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Abstract

The ability to correctly interpret and pro-
duce noun-noun compounds such as WIND

FARM or CARBON TAX is an important part
of the acquisition of language in various do-
mains of discourse. One approach to the
interpretation of noun-noun compounds as-
sumes that people make use of distributional
information about how the constituent words
of compounds tend to combine; another as-
sumes that people make use of information
about the two constituent concepts’ features
to produce interpretations. We present an ex-
periment that examines how people acquire
both the distributional information and con-
ceptual information relevant to compound
interpretation. A plausible model of the in-
terpretation process is also presented.

1 Introduction

People frequently encounter noun-noun compounds
such as MEMORY STICK and AUCTION POLITICS

in everyday discourse. Compounds are particu-
larly interesting from a language-acquisition per-
spective: children as young as two can comprehend
and produce noun-noun compounds (Clark & Bar-
ron, 1988), and these compounds play an important
role in adult acquisition of the new language and ter-
minology associated with particular domains of dis-
course. Indeed, most new terms entering the English
language are combinations of existing words (Can-
non, 1987; consider FLASH MOB, DESIGNER BABY,
SPEED DATING and CARBON FOOTPRINT).

These noun-noun compounds are also interest-
ing from a computational perspective, in that they
pose a significant challenge for current computa-
tional accounts of language. This challenge arises

from the fact that the semantics of noun-noun com-
pounds are extremely diverse, with compounds uti-
lizing many different relations between their con-
stituent words (consider the examples at the end of
the previous paragraph). Despite this diversity, peo-
ple typically interpret even completely novel com-
pounds extremely quickly, in the order of hundredths
of seconds in reaction time studies.

One approach that has been taken in both cog-
nitive psychology and computational linguistics can
be termed the relation-based approach (e.g. Gagné
& Shoben, 1997; Kim & Baldwin, 2005). In this
approach, the interpretation of a compound is rep-
resented as the instantiation of a relational link be-
tween the modifier and head noun of the compound.
Such relations are usually represented as a set of
taxonomic categories; for example the meaning of
STUDENT LOAN might be specified with a POSSES-
SOR relation (Kim & Baldwin, 2005) or MILK COW

might be specified by a MAKES relation (Gagné &
Shoben, 1997). However, researchers are not close
to any agreement on a taxonomy of relation cate-
gories classifying noun-noun compounds; indeed a
wide range of typologies have been proposed (e.g.
Levi, 1977; Kim & Baldwin, 2005).

In these relation-based approaches, there is often
little focus on how the meaning of the relation inter-
acts with the intrinsic properties of the constituent
concepts. Instead, extrinsic information about con-
cepts, such as distributional information about how
often different relations are associated with a con-
cept, is used. For example, Gagné & Shoben’s
CARIN model utilizes the fact that the modifier
MOUNTAIN is frequently associated with the LO-
CATED relation (in compounds such as MOUNTAIN

CABIN or MOUNTAIN GOAT); the model does not
utilize the fact that the concept MOUNTAIN has in-
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trinsic properties such as is large and is a geological
feature: features which may in general precipitate
the LOCATION relation.

An approach that is more typical of psycholog-
ical theories of compound comprehension can be
termed the concept-based approach (Wisniewski,
1997; Costello and Keane, 2000). With such the-
ories, the focus is on the intrinsic properties of
the constituent concepts, and the interpretation of a
compound is usually represented as a modification
of the head noun concept. So, for example, the com-
pound ZEBRA FISH may involve a modification of
the FISH concept, by asserting a feature of the ZE-
BRA concept (e.g. has stripes) for it; in this way, a
ZEBRA FISH can be understood as a fish with stripes.
Concept-based theories do not typically use distrib-
utional information about how various relations are
likely to be used with concepts.

