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Abstract Q

This paper presents a corpus-based method
for automatic evaluation of geometric con-
straints on projective prepositions. The
method is used to find an appropriate
model of geometric constraints for a two-

dimensional domain. Two simple models | the examples, théocated objects the circle in
are evaluated against the uses of projective Figyre 1 and theeference objects the rectangle.
prepositions in a corpus of natural language  The notionprojective termrefers to the word of a
dialogues to find the best parameters of these projective preposition that determines the direction,
models. Both models cover more than 96% ¢ g. the wordight for the projective prepositioto

of the data correctly. An extra treatment of  the right of Let us call the use of the projective
negative uses of projective prepositions (€.9.  prepositionspositive usewhen it is used in default
Als not aboveB) improves both models get-  context as in (1) andegative usavhen it is embed-
ting close to full coverage. ded under negation as in (2).

Geometric constraints that are associated with
projective prepositions need to be such that they are

This paper describes an empirical approach to findnet by positive uses such as (1) and violated by neg-
ing an appropriate model of geometric constraints ditive uses such as (2). Given that these sentences
projective prepositions with respect to a domain thadre appropriate uses to describe Figure 1, the spatial
is implicitly given by a corpus. We examine usesscene should meet the constraints that are associated
of the projective prepositionabove below to the with to the right of and violate the constraints tf

right of, to the left ofand other projective preposi- the left of Itis obvious that this dual question of true
tions whose orientation is aligned with one of theor false invokes the issue of vagueness: We may find
former, when they describe the location of an objedétterances describing a particular spatial scene and
relative to another object in two-dimensional space?lso their negations describing the same scene. For

see for example (1) and (2) relating to Figure 1: ~ example, the following positive use abovemay
be appropriate to describe the spatial scene above —

(1)  Thecircle isto the right ofthe rectangle.  The circle is above the rectanglebut also the cor-

(2)  The circle isnot to the left ofthe rectangle. responding negative use in the sentefbe circle is
not above the rectangle

Figure 1: Example of a spatial scene.

1 Introduction

Henceforth, the terntocated object(LO) will be

used to refer to the object whose location is speci- We collect empirical evidence of uses of projec-
fied and the termreference objecf{RO) to refer to tive prepositions from thélCRC Map Taslcorpus
the object relative to which the location is specified(Anderson et al., 1991) — a corpus of human-human
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dialogues. In contrast to other approaches that report nw! N | NE N
empirical studies on geometric conditions of projec- W

tive prepositions (Kelleher, 2003; Crawford et al., W | RO| E

2000; Logan and Sadler, 1996; Gapp, 1995; Abella, E
1995) the resource used in this paper enables us to SW| S | SE S

study their use in conversation. (a) Orthogonal pro-  (b) Angular devia-

. . jection model. tion model.
This paper presents a new method for automatic

evaluation of geometric constraints on projective Figure 2: Definition of directions.
prepositions with corpus data. We use this method

to study the use of projective prepositions in human-

human conversations and apply it to two models o€ can find for each simple model a level of granu-
geometric constraints with different parameters idarity which covers more than 96% of the data.

order to evaluate the coverage for each parameter.

A detailed analysis of incorrect cases leads us to@rthogonal projection.  Orthogonal  projection
separate treatment of negative uses. models define conditions on intervals that are

the result of projecting two-dimensional or three-
2 Reated Work dimensional objects onto reference axes. (Papadias

and Sellis, 1994), for example, define an orthogo-
This section introduces two types of spatial orientanal projection model with a horizontal and a verti-
tion relations that we are going to use as geometrical axis. Objects are represented by their projection
constraints for projective prepositions in Section 4.onto these axes or, more illustrative, by bounding

boxes. A bounding box of an object is the mini-

Orientation relations are defined with respect to gha| rectangle with vertical and horizontal sides that

frame of referencéhat defines the actual alignmentcontains the object. Lines which are defined by
of directions (Levinson, 2003). The present studyhe sides of the bounding box of the reference ob-
is carried out under the assumption of a fixed framgct divide the space into nine regions. We refer
of reference such that the maps that are used as Spgthe regions around the bounding box of the ref-
tial data define the reference directions &i5ove  erence object by means of the cardinal directions
below; right, andleft. Although projective preposi- (N, s E,W,NW,NE,SW, B shown in Figure 2(a).
tions are in general sensitive to extra-geometric in- | ot s define two relation®V andINC for ex-

fluences, e.g. dynamic LOs and ROs and function@}essing overlap and complete inclusion. A region
relations between LO and RO (Coventry and Gary gyerlaps with a regior if and only if their in-

rod, 2004), we do not expect that such effects play @;section is not empty. A regiod is completely

role in the data, because the domain is static andiifciuded inB if and only if their intersection yields
hardly contains any pairs of objects with a functionaly.

