
Proceedings of the ACL 2007 Workshop on Deep Linguistic Processing, pages 9–16,
Prague, Czech Republic, June, 2007. c©2007 Association for Computational Linguistics

Perceptron Training for a Wide-Coverage Lexicalized-Grammar Parser

Stephen Clark
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford, OX1 3QD, UK

stephen.clark@comlab.ox.ac.uk

James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

james@it.usyd.edu.au

Abstract

This paper investigates perceptron training
for a wide-coverageCCG parser and com-
pares the perceptron with a log-linear model.
TheCCGparser uses a phrase-structure pars-
ing model and dynamic programming in the
form of the Viterbi algorithm to find the
highest scoring derivation. The difficulty in
using the perceptron for a phrase-structure
parsing model is the need for an efficient de-
coder. We exploit the lexicalized nature of
CCG by using a finite-state supertagger to
do much of the parsing work, resulting in
a highly efficient decoder. The perceptron
performs as well as the log-linear model; it
trains in a few hours on a single machine;
and it requires only a few hundredMB of
RAM for practical training compared to 20
GB for the log-linear model. We also inves-
tigate the order in which the training exam-
ples are presented to the online perceptron
learner, and find that order does not signifi-
cantly affect the results.

1 Introduction

A recent development in data-driven parsing is the
use of discriminative training methods (Riezler et
al., 2002; Taskar et al., 2004; Collins and Roark,
2004; Turian and Melamed, 2006). One popular ap-
proach is to use a log-linear parsing model and max-
imise theconditional likelihood function (Johnson
et al., 1999; Riezler et al., 2002; Clark and Curran,
2004b; Malouf and van Noord, 2004; Miyao and

Tsujii, 2005). Maximising the likelihood involves
calculating feature expectations, which is computa-
tionally expensive. Dynamic programming (DP) in
the form of the inside-outside algorithm can be used
to calculate the expectations, if the features are suf-
ficiently local (Miyao and Tsujii, 2002); however,
the memory requirements can be prohibitive, es-
pecially for automatically extracted, wide-coverage
grammars. In Clark and Curran (2004b) we use clus-
ter computing resources to solve this problem.

Parsing research has also begun to adopt discrim-
inative methods from the Machine Learning litera-
ture, such as the perceptron (Freund and Schapire,
1999; Collins and Roark, 2004) and the large-
margin methods underlying Support Vector Ma-
chines (Taskar et al., 2004; McDonald, 2006).
Parser training involves decoding in an iterative pro-
cess, updating the model parameters so that the de-
coder performs better on the training data, accord-
ing to some training criterion. Hence, for efficient
training, these methods require an efficient decoder;
in fact, for methods like the perceptron, the update
procedure is so trivial that the training algorithm es-
sentially is decoding.

This paper describes a decoder for a lexicalized-
grammar parser which is efficient enough for prac-
tical discriminative training. We use a lexicalized
phrase-structure parser, theCCG parser of Clark and
Curran (2004b), together with aDP-based decoder.
The key idea is to exploit the properties of lexi-
calized grammars by using a finite-state supertag-
ger prior to parsing (Bangalore and Joshi, 1999;
Clark and Curran, 2004a). The decoder still uses
the CKY algorithm, so the worst case complexity of

9



the parsing is unchanged; however, by allowing the
supertagger to do much of the parsing work, the effi-
ciency of the decoder is greatly increased in practice.

We chose the perceptron for the training algo-
rithm because it has shown good performance on
other NLP tasks; in particular, Collins (2002) re-
ported good performance for a perceptron tagger
compared to a Maximum Entropy tagger. Like
Collins (2002), the decoder is the same for both the
perceptron and the log-linear parsing models; the
only change is the method for setting the weights.
The perceptron model performs as well as the log-
linear model, but is considerably easier to train.

Another contribution of this paper is to advance
wide-coverageCCG parsing. Previous discrimina-
tive models forCCG (Clark and Curran, 2004b) re-
quired cluster computing resources to train. In this
paper we reduce the memory requirements from 20
GB of RAM to only a few hundredMB, but with-
out greatly increasing the training time or reducing
parsing accuracy. This provides state-of-the-artCCG

parsing with a practical development environment.
More generally, this work provides a practical

environment for experimenting with discriminative
models for phrase-structure parsing; because the
training time for theCCG parser is relatively short
(a few hours), experiments such as comparing alter-
native feature sets can be performed. As an example,
we investigate the order in which the training exam-
ples are presented to the perceptron learner. Since
the perceptron training is an online algorithm — up-
dating the weights one training sentence at a time
— the order in which the data is processed affects
the resulting model. We consider random ordering;
presenting the shortest sentences first; and present-
ing the longest sentences first; and find that the order
does not significantly affect the final results.

