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Abstract

With ever-increasing demands on the diver-
sity of annotations of language data, the
need arises to reduce the amount of efforts
involved in generating such value-added lan-
guage resources. We introduce here the Jena
ANnotation Environment (JANE), a platform
that supports the complete annotation life-
cycle and allows for ‘focused’ annotation
based on active learning. The focus we pro-
vide yields significant savings in annotation
efforts by presenting only informative items
to the annotator. We report on our experi-
ence with this approach through simulated
and real-world annotations in the domain of
immunogenetics for NE annotations.

1 Introduction

The remarkable success of machine-learning meth-
ods for NLP has created, for supervised approaches
at least, a profound need for annotated language cor-
pora. Annotation of language resources, however,
has become a bottleneck since it is performed, with
some automatic support (pre-annotation) though, by
humans. Hence, annotation is a time-costly and
error-prone process.

The demands for annotated language data is in-
creasing at different levels. After the success in syn-
tactic (Penn TreeBank (Marcus et al., 1993)) and
propositional encodings (Penn PropBank (Palmer et
al., 2005)), more sophisticated semantic data (such
as temporal (Pustejovsky et al., 2003) or opinion an-
notations (Wiebe et al., 2005)) and discourse data

(e.g., for anaphora resolution (van Deemter and Kib-
ble, 2000) and rhetorical parsing (Carlson et al.,
2003)) are being generated. Once the ubiquitous
area of newswire articles is left behind, different do-
mains (e.g., the life sciences (Ohta et al., 2002)) are
yet another major concern. Furthermore, any new
HLT application (e.g., information extraction, doc-
ument summarization) makes it necessary to pro-
vide appropriate human annotation products. Be-
sides these considerations, the whole field of non-
English languages is desperately seeking to enter
into enormous annotation efforts, at virtually all en-
coding levels, to keep track of methodological re-
quirements imposed by such resource-intensive re-
search activities.

Given this enormous need for high-quality anno-
tations at virtually all levels the question turns up
how to minimize efforts within an acceptable qual-
ity window. Currently, for most tasks several hun-
dreds of thousands of text tokens (ranging between
200,000 to 500,000 text tokens) have to be scruti-
nized unless valid tagging judgments can be learned.
While significant time savings have already been re-
ported on the basis of automatic pre-tagging (e.g.,
for POS and parse tree taggings in the Penn Tree-
Bank (Marcus et al., 1993), or named entity taggings
for the Genia corpus (Ohta et al., 2002)), this kind of
pre-processing does not reduce the number of text
tokens actually to be considered.

We have developed the Jena ANnotation Environ-
ment (JANE) that allows to reduce annotation ef-
forts by means of theactive learning (AL) approach.
Unlike random or sequential sampling of linguistic
items to be annotated, AL is an intelligent selective
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sampling strategy that helps reduce the amount of
data to be annotated substantially at almost no loss
in annotation effectiveness. This is achieved by fo-
cusing on those items particularly relevant for the
learning process.

In Section 2, we review approaches to annota-
tion cost reduction. We turn in Section 3 to the de-
scription of JANE, our AL-based annotation system,
while in Section 4 we report on the experience we
made using the AL component in NE annotations.

2 Related Work

Reduction of efforts for training (semi-) supervised
learners on annotated language data has always been
an issue of concern. Semi-supervised learning pro-
vides methods to bootstrap annotated corpora from a
small number of manually labeled examples. How-
ever, it has been shown (Pierce and Cardie, 2001)
that semi-supervised learning is brittle for NLP tasks
where typically large amounts of high quality anno-
tations are needed to train appropriate classifiers.

Another approach to reducing the human labeling
effort is active learning (AL) where the learner has
direct influence on the examples to be manually la-
beled. In such a setting, those examples are taken
for annotation which are assumed to be maximally
useful for (classifier) training. AL approaches have
already been tried for different NLP tasks (Engelson
and Dagan, 1996; Hwa, 2000; Ngai and Yarowsky,
2000), though such studies usually report on simula-
tions rather than on concrete experience with AL for
real annotation efforts. In their study on AL for base
noun phrase chunking, Ngai and Yarowsky (2000)
compare the costs of rule-writing with (AL-driven)
annotation to compile a base noun phrase chunker.
They conclude that one should rather invest human
labor in annotation than in rule writing.