relationship.
_ _ _ (3) OV(A,B) < An B # () (overlap
In the literature, we find two paradigms for INC(A,B) < AN B = A (inclusion
defining spatial orientation relations: the orthogo-

nal projection paradigm and the angular deviation The spatial orientation relations between LO
paradigm. For each paradigm we review a simpland RO presented below are defined in terms of
model and define different levels of granularity. Theoverlap and complete inclusion of LO with the
limitations of these simple models have been disaine regions around RO defined by the model. We
cussed at length, and more complex models hawxemplify the specification for the directiamorth
been proposed (Kelleher, 2003; Schmidtke, 200Lsing the auxiliary regionsiHP and NXHP, where
Crawford et al.,, 2000; Matsakis and WendlingNHP = NWUNUN E is the half-plane consisting of
1999; Fuhr et al., 1995; Abella and Kender, 1993all northern regions angiXHP = NHPUW U ROUFE
Wazinski, 1992). Nonetheless, it will turn out thatis the (extended) half-plane which consists of all



but the southern regions. For each orientation weentroid of the located object.
define different levels of granularity — increasing

index indicates wider interpretation. The idea i€4) 0= c(RO)c(LO)

that relations on OPO are as strict as possible and on

OP7 as wide as possible. On granularity level OPd,N€ @ngle between two vectorsand b is repre-

the relationnorthl,(LO, RO) is true if LO is com- sented ag (d, b) and the angular deviation gffrom
pletely included in theV-region. The predicate on the d'lrecthn given w IS represehted d#(q’ b)l. _
the next granularity level is true if LO overlaps with Orientation relations are defined via inequality
the givenN-region and is included in the northernconditions specifying that the deviation of the an-

half-planeNHP. Granularity level OP2 only requires gle ¢ from the corresponding reference direction is
inclusion inNHP. OP3 requires overlap WithHP below or equal to a threshold. The threshold is de-

and inclusion in the extended half-plangnp, On fined as the granularity level multiplied by 10 de-
level OP4 the relation is true if LO is included in thedr€€s. We define 19 granularity levels ADrom
extended half-planXp. Relations on OP5 require =0 101=18 according to the pattern shown in (5).
overlap of LO withNXHP and LO must not overlap The same patterns with the reference directions
with S. On OP6northS,(LO, RO) istrue if the LO W, and E apply to the relationsouth;, westy,
does not overlap witt$ and on OP7 it is true if LO andeasty,, respectively.

is not completely included it¥. The same patterns

apply to the relationsouthy,,, westy,,, andeasty,. (5)

ADn: north?,(LO, RO) < |/(N,3)| < (n-10°)

. Note, that opposite relations such asrth and
OPO:"O”}LTP(LQRO) & INC(LO,N) south are disjoint on the levels from ADO to AD8
OPLinorthy,(LO, RO) < OV (LO, N) NINC(LO,NHP)  and overlap from AD9 to AD18.

OP2:north2,(LO, RO) < INC(LO, NHP)
(
P

OP3:north3,(LO, RO) < 3 Data

OV (LO,NHP) A INC(LO, NXHP)

