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Abstract 

This paper describes the development and 
use of an interface for visually evaluating 
distance measures. The combination of 
multidimensional scaling plots, histograms 
and tables allows for different stages of 
overview and detail. The interdisciplinary 
project Rule-based search in text databases 
with nonstandard orthography develops a 
fuzzy full text search engine and uses dis-
tance measures for historical text document 
retrieval. This engine should provide easier 
text access for experts as well as interested 
amateurs. 

1 Introduction 

In recent years interest in historical digitization 
projects has markedly increased, bearing witness to 
a growing desire to preserve cultural heritage 
through new media. All over Europe projects are 
arising digitizing not only monetary but also intel-
lectually valuable text documents. While more and 
more documents are being digitized and often pro-
vided with well designed interfaces, they are not 
necessarily easy to work with, especially for 
nonlinguists. Spelling variants, faulty character 
recognition (OCR) and typing errors hamper if not 
circumvent sensible utilization of the data. One 

such example is the archive of Jewish periodicals 
in German language, Compact Memory 
(www.compactmemory.de). Even though of great 
cultural value and very well maintained, the opera-
tors of this project simply did not have the re-
sources required to postprocess or annotate their 
automatically recognized text documents. A user 
for example searching for the word “Fruchtbarkeit” 
(=fertility) will not be able to find a certain peri-
odical from 1904 even though it clearly contains 
the word. Worse, he will not even come to know 
that this text was missed. Because the full text 
aligned with the graphical representation of the 
text contains recognition errors, only the search for 
the misspelled word “Piuchtbaikeit” instead of 
“Fruchtbarkeit” finds the correct page (cf. Figure 
1). The same problem arises when dealing with 
historical spelling variation. German texts prior to 
1901 often contain historical spelling variants. 
Numerous projects are dealing with similar prob-
lems of optical character recognition or spelling 
variation. 

To meet those problems linguistics and com-
puter science are closing ranks. Fuzzy full-text 
search functions provide access to nonstandard text 
databases. Since the amount of data on the one 
hand and the divergence of users on the other in-
creases day by day, search methods are continu-
ously presented with new challenges. The project 
RSNSR (Rule-based search in text databases with 

 
Figure 1. OCR errors prevent successful retrieval on digitized texts if misspelled variants are used for full 

text search. 

 

84



nonstandard orthography) seeks to improve the 
retrieval of nonstandard texts. Such texts might 
include historical documents, texts with re-
gional/dialectal or phonetic variation, typos or 
OCR errors. The project’s funding by the Deutsche 
Forschungsgemeinschaft (DFG [German Research 
Foundation]) was recently extended by two years. 

2 Comparing similarity measures 

One of the important issues in building a search 
engine for nonstandard spellings is a reliable way 
to allow the comparison of words, that is, to meas-
ure the similarity between the search expression 
and the results provided. Given the abundance of 
distance measures and edit-distances available, 
methods are needed for efficiently comparing dif-
ferent similarity measures. In (Kempken et al. 
2006) we evaluated 13 different measures with the 
calculation of precision and recall to determine 
which were most qualified to deal with historical 
German spelling variants. We mainly used our own 
database of historical spellings, manually collected 
from the German text archives Bibliotheca Augus-
tana, documentArchiv.de and Digitales Archiv 
Hessen-Darmstadt. Currently our database consists 
of 12,687 modern-historical word pairs (that we 
call evidences) originating between 1293 and 1919. 

The algorithm that proved best for calculating 
the edit costs between the modern and the histori-
cal spellings is called Stochastic distance (SM) and 
was originally proposed in 1975 by Bahl and 
Jelinek. In 1997 Ristad and Yianilos (Ristad et al, 
1997) took it up again and extended the approach 
to machine learning abilities. Due to the complex-
ity of language, apparently similar scopes can ob-
viously favor totally different mechanisms. The 
Variant Detector VARD developed by Rayson et 
al. to detect spelling variants in historical English 
texts uses the standard Soundex algorithm with 
convincing efficiency (Rayson et al, 2005). The 
same algorithm yields an error rate 6.7 times 
higher than the stochastic distance for the compari-
son of German spelling variants. Cases like these 
suggest that finding one “most suitable” distance 
measure for all data might not be possible. As soon 
as the inherent structures change, another measure 
can prove to be more efficient. Even though, with 
the SM, we already found a suitable measure, its 
dependency on the underlying training data forces 
us to evaluate the training results: what is the size 

of an optimal training set? Is the training set well 
chosen? Does 14th-century data appropriately rep-
resent 13th-century spellings? Answers to these and 
similar questions not only help to ensure better 
retrieval but can also give an insight into phonetic 
or graphematic changes of language. Since stan-
dard calculations of retrieval quality, as we did for 
the 13 measures, require not only extensive work 
but are also difficult to evaluate, we propose possi-
bilities for visual evaluation means to speed up and 
ease this process. The prototype we developed is 
but one example for those possibilities and is 
meant to encourage scientists to benefit from vis-
ual information representation.  

