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Abstract

Although recent named entity (NE) annotation ef-
forts involve the markup of nested entities, there has
been limited focus on recognising such nested struc-
tures. This paper introduces and compares three
techniques for modelling and recognising nested
entities by means of a conventional sequence tag-
ger. The methods are tested and evaluated on two
biomedical data sets that contain entity nesting. All
methods yield an improvement over the baseline tag-
ger that is only trained on flat annotation.

1 Introduction

Traditionally, named entity recognition (NER) has
focussed on entities which arecontinuous, non-
nestedand non-overlapping. In other words, each
token in the text belongs to at most one entity, and
NEs consist of a continuous sequence of tokens.
However, in some situations, it may make sense to
relax these restrictions, for example by allowing en-
tities to benestedinside other entities, or allowing
discontinuousentities. GENIA (Ohta et al., 2002)
and BioInfer (Pyysalo et al., 2007) are examples of
recently producedNE-annotated biomedical corpora
where entities nest. Corpora in other domains, for
example the ACE1 data, also contain nested entities.

This paper compares techniques for recognising
nested entities in biomedical text. The difficulty of
this task is that the standard method for convert-
ing NER to a sequence tagging problem withBIO-
encoding (Ramshaw and Marcus, 1995), where each

1http://www.nist.gov/speech/tests/ace/
index.htm

token is assigned a tag to indicate whether it is at the
beginning (B), inside (I), or outside (O) of an en-
tity, is not directly applicable when tokens belong to
more than one entity. Here we explore methods of
reducing the nestedNER problem to one or moreBIO

problems so that existingNER tools can be used.
This paper is organised as follows. In Section 2,

the problem of nested entities is introduced and mo-
tivated with examples from GENIA and ourEPPI

(enriched protein-protein interaction) data. Related
work is reviewed in Section 3. The proposed tech-
niques enablingNER for nestedNEs are explained in
Section 4. Section 5 details the experimental setup,
including descriptive statistics of the corpora and
specifics of the classifier. The results of comparing
different tagging methods are analysed in Section 6,
with a discussion and conclusion in Section 7.

2 Nested Entities

The majority of previous work onNER is conducted
using data sets annotated either with continuous,
non-nested and non-overlappingNEs or an annota-
tion scheme reduced to a flat annotation of a similar
kind in order to simplify the recognition task. How-
ever, annotated corpora often contain entities that are
nested or discontinuous. For example, the GENIA
corpus contains nested entities such as:

<RNA><DNA>CIITA</DNA>mRNA</RNA>

where the string “CIITA” denotes a DNA and the en-
tire string “CIITA mRNA” refers to an RNA. Such
nesting complicates the task of traditionalNER sys-
tems, which generally rely on data represented with
the BIO encoding or other flat annotation variations
thereof. The majority ofNER studies on corpora
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GENIA EPPI

Count Nesting Count Nesting
3,614 ( other name ( proteint ) t ) 1,698 ( fusion ( proteint ) t ( proteint ) )

907 ( DNA ( proteint ) t ) 1,269 ( drug/compound ( proteint ) )
856 ( protein ( proteint ) t ) 455 ( fusion ( fragmentt ) t ( proteint ) )
661 ( proteint ( proteint ) ) 412 ( protein ( proteint ) t )
546 ( other name ( DNAt ) t ) 361 ( complex ( proteint ) t ( proteint ) )
541 ( other namet ( other namet ) ) 298 ( fusion ( proteint ) t ( fragmentt ) )
470 ( cell typet ( cell typet ) ) 246 ( fragmentt ( fragmentt ) )
351 ( DNA t ( DNA t ) ) 241 ( cell line t ( cell line t ) )
326 ( other name ( virust ) t ) 207 ( fragment ( proteint ) )
262 ( other name ( lipidt ) t ) 201 ( fusion ( proteint ) t ( mutantt ) )

Table 1: 10 most frequent types of nesting in the GENIA corpusand the combinedTRAIN and DE-
VTEST sections of theEPPIdata (see Section 5.1), wheret represents the text.

containing nested structures focus on recognising
the outermost (non-embedded) entities (e.g. Kim et
al. 2004) , as they contain the most information,
including that of embedded entities (Zhang et al.,
2004). This enables a simplification of the recog-
nition task to a sequential analysis problem.

