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Abstract

This paper presents a corpus-based method
for automatic evaluation of geometric con-
straints on projective prepositions. The
method is used to find an appropriate
model of geometric constraints for a two-
dimensional domain. Two simple models
are evaluated against the uses of projective
prepositions in a corpus of natural language
dialogues to find the best parameters of these
models. Both models cover more than 96%
of the data correctly. An extra treatment of
negative uses of projective prepositions (e.g.
A is not aboveB) improves both models get-
ting close to full coverage.

1 Introduction

This paper describes an empirical approach to find-
ing an appropriate model of geometric constraints of
projective prepositions with respect to a domain that
is implicitly given by a corpus. We examine uses
of the projective prepositionsabove, below, to the
right of, to the left ofand other projective preposi-
tions whose orientation is aligned with one of the
former, when they describe the location of an object
relative to another object in two-dimensional space,
see for example (1) and (2) relating to Figure 1:

(1) The circle isto the right of the rectangle.

(2) The circle isnot to the left ofthe rectangle.

Henceforth, the termlocated object(LO) will be
used to refer to the object whose location is speci-
fied and the termreference object(RO) to refer to
the object relative to which the location is specified.

Figure 1: Example of a spatial scene.

In the examples, thelocated objectis the circle in
Figure 1 and thereference objectis the rectangle.
The notionprojective termrefers to the word of a
projective preposition that determines the direction,
e.g. the wordright for the projective prepositionto
the right of. Let us call the use of the projective
prepositionspositive usewhen it is used in default
context as in (1) andnegative usewhen it is embed-
ded under negation as in (2).

Geometric constraints that are associated with
projective prepositions need to be such that they are
met by positive uses such as (1) and violated by neg-
ative uses such as (2). Given that these sentences
are appropriate uses to describe Figure 1, the spatial
scene should meet the constraints that are associated
with to the right of and violate the constraints ofto
the left of. It is obvious that this dual question of true
or false invokes the issue of vagueness: We may find
utterances describing a particular spatial scene and
also their negations describing the same scene. For
example, the following positive use ofabovemay
be appropriate to describe the spatial scene above –
The circle is above the rectangle– but also the cor-
responding negative use in the sentenceThe circle is
not above the rectangle.

We collect empirical evidence of uses of projec-
tive prepositions from theHCRC Map Taskcorpus
(Anderson et al., 1991) – a corpus of human-human

1



dialogues. In contrast to other approaches that report
empirical studies on geometric conditions of projec-
tive prepositions (Kelleher, 2003; Crawford et al.,
2000; Logan and Sadler, 1996; Gapp, 1995; Abella,
1995) the resource used in this paper enables us to
study their use in conversation.

This paper presents a new method for automatic
evaluation of geometric constraints on projective
prepositions with corpus data. We use this method
to study the use of projective prepositions in human-
human conversations and apply it to two models of
geometric constraints with different parameters in
order to evaluate the coverage for each parameter.
A detailed analysis of incorrect cases leads us to a
separate treatment of negative uses.

2 Related Work

This section introduces two types of spatial orienta-
tion relations that we are going to use as geometric
constraints for projective prepositions in Section 4.

Orientation relations are defined with respect to a
frame of referencethat defines the actual alignment
of directions (Levinson, 2003). The present study
is carried out under the assumption of a fixed frame
of reference such that the maps that are used as spa-
tial data define the reference directions forabove,
below, right, andleft. Although projective preposi-
tions are in general sensitive to extra-geometric in-
fluences, e.g. dynamic LOs and ROs and functional
relations between LO and RO (Coventry and Gar-
rod, 2004), we do not expect that such effects play a
role in the data, because the domain is static and it
hardly contains any pairs of objects with a functional
relationship.

In the literature, we find two paradigms for
defining spatial orientation relations: the orthogo-
nal projection paradigm and the angular deviation
paradigm. For each paradigm we review a simple
model and define different levels of granularity. The
limitations of these simple models have been dis-
cussed at length, and more complex models have
been proposed (Kelleher, 2003; Schmidtke, 2001;
Crawford et al., 2000; Matsakis and Wendling,
1999; Fuhr et al., 1995; Abella and Kender, 1993;
Wazinski, 1992). Nonetheless, it will turn out that
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tion model.

