
Proceedings of the Linguistic Annotation Workshop, pages 41–44,
Prague, June 2007. c©2007 Association for Computational Linguistics

Discontinuity Revisited: An Improved Conversion to
Context-Free Representations

Adriane Boyd
Department of Linguistics
The Ohio State University

1712 Neil Ave.
Columbus, OH 43210

adriane@ling.osu.edu

Abstract
This paper introduces a new, reversible
method for converting syntactic structures
with discontinuous constituents into tradi-
tional syntax trees. The method is applied
to the Tiger Corpus of German and results
for PCFG parsing requiring such context-
free trees are provided. A labeled depen-
dency evaluation shows that the new conver-
sion method leads to better results by pre-
serving local relationships and introducing
fewer inconsistencies into the training data.

1 Introduction

Unlike traditional treebanks, the Negra and Tiger
Corpora (Brants et al., 2002) allow crossing
branches in the syntactic annotation to handle cer-
tain features of German. In order to use the Ne-
gra or Tiger Corpus data to train a PCFG parser, it
is necessary to convert the syntactic annotation into
context-free syntax trees. In previous work (see sec-
tion 3.1), a non-reversible method has been used that
raises nodes in the tree to eliminate discontinuities.
This method effectively introduces inconsistencies
into the data and disrupts the grammatical depen-
dency annotation in the trees. This paper presents
a new, reversible method for converting Negra and
Tiger syntactic structures into context-free syntax
trees appropriate for training a PCFG parser. A re-
versible conversion allows the original grammati-
cal dependency relations to be reconstructed from
the PCFG parser output. This paper focuses on the
newer, larger Tiger Corpus, but methods and results
are very similar for the Negra Corpus.

2 Tiger Corpus

The Tiger Corpus was a joint project between Saar-
land University, the University of Stuttgart, and Uni-
versity of Potsdam. The Tiger Corpus Version 2 con-
tains 50,474 sentences of newspaper text. The Tiger
annotation combines features from phrase structure
grammar and dependency grammar using a tree-like
syntactic structure with grammatical functions la-
beled on the edges of the tree (Brants et al., 2002).
Flat sentence structures are used in many places
to avoid attachment ambiguities and non-branching
phrases are not allowed. The annotation scheme
emphasizes the use of the tree structure to encode
all grammatical relations in local trees regardless of
whether a grammatical dependency is local within in
the sentence. This leads to the use of discontinuous
constituents to handle flexible word order, extraposi-
tion, partial constituent fronting, and other phenom-
ena. An example of a Tiger tree with discontinuous
constituents (both VPs) is shown in Figure 1.

3 Conversion to Context-Free Syntax
Trees

For research involving PCFG parsing models trained
on Tiger Corpus data, it is necessary to convert the
syntax graphs with crossing branches into traditional
syntax trees in order to extract context-free grammar
rules from the data. Approximately 30% of sen-
tences in Tiger contain at least one discontinuous
constituent.

3.1 Existing Tiger Corpus Conversion
In previous research, crossing branches have been
resolved by raising non-head nodes out of discon-

41



Mit

APPR

dem

ART

Bau

NN

soll

VMFIN

1997

CARD

begonnen

VVPP

werden

VAINF

AC NK NK

PP

OP MO HD

VP

OC HD

VP

OCHD

S

‘Construction should start in 1997.’
(lit. with the construction should 1997 begun be)

Figure 1: Discontinuous Tiger tree

tinuous constituents until no more branches cross.
The converted sentence from Figure 1 is shown in
Figure 2. In any sentence, multiple nodes could
each be raised one or more times, so it is difficult
to automatically reconstruct the original sentence.
Previous work on PCFG parsing using Negra or
Tiger has either used the provided Penn Treebank-
style versions of the corpora included with Ne-
gra and Tiger Version 1 (Dubey and Keller, 2003;
Dubey, 2004) or used a program provided with the
Negra/Tiger Annotate software (Plaehn and Brants,
2000) which performs the raising algorithm (Kübler,
2005; Kübler et al., 2006). This conversion will be
referred to as the “raising method”.

3.2 A New Approach to Eliminating
Discontinuities

The raising method has the advantages of preserving
the number of nodes in the tree, but it is not easily
reversible and disrupts local trees. Raising non-head
nodes is not an ideal way of eliminating disconti-
nuities because it does not preserve the relationship
between a head and a dependent that is represented
in a local tree in the Tiger annotation. After raising
one or more nodes in 30% of the sentences in the
corpus, local trees are no longer consistent across
the treebank. Some VPs may contain all their ob-
jects while others do not. For example, in Figure 2
the PP object Mit dem Bau is no longer in the local
tree with its head begonnen. The PCFG has lessened
chance of capturing generalizations from the result-
ing inconsistent training data.

