore once again used the GLSC corpus to im-
prove our word occurrence estimates by interpolat-
ing it with our grammar-based SLM. The Gothen-
burg Spoken Language (GSLC) corpus consists of
transcribed Swedish spoken language from different
social activities such as auctions, phone calls, meet-
ings, lectures and task-oriented dialogue (Allwood,
1999). The corpus is composed of about 1,300,000
words and is turn-based which gives it long utter-
ances including e.g. transcribed disfluencies. From
this corpus we have built an SLM which we have
interpolated with our grammar-based SLM keeping
our domain vocabulary. This means we are just con-
sidering those n-grams in the GSLC corpus which
match the domain vocabulary to hopefully get a
more realistic probability distribution for these. We
will call this model our Extended SLM.

2.2 Dialogue move specific SLMs

SLMs capture the lexical context statistics in a spe-
cific language use. However, the statistical distribu-
tion in a dialogue is not static but varies by boost-
ing and lowering probabilities for different words
and expressions depending on contextual appropri-
ateness. It is not only words and expressions that

vary their distribution but on a semantic level differ-
ent conceptual messages will be more or less prob-
able as a user utterance at different points of the
dialogue. This means that certain dialogue moves
will have a higher degree of expectancy at a specific
point of the dialogue. To capture this phenomenon,
we want to build models that raise the probability of
certain dialogue moves in certain contexts by giving
a higher probability for utterances expressing these
dialogue moves. These are models where utterances
corresponding to a certain dialogue move are more
salient (e.g. a model where all ways of answering
yes or no are more plausible than other utterances).
Such a model will account for the fact that the expec-
tation of dialogue moves a user will perform varies
in a dialogue and thereby their statistics. We can
obtain this by using a version of the grammar-based
corpus where the dialogue moves for each utterance
are generated which allows us to partition the corpus
in different ways based on dialogue moves. We can
then take out part of the corpus e.g. all utterances
corresponding to a certain dialogue move, create an
SLM and interpolate it with the general grammar-
based SLM. In this way, we get SLMs where certain
dialogue moves are more probable than others and
where minimally all possible expressions for these,
which the grammar describes, are covered. By in-
terpolating with the general SLM we put no hard
constraints on the expected dialogue move so the
user can in fact say anything at any point in the di-
alogue despite the raised expectancy for certain dia-
logue moves. We just boost the expected probability
of certain dialogue moves and their possible expres-
sions. By using contextual constraints in the infor-
mation state we could then predict which model to
use and switch SLMs on the fly so that we obtain a
recognizer that takes account of expected user input.

2.2.1 Partitioning the training data by dialogue
moves

In GoDiS, dialogue moves are activity related and
exist in seven different types: request moves,
answer moves, ask moves (i.e. questions), yes
and no ( yn) answers, greet moves, quit moves
and feedback and sequencing moves which are
called ICM:s (Larsson, 2002). We have chosen to
focus on the first four of these dialogue move types
to build up our DMSLMs. We have used GF to gen-
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erate a corpus with all possible dialogue moves and
their combinations with their corresponding expres-
sions. From this corpus we have extracted all utter-
ances that can be interpreted as an answer move
or a sequence of answer moves, all expressions for
specification of a request (in GoDiS what type of
action to perform e.g. deleting a booking), all ways
of expressing questions in our grammars (i.e. ask
moves) and all possible yn answers. This leaves us
with four new sets of training data.

The decision to partition the data in this way was
based on the distribution of dialogue moves in our
data where the moves we focus on are the most com-
mon ones and the most critical for achievement of
the dialogue tasks. As these dialogue moves are ab-
stract and domain-independent it would be possible
to use a domain-independent prediction of these di-
alogue moves and thereby the language models al-
though the structure of the SLMs would be different
in different domains.

2.2.2 Building dialogue move specific SLMs
For each set of dialogue move specific training

data we created an SLM that only captures ways of
expressing a specific dialogue move. However, we
are looking for less constrained models which just
alter the probability of certain dialogue moves. By
interpolating the SLMs built on dialogue move spe-
cific corpora with the general grammar-based SLM
we achieve models with contextual probabilities but
that generalize to avoid constraining the user input.

The interpolation of these models was carried out
with the SRILM toolkit based on equation 1. The
optimal lambda weight was estimated to 0.85 for all
models with the SRILM toolkit using held-out data.

Pdmslm(W ) = λPmovespec(W ) + (1 − λ)Pgeneral(W ) (1)

We ended up with four new SLMs, so called DM-
SLMs, in which either the probability of answer,
ask, request or yn moves were boosted.

3 Test Data

The collection of test data was carried out by hav-
ing people interacting with the AgendaTalk system
using the grammar-based SLM. The test group in-
cluded both naive users with no experience of the
system whatsoever and users that had previous ex-
perience with the system to varying extents. We

have classified the latter group as expert users al-
though the expertise varies considerably. All users
were given a printed copy of a calendar month with
scheduled bookings and some question marks and
were assigned the task of altering the voice-based
calendar so that the graphical calendar would look
the same as the printed copy except for the question
marks which they were to find values for by query-
ing the system. This would mean that they would
have to add, delete and alter bookings as well as find
out information about their schedule e.g. the time of
an event. The tasks could be carried out in any order
and there were many different ways to complete the
schedule.

The data collection gave us a recording test set
of 1000 recorded utterances from 15 persons (all na-
tive, 8 female, 7 male). This unrestricted test set was
used to compare recognition performance between
the different models under consideration. We also
partitioned the test set in various ways to explore
different features. The test set was parsed to get all
in-coverage utterances that the original GF grammar
covers to create an in-coverage test set from these.
In addition, we partitioned the data by users with a
test set with the naive user utterances and another
test set from the expert users. In this way we could
explore how our models performed under different
conditions. Different dialogue system applications
will have a different distribution of users. Some
systems will always have a large number of naive
or less experienced users who will use more out-
of-coverage utterances and more out-of-vocabulary
(OOV) words whereas users of other applications
will have the opportunity to obtain considerable ex-
perience which will allow them to adapt to the sys-
tem, in particular to its grammar and vocabulary.

The recordings for the unrestricted test set have an
OOV rate of 6% when using our domain vocabulary.
The naive test set makes up 529 of these recordings
with an OOV rate of 8% whereas the expert test set
of 471 recordings has a lower OOV rate of 4%. The
in-coverage test set consists of 626 utterances leav-
ing us with an in-coverage rate of 62.6% for the un-
restricted test set. This shows the need for a more ro-
bust way of recognition and interpretation if we ex-
pect to expose the system to less experienced users.

For the evaluation of the DMSLMs we have par-
titioned the test data by dialogue moves. The utter-
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ances corresponding with the four dialogue moves
chosen for our DMSLMs were divided into four test
sets. The utterances left were used to create a fifth
test set where none of our four DMSLMs would
apply but where we would need to use the gen-
eral model. If we look at the distribution of the
test data considering dialogue moves we find that
75.4% of the test data falls into our four dialogue
move categories and that only 24.6% of the data
would require the general model. This part of the
test data includes dialogue moves such as greetings,
quit moves and dialogue move sequences with com-
binations of different moves. The most common di-
alogue move in our data is an answer move or a
sequence of answer moves resulting in common
utterances such as: “a meeting on friday” as answer
to system questions such as “what booking do you
want to add?”.

4 Experimental Results

To evaluate the recognition performance of our dif-
ferent types of models we ran several experiments
on the different test sets. We report results on word
error rate (WER), sentence error rate (SER) and also
on a semantic level by reporting what we call dia-
logue move error rate (DMER). The dialogue move
error rate was obtained by parsing the recognized ut-
terances and comparing these to a parsed version of
the transcriptions, calculating the rate of correctly
parsed dialogue moves. The calculation was done
in the same way as calculation of concept error rate
(CER) proposed by (Boros et al., 1996) where the
degree of correctly recognized concepts is consid-
ered. In our case this means the degree of correctly
recognized dialogue moves. For parsing we have
used a phrase-spotting grammar written in Prolog
that pattern matches phrases to dialogue moves. Us-
ing the original GF interpretation grammar for pars-
ing would have restricted us to the coverage of the
grammar which is not an optimal choice together
with SLMs. Ideally, we would like to use a robust
version of GF to be able to use the original GF gram-
mar both for parsing and SLM generation and by
that assure the same linguistic coverage. Attempts
to do this have been carried out in the TALK project
for the MP3 domain by training a dialogue move tag-
ger on the same type of corpus that was used for

the DMSLMs where dialogue moves occur together
with their corresponding utterances. Other meth-
ods of relaxing the constraints of the GF parser are
also under consideration. Meanwhile, we are using a
simple robust phrase spotting parser. We have inves-
tigated both how our grammar-based SLMs perform
in comparison to our grammar under different condi-
tions to see how recognition and understanding per-
formance varies as well as how our DMSLMs per-
form in comparison to the general grammar-based
SLM. The results are reported in the following sec-
tions. All models have the same domain vocabulary
and the OOV figures presented earlier thereby apply
for all of them.

4.1 Grammar-based SLMs vs. grammars

Table 1 shows the results for our different language
models on our unrestricted test set of 1000 utter-
ances as well as for the part of this test set which is
in-coverage. As expected they all perform much bet-
ter on the in-coverage test set with the lowest WER
obtained with our grammar. On the unrestricted test
set we can see an important reduction of both WER
(26% and 38% relative improvement) and DMER
(24% and 40% relative improvement) for the SLMs
in comparison to the grammar which indicates the
robustness of these to new user input.