Our aim is to recognise all levels ofNE nesting
occurring in two biomedical corpora: the GENIA
corpus (Version 3.02) and theEPPI corpus (see Sec-
tion 5.1). The latter data set was collected and an-
notated as part of theTXM project. Its annotation
contains 9 different biomedical entities. While the
GENIA corpus contains nested entities up to a level
of four layers of embedding, the nested entities in
theEPPI corpus only have three layers. Table 1 lists
the ten most frequent types of entity nesting occur-
ring in both corpora. In the remainder of the paper,
we differentiate between:

embedded NEs: contained in otherNEs

non-embedded NEs: not contained in otherNEs

containing NEs: containing otherNEs

non-containing NEs: not containing otherNEs

The GENIA corpus is made up of a larger per-
centage of both embedded entity (18.61%) and con-
taining entity (16.95%) mentions than theEPPI data
(12.02% and 8.27%, respectively). In both corpora,
nesting can occur in three different ways:

1. Entities containing one or more shorter embed-
ded entities.Such nesting is very frequent in both
data sets. For example, the DNA “IL-2 promoter” in
the GENIA corpus contains the protein “IL-2”. In

the EPPI corpus, fusions and complexes often con-
tain nested proteins, e.g. the complex “CBP/p300”,
where “CBP” and “p300” are marked as proteins.

2. Entities with more than one entity type.Al-
though they occur in both data sets, they are very
rare in the GENIA corpus. For example, the string
“p21ras” is annotated both as DNA and protein. In
the EPPI data, proteins can also be annotated as
drug/compound, where it can be clearly established
that the protein is used as a drug to affect the func-
tion of an organism, cell, or biological process.

3. Coordinated entities.CoordinatedNEs account
for approximately 2% of allNEs in the GENIA and
EPPI data. In the original corpora they are anno-
tated differently, but for this work they are all con-
verted to a common format.2 The outermost anno-
tation of coordinated structures and any continuous
entity mark-up within them is retained. For exam-
ple, in “human interleukin-2 and -4” both the con-
tinuous embedded entity “human interleukin-2” and
the entire string are marked as proteins. The markup
for discontinuous embedded entities, like “human
interleukin-4” in the previous example, is not re-
tained, as they could be derived in a post-processing
step once nested entities are recognised.

3 Related Work

In previous work addressing nested entities, Shen et
al. (2003), Zhang et al. (2004), Zhou et al. (2004),
Zhou (2006), and Gu (2006) considered the GENIA

2Both corpora are represented in XML with standoff anno-
tation, potentionally allowing overlappingNEs.
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corpus, where nested entities are relatively frequent.
All these studies ignore embedded entities occur-
ring in coordinated structures and only retain their
outermost annotation. Shen et al. (2003), Zhang et
al. (2004), and Zhou et al. (2004) all report on a rule-
based approach to dealing with nestedNEs in the
GENIA corpus (Version 3.0) in combination with a
Hidden Markov Model (HMM) that first recognises
innermostNEs. They use four basic hand-crafted
patterns and a combination thereof to generate nest-
ing rules from the training data and thereby derive
NEs containing the innermostNEs. The experimen-
tal setup of these studies differs slightly. While Shen
et al. (2003) and Zhang et al. (2004) report results
testing on 4% of the abstracts in the GENIA corpus,
Zhou et al. (2004) report 10-fold cross-validation
scores. Zhou (2006) applies the same rule-based
method for dealing with nested entities to the out-
put of a mutual information independence model
(MIIM) combined with a support vector machine
(SVM) plus sigmoid. His results are based on 5-fold
cross-validation on the GENIA corpus (Version 3.0).
In each of the studies, the rule-based approach to
nested entities results in an improvement of between
3.0 and 3.5 points inF1 over the baseline model.
However, as explicitly stated by Shen et al. (2003)
and Zhang et al. (2004), this evaluation is limited to
non-embedded (i.e. top-level and non-nested) enti-
ties. The highest overallF1-score reported for all
entities in the GENIA corpus is 71.2 (Zhou, 2006),
which again only appears to reflect the performance
on non-embedded entities.