We also use the random orderings to investigate
model averaging. We produced 10 different models,
by randomly permuting the data, and averaged the
weights. Again the averaging was found to have no
impact on the results, showing that the perceptron
learner — at least for this parsing task — is robust
to the order of the training examples.

The contributions of this paper are as follows.
First, we compare perceptron and log-linear parsing
models for a wide-coverage phrase-structure parser,
the first work we are aware of to do so. Second,

we provide a practical framework for developing
discriminative models forCCG, reducing the mem-
ory requirements from over 20GB to a few hundred
MB. And third, given the significantly shorter train-
ing time compared to other discriminative parsing
models (Taskar et al., 2004), we provide a practical
framework for investigating discriminative training
methods more generally.

2 The CCG Parser

Clark and Curran (2004b) describes theCCG parser.
The grammar used by the parser is extracted from
CCGbank, aCCG version of the Penn Treebank
(Hockenmaier, 2003). The grammar consists of 425
lexical categories, expressing subcategorisation in-
formation, plus a small number of combinatory rules
which combine the categories (Steedman, 2000). A
Maximum Entropy supertagger first assigns lexical
categories to the words in a sentence, which are
then combined by the parser using the combinatory
rules and theCKY algorithm. A log-linear model
scores the alternative parses. We use the normal-
form model, which assigns probabilities to single
derivations based on the normal-form derivations in
CCGbank. The features in the model are defined
over local parts of the derivation and include word-
word dependencies. A packed chart representation
allows efficient decoding, with the Viterbi algorithm
finding the most probable derivation.

The supertagger is a key part of the system. It
uses a log-linear model to define a distribution over
the lexical category set for each word and the previ-
ous two categories (Ratnaparkhi, 1996) and the for-
ward backward algorithm efficiently sums over all
histories to give a distibution for each word. These
distributions are then used to assign a set of lexical
categories to each word (Curran et al., 2006).

Supertagging was first defined forLTAG (Banga-
lore and Joshi, 1999), and was designed to increase
parsing speed for lexicalized grammars by allow-
ing a finite-state tagger to do some of the parsing
work. Since the elementary syntactic units in a lexi-
calized grammar — inLTAG ’s case elementary trees
and inCCG’s case lexical categories – contain a sig-
nificant amount of grammatical information, com-
bining them together is easier than the parsing typi-
cally performed by phrase-structure parsers. Hence

10



Bangalore and Joshi (1999) refer to supertagging as
almost parsing.

Supertagging has been especially successful for
CCG: Clark and Curran (2004a) demonstrates the
considerable increases in speed that can be obtained
through use of a supertagger. The supertagger in-
teracts with the parser in an adaptive fashion. Ini-
tially the supertagger assigns a small number of cat-
egories, on average, to each word in the sentence,
and the parser attempts to create a spanning analysis.
If this is not possible, the supertagger assigns more
categories, and this process continues until a span-
ning analysis is found. The number of categories as-
signed to each word is determined by a parameterβ
in the supertagger: all categories are assigned whose
forward-backward probabilities are withinβ of the
highest probability category (Curran et al., 2006).

Clark and Curran (2004a) also shows how the su-
pertagger can reduce the size of the packed charts to
allow discriminative log-linear training. However,
even with the use of a supertagger, the packed charts
for the complete CCGbank require over 20GB of
RAM. Reading the training instances into memory
one at a time and keeping a record of the relevant
feature counts would be too slow for practical de-
velopment, since the log-linear model requires hun-
dreds of iterations to converge. Hence the packed
charts need to be stored in memory. In Clark and
Curran (2004b) we use a cluster of 45 machines, to-
gether with a parallel implementation of theBFGS

training algorithm, to solve this problem.
The need for cluster computing resources presents

a barrier to the development of furtherCCG pars-
ing models. Hockenmaier and Steedman (2002) de-
scribe a generative model forCCG, which only re-
quires a non-iterative counting process for training,
but it is generally acknowledged that discrimina-
tive models provide greater flexibility and typically
higher performance. In this paper we propose the
perceptron algorithm as a solution. The perceptron
is an online learning algorithm, and so the param-
eters are updated one training instance at a time.
However, the key difference compared with the log-
linear training is that the perceptron converges in
many fewer iterations, and so it is practical to read
the training instances into memory one at a time.