Figure 2: Definition of directions.

we can find for each simple model a level of granu-
larity which covers more than 96% of the data.

Orthogonal projection. Orthogonal projection
models define conditions on intervals that are
the result of projecting two-dimensional or three-
dimensional objects onto reference axes. (Papadias
and Sellis, 1994), for example, define an orthogo-
nal projection model with a horizontal and a verti-
cal axis. Objects are represented by their projection
onto these axes or, more illustrative, by bounding
boxes. A bounding box of an object is the mini-
mal rectangle with vertical and horizontal sides that
contains the object. Lines which are defined by
the sides of the bounding box of the reference ob-
ject divide the space into nine regions. We refer
to the regions around the bounding box of the ref-
erence object by means of the cardinal directions
(N,S,E,W,NW,NE,SW,SE) as shown in Figure 2(a).

Let us define two relationsOV andINC for ex-
pressing overlap and complete inclusion. A region
A overlaps with a regionB if and only if their in-
tersection is not empty. A regionA is completely
included inB if and only if their intersection yields
A:

(3) OV (A,B) ⇔ A ∩B 6= ∅ (overlap)
INC(A,B) ⇔ A ∩B = A (inclusion)

The spatial orientation relations between LO
and RO presented below are defined in terms of
overlap and complete inclusion of LO with the
nine regions around RO defined by the model. We
exemplify the specification for the directionnorth
using the auxiliary regionsNHP and NXHP, where
NHP = NW∪N∪NE is the half-plane consisting of
all northern regions andNXHP = NHP∪W ∪RO∪E

is the (extended) half-plane which consists of all
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but the southern regions. For each orientation we
define different levels of granularity – increasing
index indicates wider interpretation. The idea is
that relations on OP0 are as strict as possible and on
OP7 as wide as possible. On granularity level OP0,
the relationnorth0

op(LO,RO) is true if LO is com-
pletely included in theN -region. The predicate on
the next granularity level is true if LO overlaps with
the givenN -region and is included in the northern
half-planeNHP. Granularity level OP2 only requires
inclusion in NHP. OP3 requires overlap withNHP
and inclusion in the extended half-planeNXHP. On
level OP4 the relation is true if LO is included in the
extended half-planeNXHP. Relations on OP5 require
overlap of LO withNXHP and LO must not overlap
with S. On OP6north6

op(LO,RO) is true if the LO
does not overlap withS and on OP7 it is true if LO
is not completely included inS. The same patterns
apply to the relationssouthn

op, westnop, andeastnop.

OP0:north0

op(LO, RO)⇔ INC(LO, N)

OP1:north1

op(LO, RO)⇔ OV (LO, N) ∧ INC(LO, NHP)

OP2:north2

op(LO, RO)⇔ INC(LO, NHP)

OP3:north3

op(LO, RO)⇔

OV (LO, NHP) ∧ INC(LO, NXHP)

OP4:north4

op(LO, RO)⇔ INC(LO, NXHP)

OP5:north5

op(LO, RO)⇔

OV (LO, NXHP) ∧ INC(LO, NXHP ∪ SW ∪ SE)

OP6:north6

op(LO, RO)⇔ INC(LO, NXHP ∪ SW ∪ SE)

OP7:north7

op(LO, RO)⇔ OV (LO, NXHP ∪ SW ∪ SE)

Note, that on granularity levels OP0 to OP3 oppo-
site relations such asnorth andsouth are disjoint.
Their extensions overlap on levels OP4 to OP7.