OP4:north,,(LO, RO) < INC(LO,NXHP) This section describes the data that is used for the
OP5:northy,(LO, RO) < analysis of the semantics of projective prepositions.
OV (LO,NXHP) A INC(LO,NXHP U SW U SE) The data is an exhaustive collection of uses of pro-
OP6:northS,(LO, RO) < INC(LO,NXHP U SW U SE) jective prepositions occurring in thelCRC Map
OP7:northl,(LO, RO) < OV (LO,NXHP U SW U SE) Taskcorpus (Anderson et al., 1991) where the speak-

ers describe the location of a two-dimensional ob-
Note, that on granularity levels OP0 to OP3 oppoject relative to another two-dimensional object. The

site relations such asorth andsouth are disjoint. HCRC Map Taskcorpus is a collection of route de-
Their extensions overlap on levels OP4 to OP7.  scription dialogues where one participant tries to ex-

plain a route printed on a map to another partic-
Angular deviation. Angular deviation models de- ipant. It contains transcriptions of 128 dialogues
fine conditions on one or more angles that repreahich were recorded with 32 subjects. The maps are
sent how much LO deviates from a reference direcschematic maps containing line drawings of objects,
tion from the perspective of RO. In two-dimensionalso calledlandmarks Examples of sections of the
space there are four reference directions corresponghaps are shown in Section 5. The participants can-
ing to the cardinal directions:N, S, E, and W. not see each other's maps so that the task can be ac-
They are aligned with the vertical axis and the horeomplished only by means of what the participants
izontal axis, respectively, as shown in Figure 2(b)say to one another. The two maps that are used for
Like the models presented in (Hernandez, 1994ne dialogue are not exactly identical because not all
Gapp, 1994) we use centroids to determine one sitandmarks have an identical counterpart on the other
gle angle between RO and LO. Let the functign)  map. Therefore, the participants align their infor-
return the centroid of its argument and édte a vec- mation about the maps by describing the location of
tor from the centroid of the reference object to thdandmarks.



TERM _ Frequency] TERM Frequency tions in the corpus and annotate them with the fol-
above 87 under 5 . . .
left 86 up 5 lowing type of information:
below 77 west 3
J righth 65 nOl’t?] 2 (6) [TERM : Projective Term
underneat 52 sout 2 DA -
beneath 7 east 1 DIAL : Dialogue Iq§ntlf|er
bottom 7| upwards 1 MAP  : Map Identifier
top 7 over 1 LO : Landmark Identifie
down ° RO : Landmark Identifie]
Table 1: Frequency of projective terms. [INT - (pos | neg)

The featureTERMdenotes the projective term. The
The present study selects those descriptions frofeatureDl AL holds a symbol that uniquely identifies

the corpus that satisfy the following requirements: the dialogue which the corresponding utterance oc-

curs in. The featur&AP specifies the map which the
Requirements: corresponding utterance describes a part of. The fea-
() The description describes the location of oneauresLOfor located object an®Ofor reference ob-
landmark relative to exactly one other landmark. ject hold symbols that uniquely identify landmarks.
(ii) The description contains a projective prepositiorFinally, the featurd NT determines the way how to
that is associated with one of the four cardinalnterpret the whole feature structure. It accepts one
directions from Figure 2(b). of the valuespos andneg. The valuepos indi-
(iii) The description does not contain any modifierscates positive use of the projective preposition in the

given utterance from the corpus: The feature struc-

Afte_r haymg removed_ duplicates of descnptlonsture is interpreted as the statement that the partici-
occurring in the same dialogue, the set of data con

) ; -  ~~pant of dial | AL who h P
sists of 734 different uses of projective preposmonsIO ant of dialogued who has maAP produced

. - Utterances where the locationloDrelative toROon
324 uses are filtered out by condition (iii) because

they contain modifiers such as hedges (s, di- mapMAP can be described correctly by the preposi-

. - . . . tion in question. The valupeg indicates a negative
rection modifiers (e.gstraighf), and distance modi- . .
use of the preposition: The feature structure is in-

fiers (e.g.2 cm. The remaining _set of (.jaté.l CorlSIStsterpreted as the statement that the participant of dia-
of 410 different uses of unmodified projective prepo;
. : L ) . logue DI AL who has mafvMAP produced utterances
sitions which further divides into 389 positive uses . o .
. .~ “where thenegation of the prepositionsed is appro-
and 21 negative uses. Table 1 shows all projective . . . :
terms ordered by frequenc priate to describe the location &fO relative toRO
yireq Y- on mapMAP. In the corpus we find cases of explicit
Spatial data. The corpus is supplemented by elecand implicit negation. The following two examples
tronic copies of the maps that the participants havehow cases of explicit negation.
used. We created geometric representations of each _
map by redrawing the shape of each landmark ard) X is not belowY’.
rep_resentlng it as a closed polygon at the same | 8) A ls X belowY?
cation as the original landmark. All polygons are B No

associated with unique identifiers. Let us define a

function polygon that yields the polygon definition | the first example, the speaker makes a statement
for each landmark. Given thdtis an identifier of 54 uses a negated prepositional phrase. In the sec-

a landmark andn an identifier of a map, the ex- ong example, the negation is triggered by a negative
pressionpolygon(l, m) returns the definition of the response to a question.