The difficulty in using the perceptron for training
phrase-structure parsing models is the need for an

efficient decoder (since perceptron training essen-
tially is decoding). Here we exploit the lexicalized
nature ofCCGby using the supertagger to restrict the
size of the charts over which Viterbi decoding is per-
formed, resulting in an extremely effcient decoder.
In fact, the decoding is so fast that we can estimate a
state-of-the-art discriminative parsing model in only
a few hours on a single machine.

3 Perceptron Training

The parsing problem is to find a mapping from a set
of sentencesx ∈ X to a set of parsesy ∈ Y . We
assume that the mappingF is represented through a
feature vectorΦ(x, y) ∈ Rd and a parameter vector
α ∈ Rd in the following way (Collins, 2002):

F (x) = argmax
y∈GEN(x)

Φ(x, y) · α (1)

whereGEN(x) denotes the set of possible parses for
sentencex andΦ(x, y) · α =

∑
i αiΦi(x, y) is the

inner product. The learning task is to set the parame-
ter values (the feature weights) using the training set
as evidence, where the training set consists of ex-
amples(xi, yi) for 1 ≤ i ≤ N . The decoder is an
algorithm which finds theargmax in (1).

In this paper,Y is the set of possibleCCG deriva-
tions andGEN(x) enumerates the set of derivations
for sentencex. We use the same feature representa-
tionΦ(x, y) as in Clark and Curran (2004b), to allow
comparison with the log-linear model. The features
are defined in terms of local subtrees in the deriva-
tion, consisting of a parent category plus one or
two children. Some features are lexicalized, encod-
ing word-word dependencies. Features are integer-
valued, counting the number of times some configu-
ration occurs in a derivation.

GEN(x) is defined by theCCG grammar, plus the
supertagger, since the supertagger determines how
many lexical categories are assigned to each word
in x (through theβ parameter). Rather than try to
recreate the adaptive supertagging described in Sec-
tion 2 for training, we simply fix the the value ofβ so
thatGEN(x) is the set of derivations licenced by the
grammar for sentencex, given that value.β is now
a parameter of the training process which we deter-
mine experimentally using development data. Theβ
parameter can be thought of as determining the set
of incorrect derivations which the training algorithm

11



uses to “discriminate against”, with a smaller value
of β resulting in more derivations.

3.1 Feature Forests

The same decoder is used for both training and test-
ing: the Viterbi algorithm. However, the packed
representation ofGEN(x) in each case is different.
When running the parser, a lot of grammatical in-
formation is stored in order to produce linguistically
meaningful output. For training, all that is required
is a packed representation of the features on each
derivation inGEN(x) for each sentence in the train-
ing data. Thefeature forestsdescribed in Miyao and
Tsujii (2002) provide such a representation.

Clark and Curran (2004b) describe how a set of
CCG derivations can be represented as a feature for-
est. The feature forests are created by first building
packed charts for the training sentences, and then
extracting the feature information. Packed charts
group together equivalent chart entries. Entries are
equivalent when they interact in the same manner
with both the generation of subsequent parse struc-
ture and the numerical parse selection. In prac-
tice, this means that equivalent entries have the same
span, and form the same structures and generate the
same features in any further parsing of the sentence.
Back pointers to the daughters indicate how an indi-
vidual entry was created, so that any derivation can
be recovered from the chart.

A feature forest is essentially a packed chart with
only the feature information retained (see Miyao and
Tsujii (2002) and Clark and Curran (2004b) for the
details). Dynamic programming algorithms can be
used with the feature forests for efficient estimation.
For the log-linear parsing model in Clark and Cur-
ran (2004b), the inside-outside algorithm is used to
calculate feature expectations, which are then used
by the BFGS algorithm to optimise the likelihood
function. For the perceptron, the Viterbi algorithm
finds the features corresponding to the highest scor-
ing derivation, which are then used in a simple addi-
tive update process.