Angular deviation. Angular deviation models de-
fine conditions on one or more angles that repre-
sent how much LO deviates from a reference direc-
tion from the perspective of RO. In two-dimensional
space there are four reference directions correspond-
ing to the cardinal directions:~N , ~S, ~E, and ~W .
They are aligned with the vertical axis and the hor-
izontal axis, respectively, as shown in Figure 2(b).
Like the models presented in (Hernandez, 1994;
Gapp, 1994) we use centroids to determine one sin-
gle angle between RO and LO. Let the functionc(·)
return the centroid of its argument and let~o be a vec-
tor from the centroid of the reference object to the

centroid of the located object.

(4) ~o =
−−−−−−−−−→
c(RO)c(LO)

The angle between two vectors~a and~b is repre-
sented as6 (~a,~b) and the angular deviation of~a from
the direction given by~b is represented as|6 (~a,~b)|.

Orientation relations are defined via inequality
conditions specifying that the deviation of the an-
gle ~o from the corresponding reference direction is
below or equal to a threshold. The threshold is de-
fined as the granularity level multiplied by 10 de-
grees. We define 19 granularity levels ADn from
n=0 to n=18 according to the pattern shown in (5).

The same patterns with the reference directions~S,
~W , and ~E apply to the relationssouthn

ad, westnad,
andeastnad, respectively.

(5) ADn: northn
ad(LO, RO)⇔ |6 ( ~N,~o)| ≤ (n · 10◦)

Note, that opposite relations such asnorth and
south are disjoint on the levels from AD0 to AD8
and overlap from AD9 to AD18.

3 Data

This section describes the data that is used for the
analysis of the semantics of projective prepositions.
The data is an exhaustive collection of uses of pro-
jective prepositions occurring in theHCRC Map
Taskcorpus (Anderson et al., 1991) where the speak-
ers describe the location of a two-dimensional ob-
ject relative to another two-dimensional object. The
HCRC Map Taskcorpus is a collection of route de-
scription dialogues where one participant tries to ex-
plain a route printed on a map to another partic-
ipant. It contains transcriptions of 128 dialogues
which were recorded with 32 subjects. The maps are
schematic maps containing line drawings of objects,
so calledlandmarks. Examples of sections of the
maps are shown in Section 5. The participants can-
not see each other’s maps so that the task can be ac-
complished only by means of what the participants
say to one another. The two maps that are used for
one dialogue are not exactly identical because not all
landmarks have an identical counterpart on the other
map. Therefore, the participants align their infor-
mation about the maps by describing the location of
landmarks.
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TERM Frequency
above 87

left 86
below 77
right 65

underneath 52
beneath 7
bottom 7

top 7
down 5

TERM Frequency
under 5

up 5
west 3
north 2
south 2

east 1
upwards 1

over 1

Table 1: Frequency of projective terms.

The present study selects those descriptions from
the corpus that satisfy the following requirements:

Requirements:
(i) The description describes the location of one
landmark relative to exactly one other landmark.
(ii) The description contains a projective preposition
that is associated with one of the four cardinal
directions from Figure 2(b).
(iii) The description does not contain any modifiers.

After having removed duplicates of descriptions
occurring in the same dialogue, the set of data con-
sists of 734 different uses of projective prepositions.
324 uses are filtered out by condition (iii) because
they contain modifiers such as hedges (e.g.just), di-
rection modifiers (e.g.straight), and distance modi-
fiers (e.g.2 cm). The remaining set of data consists
of 410 different uses of unmodified projective prepo-
sitions which further divides into 389 positive uses
and 21 negative uses. Table 1 shows all projective
terms ordered by frequency.

Spatial data. The corpus is supplemented by elec-
tronic copies of the maps that the participants have
used. We created geometric representations of each
map by redrawing the shape of each landmark and
representing it as a closed polygon at the same lo-
cation as the original landmark. All polygons are
associated with unique identifiers. Let us define a
function polygon that yields the polygon definition
for each landmark. Given thatl is an identifier of
a landmark andm an identifier of a map, the ex-
pressionpolygon(l,m) returns the definition of the
corresponding polygon.