In table 2 we can see how the performance of all
our models are better for the expert users with a rel-
ative word error rate reduction from 25% to 32% in
comparison to the results for the naive test set. The
same pattern is seen on the semantic level with im-
portant reduction in DMER. The result is expected
as the expert users have greater knowledge of the
language of the system. This is consistent with the
results reported in (Knight et al., 2001). It is also
reflected in the OOV figures discussed earlier where
the naive users seem to have used many more un-
known words than the expert users.

This shows that the models perform very dif-
ferently depending on the types of users and how
much they hold to the coverage of the grammar.
Our grammar-based SLM gives us a much more ro-
bust behaviour which is good when we expect less
experienced users. However, we can see that we
get a degradation in in-coverage performance which
would be critical if we are to use the model in a sys-
tem where we expect that the users will achieve cer-
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Table 1: Results on unrestricted vs in-coverage test set

Model Unrestricted In-coverage
WER SER DMER WER SER DMER

Grammar 39.0% 47.6% 43.2% 10.7% 16.3% 10.3%
Grammar-based SLM 29.0% 39.7% 33.0% 14.8% 18.3% 13.7%
Extended SLM 24.0% 35.2% 25.8% 11.5% 15.8% 10.4%

Table 2: Results on naive vs expert users

Model Naive users Expert users
WER SER DMER WER SER DMER

Grammar 46.6% 50.3% 54.7% 31.7% 44.4% 33.2%
Grammar-based SLM 34.4% 42.9% 41.3% 23.8% 35.9% 25.8%
Extended SLM 27.6% 38.2% 29.5% 20.7% 31.8% 22.7%

tain proficiency. The Extended SLM seem to per-
form well in all situations and if we look at DMER
there is no significant difference in performance be-
tween this model and our grammar when it comes
to in-coverage input. In most systems we will prob-
ably have a range of users with different amounts
of experience and even experienced users will fail
to follow the grammar in spontaneous speech. This
points towards the advisability of using an SLM as
it is more robust and if it does not degrade too much
on in-coverage user input like the Extended SLM
it would be an optimal choice.

From the results it seems that we have found a cor-
relation between the DMER and WER in our system
which indicates that if we manage to lower WER we
will also achieve better understanding performance
with our simple robust parser. This is good news as it
means that we will not only capture more words with
our SLMs but also more of the message the user is
trying to convey in the sense of capturing more dia-
logue moves. This will definitely result into a better
dialogue system performance overall. Interestingly,
we have been able to obtain this just by converting
our grammar into an SLM.

4.2 Dialogue move specific SLMs vs General
SLMs

We have evaluated our DMSLMs on test sets for
each model which include only utterances that corre-
spond to the dialogue moves in the model. It should
be mentioned that the test sets may include utter-
ances not covered by the original GF grammar e.g. a
different wording for the same move. The results for
each DMSLM on its specific test set and the perfor-

mance of the grammar-based SLM and the Extended
SLM are reported in tables 3, 4, 5 and 6.

Table 3: Ask Move SLM
Model WER SER DMER
Grammar-based SLM 39.2% 68.4% 51.8%
Ask DMSLM 31.8% 68.9% 48.7%
Extended SLM 30.1% 58.0% 44.6%

Table 4: Answer Move SLM
Model WER SER DMER
Grammar-based SLM 17.3% 22.0% 16.3%
Answer DMSLM 15.7% 20.1% 14.1%
Extended SLM 18.2% 22.0% 16.7%

Table 5: Request Move SLM

Model WER SER DMER
Grammar-based SLM 29.1% 44.3% 27.0%
Request DMSLM 17.0% 36.1% 14.7%
Extended SLM 26.3% 42.6% 22.1%

Apart from these four dialogue moves our test
data includes a lot of different dialogue moves and
dialogue move combinations that we have not con-
sidered. As we have no specific model for these we
would need to use a general model in these cases.
This means that apart from predicting the four di-
alogue moves we have considered we would also
need to predict when none of these are expected and
use the general model for these situations. In table
7 we can see how our general models perform on
the rest of the test set. This shows that they seem to
handle this part of the test data quite well.

30



Table 6: YN Move SLM
Model WER SER DMER
Grammar-based SLM 37.3% 27.3% 22.7%
YN DMSLM 21.5% 16.5% 11.9%
Extended SLM 25.0% 18.2% 12.5%

Table 7: General SLM on rest of test data

Model WER SER DMER
Grammar-based SLM 22.2% 42.7% 31.7%
Extended SLM 19.6% 39.8% 26.0%

We can see that the gain we get in recognition
performance varies for the different models and that
relative improvement in WER goes from 9% for the
answer model to 42% for our DMSLMs on appro-
priate test sets. We can see that our models have
most problems with ask moves and yn answers.
In the case of ask moves this seems to be because
our GF grammar is missing a lot of syntactic con-
structions of question expressions. This would then
explain why the Extended SLM gets a much better
figure here. The GSLC corpus does capture more
of this expressive variation of questions. In other
words we seem to have failed to capture and predict
the linguistic usage with our hand-tailored grammar.
In the case of yn answers the result reveals that our
grammar-based SLM does not have a realistic distri-
bution of these expressions at all. This seems to be
something the GSLC corpus contribute, considering
the good results for the Extended SLM. However,
we can see that we can achieve the same effect by
boosting the probability of yes and no answers in
our DMSLM.

If we look at the overall achievement in recog-
nition performance, using our DMSLMs when ap-
propriate and in other cases the general SLM, the
average WER of 22% (27% DMER) is consider-
ably lower than when using the general model for
the same test data (29% WER, 33% DMER). If we
had an optimal method for predicting what language
model to use we would be able to decrease WER by
24% relative. If we chose to use the Extended
SLM in the cases our DMSLMs do not cover we
could get an even greater reduction.

We have also tested how well our DMSLMs per-
form on the general test set (i.e. all 1000 utter-
ances) to see how bad the performance would be if

we chose the wrong model. In table 8 we can see
that this approach yields an average WER of 30%
which is a minimal degradation in comparison to
the general grammar-based SLM. On the contrary,
some of our models actually perform better than our
general grammar-based SLM or very similarly. This
implies that there is no substantial risk on recogni-
tion performance if our prediction model would fail.
This means that we could obtain very good results
with important recognition improvement even with
an imperfect prediction accuracy. We have a relative
improvement of 24% to gain with only a minimal
loss.

Table 8: DMSLMs on general test set

Model WER SER
Answer DMSLM 34.7% 55.6%
Ask DMSLM 28.2% 46.2%
Request DMSLM 26.5% 43.2%
YN DMSLM 29.8% 44.0%

5 Concluding remarks

Our experimental results show that grammar-based
SLMs give an important reduction in both WER and
DMER in accordance with the results in (Jonson,
2006). We reach a relative improvement of 26%
and a further 17% if we interpolate our grammar-
based SLM with real speech data. The correlation
of the DMER and the WER in our results indicates
that the improved recognition performance will also
propagate to the understanding performance of our
system.

Context-specific language models (statistical and
rule-based) have shown important recognition per-
formance gain in earlier work (Baggia et al., 1997;
Xu and Rudnicky, 2000; Lemon and Gruenstein,
2004; Gruenstein et al., 2005) and this study reaf-
firms that taking into account statistical language
variation during a dialogue will give us more accu-
rate recognition. The method we use here has the ad-
vantage that we can build statistical context-specific
models even when no data is available, assuring a
minimal coverage and by interpolation with a gen-
eral model do not constrain the user input unduly.

The language model switch will be triggered by
changing a variable in our information state: the pre-
dicted dialogue move. However, to be able to choose
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which language model suits the current information
state best we need a way to predict dialogue moves.
The prediction model could either be rule-based or
data based. Our first experimental tests with ma-
chine learning for dialogue move prediction seems
promising and we hope to report on these soon. Op-
timally, we want a prediction model that we can
use in different GoDiS domains to be able to gen-
erate new DMSLMs from our domain-specific GF
grammar for the dialogue moves we have considered
here.

Our experiments show that we could achieve
an overall reduction in WER of 46% and 40% in
DMER if we were able to choose our best suited
SLM instead of our compiled GF grammar. Natu-
rally, we would have to take into account dialogue
move prediction accuracy to get a more realistic fig-
ure. However, our experiments also show that the
effect on performance if we failed to use the correct
model would not be too harmful. This means we
have much more to gain than to lose even if the di-
alogue move prediction is not perfect. This makes
this approach a very interesting option in dialogue
system development.
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Abstract 

In command and control (C&C) speech in-
teraction, users interact by speaking com-
mands or asking questions typically speci-
fied in a context-free grammar (CFG). Un-
fortunately, users often produce out-of-
grammar (OOG) commands, which can re-
sult in misunderstanding or non-
understanding.  We explore a simple ap-
proach to handling OOG commands that 
involves generating a backoff grammar 
from any CFG using filler models, and util-
izing that grammar for recognition when-
ever the CFG fails.  Working within the 
memory footprint requirements of a mobile 
C&C product, applying the approach 
yielded a 35% relative reduction in seman-
tic error rate for OOG commands.  It also 
improved partial recognitions for enabling 
clarification dialogue. 

1 Introduction 

In command and control (C&C) speech interaction, 
users interact with a system by speaking com-
mands or asking questions.  By defining a rigid 
syntax of possible phrases, C&C reduces the com-
plexity of having to recognize unconstrained natu-
ral language.  As such, it generally affords higher 
recognition accuracy, though at the cost of requir-
ing users to learn the syntax of the interaction 
(Rosenfeld et al., 2001).  To lessen the burden on 
users, C&C grammars are authored in an iterative 
fashion so as to broaden the coverage of likely ex-
pressions for commands, while remaining rela-
tively simple for faster performance.  Nevertheless, 
users can, and often still do, produce OOG com-
mands.  They may neglect to read the instructions, 
or forget the valid expressions.  They may mistak-

enly believe that recognition is more robust than it 
really is, or take too long to articulate the right 
words.  Whatever the reason, OOG commands can 
engender misunderstanding (i.e., recognition of the 
wrong command) or non-understanding (i.e., no 
recognition), and aggravate users who otherwise 
might not realize that their commands were OOG.  