3.2 The Perceptron Algorithm

The training algorithm initializes the parameter vec-
tor as all zeros, and updates the vector by decoding
the examples. Each feature forest is decoded with
the current parameter vector. If the output is incor-

Inputs: training examples(xi, yi)
Initialisation : setα = 0
Algorithm :

for t = 1..T , i = 1..N
calculatezi = arg maxy∈GEN(xi) Φ(xi, y) · α
if zi 6= yi

α = α + Φ(xi, yi)− Φ(xi, zi)
Outputs: α

Figure 1: The perceptron training algorithm

rect, the parameter vector is updated by adding the
feature vector of the correct derivation and subtract-
ing the feature vector of the decoder output. Train-
ing typically involves multiple passes over the data.
Figure 1 gives the algorithm, whereN is the number
of training sentences andT is the number of itera-
tions over the data.

For all the experiments in this paper, we used the
averaged version of the perceptron. Collins (2002)
introduced the averaged perceptron, as a way of re-
ducing overfitting, and it has been shown to perform
better than the non-averaged version on a number of
tasks. The averaged parameters are defined as fol-
lows: γs =

∑
t=1...T,i=1...N αt,i

s /NT whereαt,i
s is

the value of thesth feature weight after thetth sen-
tence has been processed in theith iteration.

A naive implementation of the averaged percep-
tron updates the accumulated weight for each fea-
ture after each example. However, the number of
features whose values change for each example is a
small proportion of the total. Hence we use the al-
gorithm described in Daume III (2006) which avoids
unnecessary calculations by only updating the accu-
mulated weight for a featurefs whenαs changes.

4 Experiments

The feature forests were created as follows. First,
the value of theβ parameter for the supertagger was
fixed (for the first set of experiments at 0.004). The
supertagger was then run over the sentences in Sec-
tions 2-21 of CCGbank. We made sure that ev-
ery word was assigned the correct lexical category
among its set (we did not do this for testing). Then
the parser was run on the supertagged sentences, us-
ing the CKY algorithm and theCCG combinatory
rules. We applied the same normal-form restrictions
used in Clark and Curran (2004b): categories can

12



only combine if they have been seen to combine in
Sections 2-21 of CCGbank, and only if they do not
violate the Eisner (1996a) normal-form constraints.
This part of the process requires a few hundredMB

of RAM to run the parser, and takes a few hours for
Sections 2-21 of CCGbank. Any further training
times or memory requirements reported do not in-
clude the resources needed to create the forests.

The feature forests are extracted from the packed
chart representation used in the parser. We only use
a feature forest for training if it contains the correct
derivation (according to CCGbank). Some forests
do not have the correct derivation, even though we
ensure the correct lexical categories are present, be-
cause the grammar used by the parser is missing
some low-frequency rules in CCGbank. The to-
tal number of forests used for the experiments was
35,370 (89% of Sections 2-21) . Only features which
occur at least twice in the training data were used,
of which there are 477,848. The complete set of
forests used to obtain the final perceptron results in
Section 4.1 require 21GB of disk space.

The perceptron is an online algorithm, updating
the weights after each forest is processed. Each for-
est is read into memory one at a time, decoding is
performed, and the weight values are updated. Each
forest is discarded from memory after it has been
used. Constantly reading forests off disk is expen-
sive, but since the perceptron converges in so few
iterations the training times are reasonable.

In contrast, log-linear training takes hundreds of
iterations to converge, and so it would be impractical
to keep reading the forests off disk. Also, since log-
linear training uses a batch algorithm, it is more con-
venient to keep the forests in memory at all times.
In Clark and Curran (2004b) we use a cluster of 45
machines, together with a parallel implementation
of BFGS, to solve this problem, but need up to 20GB

of RAM.
The feature forest representation, and our imple-

mentation of it, is so compact that the perceptron
training requires only 20MB of RAM. Since the su-
pertagger has already removed much of the practical
parsing complexity, decoding one of the forests is
extremely quick, and much of the training time is
taken with continually reading the forests off disk.
However, the training time for the perceptron is still
only around 5 hours for 10 iterations.

model RAM iterations time (mins)

perceptron 20MB 10 312
log-linear 19GB 475 91

Table 1: Training requirements for the perceptron
and log-linear models

Table 1 compares the training for the perceptron
and log-linear models. The perceptron was run for
10 iterations and the log-linear training was run to
convergence. The training time for 10 iterations of
the perceptron is longer than the log-linear training,
although the results in Section 4.1 show that the per-
ceptron typically converges in around 4 iterations.
The striking result in the table is the significantly
smaller memory requirement for the perceptron.