3 Development and functions of an inter-
active visual interface  

Since our project already deals with different 
methods for calculating word distance, the defini-
tion of a generic interface was necessary. Priority 
was given to the development of a slim and easily 
accessible device that allows the connection of ar-
bitrary concepts of word distance. Our SM, a rule 
based measure using regular expressions, Soundex 
(Knuth, 1973), Jaro(-Winkler) (Jaro, 1995) and a 
number of additional measures are already imple-
mented in our system. It was built in Java and is 
embedded in our general environment for the proc-
essing of nonstandard spellings. 

Information Visualization is a fairly new field of 
research that is rapidly evolving. A well estab-
lished definition of information visualization is 
“the use of computer-supported, interactive, visual 
representations of abstract data to amplify cogni-
tion” (Card et al, 1999). While planning the proto-
type, we also kept Shneiderman’s paradigm in 
mind: “Overview first, zoom and filter details on 
demand” (Shneiderman, 1996). In dealing with 
distance measures, our main task is to represent 
word distance. We employed multidimensional 
scaling (MDS) to display abstract distance in 2D 
space (see below). Interactivity is gained with the 
ability to select and remove spellings from the cal-
culations, lower or raise cutoff frequencies and 
filters and even change replacement costs with in-
stantaneous effect (see below). This led to a user 
interface separated into three main views:  

• The Histogram allows an overview of 
thousands of data items. The selection of a 
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certain portion of data triggers MDS and ta-
ble views.  

• Multidimensional Scaling (MDS) func-
tions as a detail view. Such visualization is 
used to display sets of several dozen to a 
few hundred items. 

• The Table View can display different lev-
els of detail. In (Kempken et al, 2007) we 
presented a TreeMap approach, another way 
to display details of single word derivations 
as an add-on for table views. 

3.1 Histograms 

Histograms are a widely spread tool for display of 
statistical distribution of values. In favor of Shnei-
derman’s paradigm, the histogram view represents 
a combination of overview and zoom functionality. 
This first stage allows for the reduction of the data 
set from up to several thousand items down to 
much more manageable sizes. 

To get a first impression of how a spelling dis-
tance performs on a set of evidences, we calculate 
the distance between a spelling variant and the en-
tries in a dictionary. It is ensured that the collection 
also contains the standard spelling related to the 
variant. The results are sorted in ascending order 
by their distance from the spelling variant. After-
wards, the rank of the corresponding spellings is 
determined. In the best case, the correct relation 
will appear as the first entry in this list, that is, at 
the smallest distance from the variant. Often, other 
spellings appear “closer” to the variant and thus 
have a higher rank, pushing the spelling we sought 
for further down the list (cf. Figure 2).  

By applying this procedure to a collection of 
word pairs, we get a distribution of spelling ranks 
over the set of evidences based on the spelling col-

lection. Good distance measures produce a histo-
gram with most of its largest bars close to the first 
rank on the left. A good example is the evaluation 
in section 5 (cf. Figure 5). 

The histogram provides a good representation of 
the overall performance of a spelling distance 
given for a set of test data. The user will quickly 
notice if a large number of spellings are found in 
the acceptable ranking range, if there are notice-
able isolated outliers or if the values are spread 
widely over the whole interval. In addition, histo-
grams can be useful as tools for comparing differ-
ent spelling distances. Usually multiple histograms 
are viewed one after another or arranged next to 
each other. While this might be enough to perceive 
considerable differences in distributions, small-
scale variations may pass unnoticed. An easy solu-
tion to this problem is to arrange the different his-
tograms in a combined display area, where the 
relevant subinterval bars are lined up next to one 
another and made distinguishable by color or tex-
ture. Through this simple rearrangement, even 
small changes become noticeable to the user. 
Slight height differences between bars of the same 
value interval can be noticed as can shifts in peaks 
along the value range. 