In this paper, we explore a simple approach to 
handling OOG commands, designed specifically to 
meet the memory footprint requirements of a C&C 
product for mobile devices.  This paper is divided 
into three sections.  First, we provide background 
on the C&C product and discuss the different types 
of OOG commands that occur with personal mo-
bile devices. Second, we explain the details of the 
approach and how we applied it to the product do-
main. Finally, we evaluate the approach on data 
collected from real users, and discuss possible 
drawbacks. 

2 Mobile C&C 

With the introduction of voice dialing on mobile 
devices, C&C speech interaction hit the wider 
consumer market, albeit with rudimentary pattern 
recognition. Although C&C has been 
commonplace in telephony and accessibility for 
many years, only recently have mobile devices 
have the memory and processing capacity to 
support not only automatic speech recognition 
(ASR), but a whole range of multimedia 
functionalities that can be controlled with speech.  
Leveraging this newfound computational capacity 
is Voice Command, a C&C application for high-
end mobile devices that allows users to look up 
contacts, place phone calls, retrieve appointments, 
obtain device status information, control 
multimedia and launch applications.  It uses an 
embedded, speaker-independent recognizer and 
operates on 16 bit, 16 kHz, Mono audio. 
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OOG commands pose a serious threat to the us-
ability of Voice Command. Many mobile users ex-
pect the product to “just work” without having to 
read the manual.  So, if they should say “Dial Bob”, 
when the proper syntax for making a phone call is 
Call {Name}, the utterance will likely be mis-
recognized or dropped as a false recognition.  If 
this happens enough, users may abandon the prod-
uct, concluding that it or ASR in general, does not 
work. 

2.1 OOG frequency 

Given that C&C speech interaction is typically 
geared towards a relatively small number of words 
per utterance, an important question is, how often 
do OOG commands really occur in C&C?  In Pro-
ject54 (Kun & Turner, 2005), a C&C application 
for retrieving police information in patrol cars, 
voice commands failed on average 15% of the time, 
roughly 63% of which were due to human error.  
Of that amount, roughly 54% were from extrane-
ous words not found in the grammar, 12% from 
segmentation errors, and the rest from speaking 
commands that were not active. 

To examine whether OOG commands might be 
as frequent on personal mobile devices, we col-
lected over 9700 commands of roughly 1 to 3 sec-
onds each from 204 real users of Voice Command, 
which were recorded as sound (.wav) files.  We 
also logged all device data such as contact entries 
and media items.  All sound files were transcribed 
by a paid professional transcription service.  We 
ignored all transcriptions that did not have an asso-
ciated command; the majority of such cases came 
from accidental pressing of the push-to-talk button.  
Furthermore, we focused on user-initiated com-
mands, during which time the active grammar had 
the highest perplexity, instead of yes-no responses 
and clarification dialogue.  This left 5061 tran-
scribed utterances. 

2.2 Emulation method 

With the data transcribed, we first needed a me-
thod to distinguish between In-Grammar (ING) 
and OOG utterances.  We developed a simulation 
environment built around a desktop version of the 
embedded recognizer which could load the same 
Voice Command grammars and update them with 
user device data, such as contact entries, for each 
sound file.  It is important to note the desktop ver-
sion was not the engine that is commercially 

shipped and optimized for particular devices, but 
rather one that serves testing and research purposes. 
The environment could not only recognize sound 
files, but also parse string input using the dynami-
cally updated grammars as if that were the recog-
nized result.  We utilized the latter to emulate rec-
ognition of all transcribed utterances for Voice 
Command.  If the parse succeeded, we labeled the 
utterance ING, otherwise it was labeled OOG. 

Overall, we found that slightly more than one 
out of every four (1361 or 26.9%) transcribed ut-
terances were OOG.  We provide a complete 
breakdown of OOG types, including extraneous 
words and segmentation errors similar to Project54, 
in the next section.  It is important to keep in mind 
that being OOG by emulation does not necessarily 
entail that the recognizer will fail on the actual 
sound file.  For example, if a user states “Call Bob 
at mobile phone” when the word “phone” is OOG, 
the recognizer will still perform well.  The OOG 
percentage for Voice Command may also reflect 
the high perplexity of the name-dialing task.  Users 
had anywhere from 5 to over 2000 contacts, each 
of which could be expressed in multiple ways (e.g., 
first name, first name + last name, prefix + last 
name, etc.).  In summary, our empirical analysis of 
the data suggests that OOG utterances for mobile 
C&C on personal devices can indeed occur on a 
frequent basis, and as such, are worth handling. 

2.3 OOG type 

In order to explore how we might handle different 
types of OOG commands, we classified them ac-
cording to functional anatomy and basic edit op-
erations.  With respect to the former, a C&C utter-
ance consists of three functional components: 

 
1. Slot: A dynamically adjustable list repre-

senting a semantic argument, such as {Con-
tact} or {Date}, where the value of the ar-
gument is typically one of the list members. 

2. Keyword: A word or phrase that uniquely 
identifies a semantic predicate, such as Call 
or Battery, where the predicate corresponds 
in a one-to-one mapping to a type of com-
mand.  

3. Carrier Text: A word or phrase that is de-
signed to facilitate naturalistic expression of 
commands and carries no attached semantic 
content, such as “What is” or “Tell me”. 
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For example, in the command “Call Bob at mo-
bile”, the word “Call” is the keyword, “Bob” and 
“mobile” are slots, and “at” is a carrier word.  

If we were to convert an ING command to 
match an OOG command, we could perform a se-
ries of edit operations: substitution, deletion, and 
insertion.  For classifying OOG commands, substi-
tution implies the use of an unexpected word, dele-
tion implies the absence of an expected word, and 
insertion implies the addition of a superfluous 
word. 

Starting with both functional anatomy and edit 
operations for classification, Table 1 displays the 
different types of OOG commands we labeled 
along with their relative frequencies.  Because 
more than one label might apply to an utterance, 
we first looked to the slot for an OOG type label, 
then keyword, then everything else.  

The most frequent OOG type, at about 60%, was 
OOG Slot, which referred to slot values that did 
not exist in the grammar.  The majority of these 
cases came from two sources: 1) contact entries 
that users thought existed but did not – sometimes 
they did exist, but not in any normalized form (e.g., 

“Rich” for “Richard”), and 2) mislabeling of most-
ly foreign names by transcribers.  Although we 
tried to correct as many names as we could, given 
the large contact lists that many users had, this 
proved to be quite challenging.  

The second most frequent OOG type was Inser-
tion at about 14%.  The majority of these insertions 
were single words.  Note that similar to Project54, 
segmentation errors occurred quite often at about 
9%, when the different segmentation types are 
added together. 

3 Backoff Approach 

Having identified the different types of OOG 
commands, we needed to devise an approach for 
handling them that satisfied the requirements of 
Voice Command for supporting C&C on mobile 
devices.  

3.1 Mobile requirements 

For memory footprint, the Voice Command team 
specified that our approach should operate with 
less than 100KB of ROM and 1MB of RAM.  Fur-
thermore, the approach could not require changes 

OOGType % Total Description Examples 

Insertion 14.2% adding a non-keyword, non-slot word 
call britney porter on mobile phone [“phone” is 
superfluous] 

Deletion 3.1% 
deleting a non-keyword, non-slot 
word 

my next appointments [“what are” missing] 

Substitution 2.5% 
replacing a non-keyword, non-slot 
word 

where is my next appointment  
[“where” is not supported] 

Segmentation 8.2% incomplete utterance show, call, start 
Keyword 
Substitution 

4.6% replacing a keyword 
call 8 8 2 8 0 8 0 [“dial” is keyword] ,  
dial john horton [“call” is keyword] 

Keyword 
Segmentation 

0.1% incomplete keyword what are my appoint 

Keyword  
Deletion 

2.2% deleting the keyword marsha porter at home [“call” missing] 

Slot  
Substitution 

0.4% replacing slot words 
call executive 5 on desk  
[“desk” is not slot value] 

Slot  
Segmentation 

0.9% incomplete slot call alexander woods on mob 

Slot Deletion 1.0% deleted slot call tracy morey at 

Disfluencies 1.8% disfluencies - mostly repetitions start expense start microsoft excel 
Order  
Rearrangement 

0.6% 
changing the order of words within a 
keyword 

what meeting is next [Should be “what is my 
next meeting”] 

Noise 0.7% non primary speaker 
oregon state home coming call brandon jones 
on mobile phone 

OOG Slot 59.8% 
The slot associated with this utterance 
is out of domain 

Show Rich Lowry [“Richard” is contact entry] , 
dial 0 2 1 6 [Needs > 7 digits] 

 
Table 1. Different OOG command types and their relative frequencies for the Voice Command product. The brack-
eted text in the “Examples” column explicates the cause of the error 
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to the existing embedded Speech API (SAPI).  
Because the team also wanted to extend the func-
tionality of Voice Command to new domains, we 
could not assume that we would have any data for 
training models.  Although statistical language 
models (SLM) offer greater robustness to varia-
tions in phrasing than fixed grammars (Rosenfeld, 
2000), the above requirements essentially prohib-
ited them.  So, we instead focused on extending the 
use of the base grammar, which for Voice Com-
mand was a context-free grammar (CFG): a formal 
specification of rules allowing for embedded recur-
sion that defines the set of possible phrases (Man-
ning & Schűtze, 1999).  