Preferable to the raising method is a conversion
that is reversible and that preserves local trees as

Mit

APPR

dem

ART

Bau

NN

soll

VMFIN

1997

CARD

begonnen

VVPP

werden

VAINF

AC NK NK

PP

OP HD OC

S

MO HD

VP

OC HD

VP

Figure 2: Result of conversion by raising

Mit

APPR

dem

ART

Bau

NN

soll

VMFIN

1997

CARD

begonnen

VVPP

werden

VAINF

OC HD OC

S

OC

VP*

OP

VP*

AC NK NK

PP

OC HD

VP*

MO HD

VP*

Figure 3: Result of conversion by splitting

much as possible. The new approach to the con-
version involves splitting discontinuous nodes into
smaller “partial nodes”. Each subset of the original
children with a continuous terminal yield becomes a
partial node. In this way, it is possible to remove
crossing branches while preserving the parent re-
lationships from the original tree. Because partial
nodes retain their original parents, the reverse con-
version is greatly simplified.

In order to make the conversion easily reversible,
the partial nodes need to be marked in some way
so that they can be identified in the reverse conver-
sion. A simple method is to use a single mark (*)
on all partial nodes.1 For example, a discontinu-
ous VP with the children NN-OA (noun acc. obj.)
and VVINF-HD (infinitive) would be converted into
a VP* with an NN-OA child and a VP* with a
VVINF-HD child. The method of creating partial
nodes with a single mark will be called the “splitting
method”. It is completely reversible unless there are
two discontinuous sisters with the same label. While
it is not unusual for a Tiger tree to have multiple dis-

1This approach was inspired by Joakim Nivre’s paper
Pseudo-Projective Dependency Parsing (Nivre, 2005), in which
non-projective dependency structures are converted to easier-to-
parse projective dependency structures in a way that limits the
number of new labels introduced, but is mostly reconstructible.

42



continuous nodes with same label (as in Figure 1),
two nodes with the same label are never sisters so the
conversion is reversible for all sentences. Each tree
is converted with the following algorithm, which is a
postorder traversal that starts at the root node of the
tree. The postorder traversal guarantees that every
child of a node is continuous before the node itself
is evaluated, so splitting the node under considera-
tion into partial nodes will resolve the discontinuity.

SPLIT-DISC-NODES(Node)
for each Child of Node

SPLIT-DISC-NODES(Child)
if Node’s terminal yield is discontinuous

Children := immediate children of Node
ContSets := divide Children into subsets

with continuous terminal yields
for each ChildSubset in ContSets

PNode := new node
PNode’s label := Node’s label with mark (*)
PNode’s parent := Node’s parent
for each Child in ChildSubset

Child’s parent := PNode
remove Node from tree

The splitting conversion of the sentence from Fig-
ure 1 can be seen in Figure 3. To convert the split
version back to the original version, the tree is ex-
amined top-down, rejoining any marked sister nodes
with the same label.

4 Results

All parsing was performed using the unlexicalized
parsing model from the left corner parser LoPar
Schmid (2000). The input data was labeled with per-
fect tags from the corpus to prevent errors in tagging
from affecting the parsing results.

4.1 Data Preparation

For the following experiments, the Tiger Corpus
Version 2 was divided into training, development,
and testing sections. Following the data split from
Dubey (2004), 90% of the corpus was used as train-
ing data, 5% as development data, and 5% as test
data. In preprocessing, all punctuation was removed
because it is not attached within the sentence. 6.5%
of sentences are excluded because they contain no
annotation beyond the word level or because they

contain multiple root nodes. After preprocessing,
there are 42,612 sentences in the training set. For
evaluation, only sentences with 40 words or fewer
are used, leaving 2,312 test sentences. The raised
version is created using the Annotate software and
the split version is created using the method de-
scribed in section 3.2. For the split version, partial
nodes are rejoined before evaluation.

In the Penn Treebank-style versions of the corpus
appropriate for training a PCFG parser, each edge la-
bel has been joined with the phrase or POS label on
the phrase or word immediately below it. Because of
this, the edge labels for single-word arguments (e.g.,
pronoun subjects) are attached to the POS tag of
the word, which provides the parser with the perfect
grammatical function label when perfect lexical tags
are provided. This amounts to providing the perfect
grammatical function labels for approximately one-
third of arguments in Tiger, so to avoid this prob-
lem, non-branching phrase nodes are introduced for
single-word arguments. Phrase nodes are introduced
above all single-word subjects, accusative objects,
dative objects, and genitive objects. The category of
the inserted phrase depends on the POS tag on the
word (NP, VP, or AP as appropriate).