Zhang et al. (2004) also compare the rule-based
method with HMM-based cascaded recognition that
extends iteratively from the shortest to the longest
entities. Their basic HMM model is combined with
HMM models trained on transformed cascaded an-
notations. During training, embedded entity terms
are replaced by their entity type as a way of unnest-
ing the data. During testing, subsequent iterations
rely on the tagging of the first recognition pass and
are repeated until no more entities are recognised.
However, this method only results in an improve-
ment of 1.2 points inF1 over their basic classifier.

Gu (2006) reports results on recognising nested
entities in the GENIA corpus (Version 3.02) when
training an SVM-light binary classifier to recognise
either proteins or DNA. Training with the outermost
labelling yields better performance on recognising

outermost entities and, conversely, using the inner
labelling results in highest scores for recognising in-
ner entities. The best exact matchF1-scores of 73.0
and 47.5 for proteins and DNA, respectively, are ob-
tained when training on data with inner labelling and
evaluating on the inner entities.

McDonald et al. (2005) propose structured multil-
abel classification as opposed to sequential labelling
for dealing with nested, discontinuous, and overlap-
ping NEs. This approach uses a novel text segment
representation in preference to theBIO-encoding.
Their corpus contains MEDLINE abstracts on the
inhibition of the enzyme CYP450 (Kulick et al.,
2004), specifically those abstracts that contain at
least one overlapping and one discontinuous anno-
tation. While this data does not contain nestedNEs,
discontinuous and overlappingNEs make up 6% of
all NEs. The classifier performs competitively with
sequential tagging models on continuous and non-
overlapping entities forNER and noun phrase chunk-
ing. On discontinuous and overlappingNEs in the
biomedical data alone, its best performance is 56.25
F1. As the corpus does not contain nestedNEs, it
would be of interest to investigate the algorithm’s
performance on the GENIA corpus.

4 Modelling Techniques

As large amounts of time and effort have been de-
voted to work on non-nestedNER using theBIO-
encoding approach, it would be useful if this work
could be easily applied to nestedNER. In this paper,
three different ways of addressing nestedNER will
be compared:layering, cascading, and joined la-
bel tagging. All techniques aim to reduce the nested
NER problem to one or moreBIO problems, so that
existingNER tools can be used. Table 2 shows an ex-
ample representation for each modelling technique
of the following two non-nested and nested entity
annotations found in a GENIA abstract:

<multi cell>mice</multi cell> . . .
<other name><RNA><protein>tumor
necrosis factor-alpha</protein>
(<protein>TNF- alpha</protein>)
messenger RNA</RNA> levels</other name>

In layering, each level of nesting is modelled as a
separateBIO problem. The output of models trained
on individual layers is combined subsequent to tag-
ging by taking the union. Layers can be created
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Token Inside-out layering Outside-in layering
Model Layer 1 Layer 2 Layer 3 Layer 3 Layer 2 Layer 1
mice B-multi cell O O B-multi cell O O
. . . . . . . . . . . . . . . . . . . . .
tumor B-protein B-RNA B-othername B-othername B-RNA B-protein
necrosis I-protein I-RNA I-other name I-other name I-RNA I-protein
factor-alpha I-protein I-RNA I-other name I-other name I-RNA I-protein
( O I-RNA I-other name I-other name I-RNA O
TNF-alpha B-protein I-RNA I-other name I-other name I-RNA B-protein
) O I-RNA I-other name I-other name I-RNA O
messenger O I-RNA I-other name I-other name I-RNA O
RNA O I-RNA I-other name I-other name I-RNA O
levels O O I-other name I-other name O O

Cascading Joined label tagging
Model All entity types other RNA Joined labels
mice B-multi cell O O B-multi cell+O+O
. . . . . . . . . . . . . . .
tumor B-protein B-othername B-RNA B-protein+B-RNA+B-othername
necrosis I-protein I-other name I-RNA I-protein+I-RNA+I-othername
factor-alpha I-protein I-other name I-RNA I-protein+I-RNA+I-othername
( O I-other name I-RNA O+I-RNA+I-other name
TNF-alpha B-protein I-other name I-RNA B-protein+I-RNA+I-othername
) O I-other name I-RNA O+I-RNA+I-other name
messenger O I-other name I-RNA O+I-RNA+I-other name
RNA O I-other name I-RNA O+I-RNA+I-other name
levels O I-other name O O+O+I-othername

Table 2: Example representation of nested entities for various modelling techniques.

inside-outor outside-in. For inside-out layering, the
first layer is made up of all non-containing entities,
the second layer is composed of all those entities
which only contain one layer of nesting, etc. Con-
versely, outside-in layering means that the first layer
contains all non-embedded entities, the second layer
contains all entities which are only contained within
one outer entity, etc. Both directions of layering can
be modelled using a conventionalNE tagger.