4.1 Results

Table 2 gives the first set of results for the averaged
perceptron model. These were obtained using Sec-
tion 00 of CCGbank as development data. Gold-
standardPOS tags from CCGbank were used for all
the experiments. The parser provides an analysis for
99.37% of the sentences in Section 00. The F-scores
are based only on the sentences for which there is
an analysis. Following Clark and Curran (2004b),
accuracy is measured using F-score over the gold-
standard predicate-argument dependencies in CCG-
bank. The table shows that the accuracy increases
initially with the number of iterations, but converges
quickly after only 4 iterations. The accuracy after
only one iteration is also surprisingly high.

Table 3 compares the accuracy of the perceptron
and log-linear models on the development data. LP
is labelled precision, LR is labelled recall, andCAT

is the lexical category accuracy. The same feature
forests were used for training the perceptron and
log-linear models, and the same parser and decoding
algorithm were used for testing, so the results for the
two models are directly comparable. The only dif-
ference in each case was the weights file used.1

The table also gives the accuracy for the percep-
tron model (after 6 iterations) when a smaller value
of the supertaggerβ parameter is used during the

1Both of these models have parameters which have been
optimised on the development data, in the log-linear case the
Gaussian smoothing parameter and in the perceptron case the
number of training iterations.

13



iteration 1 2 3 4 5 6 7 8 9 10

F-score 85.87 86.28 86.33 86.49 86.46 86.51 86.47 86.52 86.53 86.54

Table 2: Accuracy on the development data for the averaged perceptron (β = 0.004)

model LP LR F CAT

log-linearβ=0.004 87.02 86.07 86.54 93.99
perceptronβ=0.004 87.11 85.98 86.54 94.03
perceptronβ=0.002 87.25 86.20 86.72 94.08

Table 3: Comparison of the perceptron and log-
linear models on the development data

forest creation (with the number of training itera-
tions again optimised on the development data). A
smallerβ value results in larger forests, giving more
incorrect derivations for the training algorithm to
“discriminate against”. Increasing the size of the
forests is no problem for the perceptron, since the
memory requirements are so modest, but this would
cause problems for the log-linear training which is
already highly memory intensive. The table shows
that increasing the number of incorrect derivations
gives a small improvement in performance for the
perceptron.

Table 4 gives the accuracies for the two models
on the test data, Section 23 of CCGbank. Here the
coverage of the parser is 99.63%, and again the ac-
curacies are computed only for the sentences with
an analysis. The figures for the averaged perceptron
were obtained using 6 iterations, withβ = 0.002.
The perceptron slightly outperforms the log-linear
model (although we have not carried out signifi-
cance tests). We justify the use of differentβ values
for the two models by arguing that the perceptron is
much more flexible in terms of the size of the train-
ing forests it can handle.

Note that the important result here is that the per-
ceptron model performsat least as well asthe log-
linear model. Since the perceptron is considerably
easier to train, this is a useful finding. Also, since
the log-linear parsing model is a Conditional Ran-
dom Field (CRF), the results suggest that the percep-
tron should be compared with aCRF for other tasks
for which theCRF is considered to give state-of-the-
art results.

model LP LR F CAT

log-linearβ=0.004 87.39 86.51 86.95 94.07
perceptronβ=0.002 87.50 86.62 87.06 94.08

Table 4: Comparison of the perceptron and log-
linear models on the test data

5 Order of Training Examples

As an example of the flexibility of our discrimina-
tive training framework, we investigated the order in
which the training examples are presented to the on-
line perceptron learner. These experiments were par-
ticularly easy to carry out in our framework, since
the 21GB file containing the complete set of training
forests can be sampled from directly. We stored the
position on disk of each of the forests, and selected
the forests one by one, according to some order.

The first set of experiments investigated ordering
the training examples by sentence length. Buttery
(2006) found that a psychologically motivated Cate-
gorial Grammar learning system learned faster when
the simplest linguistic examples were presented first.
Table 5 shows the results both when the shortest sen-
tences are presented first and when the longest sen-
tences are presented first. Training on the longest
sentences first provides the best performance, but is
no better than the standard ordering.

For the random ordering experiments, forests
were randomly sampled from the complete 21GB

training file on disk, without replacement. The
new forests file was then used for the averaged-
perceptron training, and this process was repeated
9 times.

The number of iterations for each training run was
optimised in terms of the accuracy of the resulting
model on the development data. There was little
variation among the models, with the best model
scoring 86.84% F-score on the development data
and the worst scoring 86.63%. Table 6 shows that
the performance of this best model on the test data
is only slightly better than the model trained using
the CCGbank ordering.