For more quantitative performance measurement 
mean value and standard deviation are calculated 
and presented in numerical form. A distance defi-
nition that performs well will have a low mean 
value as more spellings are found with a good 
ranking. However, a mean value that is not espe-
cially high or low by itself is usually not enough to 
characterize a distribution. For this reason, it is 
important to know the values’ spread around the 
distribution’s mean value measured by the standard 
deviation (SD). A distribution with only a few, 
tightly packed value peaks provides a small SD 
whereas a widely spread one will have a large SD. 
A spelling distance that performs well can be rec-
ognized by a low mean value accompanied by a 
low SD. Both key values can also be made visible 
in a histogram by drawing markers in its back-
ground. In this way, even the key values are easy 
to compare when comparing spelling distances. 

3.2 Multidimensional scaling 

The MDS view displays smaller subsets, thus al-
lowing further refinement while providing addi-
tional information detail. 

 
Figure 2. The standard spelling "liebe" corre-
sponding to variant "liebd" was pushed back 
by "lieb" because deletion of <d> is cheaper 

than the replacement of <d> with <e>. 
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MDS is a class of statistical methods that has its 
roots in psychological research. The main applica-
tion of such techniques is to assign the elements of 
an item set to a spatial configuration in such a way 
that it represents the elements’ relationships with 
as little distortion as possible. In this context, MDS 
can be used to arrange spellings in a two-
dimensional space according to their spelling dis-
tances from one another. Every available dimen-
sion reduces the need for distortion but increases 
the difficulty to interpret. Two or three dimensions 
are a good trade-off. This allows for an intuitive 
display of distances and clusters of spelling vari-
ants. It also makes it possible to discover distance 
anomalies. If this representation is provided with 
filtering features, it can be used to select subsets of 
elements quickly and comfortably. These subsets 
can then be displayed in detailed information 
views that would be too cluttered with greater 
numbers of items. 

The “distortion” is evaluated by comparing the 
distances calculated by the spelling distances with 
the configuration’s geometric distances (i.e. dis-
tances following geometric rules). A common cal-

culation for this distortion is the so-called “raw 
stress” factor. Kruskal (Kruskal, 1964) defined raw 
stress as the sum of distance errors over a configu-
ration. To calculate this error, we use the distance 
matrix D, where each entry holds the calculated 
distance δij between the spellings of the relevant 
row and column. These values can be modified by 
f(δij)=a δij to achieve a scaling more fit for visual 
distances, thus reducing stress. Comparison with 
geometric distances also requires this matrix to be 
symmetric. Because spelling distances are not nec-
essarily symmetric (distance A – B differs from B 
– A), we use the mean value of both distance direc-
tions to create symmetry, as Kruskal suggests. The 
second part of the error calculation requires the 
geometric distances dij between the spellings, 
which is determined by i and j of the current con-
figuration X. The actual error is the difference be-
tween the two distances squared. 
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Figure 3. The user interface of the Metric Evaluation Tool showing the evaluation of six metrics 

trained on different historical training sets, polygon selection in the MDS view and cut-off sliders. 
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Kruskal’s “raw stress” value is then determined 
by summarizing the error over the elements of the 
upper triangular matrix. The sum can be restricted 
to this reduced element set due to the symmetric 
nature of the matrix. 
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In our Metric Evaluation Tool (MET) we used the 
SMACOF algorithm (see below) to calculate a 
stress-minimizing configuration. Finding such a 
configuration is a numerical optimization problem. 
Because a direct solution of such a problem is of-
ten not feasible, numerous iterative algorithms 
have been developed to calculate an approximate 
solution close enough to the direct solution, where 
one actually exists. The SMACOF algorithm (scal-
ing by majorizing a complicated function) is such 
an approach (De Leeuw, 1977). We start by ar-
ranging the items in a checkerboard grid configura-
tion. The algorithm then calculates the raw stress, 
modifies the current configuration so that it yields 
a lesser stress value by applying a Guttman Trans-
formation (Guttman, 1968) and then compares the 
new configuration’s stress with the old one. This 
step is repeated until the change in stress drops 
below a set threshold or a maximum number of 
iteration steps is exceeded.  

The resulting configuration is usually not an op-
timal one. Optimal in this case would be a distor-
tionless representation with vanishing stress value. 
Such a configuration is rarely, if ever, achieved in 
MDS. There are three main reasons for this: 

 
• Some calculated spelling distances can 

conflict such that there is no spatial configu-
ration that represents the distances without 
distortion. For example, a spelling may be 
determined to be close to several other spell-
ings, which, however, are widely spread out. 
This is due to the fact that spelling distances 
do not always fulfill the triangle inequality.  