corresponding polygon. Implicit negations are triggered by rejections of

Annoctations. We identify all descriptions in the alternatives. In the following example, participaht
corpus that satisfy the requirements specified abovasksB about the truth of alternatives. B chooses
Then we mark the corresponding projective preposiene alternative the others are rejected as incorrect:



A ls X ve or below ? level +pos -pos +neg -neg corr
©) s X above or belo OPO 79 310 21 0 100

B: It's above. OP1 249 140 21 0 270

o _ o OP2 346 43 19 2 365
Participant B states that the first alternativ¥ is OoP3 376 13 16 5 392
above Yis correct and thereby implicitly rejects the op4 385 4 11 10 396

O OP5 386 3 7 14 393
other alternativeX is below Y oP6 387 2 2 19 389
0

OoP7 389 0 21 389

4 Automatic Evaluation of Geometric

Constraints on Projective Prepositions Table 2: Results of the orthogonal projection mod-

els.

This section describes a method of automatic evalu-

ation of geometric constraints on projective preposiandnorth are all mapped ontoorthf’ -relations® For

tions with respect to the data described in the previexample, if we evaluate the account using orthog-

ous section. onal projection and granularity level O the feature
For each level of granularity of the spatial ori-structure shown in (10) is mapped onto the formula

entation relations defined in Section 2 we define%mmghgp(m,772)wherew1 andm, are the polygons

a model-theoretic semantics that maps projectiveéetermined by OandRO, respectively.

prepositions onto truth conditions that are expressed

in terms of these spatial orientation relations. In gend10) TERM = above

eral, truth conditions determine the truth of a natu- DIAL  =d0

ral language expression with respect to a particular MAP fme

model of a situation. Applied to data used in this ;(()) ;n;igzindn:dfort
study this means that the truth conditions determine INT = neg

the applicability of projective prepositions with re- - -
spect to a pair of landmarks that appear on the sameitomatic evaluation. We evaluate a semantics
map. of projective prepositions by automatically comput-
) o N ing truth conditions for each feature structure in the
Semantics.  For each projective preposition We yata ang evaluating it with the corresponding geo-
define as many meanings as we have defingfayic representations of RO and LO. If the truth

levels of granularity of spatial orientation relations, 5 ;e istrue and the feature structure specifies pos-
in Section 2. We define a semantics on featurg; o ,;se {e. I NT = pos), then in this case the

structure representations (6).  Given the modelemantics is correct. Likewise, if the truth value
a and the granularity leveh we map a feature s ta156 and the data specifies negative UBAIT =
structure f onto the truth conqun shown in (a) if neg) the semantics is correct. In all other cases
f.INT=pos and onto (b) otherwise: there is a mismatch between the semantics and the
feature structure, so that the corresponding use of
a projective preposition provides negative empirical
evidence against the semantics.

Let f be a feature structure of type (6),
o = polygon(f.LO, f.MAP), and
Tro = polygon(f.RO, f.M AP)), then
@) /- TERMI|Z (710, 77r0) if f.INT=pOS; 5 Resultsand Discussion
(b) =|| f. TERM | (710, mpo) if f.INT=neEQ.
The results of the evaluation are shown in Table 2

As said above, the functiopolygon (-, -) yields a and Table 3. It comprises the evaluation of 27 se-
geometric representation of the landmark SpeCiﬁeH"antic accounts Corresponding to 8 levels of gran-
by a landmark identifer and a map identifier. Theyarity of the orthogonal projection model (OPO to
term|| f. T ERM]|” denotes the mapping of a projec-

tive term from Table 1 onto a spatial relation with the *(O'Keefe, 1996) suggests that distinct projective preposi
tions can be associated with different levels of granulafar

accoun.ta gnd the granularity levet. For example, example,aboveandup. For the present study the data is too
the projective termsbove top, up, upwards over, sparse to compare such differences.