Annotations. We identify all descriptions in the
corpus that satisfy the requirements specified above.
Then we mark the corresponding projective preposi-

tions in the corpus and annotate them with the fol-
lowing type of information:

(6)
2

6

6

6

6

6

6

6

6

4

TERM : Projective Term

DIAL : Dialogue Identifier

MAP : Map Identifier

LO : Landmark Identifier

RO : Landmark Identifier

INT : (pos | neg)
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The featureTERM denotes the projective term. The
featureDIAL holds a symbol that uniquely identifies
the dialogue which the corresponding utterance oc-
curs in. The featureMAP specifies the map which the
corresponding utterance describes a part of. The fea-
turesLO for located object andRO for reference ob-
ject hold symbols that uniquely identify landmarks.
Finally, the featureINT determines the way how to
interpret the whole feature structure. It accepts one
of the valuespos andneg. The valuepos indi-
cates positive use of the projective preposition in the
given utterance from the corpus: The feature struc-
ture is interpreted as the statement that the partici-
pant of dialogueDIAL who has mapMAP produced
utterances where the location ofLO relative toRO on
mapMAP can be described correctly by the preposi-
tion in question. The valueneg indicates a negative
use of the preposition: The feature structure is in-
terpreted as the statement that the participant of dia-
logueDIAL who has mapMAP produced utterances
where thenegation of the prepositionused is appro-
priate to describe the location ofLO relative toRO
on mapMAP. In the corpus we find cases of explicit
and implicit negation. The following two examples
show cases of explicit negation.

(7) X is not belowY .

(8) A: Is X belowY ?
B: No.

In the first example, the speaker makes a statement
and uses a negated prepositional phrase. In the sec-
ond example, the negation is triggered by a negative
response to a question.

Implicit negations are triggered by rejections of
alternatives. In the following example, participantA

asksB about the truth of alternatives. IfB chooses
one alternative the others are rejected as incorrect:

4



(9) A: Is X above or belowY ?
B: It’s above.

ParticipantB states that the first alternativeX is
above Yis correct and thereby implicitly rejects the
other alternativeX is below Y.

4 Automatic Evaluation of Geometric
Constraints on Projective Prepositions

This section describes a method of automatic evalu-
ation of geometric constraints on projective preposi-
tions with respect to the data described in the previ-
ous section.

For each level of granularity of the spatial ori-
entation relations defined in Section 2 we define
a model-theoretic semantics that maps projective
prepositions onto truth conditions that are expressed
in terms of these spatial orientation relations. In gen-
eral, truth conditions determine the truth of a natu-
ral language expression with respect to a particular
model of a situation. Applied to data used in this
study this means that the truth conditions determine
the applicability of projective prepositions with re-
spect to a pair of landmarks that appear on the same
map.

Semantics. For each projective preposition we
define as many meanings as we have defined
levels of granularity of spatial orientation relations
in Section 2. We define a semantics on feature
structure representations (6). Given the model
α and the granularity leveln we map a feature
structuref onto the truth condition shown in (a) if
f.INT=pos and onto (b) otherwise:

Let f be a feature structure of type (6),
πlo = polygon(f.LO, f.MAP ), and
πro = polygon(f.RO, f.MAP )), then
(a)‖f.TERM‖n

α(πlo, πro) if f.INT=pos;
(b) ¬‖f.TERM‖n

α(πlo, πro) if f.INT=neg.

As said above, the functionpolygon(·, ·) yields a
geometric representation of the landmark specified
by a landmark identifer and a map identifier. The
term‖f.TERM‖n

α denotes the mapping of a projec-
tive term from Table 1 onto a spatial relation with the
accountα and the granularity leveln. For example,
the projective termsabove, top, up, upwards, over,

level +pos -pos +neg -neg corr
OP0 79 310 21 0 100
OP1 249 140 21 0 270
OP2 346 43 19 2 365
OP3 376 13 16 5 392
OP4 385 4 11 10 396
OP5 386 3 7 14 393
OP6 387 2 2 19 389
OP7 389 0 0 21 389

Table 2: Results of the orthogonal projection mod-
els.

andnorthare all mapped ontonorthn
α-relations.1 For

example, if we evaluate the account using orthog-
onal projection and granularity level 0 the feature
structure shown in (10) is mapped onto the formula
¬north0

op(π1, π2) whereπ1 andπ2 are the polygons
determined byLO andRO, respectively.