Closer to our concerns is the study by Hachey et
al. (2005) who apply AL to named entity (NE) an-
notation. There are some differences in the actual
AL approach they chose, while their main idea,viz.
to apply committee-based AL to speed up real anno-
tations, is comparable to our work. They report on
negative side effects of AL on the annotations and
state that AL annotations are cognitively more diffi-
cult for the annotators to deal with (because the sen-
tences selected for annotation are more complex).

As a consequence, diminished annotation quality
and higher per-sentence annotation times arise in
their experiments. By and large, however, they con-
clude that AL selection should still be favored over
random selection because the negative implications
of AL are easily over-compensated by the signifi-
cant reduction of sentences to be annotated to yield
comparable classifier performance as under random
sampling conditions.

Whereas Hatcheyet al. focus only on one group
of entity mentions (viz. four entity subclasses of the
astrophysics domain), we report on broader experi-
ence when applying AL to annotate several groups
of entity mentions in biomedical subdomains. We
also address practical aspects as to how create the
seed set for the first AL round and how one might
estimate the efficiency of AL. The immense sav-
ings in annotation effort we achieve here (up to
75%) may mainly depend on the sparseness of many
entity types in biomedical corpora. Furthermore,
we here present ageneral annotation environment
which supports AL-driven annotations for most seg-
mentation problems, not just for NE recognition.

In contrast, annotation editors, such as e.g. Word-
Freak1, typically offer facilities for supervised cor-
rection of automatically annotated text. This, how-
ever, is very different from the AL approach.

3 JANE – Jena ANnotation Environment

JANE, the Jena ANnotation Environment, supports
the whole annotation life-cycle including the com-
pilation of annotation projects, annotation itself (via
an external editor), monitoring, and the deploy-
ment of annotated material. In JANE, an annota-
tion project consists of acollection of documents
to be annotated, an associatedannotation schema
– a specification of what has to be annotated in
which way, according to the accompanying annota-
tion guidelines – a set of configuration parameters,
and anannotator assigned to it.

We distinguish two kinds of annotation projects:
A default project, on the one hand, contains a prede-
fined and fixed collection of naturally occurring doc-
uments which the annotator handles independently
of each other. In anactive learning project, on the
other hand, the annotator has access to exactly one

1http://wordfreak.sourceforge.net
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(AL-computed pseudo) document at a time. After
such a document has completely been annotated, a
new one is dynamically constructed which contains
those sentences for annotation which are the most
informative ones for training a classifier. Besides
annotators who actually do the annotation, there
are administrators who are in charge of (annota-
tion) project management, monitoring the annota-
tion progress, and deployment, i.e., exporting the
data to other formats.

JANE consists of one central component, thean-
notation repository, where all annotation and project
data is stored centrally, twouser interfaces, namely
one for the annotators and one for the administra-
tor, and theactive learning component which inter-
actively generates documents to speed up the anno-
tation process. All components communicate with
the annotation repository through a network socket
– allowing JANE to be run in a distributed envi-
ronment. JANE is largely platform-independent be-
cause all components are implemented in Java. A
test version of JANE may be obtained fromhttp:
//www.julielab.de.

3.1 Active Learning Component

One of the most established approaches to active
learning is based on the idea to build an ensemble
of classifiers from the already annotated examples.
Each classifier then makes its prediction on all unla-
beled exampels. Examples on which the classifiers
in the ensemble disagree most in their predictions
are considered informative and are thus requested
for labeling. Obviously, we can expect that adding
these examples to the training corpus will increase
the accuracy of a classifier trained on this data (Se-
ung et al., 1992). A common metric to estimate
the disagreement within an ensemble is the so-called
vote entropy, the entropy of the distribution of labels
li assigned to an examplee by the ensemble ofk
classifiers (Engelson and Dagan, 1996):