4.2 Experiment 1: Reversibility of Splitting
Conversion

All sentences in the test set were converted into syn-
tax trees by splitting discontinuous nodes according
to the algorithm in section 3.2. All 2,312 sentences
in the test set can be converted back to their original
versions with no errors. The most frequently split
nodes are VP (∼55%) and NP (∼20%).

4.3 Experiment 2: Labeled Dependency
Evaluation

A labeled dependency evaluation is chosen instead
of a typical PARSEVAL evaluation for two reasons:
1) PARSEVAL is unable to evaluate trees with dis-
continuous constituents; 2) a bracketing evaluation
examines all types of brackets in the sentence and
may not reflect how accurately significant grammat-
ical dependencies have been identified.

It is useful to look at an evaluation on gram-
matical functions that are important for determining
the functor-argument structure of the sentence. In
this evaluation, subjects, accusative objects, prepo-

43



Raised Split
GF P R F P R F
Subj 74.8 71.6 73.2 74.7 73.5 74.1
AccObj 46.3 48.9 47.4 49.2 53.7 51.4
PPObj 20.4 10.7 15.6 31.9 15.6 23.8
DatObj 20.1 11.5 15.8 25.5 14.3 19.9

Table 1: Labeled Dependency Evaluation

sitional objects, and dative objects are considered as
part of labeled dependency triples consisting of the
lexical head verb, the grammatical function label,
and the dependent phrase bearing the grammatical
function label. The internal structure of the depen-
dent phrase is not considered.

In Tiger annotation, the head of an argument is
the sister marked with the grammatical function la-
bel HD. HD labels are found with an f-score of 99%
by the parser, so this evaluation mainly reflects how
well the arguments in the dependency triple are iden-
tified. This evaluation uses lexical heads, so if the
sister with the label HD is a phrase, then a recursive
search for heads within that phrase finds the lexical
head. For 5.7% of arguments in the gold standard, it
is not possible to find a lexical head. Further meth-
ods could be applied to find the remaining heads
heuristically, but the additional parameters this in-
troduces for the evaluation are avoided by ignoring
these cases.

The results for a labeled dependency evaluation
on important grammatical function labels are shown
in Table 4.3. Grammatical functions are listed in or-
der of decreasing frequency. The results for subjects
remain similar between the raised and split version,
as expected, and the results for all other types of ar-
guments improve 4-8% for the split version.

Subjects are rarely affected by the raising method
because S nodes are rarely discontinuous, so it is not
surprising that the results for subjects are similar for
both methods. However, VPs are by far the most
frequently discontinuous nodes, and since the rais-
ing method can move an object away from its head,
the difference between the two conversion methods
is most evident in the object relations. Data sparsity
plays a role in the lower scores for the objects, since
there are approximately twice as many subjects as
accusative objects and twelve times as many sub-
jects as dative objects.

5 Future Work

Further research will extend the dependency evalu-
ation presented in this paper to include more or all
of the grammatical functions. There is significant
work on a dependency conversion for Negra by the
Partial Parsing Project (Daum et al., 2004) that could
be adapted for this purpose.

6 Conclusion

By using an improved conversion method to re-
move crossing branches from the Negra/Tiger cor-
pora, it is possible to generate trees without cross-
ing branches that can be converted back to the orig-
inal format with no errors. This is a significant im-
provement over the previously used conversion by
raising, which was not reversible and had the ef-
fect of introducing inconsistencies into the corpus.
The new splitting conversion method shows a 4-8%
improvement in a labeled dependency evaluation on
accusative, prepositional, and dative objects.

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang

Lezius and George Smith, 2002. The TIGER Tree-
bank. In Proceedings of TLT 2002.

Michael Daum, Kilian Foth and Wolfgang Menzel, 2004.
Automatic transformation of phrase treebanks to de-
pendency trees. In Proceedings of LREC 2004.

Amit Dubey, 2004. Statistical Parsing for German: Mod-
eling Syntactic Properties and Annotation Differences.
Ph.D. thesis, Universität des Saarlandes.

Amit Dubey and Frank Keller, 2003. Probabilistic Pars-
ing Using Sister-Head Dependencies. In Proceedings
of ACL 2006.

Sandra Kübler, 2005. How do treebank annotation
schemes influence parsing results? Or how not to com-
pare apples and oranges. In Proceedings of RANLP
2005.

Sandra Kübler, Erhard W. Hinrichs and Wolfgang Maier,
2006. Is it really that difficult to parse German? In
Proceedings of EMNLP 2006.

Joakim Nivre, 2005. Pseudo-Projective Dependency
Parsing. In Proceedings of ACL 2005.

Oliver Plaehn and Thorsten Brants, 2000. Annotate – An
Efficient Interactive Annotation Tool. In Proceedings
of ANLP 2000.

Helmut Schmid, 2000. LoPar: Design and Implementa-
tion. Technical report, Universität Stuttgart.

44