14



iteration 1 2 3 4 5 6

Standard order 86.14 86.30 86.53 86.61 86.69 86.72
Shortest first 85.98 86.41 86.57 86.56 86.54 86.53
Longest first 86.25 86.48 86.66 86.72 86.74 86.75

Table 5: F-score of the averaged perceptron on the development data for different data orderings (β = 0.002)

perceptron model LP LR F CAT

standard order 87.50 86.62 87.06 94.08
best random order 87.52 86.72 87.12 94.12
averaged 87.53 86.67 87.10 94.09

Table 6: Comparison of various perceptron models
on the test data

Finally, we used the 10 models (including the
model from the original training set) to investigate
model averaging. Corston-Oliver et al. (2006) mo-
tivate model averaging for the perceptron in terms
of Bayes Point Machines. The averaged percep-
tron weights resulting from each permutation of the
training data were simply averaged to produce a new
model. Table 6 shows that the averaged model again
performs only marginally better than the original
model, and not as well as the best-performing “ran-
dom” model, which is perhaps not surprising given
the small variation among the performances of the
component models.

In summary, the perceptron learner appears highly
robust to the order of the training examples, at least
for this parsing task.

6 Comparison with Other Work

Taskar et al. (2004) investigate discriminative train-
ing methods for a phrase-structure parser, and also
use dynamic programming for the decoder. The key
difference between our work and theirs is that they
are only able to train on sentences of 15 words or
less, because of the expense of the decoding.

There is work on discriminative models for de-
pendency parsing (McDonald, 2006); since there
are efficient decoding algorithms available (Eisner,
1996b), complete resources such as the Penn Tree-
bank can used for estimation, leading to accurate
parsers. There is also work on discriminative mod-
els for parse reranking (Collins and Koo, 2005). The
main drawback with this approach is that the correct

parse may get lost in the first phase.
The existing work most similar to ours is Collins

and Roark (2004). They use a beam-search decoder
as part of a phrase-structure parser to allow practical
estimation. The main difference is that we are able
to store the complete forests for training, and can
guarantee that the forest contains the correct deriva-
tion (assuming the grammar is able to generate it
given the correct lexical categories). The downside
of our approach is the restriction on the locality of
the features, to allow dynamic programming. One
possible direction for future work is to compare the
search-based approach of Collins and Roark with
our DP-based approach.

In the tagging domain, Collins (2002) compared
log-linear and perceptron training forHMM -style
tagging based on dynamic programming. Our work
could be seen as extending that of Collins since we
compare log-linear and perceptron training for aDP-
based wide-coverage parser.

7 Conclusion

Investigation of discriminative training methods is
one of the most promising avenues for breaking
the current bottleneck in parsing performance. The
drawback of these methods is the need for an effi-
cient decoder. In this paper we have demonstrated
how the lexicalized nature ofCCG can be used to
develop a very efficient decoder, which leads to a
practical development environment for discrimina-
tive training.

We have also provided the first comparison of a
perceptron and log-linear model for a wide-coverage
phrase-structure parser. An advantage of the percep-
tron over the log-linear model is that it is consider-
ably easier to train, requiring 1/1000th of the mem-
ory requirements and converging in only 4 iterations.

Given that the global log-linear model used here
(CRF) is thought to provide state-of-the-art perfor-
mance for manyNLP tasks, it is perhaps surprising

15



that the perceptron performs as well. The evalua-
tion in this paper was based solely on CCGbank, but
we have shown in Clark and Curran (2007) that the
CCG parser gives state-of-the-art performance, out-
performing theRASP parser (Briscoe et al., 2006)
by over 5% on DepBank. This suggests the need for
more comparisons ofCRFs and discriminative meth-
ods such as the perceptron for otherNLP tasks.

Acknowledgements

James Curran was funded under ARC Discovery
grants DP0453131 and DP0665973.

References
Srinivas Bangalore and Aravind Joshi. 1999. Supertagging:

An approach to almost parsing.Computational Linguistics,
25(2):237–265.

Ted Briscoe, John Carroll, and Rebecca Watson. 2006. The
second release of the RASP system. InProceedings of
the Interactive Demo Session of COLING/ACL-06, Sydney,
Austrailia.