Despite the manual effort that CFGs often re-
quire, they are widely prevalent in industry (Knight 
et al., 2001) for several reasons. First, they are easy 
for designers to understand and author.  Second, 
they are easy to modify; new phrases can be added 
and immediately recognized with little effort.  And 
third, they produce transparent semantics without 
requiring a separate natural language understand-
ing component; semantic properties can be at-
tached to CFG rules and assigned during recogni-
tion.  By focusing on CFGs, our approach allows 
industry designers who are more accustomed to 
fixed grammars to continue using their skill set, 
while hopefully improving the handling of utter-
ances that fall outside of their grammar. 

3.2 Leveraging a backoff grammar 

As long as utterances remain ING, a CFG affords 
fast and accurate recognition, especially because 
engines are often tuned to optimize C&C recogni-

tion.  For example, in comparing recognition per-
formance in a statistical and a CFG-based recog-
nizer for the same domain, Knight et al. (2001) 
found that the CFG outperformed the SLM.  In 
order to exploit the optimization of the engine for 
C&C utterances that are ING, we decided to utilize 
a two-pass approach where each command is ini-
tially submitted to the base CFG.  If the confidence 
score of the top recognition C1 falls below a rejec-
tion threshold RCFG, or if the recognizer declares a 
false recognition (based on internal engine fea-
tures), then the audio stream is passed to a backoff 
grammar which then attempts to recognize the 
command.  If the backoff grammar fails to recog-
nize the command, or the top recognition falls 
again below a rejection threshold RBG, then users 
experience the same outcome as they normally 
would otherwise, except with a longer delay.  Fig-
ure 1(a) summarizes the approach. 

In order to generate the backoff grammar and 
still stay within the required memory bounds of 
Voice Command, we explored the use of the built-
in filler or garbage model, which is a context-
independent, acoustic phone loop.  Expressed in 
the syntax as “...”, filler models capture phones in 
whatever context they are placed.  The functional 
anatomy of a C&C utterance, as explained in Sec-
tion 2.3, sheds light on where to place them: before 
and/or after keywords and/or slots.  As shown Fig-
ure 1(b), to construct a backoff grammar from a 
CFG during design time, we simply parse each 
CFG rule for keywords and slots, remove all car-
rier phrases, and insert filler models before and/or 
after the keywords and/or slots.  Although it is 
straightforward to automatically identify keywords 
(words that uniquely map to a CFG rule) and slots 
(lists with semantic properties), developers may 
want to edit the generated backoff grammar for any 
keywords and slots they wish to exclude; for ex-
ample, in cases where more than one keyword is 
found for a CFG rule. 

For both slots and keywords, we could employ 
any number of different patterns for placing the 
filler models, if any.  Table 2 displays some of the 
patterns in SAPI 5 format, which is an XML for-
mat where question marks indicate optional use.  
Although the Table is for keywords, the same pat-
terns apply for slots.  As shown in k4, even the 
functional constituent itself can be optional.  Fur-
thermore, alternate lists of patterns can be com-
posed, as in kn.  Depending on the number and type 

 
 
Figure 1. (a) A two-pass approach which leverages a 
base CFG for ING recognition and a backoff grammar 
for failed utterances. (b) Design time procedure for 
generating a backoff grammar 
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of functional constituents for a CFG rule, backoff 
rules can be constructed by adjoining patterns for 
each constituent.  We address the situation when a 
backoff rule corresponds to multiple CFG rules in 
Section 3.4. 

3.3 Domain feasibility 

Because every C&C utterance can be characterized 
by its functional constituents, the backoff filler ap-
proach generically applies to C&C domains, re-
gardless of the actual keywords and slots.  But the 
question remains, is this generic approach feasible 
for handling the different OOG types for Voice 
Command discussed in Section 2.3? 

The filler model is clearly suited for Insertions, 
which are the second most frequent OOG type, 
because it would capture the additional phones.  
However, the most frequent OOG type, OOG Slot, 
cannot be handled by the backoff approach.  That 
requires the developer to write better code for 
proper name normalization (e.g, “Rich” from “Ri-
chard”) as well as breaking down the slot value 
into further components for better partial matching 
of names.  Because new C&C domains may not 
utilize name slots, we decided to treat improving 
name recognition as separate research.  Fortu-
nately, opportunity for applying the backoff filler 
approach to OOG Slot types still exists. 

3.4 Clarification of partial recognitions 

As researchers have observed, OOG words con-
tribute to increased word-error rates (Bazzi & 
Glass, 2000) and degrade the recognition perform-
ance of surrounding ING words (Gorrell, 2003).  
Hence, even if a keyword surrounding an OOG 
slot is recognized, its confidence score and the 
overall phrase confidence score will often be de-
graded.  This is in some ways an unfortunate by-

product of confidence annotation, which might be 
circumvented if SAPI exposed word lattice prob-
abilities.  Because SAPI does not, we can instead 
generate partial backoff rules that comprise only a 
subset of the functional constituents of a CFG rule.  
For example, if a CFG rule contains both a key-
word and slot, then we can generate a partial back-
off rule with just one or the other surrounded by 
filler models.  Using partial backoff rules prevents 
degradation of confidence scores for ING constitu-
ents and improves partial recognitions, as we show 
in Section 4.  Partial backoff rules not only handle 
OOG Slot commands where, for example, the 
name slot is not recognized, but also many types of 
segmentation, deletion and substitution commands 
as well. 

Following prior research (Gorrell et al., 2002; 
Hockey et al., 2003), we sought to improve partial 
recognitions so that the system could provide feed-
back to users on what was recognized, and to en-
courage them to stay within the C&C syntax.  Cla-
rification dialogue with implicit instruction of the 
syntax might proceed as follows: If a partial recog-
nition only corresponded to one CFG rule, then the 
system could assume the semantics of that rule and 
remind the user of the proper syntax.  On the other 
hand, if a partial recognition corresponded to more 
than one rule, then a disambiguation dialogue 
could relate the proper syntax for the choices.  For 
example, suppose a user says “Telephone Bob”, 
using the OOG word “Telephone”.  Although the 
original CFG would most likely misrecognize or 
even drop this command, our approach would ob-
tain a partial recognition with higher confidence 
score for the contact slot.  If only one CFG rule 
contained the slot, then the system could engage in 
the confirmation, “Did you mean to say, call 
Bob?” On the other hand, if more than one CFG 
rule contained the slot, then the system could en-
gage in a disambiguation dialogue, such as “I 
heard 'Bob'. You can either call or show Bob”.  
Either way, the user is exposed to and implicitly 
taught the proper C&C syntax. 

3.5 Related research 

In related research, several researchers have inves-
tigated using both a CFG and a domain-trained 
SLM simultaneously for recognition (Gorrell et al., 
2002; Hockey et al., 2003).  To finesse the per-
formance of a CFG, Gorrell (2003) advocated a 
two-pass approach where an SLM trained on CFG 

Scheme Keyword Pattern 
k1 <keyword/> 
k2 (…)?  <keyword> 
k3 (…)?  <keyword/>  (…)? 
k4 (…)?  <keyword/>? (…)? 

kn 

<list> 
(…)?  <keyword/>? (…)? 

(…) 
</list> 

 
Table 2. Possible patterns in SAPI 5 XML format for 
placing the filler model, which appears as 
“...”.Question marks indicate optional use. 
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data (and slightly augmented) is utilized as a back-
off grammar.  However, only the performance of 
the SLM on a binary OOG classification task was 
evaluated and not the two-pass approach itself.  In 
designing a multimodal language acquisition sys-
tem, Dusan & Flanagan (2002) developed a two-
pass approach where they utilized a dictation n-
gram as a backoff grammar and added words rec-
ognized in the second pass into the base CFG.  Un-
fortunately, they only evaluated the general usabil-
ity of their architecture. 

Because of the requirements outlined in Section 
3.1, we have focused our efforts on generating a 
backoff grammar from the original CFG, taking 
advantage of functional anatomy and filler models.  
The approach is agnostic about what the actual fil-
ler model is, and as such, the built-in phone loop 
can easily be replaced by word-level (e.g., Yu et 
al., 2006) and sub-word level filler models (e.g., 
Liu et al., 2005).  In fact, we did explore the word-
level filler model, though so far we have not been 
able to meet the footprint requirements.  We are 
currently investigating phone-based filler models. 

Outside of recognition with a CFG, researchers 
have pursued methods that directly model OOG 
words as sub-word units in the recognition search 
space of a finite state transducer (FST) (Bazzi & 
Glass, 2000).  OOG words can also be dynamically 
incorporated into the FST (Chung et al., 2004).  
Because this line of research depends on entirely 
different engine architecture, we could not apply 
the techniques. 

4 Evaluation 

In C&C speech interaction, what matters most is 
not word-error rate, but semantic accuracy and task 
completion.  Because task completion is difficult to 
evaluate without collecting new data, we evaluated 
the semantic accuracy of the two-pass approach 
against the baseline of using just the CFG on the 
data we collected from real users, as discussed in 
Section 2.1.  Furthermore, because partial 
recognitions can ultimately result in a successful 
dialogue, we carried out separate evaluations for 
the functional constituents of a command (i.e., 
keyword and slot) as well as the complete 
command (keyword + slot).  For Voice Command, 
no command contained more than one slot, and 
because the vast majority of single slot commands 
were commands to either call or show a contact 

entry, we focused on those two commands as a 
proof of concept. 