(10)
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TERM = above

DIAL = d0

MAP = m2f

LO = m2 mannedfort

RO = m2rapids

INT = neg
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Automatic evaluation. We evaluate a semantics
of projective prepositions by automatically comput-
ing truth conditions for each feature structure in the
data and evaluating it with the corresponding geo-
metric representations of RO and LO. If the truth
value istrue and the feature structure specifies pos-
itive use (i.e. INT = pos), then in this case the
semantics is correct. Likewise, if the truth value
is falseand the data specifies negative use (INT =
neg) the semantics is correct. In all other cases
there is a mismatch between the semantics and the
feature structure, so that the corresponding use of
a projective preposition provides negative empirical
evidence against the semantics.

5 Results and Discussion

The results of the evaluation are shown in Table 2
and Table 3. It comprises the evaluation of 27 se-
mantic accounts corresponding to 8 levels of gran-
ularity of the orthogonal projection model (OP0 to

1(O’Keefe, 1996) suggests that distinct projective preposi-
tions can be associated with different levels of granularity, for
example,aboveandup. For the present study the data is too
sparse to compare such differences.
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level +pos -pos +neg -neg corr
AD0 0 389 21 0 21
AD1 116 273 21 0 137
AD2 179 210 21 0 200
AD3 250 139 21 0 271
AD4 291 98 21 0 312
AD5 320 69 21 0 341
AD6 347 42 20 1 367
AD7 370 19 18 3 388
AD8 382 7 17 4 399
AD9 385 4 14 7 399

AD10 386 3 12 9 398
AD11 386 3 10 11 396
AD12 386 3 7 14 393
AD13 386 3 5 16 391
AD14 387 2 5 16 392
AD15 388 1 4 17 392
AD16 388 1 3 18 391
AD17 388 1 1 20 389
AD18 389 0 0 21 389

Table 3: Results of the angular deviation models.

OP7) and 19 levels of granularity of the angular
deviation model with thresholds from0◦ (AD0) to
180◦ (AD18). The first column specifies the gran-
ularity level used. The evaluation of positive uses
of projective prepositions is listed in the second and
third column, the results for negative uses in the
fourth and fifth column. The columns+pos and
+neg report the number of correct cases in which
the truth conditions are consistent with the value of
theINT feature. The number of all correct cases is
the sum of+pos and+neg and is printed in the last
column with the labelcorr. The remaining columns
-pos and -neg report incorrect truth conditions for
positive and negative uses, respectively.

Orthogonal projection. Over all orthogonal pro-
jection models OP4 (included in extended half-
plane) correctly covers a maximum number of 396
cases (96.6%).

For a more detailed analysis aiming at full cover-
age we take a closer look at the errors: there are 4
positive uses for which OP4 provides an incorrect
semantics. The corpus reveals that three of these
uses are not covered by OP4 because the speakers
confused left and right. This confusion is apparent
either because it is corrected by the speaker at a later
point in the dialogue or because the use is obviously
wrong. The remaining case is given by the following
part of the corpus relating to Figure 3:

(11) dialogue q4ec3, utterance 174f

Figure 3: Pebbled shore, crane bay, and boat house.

Figure 4: Disused warehouse and giraffes.

G: have you got anythingbelow pebbled
shore

F: washed stones and flag ship ... and bay

Note, that Figure 3 does not display the landmarks
washed stonesandflag ship. The participantF says
that crane bayis below pebbled shore. This case
is not captured by OP4 but by OP5 (overlap with
extended half-plane).

All negative uses are correctly rejected by OP0
and OP1. The next level OP2 (i.e. completely in-
cluded in half-plane) does not reject the following
two cases:

(12) dialogue q4nc2, utterance 264f

G: i don’t have a disused warehouse on
mine

F: oh right. well it’s just parallel to it ...
like ... just ehm ... ... well notunder-
neath the giraffes ... you know ...