Paula Buttery. 2006. Computational models for first language
acquisition. Technical Report UCAM-CL-TR-675, Univer-
sity of Cambridge Computer Laboratory.

Stephen Clark and James R. Curran. 2004a. The importance of
supertagging for wide-coverage CCG parsing. InProceed-
ings of COLING-04, pages 282–288, Geneva, Switzerland.

Stephen Clark and James R. Curran. 2004b. Parsing the WSJ
using CCG and log-linear models. InProceedings of the
42nd Meeting of the ACL, pages 104–111, Barcelona, Spain.

Stephen Clark and James R. Curran. 2007. Formalism-
independent parser evaluation with CCG and DepBank. In
Proceedings of the 45th Annual Meeting of the ACL, Prague,
Czech Republic.

Michael Collins and Terry Koo. 2005. Discriminative rerank-
ing for natural language parsing.Computational Linguistics,
31(1):25–69.

Michael Collins and Brian Roark. 2004. Incremental parsing
with the perceptron algorithm. InProceedings of the 42nd
Meeting of the ACL, pages 111–118, Barcelona, Spain.

Michael Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with per-
ceptron algorithms. InProceedings of the 40th Meeting of
the ACL, Philadelphia, PA.

S. Corston-Oliver, A. Aue, K. Duh, and E. Ringger. 2006. Mul-
tilingual dependency parsing using bayes point machines. In
Proceedings of HLT/NAACL-06, New York.

James R. Curran, Stephen Clark, and David Vadas. 2006.
Multi-tagging for lexicalized-grammar parsing. InProceed-
ings of COLING/ACL-06, pages 697–704, Sydney, Aus-
trailia.

Jason Eisner. 1996a. Efficient normal-form parsing for Com-
binatory Categorial Grammar. InProceedings of the 34th
Meeting of the ACL, pages 79–86, Santa Cruz, CA.

Jason Eisner. 1996b. Three new probabilistic models for de-
pendency parsing: An exploration. InProceedings of the
16th COLING Conference, pages 340–345, Copenhagen,
Denmark.

Yoav Freund and Robert E. Schapire. 1999. Large margin clas-
sification using the perceptron algorithm.Machine Learn-
ing, 37(3):277–296.

Julia Hockenmaier and Mark Steedman. 2002. Generative
models for statistical parsing with Combinatory Categorial
Grammar. InProceedings of the 40th Meeting of the ACL,
pages 335–342, Philadelphia, PA.

Julia Hockenmaier. 2003.Data and Models for Statistical
Parsing with Combinatory Categorial Grammar. Ph.D. the-
sis, University of Edinburgh.

Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and
Stefan Riezler. 1999. Estimators for stochastic ‘unification-
based’ grammars. InProceedings of the 37th Meeting of the
ACL, pages 535–541, University of Maryland, MD.

Robert Malouf and Gertjan van Noord. 2004. Wide coverage
parsing with stochastic attribute value grammars. InPro-
ceedings of the IJCNLP-04 Workshop: Beyond shallow anal-
yses - Formalisms and statistical modeling for deep analyses,
Hainan Island, China.

Ryan McDonald. 2006.Discriminative Training and Spanning
Tree Algorithms for Dependency Parsing. Ph.D. thesis, Uni-
versity of Pennsylvania.

Yusuke Miyao and Jun’ichi Tsujii. 2002. Maximum entropy
estimation for feature forests. InProceedings of the Human
Language Technology Conference, San Diego, CA.

Yusuke Miyao and Jun’ichi Tsujii. 2005. Probabilistic dis-
ambiguation models for wide-coverage HPSG parsing. In
Proceedings of the 43rd meeting of the ACL, pages 83–90,
University of Michigan, Ann Arbor.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of the EMNLP Conference,
pages 133–142, Philadelphia, PA.

Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard
Crouch, John T. Maxwell III, and Mark Johnson. 2002.
Parsing the Wall Street Journal using a Lexical-Functional
Grammar and discriminative estimation techniques. InPro-
ceedings of the 40th Meeting of the ACL, pages 271–278,
Philadelphia, PA.

Mark Steedman. 2000.The Syntactic Process. The MIT Press,
Cambridge, MA.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning.
2004. Max-margin parsing. InProceedings of the EMNLP
conference, pages 1–8, Barcelona, Spain.

Joseph Turian and I. Dan Melamed. 2006. Advances in dis-
criminative parsing. InProceedings of COLING/ACL-06,
pages 873–880, Sydney, Australia.

16