For any utterance, the recognizer can either ac-
cept or reject it.  If it is accepted, then the seman-
tics of the utterance can either be correct (i.e., it 
matches what the user intended) or incorrect.  The 
following metrics can now be defined: 
 

precision = CA / (CA + IA)   (1) 
recall = CA / (CA + R)    (2) 
accuracy = CA / (CA + IA + R)   (3) 

 
where CA denotes accepted commands that are 
correct, IA denotes accepted commands that are 
incorrect, and R denotes the number of rejected 
commands.  Although R could be decomposed into 
correct and incorrect rejections, for C&C, 
recognition failure is essentially perceived the 
same way by users: that is, as a non-understanding. 

4.1 Results 

For every C&C command in Voice Command, the 
embedded recognizer returns either a false 
recognition (based on internal engine parameters) 
or a recognition event with a confidence score.  As 
described in Section 3.2, if the confidence score 
falls below a rejection threshold RCFG, then the 
audio stream is processed by the backoff grammar 
which also enforces its own threshold RBG.  The 
RCFG for Voice Command was set to 45% by a 
proprietary tuning procedure for optimizing 
acoustic word-error rate.  For utterances that 
exceeded RCFG, 84.2% of them were ING and 
15.8% OOG.  For utterances below RCFG, 48.5% 

 
 

Figure 2. The semantic accuracies comparing the 
baseline CFG against both the BG (backoff grammar 
alone) and the two-pass approach (CFG + Backoff) 
separated into functional constituent groups and fur-
ther separated by ING and OOG commands. 
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were ING and 51.5% OOG.  Because a 
considerable number of utterances may be ING in 
the second pass, as it was in our case, RBG requires 
tuning as well.  Instead of using a development 
dataset to tune RBG, we decided to evaluate our 
approach on the entire data with RBG set to the 
same proprietary threshold as RCFG.  In post-hoc 
analyses, this policy of setting the two thresholds 
equal and reverting to the CFG recognition if the 
backoff confidence score falls below RBG achieved 
results comparable to optimizing the thresholds. 

Figure 2 displays semantic accuracies separated 
by ING and OOG commands.  Keyword evalua-
tions comprised 3700 ING and 1361 OOG com-
mands.  Slot and keyword + slot evaluations com-
prised 2111 ING and 138 OOG commands.  Over-
all, the two-pass approach was significantly higher 
in semantic accuracy than the baseline CFG, using 
McNemar's test (p<0.001).  Not surprisingly, the 
largest gains were with OOG commands.  Notice 
that for partial recognitions (i.e., keyword or slot 
only), the approach was able to improve accuracy, 
which with further clarification dialogue, could 
result in task completions.  Interestingly, the ap-
proach performed the same for keyword + slot as it 
did for slot, which suggests that getting the slot 
correct is crucial to recognizing surrounding key-
words.  Despite the high percentage of OOG Slots, 
slot accuracy still increased due to better handling 
of other OOG types such as deletions, insertions 
and substitutions.   

Finally, as a comparison, for the keyword + slot 
task, an upper bound of 74.3% ± 1.1% (10-fold 
cross-validated standard error) overall semantic 
accuracy was achieved using a small footprint sta-
tistical language modeling technique that re-ranked 
CFG results (Paek & Chickering, 2007), though 

the comparison is not completely fair given that the 
technique was focused on predictive language 
modeling and not on explicitly handling OOG ut-
terances.  Also note that in all cases, the backoff 
grammar alone performed worse than either the 
CFG or the two-pass approach.   

Table 3 provides a more detailed view of the re-
sults for the just OOG commands as well as the 
relative reductions in semantic error rate (RER).  
Notice that the approach increases recall, which 
signifies less non-understandings. However, this 
comes at the price of a small increase in misunder-
standings, as seen in the decrease in precision.  
Overall, the best reduction in semantic error rate 
achieved by the approach was about 35%. 

Decomposing RER by OOG types, we found 
that for keyword evaluations, the biggest im-
provement (52% RER), came about for Deletion 
types, or commands with missing carrier words.  
This makes sense because the backoff grammar 
only cares about the keyword.  For slot and key-
word + slot evaluations, Insertion types maintained 
the biggest improvement at 38% RER. 

Note that the results presented are those ob-
tained without tuning.  If application developers 
wanted to find an optimal operating point, they 
would need to decide what is more important for 
their application: precision or recall, and adjust the 
thresholds until they reach acceptable levels of per-
formance.  Ideally, these levels should accord with 
what real users of the application would accept. 

4.2 Efficiency 

Given that the approach was aimed at satisfying 
the mobile requirements stated in Section 3.1, 
which it did, we also compared the processing time 
it takes to arrive at a recognition or false 
recognition between the CFG alone and the two-
pass approach.  Because of the filler models, the 
backoff grammar is a more relaxed version of CFG 
with a larger search space, and as such, takes 
slightly more processing time. The average 
processing time for the CFG in our simulation 
environment was about 395 milliseconds, whereas 
the average processing time for the two passes was 
about 986 milliseconds.  Hence, when the backoff 
grammar is used, the total computation time is 
approximately 2.5 times that of a single pass alone.  
In our experiments, a total of 1570 commands (i.e. 
31%) required the two passes, while 3491 of them 
were accepted after a single CFG pass. 

 CFG 2-PASS RER 
Prec 85.0% 79.0% -39.7% 
Recall 36.8% 58.6% 34.5% Keyword 
Acc 34.5% 50.7% 24.7% 
Prec 89.3% 88.2% -10.3% 
Recall 58.1% 77.6% 46.5% Slot 
Acc 54.4% 70.3% 34.9% 
Prec 89.3% 88.2% -10.3% 
Recall 58.1% 77.6% 46.5% 

Keyword 
+ Slot 

Acc 54.4% 70.3% 34.9% 
 
Table 3. Relative reductions in semantic error rate, or 
Relative Error Reduction (RER) for OOG commands 
grouped by keyword, slot and keyword + slot evalua-
tions. “2-PASS” denotes the two-pass approach. 
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4.3 Drawbacks 

In exploring the backoff filler approach, we 
encountered a few drawbacks that are worth 
considering when applying this approach to other 
domains.  The first issue dealt with false positives.  
In the data collection for Voice Command, a total 
of 288 utterances contained no discernable speech.  
If these were included in the data set, they would 
amount to about 5% of all utterances.  As 
mentioned previously, these were mostly cases 
when the push-to-talk button was accidentally 
triggered.  When we evaluated the approach on 
these utterances, we found that the CFG accepted 
36 or roughly 13% of them, while the proposed 
approach accepted 115 or roughly 40% of them.  
For our domain, this problem can be avoided by 
instructing users to lock their devices when not in 
use to prevent spurious initiations.  For other C&C 
domains where unintentional command initiations 
occur frequently, this may be a serious concern, 
though we suspect that users will be more 
forgiving of accidental errors than real errors. 

Another drawback dealt with generating the 
backoff grammar.  As we discussed in Section 3.2, 
various patterns for placing filler models can be 
utilized.  Although we did explore the possibility 
that perhaps certain patterns might generalize 
across domains, we found that it was better to 
hand-craft patterns to the application.  For Voice 
Command, we used the kn pattern specified in Ta-
ble 2 for keywords, and the identical sn pattern for 
slots because they proved to be best suited to the 
product grammars in pre-trial experiments. 

5 Conclusion & Future Direction 

In this paper, we classified the different types of 
OOG commands that might occur in a mobile 
C&C application, and presented a simple two-pass 
approach for handling them that leverages the base 
CFG for ING recognition and a backoff grammar 
OOG recognition.  The backoff grammar is gener-
ated from the original CFG by surrounding key-
words and/or slots with filler models.  Operating 
within the memory footprint requirements of a 
mobile C&C product, the approach yielded a 35% 
relative reduction in semantic error rate for OOG 
commands, and improved partial recognitions, 
which can facilitate clarification dialogue. 

We are now exploring small footprint, phone-
based filler models.  Another avenue for future 

research is to further investigate optimal policies 
for deciding when to pass to the backoff grammar 
and when to use the backoff grammar recognition. 
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Abstract

We describe a bidirectional version of the
grammar-based MedSLT medical speech
system. The system supports simple medi-
cal examination dialogues about throat pain
between an English-speaking physician and
a Spanish-speaking patient. The physician’s
side of the dialogue is assumed to consist
mostly of WH-questions, and the patient’s of
elliptical answers. The paper focusses on the
grammar-based speech processing architec-
ture, the ellipsis resolution mechanism, and
the online help system.

1 Background

There is an urgent need for medical speech trans-
lation systems. The world’s current population
of 6.6 billion speaks more than 6,000 languages
(Graddol, 2004). Language barriers are associated
with a wide variety of deleterious consequences in
healthcare, including impaired health status, a lower
likelihood of having a regular physician, lower rates
of mammograms, pap smears, and other preven-
tive services, non-adherence with medications, a
greater likelihood of a diagnosis of more severe psy-
chopathology and leaving the hospital against med-
ical advice among psychiatric patients, a lower like-
lihood of being given a follow-up appointment af-
ter an emergency department visit, an increased risk

of intubation among children with asthma, a greater
risk of hospital admissions among adults, an in-
creased risk of drug complications, longer medical
visits, higher resource utilization for diagnostic test-
ing, lower patient satisfaction, impaired patient un-
derstanding of diagnoses, medications, and follow-
up, and medical errors and injuries (Flores, 2005;
Flores, 2006). Nevertheless, many patients who
need medical interpreters do not get them. For ex-
ample, in the United States, where 52 million peo-
ple speak a language other than English at home
and 23 million people have limited English profi-
ciency (LEP) (Census, 2007), one study found that
about half of LEP patients presenting to an emer-
gency department were not provided with a medical
interpreter (Baker et al., 1996). There is thus a sub-
stantial gap between the need for and availability of
language services in health care, a gap that could be
bridged through effective medical speech translation
systems.