level +pos -pos +neg -neg corr

ADO 0 389 21 0 21

AD1 116 273 21 0 137

AD2 179 210 21 0 200

AD3 250 139 21 0 271

AD4 291 98 21 0 312

AD5 320 69 21 0 341

AD6 347 42 20 1 367

AD7 370 19 18 3 388

AD8 382 7 17 4 399

AD9 385 4 14 7 399

AD1I0 386 3 12 9 398

AD11 386 3 10 11 39 \_

AD12 386 3 7 14 393 ™~

AD13 386 3 5 16 391

AD14 387 2 5 16 392 Figure 3: Pebbled shore, crane bay, and boat house.
AD15 388 1 4 17 392

AD16 388 1 3 18 391

AD17 388 1 1 20 389 q o
AD18 389 0 0 21 389 4 8¢

giraffes

Table 3: Results of the angular deviation models.

OP7) and 19 levels of granularity of the angular ﬁ;@
deviation model with thresholds fromf (ADO) to disused vacehouse

180° (AD18). The first column specifies the gran-
ularity level used. The evaluation of positive uses
of projective prepositions is listed in the second and

Figure 4: Disused warehouse and giraffes.

third column, the results for negative uses in the G: have you got anythingelow pebbled
fourth and fifth column. The columnspos and shore
+neg report the number of correct cases in which F: washed stones and flag ship ... and bay

the truth conditions are consistent with the value of

the | NT feature. The number of all correct cases is Note, that Figure 3 does not display the landmarks
the sum of+pos and+neg and is printed in the last washed stoneandflag ship The participantF’ says
column with the labetorr. The remaining columns that crane bayis below pebbled shore This case
-pos and -neg report incorrect truth conditions for is not captured by OP4 but by OP5 (overlap with
positive and negative uses, respectively. extended half-plane).

Orth al ect 0 Il orth | All negative uses are correctly rejected by OPO
rthogonal projection. ~Over all orthogonal pro- 4 op1. The next level OP2 (i.e. completely in-

jection models OP4 (mclude_d in_extended hahc'cluded in half-plane) does not reject the following
plane) correctly covers a maximum number of 39@ )

WO cases:
cases (96.6%).

For a more detailed analysis aiming at full cover{12) dialogue g4nc2, utterance 264f

age we take a closer look at the errors: there are 4 G: i don't have a disused warehouse on
positive uses for which OP4 provides an incorrect mine

semantics. The corpus reveals that three of these F: ohright. well it's just parallel to it ...
uses are not covered by OP4 because the speakers like ... just ehm ... ... well notinder-

confused left and right. This confusion is apparent
either because itis corrected by the speaker at a later _
point in the dialogue or because the use is obviousht3)  dialogue g3nc7, utterance 66f

neath the giraffes ... you know ...

wrong. The remaining case is given by the following G: istotem polébelow the trout farm?
part of the corpus relating to Figure 3: F: noi-, well, it's kind of opposite it
(11)  dialogue g4ec3, utterance 174f These uses are explicit negations. In (E2¥ays



R e e 7:0 e bridge 4 ol \‘\
] trout farm P ) e
f}f‘% highest viedpoint
s
tolem poie - ’:\*%//;{
y N v o
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PULES Ll m

tribal settiement overgrown jAll\j

Figure 5: Totem pole and trout farm.

(@) Tribal settlement an¢b) Highest viewpoint and
o ) rope bridge. overgrown gully
that thewarehousén Figure 4 is not underneath the

giraffes And in (13) F' indicates that théotem pole Figure 6: Section of maps 13 and 10.
is not below thetrout farm in Figure 5. As said
before, OPL1 is the most general model that rejects

these cases. (15)  dialogue g4ecl, utterance 10f

To summarise, a semantics that aims at covering F: s it underneath the rope bridge or to
all of the good data employs OP5 for positive uses the |eft?
and OP1 for negative use%.0On level OP5 and to a G: it's underneath the rope bridge

lesser extent on OP4, the extensions of opposite re-
lations such aaboveandbelowoverlap, because all (16)  dialogue g4ec8, utterance 41f

objects that are included in the union of the regions G: and ehtothe .left orright of highest
W, RO, and E are bothaboveand below relative viewpoint
to the reference object. Since on OP4 the overlap is F: ...itsbeneath it