• Although geometric distances, being 
mathematical metrics, require the spelling 
distances to be symmetric, the spelling dis-
tances calculated will not necessarily be so. 
For instance, the distance between spellings 
A and B could be different from that be-
tween spellings B and A. 

• Even if an optimal configuration were to 
exist, the iterative optimization process 
might not actually find it. The algorithm 
might terminate due to iteration limits or be-
cause of being “trapped” in a local mini-
mum. 

This restriction on the MDS result, however, is 
not severe enough to derogate its usage as a visu-
alization tool. Its task is not to reconstruct the cal-
culated distance perfectly but to uncover character-
istics of the spelling distances and spelling sets 
used. These characteristics, such as clusters and 
outliers, usually outweigh the distortions. Applied 
to a set of spellings and their distance measure, 
MDS generates a spatial configuration fit for a plot 
view. The spellings’ positions in relation to one 
another represent their similarity. Clusters of 
closely related spellings and outliers are easy to 
recognize and can be used as starting points for 
detailed analyses of subsets. 

An advantage of this type of visualization is that 
it considers the calculated distances among all 
spellings instead of only two. An initial compari-
son of the difference or similarity of multiple spell-
ings is possible at a single glance and without 
switching between different views. Additional vis-
ual hints can improve the overview even further. 
Certain spellings, such as the standard spelling or 
the variant, can be made easily recognizable 
through color or shape indications. The selection of 
subsets is aided by zoom and filtering features ap-
plied to the plot view. Densely packed clusters can 
be made less cluttered by changing the plot’s zoom 
factor or by blending irrelevant items into the 
background. Selecting the spellings by either click-
ing or encircling allows the subsets to be deter-
mined easily. The reduced item set can then be 
used for a detail view, for example the display of 
operations and distances like the tabular view. In 
the MET, the components used to calculate a dis-
tance for a given subset can be viewed. In this way, 
it is easy to understand, for example, why a certain 
spelling is not as “close” to another spelling as ex-
pected. 

This visualization approach is applicable to a 
wide variety of spelling distances as long as they 
provide a quantitative measurement of two spell-
ings. There are no assumptions made about the 
distance value except that small values represent a 
high degree of similarity.  
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3.3 Tabular views 

After refining the selections from several thousand 
down to a few items, a detailed display of relevant 
information about the spellings and their calculated 
distances is needed. At this stage the actual values 
are more important than a visually comprehensible 
display of relations.  
Two different views in the MET use a tabular ar-
rangement of values. One represents the distance 
matrix between a set of spellings, similar to the one 
used to calculate the MDS solution. However, in 
this case, the distances are not combined to a mean 
value for both directions. At this point the differ-
ence between the two directions can be of interest 
and should be visible. Standard spelling and spell-
ing variant are displayed in different colors so they 
can be found more easily. 

The second tabular view displays the distances 
between the standard spelling and the ranked vari-
ants. To obtain a better understanding, the results 
are split up into their components using a Leven-
shtein-based distance mirroring the replacement 
costs that occurred when transforming one spelling 
into the other. These components are displayed in 
the rows according to their classification, while the 
different spelling variants appear in the columns  
(cf. Figure 4). By reordering the columns, the user 
can move the spellings next to each other in order 
to compare them more closely. 

Another benefit of representing the values in this 
way is that detailed modifications to the spelling 
distance can be made interactively. Here, the re-
placement costs can be changed inside the table 
itself, allowing an instant evaluation on what effect 
such a change will have on the distance measure. 

4 Interaction 

There are several ways to interact with the applica-
tion. Selection of data triggers an update of the 
view(s) on the next level of detail: by selecting 
columns of the histogram, the ranking table is acti-
vated; selecting spellings in the ranking table trig-

gers the MDS view where spellings can be selected 
to be shown in the distance matrix and metric edi-
tor. While selections in the tabular views and the 
histogram can easily be performed with a rectangu-
lar selection box, the MDS needed a more elabo-
rate way of selecting data. A polygonal form can 
be drawn with the mouse that also allows inverted 
selection (cf. Figure 3). Using two sliders or nu-
merical input, the upper and lower cut-off for se-
lection can be defined. For example, all spellings 
with a distance higher than 2.5 to the search term 
can be excluded (cf. right side of Figure 3). Zoom-
ing can be performed using the mouse wheel. In 
the metric editor, showing the highest degree of 
detail, the costs for the operations of deletion, in-
sertion and replacement can be adjusted. These 
changes are instantly represented in the MDS view, 
therefore allowing for the manual calibration of the 
distance measures (cf. Figure 4).  