An ideal system would be able to interpret ac-
curately and flexibly between patients and health
care professionals, using unrestricted language and
a large vocabulary. A system of this kind is, un-
fortunately, beyond the current state of the art.
It is, however, possible, using today’s technol-
ogy, to build speech translation systems for specific
scenarios and language-pairs, which can achieve
acceptable levels of reliability within the bounds
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of a well-defined controlled language. MedSLT
(Bouillon et al., 2005) is an Open Source system
of this type, which has been under construction at
Geneva University since 2003. The system is built
on top of Regulus (Rayner et al., 2006), an Open
Source platform which supports development of
grammar-based speech-enabled applications. Regu-
lus has also been used to build several other systems,
including NASA’s Clarissa (Rayner et al., 2005b).

The most common architecture for speech trans-
lation today uses statistical methods to perform both
speech recognition and translation, so it is worth
clarifying why we have chosen to use grammar-
based methods. Even though statistical architec-
tures exhibit many desirable properties (purely data-
driven, domain independent), this is not necessar-
ily the best alternative in safety-critical medical ap-
plications. Anecdotally, many physicians express
reluctance to trust a translation device whose out-
put is not readily predictable, and most of the
speech translation systems which have reached the
stage of field testing rely on various types of
grammar-based recognition and rule-based transla-
tion (Phraselator, 2007; Fluential, 2007).

Statistical speech recognisers can achieve impres-
sive levels of accuracy when trained on enough data,
but it is a daunting task to collect training mate-
rial in the requisite quantities (usually, tens of thou-
sands of high-quality utterances) when trying to
build practical systems. Considering that the medi-
cal speech translation applications we are interested
in constructing here need to work for multiple lan-
guages and subdomains, the problem becomes even
more challenging. Our experience is that grammar-
based systems which also incorporate probabilistic
context-free grammar tuning deliver better results
than purely statistical ones when training data are
sparse (Rayner et al., 2005a).

Another common criticism of grammar-based
systems is that out-of-coverage utterances will
neither be recognized nor translated, an objec-
tion that critics have sometimes painted as de-
cisive. It is by no means obvious, however,
that restricted coverage is such a serious prob-
lem. In text processing, work on several gener-
ations of controlled language systems has devel-
oped a range of techniques for keeping users within
the bounds of system coverage (Kittredge, 2003;

Mitamura, 1999), and variants of these methods can
also be adapted for spoken language applications.
Our experiments with MedSLT show that even a
quite simple help system is enough to guide users
quickly towards the intended coverage of a medium-
vocabulary grammar-based speech translation appli-
cation, with most users appearing confident after just
an hour or two of exposure (Starlander et al., 2005;
Chatzichrisafis et al., 2006).

Until recently, the MedSLT system only sup-
ported unidirectional processing in the physician
to patient direction. The assumption was that the
physician would mostly ask yes/no questions, to
which the patient would respond non-verbally, for
example by nodding or shaking their head. A uni-
directional architecture is easier to make habitable
than a bidirectional one. It is reasonable to as-
sume that the physician will use the system regu-
larly enough to learn the coverage, but most patients
will not have used the system before, and it is less
clear that they will be able to acclimatize within the
narrow window at their disposal. These consider-
ations must however be balanced against the fact
that a unidirectional system does not allow for a
patient-centered interaction characterized by mean-
ingful patient-clinician communication or shared de-
cision making. Multiple studies in the medical lit-
erature document that patient-centeredness, effec-
tive patient-clinician communication, and shared de-
cision making are associated with significant im-
provements in patient health outcomes, including
reduced anxiety levels, improved functional sta-
tus, reduced pain, better control of diabetes melli-
tus, blood pressure reduction among hypertensives,
improved adherence, increased patient satisfaction,
and symptom reduction for a variety of conditions
(Stewart, 1995; Michie et al., 2003). A bidirectional
system is considered close to essential from a health-
care perspective, since it appropriately addresses the
key issues of patient centeredness and shared de-
cision making. For these reasons, we have over
the last few months developed a bidirectional ver-
sion of MedSLT, initially focussing on a throat pain
scenario with an English-speaking physician and a
Spanish-speaking patient. The physician uses full
sentences, while the patient answers with short re-
sponses.

One of the strengths of the Regulus approach is
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that it is very easy to construct parallel versions of
a grammar; generally, all that is required is to vary
the training corpus. (We will have more to say about
this soon). We have exploited these properties of
the platform to create two different configurations
of the bidirectional system, so that we can compare
competing approaches to the problem of accommo-
dating patients unfamiliar with speech technology.
In Version 1 (less restricted), the patient is allowed
to answer using both elliptical utterances and short
sentences, while in Version 2 (more restricted) they
are only permitted to use elliptical utterances. Thus,
for example, if the physician asks the question “How
long have you had a sore throat?”, Version 1 allows
the patient to respond both “Desde algunos dı́as”
(“For several days”) and “Me ha dolido la garganta
desde algunos dı́as” (“I have had a sore throat for
several days”), while Version 2 only allows the first
of these. Both the short and the long versions are
translated uniformly, with the short version resolved
using the context from the preceding question.

In both versions, if the patient finds it too chal-
lenging to use the system to answer WH-questions
directly, it is possible to back off to the earlier di-
alogue architecture in which the physician uses Y-
N questions and the patient responds with simple
yes/no answers, or nonverbally. Continuing the ex-
ample, if the patient is unable to find an appro-
priate way to answer the physician’s question, the
physician could ask “Have you had a sore throat for
more than three days?”; if the patient responds nega-
tively, they could continue with the follow-on ques-
tion “More than a week?”, and so on.

In the rest of the paper, we first describe the
system top-level (Section2), the way in which
grammar-based processing is used (Section3), the
ellipsis processing mechanism (Section4), and the
help system (Section5). Section6 presents an ini-
tial evaluation, and the final section concludes.

2 Top-level architecture

The system is operated through the graphical user
interface (GUI) shown in Figures1 and 2. In
accordance with the basic principles of patient-
centeredness and shared decision-making outlined
in Section1, the patient and the physician each have
their own headset, use their own mouse, and share

the same view of the screen. This is in sharp contrast
to the majority of the medical speech translation sys-
tems described in the literature (Somers, 2006).

As shown in the screenshots, the main GUI win-
dow is separated into two tabbed panes, marked
“Doctor” and “Patient”. Initially, the “Doctor” view
(the one shown in Figure1) is active. The physician
presses the “Push to talk” button, and speaks into
the headset microphone. If recognition is success-
ful, the GUI displays four separate results, listed on
the right side of the screen. At the top, immediately
under the heading “Question”, we can see the actual
words returned by speech recognition. Here, these
words are “Have you had rapid strep test”. Below,
we have the help pane: this displays similar ques-
tions taken from the help corpus, which are known to
be within system coverage. The pane marked “Sys-
tem understood” shows a back-translation, produced
by first translating the recognition result into inter-
lingua, and then translating it back into English. In
the present example, this corrects the minor mistake
the recogniser has made, missing the indefinite ar-
ticle “a”, and confirms that the system has obtained
a correct grammatical analysis and interpretation at
the level of interlingua. At the bottom, we see the
target language translation. The left-hand side of the
screen logs the history of the conversation to date, so
that both sides can refer back to it.

If the physician decides that the system has cor-
rectly understood what they said, they can now press
the “Play” button. This results in the system produc-
ing a spoken output, using the Vocalizer TTS engine.
Simultaneously with speaking, the GUI shifts to the
“Patient” configuration shown in Figure2. This dif-
fers from the “Doctor” configuration in two respects:
all text is in the patient language, and the help pane
presents its suggestions immediately, based on the
preceding physician question. The various process-
ing components used to support these functionalities
are described in the following sections.

3 Grammar-based processing

Grammar-based processing is used for source-
language speech recognition and target-side genera-
tion. (Source-language analysis is part of the recog-
nition process, since grammar-based recognition in-
cludes creating a parse). All of these functionalities
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Figure 1: Screenshot showing the state of the GUI after the physician has spoken, but before he has pressed
the “Play” button. The help pane shows similar queries knownto be within coverage.

Figure 2: Screenshot showing the state of the GUI after the physician has pressed the “Play” button. The
help pane shows known valid responses to similar questions.
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are implemented using the Regulus platform, with
the task-specific grammars compiled out of general
feature grammar resources by the Regulus tools. For
both recognition and generation, the first step is
to extract a domain-specific feature grammar from
the general one, using a version of the Explanation
Based Learning (EBL) algorithm.

The extraction process is driven by a corpus of ex-
amples and a set of “operationality criteria”, which
define how the rules in the original resource gram-
mar are recombined into domain-specific ones. It is
important to realise that the domain-specific gram-
mar isnot merely a subset of the resource grammar;
a typical domain-specific grammar rule is created by
merging two to five resource grammar rules into a
single “flatter” rule. The result is a feature gram-
mar which is less general than the original one, but
more efficient. For recognition, the grammar is then
processed further into a CFG language model, using
an algorithm which alternates expansion of feature
values and filtering of the partially expanded gram-
mar to remove irrelevant rules. Detailed descrip-
tions of the EBL learning and feature grammar→
CFG compilation algorithms can be found in Chap-
ters 8 and 10 of (Rayner et al., 2006). Regulus fea-
ture grammars can also be compiled into generators
using a version of the Semantic Head Driven algo-
rithm (Shieber et al., 1990).