D(e) = −
1

log k

∑

li

V (li, e)

k
log

V (li, e)

k

Our AL component employs such an ensemble-
based approach (Tomanek et al., 2007). The ensem-
ble consists ofk = 3 classifiers2. AL is run on the

2Currently, we incorporate as classifiers Naive Bayes, Max-
imum Entropy, and Conditional Random Fields.

sentence level because this is a natural unit for many
segmentation tasks. In each round,b sentences with
the highest disagreement are selected.3 The pool of
(available) unlabeled examples can be very large for
many NLP tasks; for NE annotations in the biomedi-
cal domain we typically download several hundreds
of thousands of abstracts from PUBMED.4 In or-
der to avoid high selection times, we consider only
a (random) subsample of the pool of unlabeled ex-
amples in each AL round. Both the selection sizeb

(which we normally set tob = 30), the composition
of the ensemble, and the subsampling ratio can be
configured with the administration component.

AL selects single, non-contiguous sentences from
different documents. Since the context of these sen-
tences is still crucial for many (semantic) annota-
tion decisions, for each selected sentence its origi-
nal context is added (but blocked from annotation).
When AL selection is finished, a new document is
compiled from these sentences (including their con-
texts) and uploaded to the annotation repository. The
annotator can then proceed with annotation.

Although optimized for NE annotations, the AL
component may – after minor modifications of the
feature sets being used by the classifiers – also be ap-
plied to other segmentation problems, such as POS
or chunk annotations.

3.2 Administration Component

Administering large-scale annotation projects is a
challenging management task for which we supply
a GUI (Figure 1) to support the following tasks:

User Management Create accounts for adminis-
trators and annotators.

Creation of Projects The creation of an annota-
tion project requires a considerable number of doc-
uments and other files (such as annotation schema
definitions) to be uploaded to the annotation reposi-
tory. Furthermore, several parameters, especially for
AL projects have to be set appropriately.

Editing a Project The administrator can reset a
project (especially when guidelines change, one

3Here, the vote entropy is calculated separately for each to-
ken. The sentence-level vote entropy is then the average over
the respective token sequence.

4http://www.ncbi.nlm.nih.gov/
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Figure 1: Administration GUI: frame in foreground shows actions that can be performed on an AL project.

might want to start the annotation process anew,
i.e., delete all previous annotations but keep the rest
of the project unchanged), delete a project, copy a
project (which is helpful when several annotators la-
bel the same documents to check the applicability of
the guidelines by inter-annotator agreement calcula-
tion), and change several AL-specific settings.

Monitoring the Annotation Process The admin-
istrator can check which documents of an annotation
project have already been annotated, how long anno-
tation took on the average, when an annotator logged
in last time, etc. Furthermore, the progress of AL
projects can be visualized by learning and disagree-
ment curves and an enumeration of the number of
(unique) entities found so far.

Inter-Annotator Agreement For related projects
(projects sharing the same annotation schema and
documents to be annotated) the degree to which
several annotators mutually agree in their annota-
tions can be calculated. Such an inter-annotator
agreement (IAA) is common to estimate the quality
and applicability of particular annotation guidelines
(Kim and Tsujii, 2006). Currently, several IAA met-
rics of different strictness for NE annotations (and
other segmentation tasks) are incorporated.

Deployment The annotation repository stores the
annotations in a specific XML format (see Sec-

tion 3.3). For deployment, the annotations may be
needed in a different format. Currently, the admin-
istration GUI basically supports export into the IOB
format. Only documents marked by the annotators
as‘completely annotated’ are considered.

3.3 Annotation Component

As the annotators are rather domain experts (in our
case graduate students of biology or related life sci-
ences) than computer specialists, we wanted to make
life for them as easy as possible. Hence, we pro-
vide a separate GUI for the annotators. After log-in
the annotator is given an overview of his/her annota-
tion projects along with a short description. Double
clicking on a project, the annotators get a list with
all documents in this project. Documents have dif-
ferent flags (raw, in progress, done) to indicate the
current annotation state as set by each annotator.