5 Exemplary application of the interface 

To give an example of our MET, we will apply it 
to a situation we have encountered more than once 
in the last two years of our research: a set of his-
torical German text documents T from between 
1500 and 1600 which contains nonstandard spell-
ings. As shown in (Kempken, 2006), the number of 
spelling variants in old documents is monotoni-
cally nondecreasing with advancing age. T might 
also contain errors originating from bad OCR or 
obsolete characters. Nonetheless, we want to be 
able to perform retrieval on the document. To 
simulate a successful full-text search, we manually 
collected all 1,165 spelling variants V in T and 
aligned them with their equivalent standard spell-
ings S. We will call those word pairs evidences. S 
is now merged into a contemporary dictionary—
the OpenOffice German dictionary, which contains 
approximately 80,000 words. For a reliable evalua-
tion we need a high quality dictionary without ty-
pos or historical spellings. The OO-dictionary is 
the best such wordlist available to us. Our algo-
rithm is able to process dictionaries of up to ~5 

 
Figure 4. Table view of replacement costs mirroring deletion, insertion and replacement costs. These costs 

can be manually adjusted to trigger an MDS view update. 
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million words. Bigger dictionaries can be kept in a 
database instead of the computer’s main memory. 

We used the MET applied with six different dis-
tance measures to determine the one that works 
best in finding all the standard spellings S “hidden” 
in the dictionary related to the spelling variants V. 
A normal search task in a historical database would 
be to find a spelling variant by querying a standard 
spelling. Because a coherent wordlist of historical 
spellings was not available, to ensure a more reli-
able result, we performed the task the other way 
around. This conforms to the way automatic anno-
tators like VARD work (see above). 

Such experiments can be used not only to find 
the best metric but also to answer general ques-
tions: 

• Will an SM specifically trained on data 
from the same time period as T work best or 
will the extension of the time period lower 
or raise the retrieval quality? 

• Is there a level where a “saturation” of 
training data is reached and the measures’ 
quality cannot be enhanced any further? 

• Does the amount of necessary training data 
vary with the time/location of T? 

For our first experiment the six measures M1, 
M2…M6 were trained by the same number of evi-
dences from 14th- to 19th-century German texts. 
Prior to the training, the evidences had been dia-
chronically clustered (1300-1500, 1300-1700, 
1300-1900, 1500-1700, 1500-1900, 1700-1900) 
into sets, each containing 1,500 word pairs. In gen-
eral, performance is measured in precision (propor-
tion of retrieved and relevant documents to all 
documents retrieved) and recall (proportion of re-
trieved and relevant documents to all relevant 
documents). Since we ensured that for every his-
torical spelling there is a standard spelling, re-
trieved and relevant documents are equal and so 
are precision and recall. We therefore use precision 
at n (P@n). This measure is often used in cases 
where instead of boolean retrieval a ranking of 
documents is returned, for example in web-
retrieval. Precision at 10 is the precision that rele-
vant documents are retrieved within the 10 docu-
ments with the highest ranking. In standard settings 
the MET is using n≤15. 

The task of our prototype now was  
• to determine the metric most suitable for 

the retrieval task, and  

• to figure out deficiencies in the metrics to 
further enhance their quality. 

 
 DMV SD 

1300–1500 1.37 3.174 
1300–1700 1.384 3.222 
1300–1900 1.261 2.983 
1500–1700 1.375 3.1825 
1500–1900 1.29 3.052 
1700–1900 1.43 3.342 

Table 1. Distribution mean value and standard de-
viation of the evaluated measures 

 
Looking at P@1 the measures 1300-1500 (58.6%), 
1300-1700 (58.7%), 1500-1700 (59.1%) and 1700-
1900 (59.4%) seem to be more or less equally effi-
cient. However, by looking at Table 1 we can see 
that this assumption is not totally correct. The 
measure trained on evidences from 1700 to 1900 
holds a slightly higher distribution mean value and 
standard deviation than the other two. Interestingly 
the 1500-1700 measure is not the most efficient 
one. 1300-1900 and 1500-1900 show better results 
in P@1, DMV and SD. Even though the inclusion 
of 1300-1500 evidences seems to be of minor sig-
nificance, the 1300-1900 measure is still slightly 
better (60.5% P@1). Those results are – of course – 
not significant because of the small dictionary we 
used. We hope to acquire a bigger freely available 
dictionary for more expressive results. 