The English (physician) side recogniser is com-
piled from the large English resource grammar de-
scribed in Chapter 9 of (Rayner et al., 2006), and
was constructed in the same way as the one de-
scribed in (Rayner et al., 2005a), which was used for
a headache examination task. The operationality cri-
teria are the same, and the only changes are a differ-
ent training corpus and the addition of new entries
to the lexicon. The same resources, with a differ-
ent training corpus, were used to build the English
language generator. It is worth pointing out that, al-
though a uniform method was used to build these
various grammars, the results were all very differ-
ent. For example, the recognition grammar from
(Rayner et al., 2005a) is specialised to cover only
second-person questions (“Do you get headaches
in the mornings?”), while the generator grammar
used in the present application covers only first-
person declarative statements (“I visited the doctor
last Monday.”). In terms of structure, each gram-

mar contains several important constructions that the
other lacks. For example, subordinate clauses are
central in the headache domain (“Do the headaches
occur when you are stressed?”) but are not present
in the sore throat domain; this is because the stan-
dard headache examination questions mostly focus
on generic conditions, while the sore throat exami-
nation questions only relate to concrete ones. Con-
versely, relative clauses are important in the sore
throat domain (“I have recently been in contact with
someone who has strep throat”), but are not suffi-
ciently important in the headache domain to be cov-
ered there.

On the Spanish (patient) side, there are four
grammars involved. For recognition, we have
two different grammars, corresponding to the two
versions of the system; the grammar for Ver-
sion 2 is essentially a subset of that for Version
1. For generation, there are two separate and
quite different grammars: one is used for trans-
lating the physician’s questions, while the other
produces back-translations of the patient’s ques-
tions. All of these grammars are extracted from
a general shared resource grammar for Romance
languages, which currently combines rules for
French, Spanish and Catalan (Bouillon et al., 2006;
Bouillon et al., to appear 2007b).

One interesting consequence of our methodology
is related to the fact that Spanish is a prodrop lan-
guage, which implies that many sentences are sys-
tematically ambiguous between declarative and Y-N
question readings. For example, “He consultado un
médico” could in principle mean either “I visited a
doctor” or “Did I visit a doctor?”. When training the
specialised Spanish grammars, it is thus necessary to
specify which readings of the training sentences are
to be used. Continuing the example, if the sentence
occurred in training material for the answer gram-
mar, we would specify that the declarative reading
was the intended one1.

4 Ellipsis processing and contextual
interpretation

In Version 1 of the system, the patient is per-
mitted to answer using elliptical phrases; in Ver-

1The specification can be formulated as a preference that
applies uniformly to all the training examples in a given group.
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sion 2, she is obliged to do so. Ability to pro-
cess elliptical responses makes it easier to guide the
patient towards the intended coverage of the sys-
tem, without degrading the quality of recognition
(Bouillon et al., to appear 2007a). The downside is
that ellipses are also harder to translate than full sen-
tences. Even in a limited domain like ours, and in a
closely related language-pair, ellipsis can generally
not be translated word for word, and it is necessary
to look at the preceding context if the rules are to
be applied correctly. In examples 1 and 2 below,
the locative phrase “In your stomach” in the English
source becomes the subject in the Spanish transla-
tion. This implies that the translation of the ellipsis
in the second physician utterance needs to change
syntactic category: “In your head” (PP) becomes
“La cabeza” (NP).
(1) Doctor: Do you have a pain in your

stomach?
(Trans): Le duele el estomago?

(2) Doctor: In your head?
(Trans): *En la cabeza?

Since examples like this are frequent, our sys-
tem implements a solution in which the patient’s
replies are translated in the context of the preced-
ing utterance. If the patient-side recogniser’s output
is classified as an ellipsis (this can done fairly reli-
ably thanks to use of suitably specialised grammars;
cf. Section3), we expand the incomplete phrase
into a full sentence structure by adding appropriate
structural elements from the preceding physician-
side question; the expanded semantic structure is the
one which is then translated into interlingual form,
and thence back to the physician-side language.

Since all linguistic representations, including
those of elliptical phrases and their contexts, are rep-
resented as flat attribute-value lists, we are able to
implement the resolution algorithm very simply in
terms of list manipulation. In YN-questions, where
the elliptical answer intuitively adds information to
the question (“Did you visit the doctor?”; “El lunes”
→ “I visited the doctor on Monday”), the repre-
sentations are organised so that resolution mainly
amounts to concatenation of the two lists2. In WH-
questions, where the answer intuitively substitutes
the elliptical answer for the WH-phrase (“What is

2It is also necessary to replace second-person pronouns with
first-person counterparts.

your temperature?”; “Cuarenta grados”→ “My tem-
perature is forty degrees”), resolution substitutes the
representation of the elliptical phrase for that of a
semantically similar element in the question.

The least trivial aspect of this process is provid-
ing a suitable definition of “semantically similar”.
This is done using a simple example-based method,
in which the grammar developer writes a set of dec-
larations, each of which lists a set of semantically
similar NPs. At compile-time, the grammar is used
to parse each NP, and extract a generalised skele-
ton, in which specific lexical information is stripped
away; at run-time, two NPs are held to be semanti-
cally similar if they can each be unified with skele-
tons in the same equivalence class. This ensures that
the definition of the semantic similarity relation is
stable across most changes to the grammar and lex-
icon. The issues are described in greater detail in
(Bouillon et al., to appear 2007a).

5 Help system

Since the performance of grammar-based speech un-
derstanding is only reliable on in-coverage mate-
rial, systems based on this type of architecture must
necessarily use a controlled language approach, in
which it is assumed that the user is able to learn the
relevant coverage. As previously noted, the Med-
SLT system addresses this problem by incorporat-
ing an online help system (Starlander et al., 2005;
Chatzichrisafis et al., 2006).

On the physician side, the help system offers, af-
ter each recognition event, a list of related ques-
tions; similarly, on the patient side, it provides ex-
amples of known valid answers to the current ques-
tion. In both cases, the help examples are extracted
from a precompiled corpus of question-answer pairs,
which have been judged for correctness by system
developers. The process of selecting the examples
is slightly different on the two sides. For questions
(physician side), the system performs a second par-
allel recognition of the input speech, using a sta-
tistical recogniser. It then compares the recogni-
tion result, using an N-gram based metric, against
the set of known correct in-coverage questions from
the question-answer corpus, to extract the most sim-
ilar ones. For answers (patient side), the help sys-
tem searches the question-answer corpus to find the
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questions most similar to the current one, and shows
the list of corresponding valid answers, using the
whole list in the case of Version 1 of the system, and
only the subset consisting of elliptical phrases in the
case of Version 2.

6 Evaluation

In previous studies, we have evaluated speech
recognition and speech understanding per-
formance for physician-side questions in
English (Bouillon et al., 2005) and Spanish
(Bouillon et al., to appear 2007b), and investi-
gated the impact on performance of the help system
(Rayner et al., 2005a; Starlander et al., 2005). We
have also carried out recent evaluations designed to
contrast recognition performance on elliptical and
full versions of the same utterance; here, our results
suggest that elliptical forms of (French-language)
MedSLT utterances are slightly easier to recognise
in terms of semantic error rate than full sentential
forms (Bouillon et al., to appear 2007a). Our initial
evaluation studies on the bidirectional system have
focussed on a specific question which has particular
relevance to this new version of MedSLT. Since
we are assuming that the patient will respond
using elliptical utterances, and that these utterances
will be translated in the context of the preceding
physician-side question, how confident can we
be that this context-dependent translation will be
correct?

In order to investigate these issues, we performed
a small data-collection using Version 2 of the sys-
tem, whose results we summarise here. One of the
authors of the paper played the role of an English-
speaking physician, in a simulated medical exam-
ination scenario where the goal was to determine
whether or not the “patient” was suffering from a
viral throat infection. The six subjects playing the
role of the patient were all native speakers of Span-
ish, and had had no previous exposure to the system,
or indeed any kind of speech technology. They were
given cards describing the symptoms they were sup-
posed to be displaying, on which they were asked
to based their answers. From a total of 92 cor-
rectly recognised patient responses, we obtained 50
yes/no answers and 42 examples of real elliptical ut-
terances. Out of these, 36 were judged to have been

translated completely correctly, and a further 3 were
judged correct in terms of meaning, but less than flu-
ent. Only 3 examples were badly translated: of these
two were caused by problems in a translation rule,
and one by incorrect treatment of ellipsis resolution.
We show representative exchanges below; the last of
these is the one in which ellipsis processing failed to
work correctly.
(3) Doctor: For how long have you

had your sore throat?
Patient: Desde hace más de

una semana
(Trans): I have had a sore

throat for more than one week
(4) Doctor: What were the results?

Patient: Negativo
(Trans): The results were negative

(5) Doctor: Have you seen a doctor
for your sore throat?

Patient: Sı́ el lunes
(Trans): I visited the doctor

for my sore throat monday
(6) Doctor: Have you been with anyone

recently who has a strep throat?
Patient: Si más de dos semanas
(Trans): I was in contact with someone

more than two weeks recently
who had strep throat

7 Conclusions

We have presented a bidirectional grammar-based
English↔ Spanish medical speech translation sys-
tem built using a linguistically motivated archi-
tecture, where all linguistic information is ulti-
mately derived from two resource grammars, one
for each language. We have shown how this en-
ables us to derive the multiple grammars needed,
which differ both with respect to function (recog-
nition/generation) and to domain (physician ques-
tions/patient answers). The system is currently un-
dergoing initial lab testing; we hope to advance to
initial trials on real patients some time towards the
end of the year.
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Abstract

We present a development environment for
Regulus, a toolkit for building unification
grammar-based speech-enabled systems, fo-
cussing on new functionality added over the
last year. In particular, we will show an
initial version of a GUI-based top-level for
the development environment, a tool that
supports graphical debugging of unification
grammars by cutting and pasting of deriva-
tion trees, and various functionalities that
support systematic development of speech
translation and spoken dialogue applications
built using Regulus.