Cascading reduces the nestedNER task to sev-
eral BIO problems by grouping one or more entity
types and training a separate model for each group.
Again, the output from individual models is com-
bined during tagging. Subsequent models in the cas-
cade may have access to the guesses of previous
ones by means of aGUESS feature. The cascaded
method is unable to recognise entities containing en-
tities of the same type, which may be a drawback for
some data sets. Cascading also raises the issue of
how to group entity types. This is dependent on the
types of entities that nest within a given data set and
would potentially require large amounts of experi-
mentation to determine the best combination. More-
over, training a model for each entity type lengthens
training time considerably, and may degrade perfor-
mance due to the dominance of theO tags for infre-

quent categories. It is possible, however, to create a
cascaded tagger combining one model trained on all
entity types with models trained on entity types that
frequently contain other entities.

Finally, joined label tagging entails creating one
tagging problem for all entities by concatenating the
BIO tags of all levels of nesting. A conventional
named entity recogniser is then trained on the data
containing the joined labels. Once the classifier has
assigned the joined labels during tagging, they are
decoded into their originalBIO format for each in-
dividual entity type. Compared to the other tech-
niques, joined label tagging involves a much larger
tag set, which can increase dramatically with the
number of entity types occurring in a data set. This
can result in data sparsity which may have a detri-
mental effect on performance.

5 Experimental Setup

5.1 Corpora

GENIA (V3.02), a large publicly available biomedi-
cal corpus annotated with biomedicalNEs, is widely
used in the text mining community (Cohen et al.,
2005). This data set consists of 2,000 MEDLINE ab-
stracts in the domain of molecular biology (⋍0.5m
tokens). The annotations used for the experiments
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reported here are based on the GENIA ontology,
published in Ohta et al. (2002). It contains the fol-
lowing classes: amino acid monomer, atom, body
part, carbohydrate, cell component, cell line, cell
type, DNA, inorganic, lipid, mono-cell, multi-cell,
nucleotide, other name, other artificial source, other
organic compound, peptide, polynucleotide, protein,
RNA, tissue, and virus. In this work, protein, DNA
and RNA sub-types are collapsed to their super-type,
as done in previous studies (e.g. Zhou 2006). To the
best of our knowledge, no inter-annotator agreement
(IAA ) figures on theNE-annotation in the GENIA
corpus are reported in the literature.

The EPPI corpus consists of 217 full-text papers
selected from PubMed and PubMedCentral as con-
taining protein-protein interactions (PPIs). The pa-
pers were either retrieved inXML or HTML , depend-
ing on availability, and converted to an internalXML

format. Domain experts annotated all documents
for NEs and PPIs, as well as extra (enriched) in-
formation associated with PPIs and normalisations
of entities to publicly available ontologies. The en-
tity annotations are the focus of the current work.
The types of entities annotated in this data set are:
complex, cell line, drug/compound, experimental
method, fusion, fragment, modification, mutant, and
protein. Out of the 217 papers, 125 were singly
annotated, 65 were doubly annotated, and 27 were
triply annotated. TheIAA , measured by taking the
F1 score of one annotator with respect to another
when the same paper is annotated by two different
annotators, ranges from 60.40 for the entity type
mutant to 91.59 for protein, with an overall micro-
averagedF1-score of 84.87. TheEPPIcorpus (⋍2m
tokens) is divided into three sections,TRAIN (66%),
DEVTEST (17%), andTEST (17%), withTEST only
to be used for final evaluation, and not to be con-
sulted by the researchers in the development and fea-
ture optimisation phrase. The experiments described
here involve theEPPI TRAIN andDEVTEST sets.