The ranking table is now able to show the actual 
words that led to the result, therefore supporting 
the expert in further interpretations. The MDS plot 
and distance matrix let the user explore the words 
at each rank interactively. Especially interesting 
are, of course, those words that could not be found 
within the top 15 ranks. The 1500-1900 and 1700-
1900 measures have some difficulties with elder 
spellings (e.g. sammatin [=velvety]). It is also evi-
dent that many of the 3.9% of words > P@10 share 
certain characteristics:  

90



• a lot of words are short in length (e.g. vmb, 
nit, het, eer). Even a single letter replace-
ment changes a high percentage of the 
word’s recognizability 

• some words consist of very frequent 
graphemes, therefore increasing the space of 
potential matches in standard spelling (e.g. 
hendlen – enden, handeln, hehlen …) 

• some evidences feature high variability 
(e.g. ewig – eehefig)  

Those cases complicate successful retrieval. 
Comparing the replacement costs in the metric 

editor (cf. Figure 4) indicates where the SM needs 
improvement. In our example we noticed that the 
costs for the replacement of <s> with the German 
ess-tset <ß> were a little too high, and therefore 
spellings were not optimally retrieved. A slight 
manual correction, a control in the MDS view and 
a recalculation of the histogram showed improved 
quality of the SM. 

Further experiments suggested a “training satu-
ration” (see above) of about 4,000 variants. We 
trained M1 on 1,500 evidences from 1300-1900, 
M2 on 4,000, M3 on 6,000 and M4 on 12,000. 
While M1 still shows a small drop in retrieval qual-
ity, the differences between M2 to M4  are almost 
unnoticeable. We also performed a cross-language 
evaluation between historical English and German 
as we already did manually in (Archer et al, 2006). 
Our prior results could be confirmed using the 
MET. 

For the comparison of truly different distance 
measures, as we did in (Kempken, 2006), we used 
the same data as above with our SM 1300-1900, 
Jaro metric (Jaro, 1995) and a standard bigram 
measure (cf. Figure 5). The histogram values of 
p@<4 for the SM (86.6%) are already 9.2% better 
than Jaro (77.4%) and 9.9% better than the bigram 
measure (76.7%). DMV and SD also show how 
much better the SM performed (cf. Table 2). 

 
 
 

 
 DMV SD 

SM 1300-1900 1.604 3.73 
Jaro 2.731 5.124 

Bigrams 2.533 4.754 

Table 2. DMV and SD comparison of SM, Jaro-
Winkler and bigram measure. 

 

6 Conclusion and outlook 

While table views will probably not become obso-
lete any time soon, there are multiple ways to ease 
and enhance the understanding of abstract data. It 
has already been documented that users often pre-
fer visual data representations when dealing with 
complex problems (Kempken, 2007).  

In this paper we presented the prototype of our 
Metric Evaluation Tool and showed that this soft-
ware is helpful in the evaluation of distance meas-
ures. The combination of overview, details and 
interactivity eases the complex task of determining 
quality problem-specific distance measures. 

Because the MET is a prototype, there is room 
for improvement. The graphical MDS display 
could be extended in various ways to further im-
prove the configuration found. Displaying the nu-
merical distance values between spellings as a 
tooltip or graphical overlay, group highlighting and 
interactive insertion or removal of additional spell-
ing variants are just a few examples. The bar charts 
of the histogram view could easily be extended 
using pixel-matrix displays as proposed by (Hao et 
al, 2007) to conveniently represent additional in-
formation like the distribution of distance ranges. 

The MET is only one of the visualization tools 
we are working on at the moment. No single appli-
cation will be able to satisfy all the many and vari-
ous needs that arise in the field of language re-
search. It is our goal to build applications that ac-
cess and reflect spelling variation in a more natural 
and intuitive manner. To narrow the field of poten-
tially suitable distance measures, we are also work-
ing on automatic text classification. The Word-

 
Figure 5. Histogram and DMV comparison of Jaro metric, standard bigram measure and SM 1300-1900. 

91



Explorer, for instance, is an additional approach to 
presenting details. Similar to the MDS view in ap-
pearance, it is used to further examine words’ pos-
sible spelling variants, the graphematic space of 
solution (Neef, 2005). Based on the renowned Pre-
fuse-package for Java (prefuse.org), it provides 
methods that support easy access and usability, 
including fisheye, zoom and context menus. 
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