smaller than on OP5 it is better to use OP4 instead.
A combination of OP4 for positive uses and OP1 for These examples show implicit negative uses. The
negative uses still covers almost all of the good datatterances in (15) give rise to the interpretation that
(99.8%). the tribal settlementis not to the leftrope bridge

o ~ And the utterances in (16) imply that tgergrown
Angular deviation. Over all angular deviation g1y is neither to the left nor to the right of ttegh-
models AD8 and ADS correctly cover a maximuMegt yiewpoint These three negative uses and again
number of 399 cases (97.3%). the localisation of theotem polein (13) have not

On level AD9 there are 4 positive uses with amyeen modelled correctly by the semantics that em-
incorrect semantics. Again the same three uses ggyys ADS,

above are due to confusion of left and right. The

. . . . To summarise, a semantics aiming to cover all of
remaining use is the following utterance, which re-the ooddata uses AD13 for positive uses and AD5
lates to the part of a map depicted in Figure 3. Th 9 P

narrowest model that covers this use is AD13: ?or negative USES. _Cons_ldermg that the extensions
of the opposite relations in AD13 overlap to a great

(14)  dialogue g4ec3, utterance 332 extent, it is better to use a combination of AD9 for
my boat house is ... dowmelow crane bay Positive uses and AD5 for negative uses which still

covers all of the good data except one case (99.8%).
All negative uses are correctly rejected by all If we compare the angular deviation model

mod_els fr_om_ADO to AD5. quel ADG6 does not (AD9/ADS5) with the orthogonal projection model
predict rejection of the case which has already bee('a)P4/OP1), the angular deviation model is superior,

described above |r_1 (12). AD7 gddltlonally prOdu_Ce%ecause in AD9 the extensions of opposite relations
two further errors in the following two cases whlchSuch asabove and below only have a very small

describe Figure 6(a) and Figure 6(b), respectively. overlap, namely when the angular deviation is ex-

’Good data means all data excluding the cases where Ieﬁ_CtIy_ _90)’ while in OP4 the overlap is much more
and right was confused. significant.



6 Summary and Conclusion Klaus-Peter Gapp. 1994. Basic meanings of spatial re-
lations: computation and evaluation in 3d space. In

This paper described a method to evaluate geometricAAAI'94: Proceedings of the twelfth national confer-

constraints on projective prepositions with empirical €Nce on Artificial intelligence (vol. 2)pages 1393-

data extracted from a corpus of human-human con- =00 Menio Park, CA, USA. American Association

; P ) for Artificial Intelligence.
versations. The key feature of the approach is the an-
notation of projective prepositions in the corpus witH<.-P. Gapp. 1995.  An empirically validated model

. . . : for computing spatial relations. In I. Wachsmuth,
links to geometric representations of the objects that C.-R. Rollinger, and W. Brauer, editork-95: Ad-

the arguments of the prepositions refer to. The data ances in Artificial Intelligence. 19th German Annual
is used to automatically apply and evaluate differ- Conference on Atrtificial Intelligencg@ages 245-256.
ent granularity levels of a semantics building upon Springer, Berlin, Heidelberg.

a simple orthogonal projection model and a simpley, | Hemandez. 1994Qualitative Representation of
angular deviation model. Both models cover more Spatial KnowledgeSpringer-Verlag New York, Inc.
than 96% of the data correctly. Further refinement

shows that the angular deviation model covers th&®" Kelleher. 2003.A Perceptually Based Compu-
tational Framework for the Interpretation of Spatial

data almost perfectly (99.8%) if we provide an extra Language in 3D Simulated Environmenh.D. the-

treatment for negative uses, so that positive uses aresis, Dublin City University, Dublin.

aC((:jepted yvhen the angular dzwa:]lon E beIoWI 90§tephen C. Levinson. 2003Space in Language and

arl .negatlve uses are accepted when the angular ©Cognition Cambridge University Press.

viation is greater than 50

Gordon D. Logan and Daniel D. Sadler. 1996. A com-
putational analysis of the apprehension of spatial rela-
tions. In Paul Bloom, Mary A. Peterson, Lynn Nadel,
and Merril G. Garrett, editord,anguage and Space
MIT Press.
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