1 The Regulus platform

The Regulus platform is a comprehensive toolkit
for developing grammar-based speech-enabled sys-
tems that can be run on the commercially avail-
able Nuance recognition environment. The plat-
form has been developed by an Open Source con-
sortium, the main partners of which have been
NASA Ames Research Center and Geneva Uni-
versity, and is freely available for download from
the SourceForge website1. Regulus has been used
to build several large systems, including Geneva
University’s MedSLT medical speech translator
(Bouillon et al., 2005) and NASA’s Clarissa proce-
dure browser (Rayner et al., 2005b)2.

Regulus is described at length in
(Rayner et al., 2006), the first half of which consists
of an extended tutorial introduction. The release

1http://sourceforge.net/projects/regulus/
2http://ic.arc.nasa.gov/projects/clarissa/

also includes extensive online documentation,
including several example applications.

The core functionality offered by Regulus is com-
pilation of typed unification grammars into parsers,
generators, and Nuance-formatted CFG language
models, and hence also into Nuance recognition
packages. Small unification grammars can be com-
piled directly into executable forms. The central
idea of Regulus, however, is to base as much of
the development work as possible on large, domain-
independent resource grammars. A resource gram-
mar for English is available from the Regulus web-
site; similar grammars for several other languages
have been developed under the MedSLT project at
Geneva University, and can be downloaded from the
MedSLT SourceForge website3.

Large resource grammars of this kind are over-
general as they stand, and it is not possible to com-
pile them directly into efficient recognisers or gener-
ators. The platform, however, provides tools, driven
by small corpora of examples, that can be used to
create specialised versions of these general gram-
mars using the Explanation Based Learning (EBL)
algorithm. We have shown in a series of exper-
iments that suitably specialised grammars can be
compiled into efficient executable forms. In particu-
lar, recognisers built in this way are very competitive
with ones created using statistical training methods
(Rayner et al., 2005a).

The Regulus platform also supplies a framework
for using the compiled resources — parsers, gen-
erators and recognisers — to build speech transla-
tion and spoken dialogue applications. The envi-
ronment currently supports 75 different commands,

3http://sourceforge.net/projects/medslt

49



which can be used to carry out a range of func-
tions including compilation of grammars into var-
ious forms, debugging of grammars and compiled
resources, and testing of applications. The environ-
ment exists in two forms. The simpler one, which
has been available from the start of the project, is a
command-line interface embedded within the SICS-
tus Prolog top-level. The focus will however be on
a new GUI-based environment, which has been un-
der development since late 2006, and which offers
a more user-friendly graphical/menu-based view of
the underlying functionality.

In the rest of the paper, we outline how Regulus
supports development both at the level of grammars
(Section2), and at the level of the applications that
can be built using the executable forms derived from
them (Section3).

2 Developing unification grammars

The Regulus grammar development toolset borrows
ideas from several other systems, in particular the
SRI Core Language Engine (CLE) and the Xerox
Language Engine (XLE). The basic functionalities
required are uncontroversial. As usual, the Regulus
environment lets the user parse example sentences
to create derivation trees and logical forms; in the
other direction, if the grammar has also been com-
piled into a generator, the user can take a logical
form and use it to generate a surface string and an-
other derivation tree. Once a derivation tree has been
created, either through parsing or through genera-
tion, it is possible to examine individual nodes to
view the information associated with each one. Cur-
rently, this information consists of the syntactic fea-
tures, the piece of logical form built up at the node,
and the grammar rule or lexical entry used to create
it.

The Regulus environment also provides a more
elaborate debugging tool, which extends the ear-
lier “grammar stepper” implemented under the CLE
project. Typically, a grammar development problem
has the following form. The user finds a bad sen-
tenceB which fails to get a correct parse; however,
there are several apparently similar or related sen-
tencesG1...Gn which do get correct parses. In most
cases, the explanation is that some rule which would
appear in the intended parse forB has an incorrect

feature-assignment.
A simple strategy for investigating problems of

this kind is just to examine the structures ofB and
G1...Gn by eye, and attempt to determine what the
crucial difference is. An experienced developer,
who is closely familiar with the structure of the
grammar, will quite often be able to solve the prob-
lem in this way, at least in simple cases. “Solving
by inspection” is not, however, very systematic, and
with complex rule bugs it can be hard even for ex-
perts to find the offending feature assignment. The
larger the grammar becomes, especially in terms of
the average number of features per category, the
more challenging thead hoc debugging approach
becomes.

A more systematic strategy was pioneered in the
CLE grammar stepper. The developer begins by
looking at the working examplesG1...Gn, to de-
termine what the intended correct structure would
be for B. They then build up the corresponding
structure for the bad example, starting at the bot-
tom with the lexical items and manually selecting
the rules used to combine them. At some point, a
unification will fail, and this will normally reveal the
bad feature assignment. The problem is that manual
bottom-up construction of the derivation tree is very
time-consuming, since even quite simple trees will
usually have at least a dozen nodes.

The improved strategy used in the Regulus gram-
mar stepper relies on the fact that theG1...Gn can
usually be constructed to include all the individual
pieces of the intended derivation tree forB, since in
most cases the feature mis-match arises when com-
bining two subtrees which are each internally con-
sistent. We exploit this fact by allowing the devel-
oper to build up the tree forB by cutting up the trees
for G1...Gn into smaller pieces, and then attempting
to recombine them. Most often, it is enough to take
two of theGi, cut an appropriate subtree out of each
one, and try to unify them together; this means that
the developer can construct the tree forB with only
five operations (two parses, two cuts, and a join),
rather than requiring one operation for each node in
B, as in the bottom-up approach.

A common pattern is thatB andG1 are identical,
except for one noun-phrase constituentNP , andG2

consists ofNP on its own. To take an example from
the MedSLT domain,B could be “does the morning
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Figure 1: Example of using the grammar stepper to discover a feature mismatch. The window on the
right headed “Stepper” presents the list of available trees, together with the controls. The windows headed
“Tree 1” and “Tree 4” present the trees for item 1 (“does red wine give you headaches”) and item 4 (“the
morning”). The popup window on the lower right presents the feature mismatch information.

give you headaches?”,G1 the similar sentence “does
red wine give you headaches?” andG2 the single
NP “the morning”. We cut out the first NP subtree
from G1 to produce what is in effect a tree with an
NP “slash category”, that can be rendered as “does
NP give you headaches?”; call thisG′

1
. We then cut

out the single NP subtree (this accounts for most,
but not all, of the derivation) fromG2, to produce
G′

2
. By attempting to unifyG′

2
with the NP “hole”

left in G′

1
, we can determine the exact nature of the

feature mismatch. We discover that the problem is
in the sortal features: the value of the sortal feature
onG′

2
is time, but the corresponding feature-value

in the NP “hole” isaction\/cause.

Figure1 contains a screenshot of the development
environment in the example above, showing the state
when the feature mismatch is revealed. A detailed
example, including screenshots for each step, is in-
cluded in the online Regulus GUI tutorial4.

4Available in the filedoc/RegulusGUITutorial.pdffrom the
SourceForge Regulus website

3 Developing applications

The Regulus platform contains support for both
speech translation and spoken dialogue applications.
In each case, it is possible to run the development
top-loop in a mode appropriate to the type of appli-
cation, including carrying out systematic regression
testing using both text and speech input. For both
types of application, the platform assumes a uniform
architecture with pre-specified levels of representa-
tion.

Due to shortage of space, and because it is the
better-developed of the two, we focus on speech
translation. The framework is interlingua-based,
and also permits simple context-based translation
involving resolution of ellipsis5. Processing goes
through the following sequence of representations:

1. Spoken utterance in source language.

2. Recognised words in source language.

5Although it is often possible to translate ellipsis as ellipsis
in closely related language pairs, this is usually not correct in
more widely separated ones.
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3. Source logical form. Source logical form and
all other levels of representation are (almost)
flat lists of attribute/value pairs.

4. “Source discourse representation”. A regu-
larised version of the source logical form, suit-
able for carrying out ellipsis resolution.

5. “Resolved source discourse representation”.
The output resulting from carrying out any nec-
essary ellipsis processing on the source dis-
course representation. Typically this will add
material from the preceding context represen-
tation to create a representation of a complete
clause.

6. Interlingua. A language-independent version
of the representation.

7. Target logical form.

8. Surface words in target language.

The transformations from source logical form
to source discourse representation, from resolved
source discourse representation to interlingua, and
from interlinga to target logical form are defined
using translation rules which map lists of at-
tribute/value pairs to lists of attribute/value pairs.
The translation trace includes all the levels of rep-
resentation listed above, the translation rules used at
each stage, and other information omitted here. The
“translation mode” window provided by the devel-
opment environment makes all these fields available
in a structured form which allows the user to select
for display only those that are currently of interest.
The framework for spoken dialogue systems is simi-
lar, except that in the last three steps “Interlingua” is
replaced by “Dialogue move”, “Target logical form”
by “Abstract response”, and “Surface words in target
language” by “Concrete response”.

The platform contains tools for performing sys-
tematic regression testing of both speech translation
and spoken dialogue applications, using both text
and speech input. Input in the required modality is
taken from a specified file and passed through all
stages of processing, with the output being written
to another file. The user is able to annotate the re-
sults with respect to correctness (the GUI presents
a simple menu-based interface for doing this) and

save the judgements permanently, so that they can
be reused for future runs.

The most interesting aspects of the framework
involve development of spoken dialogue systems.
With many other spoken dialogue systems, the ef-
fect of a dialogue move is distributed throughout the
program state, and true regression testing is very dif-
ficult. Here, our side-effect free approach to dia-
logue management means that the DM can be tested
straightforwardly as an isolated component, since
the context is fully encapsulated as an object. The
theoretical issues involved are explored further in
(Rayner and Hockey, 2004).
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