Annotation itself is done with MMAX , an external
annotation editor (M̈uller and Strube, 2003), which
can be customized with respect to the particular an-
notation schema. The document to be annotated, the
annotations, and the configuration parameters are
stored in separate XML files. Our annotation repos-
itory reflects this MMAX -specific data structure.

Double clicking on a specific document directly
opens MMAX for annotation. During annotation,
the annotation GUI is locked to ensure data in-
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tegrity. When working on an AL project, the anno-
tator can start the AL selection process (which then
runs on a separate high-performance machine) after
having finished the annotation of the current docu-
ment. During the AL selection process (it usually
takes up to several minutes) the current project is
blocked. However, meanwhile the annotator can go
on annotating other projects.

3.4 Annotation Repository

The annotation repository is the heart of our annota-
tion environment. All project, user, and annotation
relevant data is stored here centrally. This is a cru-
cial design criterion because it lets the administrator
access (e.g., for backup or deployment)all annota-
tions from one central site. Furthermore, the anno-
tators do not have to care about how to shift the an-
notated documents to the managerial staff. All state
information related to the entire annotation cycle is
recorded and kept centrally in this repository.

The repository is realized as a relational database5

reflecting largely the data structure of MMAX . Both,
the GUIs and the AL component, communicate with
the repository via the JDBC network driver. Thus,
each component can be run on a different machine
as long as it has a network connection to the annota-
tion repository. This has two main advantages: First,
annotators can work remotely (e.g., from home or
from a physically dislocated lab). Second, resource-
intensive tasks, e.g., AL selection, can be run on sep-
arate machines to which the annotators normally do
not have access. The components communicate with
each other only through the annotation repository. In
particular, there is no direct communication between
the annotation GUI and the AL component.

4 Experience with Real-World Annotations

We are currently conducting NE annotations for
two large-scale information extraction and seman-
tic retrieval projects. Both tasks cover two non-
overlapping biomedical subdomains,viz. one in the
field of hematopoietic stem cell transplantation (im-
munogenetics), the other in the area of gene regu-
lation. Entity types of interest are, e.g., cytokines
and their receptors, antigens, antibodies, immune

5We chose MYSQL, a fast and reliable open source database
with native Java driver support

cells, variation events, chemicals, blood diseases,
etc. In this section, we report on our actual ex-
perience and findings in annotating entity mentions
(drawing mainly on our work in the immunogenetics
subdomain) with JANE, with a focus on methodolog-
ical issues related to active learning.

In the biomedical domain, there is a vast amount
of unlabeled material available for almost any topic
of interest. The most prominent source is probably
PUBMED, a literature database which currently in-
cludes over 16 million citations, mostly abstracts,
from MEDLINE and other life science sources. We
used MESH terms6 and publication date ranges7 to
select relevant documents from the immunogenet-
ics subdomain. Thus, we retrieved about 200,000
abstracts (≈ 2,000,000 sentences) as our document
pool of unlabeled examples for immunogenetics.
Through random subsampling, only about 40,000
sentences are considered for AL selection.

For several of our entity annotations, we did both
an active learning (AL) annotation and a gold stan-
dard (GS) annotation. The latter is performed in
the default project mode on 250 abstracts randomly
chosen from the entire document pool. We asked
different annotators to annotate the same (subset of
the) GS to calculate inter-annotator agreement in or-
der to make sure that our annotation guidelines were
non-ambiguous. Furthermore, as the annotation pro-
ceeds, we regularly train a classifier on the AL an-
notations and evaluate it against the GS annotations.
From thislearning curve, we can estimate the poten-
tial gain of further AL annotation rounds and decide
when to stop AL annotation.

4.1 Reduction of Annotation Effort through AL

In real-world AL annotation projects, the amount of
cost reduction is hard to estimate properly. We have
thus extensively simulated and tested the gain in the
reduction of annotation costs of our AL component
on available entity annotations of the biomedical do-
main (GENIA8 and PENNBIOIE9) and the general-

6MESH (http://www.nlm.nih.gov/mesh/) is the
U.S. National Library of Medicine’s controlled vocabulary used
for indexing PUBMED articles.

7Typically, articles published before 1990 are not considered
to contain relevant information for molecular biology.