(13) dialogue q3nc7, utterance 66f

G: is totem polebelow the trout farm?
F: no i–, well, it’s kind of opposite it

These uses are explicit negations. In (12)F says

6



Figure 5: Totem pole and trout farm.

that thewarehousein Figure 4 is not underneath the
giraffes. And in (13)F indicates that thetotem pole
is not below thetrout farm in Figure 5. As said
before, OP1 is the most general model that rejects
these cases.

To summarise, a semantics that aims at covering
all of the gooddata employs OP5 for positive uses
and OP1 for negative uses.2 On level OP5 and to a
lesser extent on OP4, the extensions of opposite re-
lations such asaboveandbelowoverlap, because all
objects that are included in the union of the regions
W , RO, andE are bothaboveand below relative
to the reference object. Since on OP4 the overlap is
smaller than on OP5 it is better to use OP4 instead.
A combination of OP4 for positive uses and OP1 for
negative uses still covers almost all of the good data
(99.8%).

Angular deviation. Over all angular deviation
models AD8 and AD9 correctly cover a maximum
number of 399 cases (97.3%).

On level AD9 there are 4 positive uses with an
incorrect semantics. Again the same three uses as
above are due to confusion of left and right. The
remaining use is the following utterance, which re-
lates to the part of a map depicted in Figure 3. The
narrowest model that covers this use is AD13:

(14) dialogue q4ec3, utterance 332

my boat house is ... downbelow crane bay

All negative uses are correctly rejected by all
models from AD0 to AD5. Model AD6 does not
predict rejection of the case which has already been
described above in (12). AD7 additionally produces
two further errors in the following two cases which
describe Figure 6(a) and Figure 6(b), respectively.

2Good data means all data excluding the cases where left
and right was confused.

(a) Tribal settlement and
rope bridge.

(b) Highest viewpoint and
overgrown gully

Figure 6: Section of maps 13 and 10.

(15) dialogue q4ec1, utterance 10f

F: is it underneath the rope bridge or to
the left?

G: it’s underneath the rope bridge

(16) dialogue q4ec8, utterance 41f

G: and eh to the ...left or right of highest
viewpoint

F: ... it’s beneath it

These examples show implicit negative uses. The
utterances in (15) give rise to the interpretation that
the tribal settlementis not to the left rope bridge.
And the utterances in (16) imply that theovergrown
gully is neither to the left nor to the right of thehigh-
est viewpoint. These three negative uses and again
the localisation of thetotem polein (13) have not
been modelled correctly by the semantics that em-
ploys AD8.

To summarise, a semantics aiming to cover all of
thegooddata uses AD13 for positive uses and AD5
for negative uses. Considering that the extensions
of the opposite relations in AD13 overlap to a great
extent, it is better to use a combination of AD9 for
positive uses and AD5 for negative uses which still
covers all of the good data except one case (99.8%).

If we compare the angular deviation model
(AD9/AD5) with the orthogonal projection model
(OP4/OP1), the angular deviation model is superior,
because in AD9 the extensions of opposite relations
such asaboveand below only have a very small
overlap, namely when the angular deviation is ex-
actly 90◦, while in OP4 the overlap is much more
significant.
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6 Summary and Conclusion

This paper described a method to evaluate geometric
constraints on projective prepositions with empirical
data extracted from a corpus of human-human con-
versations. The key feature of the approach is the an-
notation of projective prepositions in the corpus with
links to geometric representations of the objects that
the arguments of the prepositions refer to. The data
is used to automatically apply and evaluate differ-
ent granularity levels of a semantics building upon
a simple orthogonal projection model and a simple
angular deviation model. Both models cover more
than 96% of the data correctly. Further refinement
shows that the angular deviation model covers the
data almost perfectly (99.8%) if we provide an extra
treatment for negative uses, so that positive uses are
accepted when the angular deviation is below 90◦

and negative uses are accepted when the angular de-
viation is greater than 50◦.
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