5.2 Pre-processing

All documents are passed through a sequence of pre-
processing steps implemented using theLT-XML 2

andLT-TTT2 tools (Grover et al., 2006) with the out-
put of each step encoded inXML mark-up. Tokeni-
sation and sentence splitting is followed by part-of-
speech tagging with the Maximum Entropy Markov
Model (MEMM) tagger developed by Curran and

Clark (2003) (hereafter referred to as C&C ) for
the CoNLL-2003 shared task (Tjong Kim Sang and
De Meulder, 2003), trained on the MedPost data
(Smith et al., 2004). Information on lemmatisa-
tion, as well as abbreviations and their long forms, is
added using themorphalemmatiser (Minnen et al.,
2000) and theExtractAbbrevscript of Schwartz and
Hearst (2003), respectively. A lookup step uses on-
tological information to identify scientific and com-
mon English names of species. Finally, a rule-based
chunker marks up noun and verb groups and their
heads (Grover and Tobin, 2006).

5.3 Named Entity Tagging

The C&C tagger, referred to earlier, forms the basis
of the NER component of theTXM natural language
processing (NLP) pipeline designed to detect entity
relations and normalisations (Grover et al., 2007).
The tagger, in common with manyML approaches
to NER, reduces the entity recognition problem to
a sequence tagging problem by using theBIO en-
coding of entities. As well as performing well on
the CoNLL-2003 task, Maximum Entropy Markov
Models have also been successful on biomedical
NER tasks (Finkel et al., 2005). As the vanilla C&C
tagger (Curran and Clark, 2003) is optimised for
performance on newswire text, various modifica-
tions were applied to improve its performance for
biomedical NER. Table 3 lists the extra features
specifically designed for biomedical text. The C&C
tagger was also extended using several gazetteers,
including a protein, complex, experimental method
and modification gazetteer, targeted at recognising
entities occurring in theEPPI data. Further post-
processing specific to theEPPIdata involves correct-
ing boundaries of some hyphenated proteins and fil-
tering out entities ending in punctuation.

All experiments with the C&C tagger involve 5-
fold cross-validation on all 2,000 GENIA abstracts
and the combinedEPPI TRAIN andDEVTEST sets.
Cross-validation is carried out at the document level.
For simple tagging, the C&C tagger is trained on
the non-containing entities (innermost) or on the
non-embedded entities (outermost). For inside-out
and outside-in layering, a separate C&C model is
trained for each layer of entities in the data, i.e. four
models for the GENIA data and three models for
theEPPIdata. Cascading is performed on individual
entities with different orderings, either ordering en-
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Feature Description
CHARACTER Regular expressions match-

ing typical protein names
WORDSHAPE Extended version of the C&C

WORDTYPE feature
HEADWORD Head word of the current

noun phrase
ABBREVIATION Term identified as an abbre-

viation of a gazetteer term
within a document

TITLE Term seen in a noun phrase in
the document title

WORDCOUNTER Non-stop word that is among
the 10 most frequent ones in
a document

VERB Verb lemma information
added to each noun phrase
token in the sentence

FONT Text in italic and subscript
contained in the original doc-
ument format

Table 3: Extra features added to C&C .

tity models according to performance or entity fre-
quency in the training data, ranging from highest to
lowest. Cascading is also carried out on groups of
entities (e.g. one model for all entities, one for a
specific entity type, and combinations). Subsequent
models in the cascade have access to the guesses of
previous ones via aGUESS feature. Finally, joined
label tagging is done by concatenating individual
BIO tags from the innermost to the outermost layer.

As in the GENIA corpus, the most frequently an-
notated entity type in theEPPIdata is protein with al-
most 55% of all annotations in the combinedTRAIN

and DEVTEST data (see Table 5). Given that the
scores reported in this paper are calculated asF1

micro-averages over all categories, they are strongly
influenced by the classifier’s performance on pro-
teins. However, scoring is not limited to a particular
layer of entities (e.g. only outermost layer), but in-
cludes all levels of nesting. During scoring, a correct
match is achieved when exactly the same sequence
of text (encoded in start/end offsets) is marked with
the same entity type in the gold standard and the sys-
tem output. Precision, recall andF1 are calculated
in standard fashion from the number of true positive,
false positive and false negativeNEs recognised.