8http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/

9http://bioie.ldc.upenn.edu/
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Figure 2: Learning curves for AL and random selec-
tion on variation event entity mentions.

language newspaper domain (English data set of the
CoNLL-2003 shared task (Tjong Kim Sang and De
Meulder, 2003)). As a metric for annotation costs
we here consider the number of sentences to be an-
notated such that a certain F-score is reached with
our NE tagger.10 We therefore compare the learning
curves of AL and random selection. On almost ev-
ery scenario, we found that AL yields cost savings
of about 50%, sometimes even up to 75%.

As an example, we report on our AL simula-
tion on the PENNBIOIE corpus for variation events.
These entity mentions include the following six sub-
classes: type, event, original state, altered state,
generic state, and location. The learning curves
for AL and random selection are shown in Figure
2. Using random sampling, an F-score of 80% is
reached by random selection after≈ 8,000 sentences
(200,000 tokens). In contrast, AL selection yields
the same F-score after≈ 2,000 sentences (46,000
tokens). This amounts to a reduction of annotation
costs on the order of 75%.

Our real-world annotations revealed that AL is
especially beneficial when entity mentions are very
sparsely distributed in the texts. After an initializa-
tion phase needed by AL to take off (which can con-
siderably be accelerated when one carefully selects
the sentences of the first AL round, see Section 4.2),
AL selects, by and large, only sentences which con-
tain at least one entity mention of the type of inter-

10The named enatity tagger used throughout in this section
is based on Conditional Random Fields and similar to the one
presented by (Settles, 2004).
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Figure 3: Cumulated entity density on AL and GS
annotations of cytokine receptors.

est. In contrast, random selection (or in real anno-
tation projects: sequential annotations of abstracts
as in our default project mode), may lead to lots of
negative training examples with no entity mentions
of interest. When there is no simulation data at hand,
the entity density of AL annotations (compared with
the respective GS annotation) is a good estimate of
the effectiveness of AL.

Figure 3 depicts such a cumulated entity density
plot on AL and GS annotations of subtypes of cy-
tokine receptors, really very sparse entity types with
one entity mention per PUBMED abstract on the av-
erage. The 250 abstracts of the GS annotation only
contain 193 cytokine receptor entity mentions. AL
annotation of the same number of sentences resulted
in 2,800 annotated entity mentions of this type. The
entity density in our AL corpus is thus almost 15
times higher than in our GS corpus. Such a dense
corpus is certainly much more appropriate for clas-
sifier training due to the tremendous increase of pos-
itive training instances. We observed comparable ef-
fects with other entity types as well, and thus con-
clude that the sparser entity mentions of a specific
type are in texts, the more benefical AL-based anno-
tation actually is.

4.2 Mind the Seed Set

For AL, the sentences to be annotated in the first AL
round, theseed set, have to be manually selected. As
stated above, the proper choice of this set is crucial
for efficient AL based annotation. One should def-
initely refrain from a randomly generated seed set
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– especially, when sparse entity mentions are anno-
tated – because it might take quite a while for AL to
take off. If, in the worst case, the seed set contains
no entity mentions of interest, AL based annotation
resembles (for several rounds in the beginning until
incidentally some entity mentions are found) a ran-
dom selection – which is, as shown in Section 4.1,
suboptimal. Figure 4 shows the simulated effect of
three different seed sets on variation event annota-
tion (PENNBIOIE). In the tuned seed set, each sen-
tence contains at least one variation entity mention.
On this seed, AL performs significantly better than
the randomly assembled seed or the seed with no en-
tity mentions at all. Of course, in the long run, the
three curves converge. Given this evidence, we stip-
ulate that the sparser an entity type is11 or the larger
the document pool to be selected from is, the later
the point of convergence and, thus, the more rele-
vant an effective seed set is.