6 Results
Table 4 lists overall cross-validationF1-scores cal-
culated for allNEs at all levels of nesting when ap-
plying the various modelling techniques. For GE-
NIA, cascading on individual entities when order-
ing entity models by performance yields the high-
est F1-score of 67.88. Using this method yields
an increase of 3.26F1 over the best simple tag-
ging method, which scores 64.62F1. Joined label
tagging results in the second best overallF1-score
of 67.82. Both layering (inside-out) and cascading
(combining a model trained on allNEs with 4 mod-
els trained on other name, DNA, protein, or RNA)
also perform competitively, reachingF1-scores of
67.62 and 67.56, respectively. In the experiments
with the EPPI corpus, cascading is also the winner
with anF1-score of 70.50 when combining a model
trained on allNEswith one trained on fusions. This
method only results in a small, yet statistically sig-
nificant (χ2, p ≤ 0.05), increase inF1 of 0.43 over
the best simple tagging algorithm. This could be due
to the smaller number of nestedNEs in theEPPIdata
and the fact that this data contains manyNEs with
more than one category. Layering (inside-out) per-
forms almost as well as cascading (F1=70.44).

The difference in the overall performance be-
tween the GENIA and theEPPI corpus is partially
due to the difference in the number ofNEs which
C&C is required to recognise, but also due to the
fact that all features used are optimised for theEPPI

data and simply applied to the GENIA corpus. The
only feature not used for the experiments with the
GENIA corpus isFONT, as this information is not
preserved in the originalXML of that corpus.

7 Discussion and Conclusion
According to the results for the modelling tech-
niques, each proposed method outperforms simple
tagging. Cascading yields the best result on the GE-
NIA (F1=67.88) andEPPIdata (F1=70.50), see Ta-
ble 5 for individual entity scores. However, it in-
volves extensive amounts of experimentation to de-
termine the best model combination. The best setup
for cascading is clearly data set dependent. With
larger numbers of entity types annotated in a given
corpus, it becomes increasingly impractical to ex-
haustively test all possible orders and combinations.
Moreover, training and tagging times are lengthened
as more models are combined in the cascade.
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GENIA V3.02 EPPI

Technique F1 Technique F1

Simple Tagging
Training on innermost entities 64.62 Training on innermost entities 70.07
Training on outermost entities 62.72 Training on outermost entities 69.18

Layering
Inside-out 67.62 Inside-out 70.44
Outside-in 67.02 Outside-in 70.21

Cascading
Individual NE models (by performance) 67.88 Individual NE models (by performance) 70.42
Individual NE models (by frequency) 67.72 Individual NE models (by frequency) 70.43
All-cell type 64.55 All-complex 70.03
All-DNA 65.02 All-drug/compound 70.08
All-other name 66.99 All-fusion 70.50
All-protein 64.77 All-protein 70.02
All-RNA 64.80 All-complex-fusion 70.46
All-other name-DNA-protein-RNA 67.56 All-drug/compound-fusion 70.50

Joined label tagging
Inside-out 67.82 Inside-out 70.37

Table 4: Cross-validationF1-scores for different modelling techniques on the GENIA andEPPIdata. Scores
in italics mark statistically significant improvements (χ2, p ≤ 0.05) over the best simple tagging score.

Despite the large number of tags involved in us-
ing joined label tagging, this method outperforms
simple tagging for both data sets and even results in
the second-best overallF1-score of 67.72 obtained
for the GENIA corpus. The fact that joined label
tagging only requires training and tagging with one
model makes this approach a viable alternative to
cascading which is far more time-consuming to run.

Inside-out layering performs competitively both
for the GENIA corpus (F1=67.62) and theEPPIcor-
pus (F1=70.37), considering how little time is in-
volved in setting up such experiments. As with
joined label tagging, minimal optimisation is re-
quired when using this method. One disadvantage
(as compared to simple, and to some extent joined
label tagging) is that training and tagging times in-
crease with the number of layers that are modelled.

In conclusion, this paper introduced and tested
three different modelling techniques for recognising
nestedNEs, namely layering, cascading, and joined
label tagging. As each of them reduces nestedNER

to one or moreBIO-encoding problems, a conven-
tional sequence tagger can be used. It was shown
that each modelling technique outperfoms the sim-

ple tagging method for both biomedical data sets.
Future work will involve testing the proposed

techniques on other data sets containing entity nest-
ing, including the ACE data. We will also determine
their merit when applying a different learning algo-
rithm. Furthermore, possible solutions for recognis-
ing discontinuous entities will be investigated.
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