We developed a useful three-step heuristic to
compile effective seed sets without excessive man-
ual work. In the first step, a list is compiled
comprised of as many entity mentions (of inter-
est to the current annotation project) as possible.
In knowledge- and expert-intensive domains such
as molecular biology, this can either be done by
consulting a domain expert or by harvesting entity
mentions from online resources (such as biological
databases).12 In a second step, the compiled list
is matched against each sentence of the document
pool. Third, a ranking procedure orders the sen-
tences (in descending order) according to the num-
ber ofdiverse matches of entity mentions. This en-
sures that textual mentions of all items from the list
are included in the seed set. Depending on the vari-
ety and density of the specific entity types, our seed
sets typically consist of 200 to 500 sentences.

4.3 Portability of Corpora

While we are working in the field of immunogenet-
ics, the PENNBIOIE corpus focuses on the subdo-
main of oncogenetics and provides a sound annota-

11Variation events are not as sparse in PENNBIOIE as, e.g.,
cytokine receptors in our subdomain. Actually, there is a varia-
tion entity in almost every second sentence.

12In an additional step, some spelling variations of such en-
tity mentions could automatically be generated.
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Figure 4: Effect of different seed sets for AL on vari-
ation event annotation.

tion of these entity mentions (PBVAR).13 We did a
GS annotation on 250 randomly chosen abstracts (≈
2,000 sentences/65,000 tokens) from our document
pool applying PENNBIOIE’s annotation guidelines
for variation events to the subdomain of immuno-
genetics (IMVAR-Gold). We then evaluated how
well our entity tagger trained on PBVAR would do
on this data. Surprisingly, the performance was dra-
matically low,viz. 31.2% F-score.14

Thus, we did further variation event annotations
for the immunogenetics domain with AL: We anno-
tated≈ 58,000 tokens (IMVAR-AL). We trained our
entity tagger on this data and evaluated the tagger on
both IMVAR-Gold and PBVAR. Table 1 summarizes
the results. We conclude that porting training cor-
pora, even from one related subdomain into another,
is only possible to a very limited extent. This may be
because current NE taggers (ours, as well) make ex-
tensive use of lexical features. However, the results
also reveal that annotations made by AL may be
more robust when ported to another domain: a tag-
ger trained on IMVAR-AL still yields about 62.5%
F-score on PBVAR, whereas training the tagger on
the respective GS annotation (IMVAR-Gold), only
about half the performance is yielded (35.8%).

13Although oncogenetics and immunogenetics are different
subdomains, they share topical overlaps – in particular, with
respect to the types of relevant variation entity mentions (such
as ‘single nucleotide polymorphism’, ‘ translocation’, ‘ in-frame
deletion’, ‘ substitution’, etc.). Hence, at least at this level the
two subdomains are related.

14Note that in a 10-fold cross-validation on PBVAR our entity
tagger yielded about 80% F-score.
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evaluation data
training data PBVAR IM VAR-Gold
PBVAR
(≈ 200.000 tokens) ≈ 80% 31.2%
IM VAR-AL
(58.251 tokens) 62.5% 70.2%
IM VAR-Gold
(63.591 tokens) 35.8% –

Table 1: Corpus portability: PENNBIOIE’s variation
entity annotations (PBVAR) vs. ours for immuno-
genetics (IMVAR-AL and -Gold).

5 Conclusion and Future Work

We introduced JANE, an annotation environment
which supports the whole annotation life-cycle from
annotation project compilation to annotation deploy-
ment. As one of its major contributions, JANE al-
lows for focused annotation based on active learn-
ing, i.e., it automatically presents sentences for an-
notation which are of most use for classifier training.

We have shown that porting annotated training
corpora, even from onesubdomain to another and
thus related to a good extent, may severely degrade
classifier performance. Thus, generating new an-
notation data will increasingly become important,
especially under the prospect that there are more
and more real-world information extraction projects
for different (sub)domains and languages. We have
shown that focused, i.e., AL-driven, annotation is a
reasonable choice to significantly reduce the effort
needed to create such annotations – up to 75% in a
realistic setting. Furthermore, we have highlighted
the positive effects of a high-quality seed set for AL
and outlined a general heuristic for its compilation.

At the moment, the AL component may be used
for most kinds of segmentation problems (e.g. POS
tagging, text chunking, entity recognition). Future
work will focus on the extension of the AL compo-
nent for relation encoding as required for corefer-
ences or role and propositional information.
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