The information assumed relevant to compound
interpretation is therefore quite different in relation-
based and concept-based theories. However, neither
approach typically deals with the issue of how peo-
ple acquire the information that allows them to in-
terpret compounds. In the case of the relation-based
approaches, for example, how do people acquire the
knowledge that the modifier MOUNTAIN tends to
be used frequently with the LOCATED relation and
that this information is important in comprehend-
ing compounds with that modifier? In the case of
concept-based approaches, how do people acquire
the knowledge that features of ZEBRA are likely to
influence the interpretation of ZEBRA FISH?

This paper presents an experiment which exam-
ines how both distributional information about re-
lations and intrinsic information about concept fea-
tures influence compound interpretation. We also
address the question of how such information is ac-
quired. Rather than use existing, real world con-
cepts, our experiment used laboratory generated
concepts that participants were required to learn dur-
ing the experiment. As well as learning the meaning
of these concepts, participants also built up knowl-
edge during the experiment about how these con-
cepts tend to combine with other concepts via re-
lational links. Using laboratory-controlled concepts
allows us to measure and control various factors that
might be expected to influence compound compre-
hension; for example, concepts can be designed to

vary in their degree of similarity to one another, to
be associated with potential relations with a certain
degree of frequency, or to have a feature which is
associated with a particular relation. It would be ex-
tremely difficult to control for such factors, or in-
vestigate the aquisition process, using natural, real
world concepts.

2 Experiment

Our experiment follows a category learning para-
digm popular in the classification literature (Medin
& Shaffer, 1978; Nosofsky, 1984). The experiment
consists of two phases, a training phase followed
by a transfer phase. In the training phase, partic-
ipants learned to identify several laboratory gener-
ated categories by examining instances of these cat-
egories that were presented to them. These cate-
gories were of two types, conceptual and relational.
The conceptual categories consisted of four “plant”
categories and four “beetle” categories, which par-
ticipants learned to distinguish by attending to dif-
ferences between category instances. The relational
categories were three different ways in which a bee-
tle could eat a plant. Each stimulus consisted of
a picture of a beetle instance and a picture of a
plant instance, with a relation occurring between
them. The category learning phase of our experi-
ment therefore has three stages: one for learning to
distinguish between the four beetle categories, one
for learning to distinguish between the four plant
categories, and one for learning to distinguish be-
tween the three relation categories.

The training phase was followed by a transfer
phase consisting of two parts. In the first part par-
ticipants were presented with some of the beetle-
plant pairs that they had encountered in the train-
ing phase together with some similar, though previ-
ously unseen, pairs. Participants were asked to rate
how likely each of the three relations were for the
depicted beetle-plant pair. This part of the transfer
phase therefore served as a test of how well partic-
ipants had learned to identify the appropriate rela-
tion (or relations) for pairs of conceptual category
exemplars and also tested their ability to generalize
their knowledge about the learned categories to pre-
viously unseen exemplar pairs. In the second part of
the transfer phase, participants were presented with
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pairs of category names (rather than pairs of cat-
egory items), presented as noun-noun compounds,
and were asked to rate the appropriateness of each
relation for each compound.

In the experiment, we aim to investigate three is-
sues that may be important in determining the most
appropriate interpretation for a compound. Firstly,
the experiment aims to investigate the influence of
concept salience (i.e. how important to participants
information about the two constituent concepts are,
or how relevant to finding a relation that information
is) on the interpretation of compounds. For example,
if the two concepts referenced in a compound are
identical with respect to the complexity of their rep-
resentation, how well they are associated with vari-
ous alternative relations (and so on), but are of dif-
fering levels of animacy, we might expect the rela-
tion associated with the more animate concept to be
selected by participants more often than a different
relation associated equally strongly with the less an-
imate concept. In our experiment, all three relations
involve a beetle eating a plant. Since in each case the
beetle is the agent in the EATS(BEETLE,PLANT) sce-
nario, it is possible that the semantics of the beetle
concepts might be more relevant to relation selection
than the semantics of the plant concepts.

Secondly, the experiment is designed to inves-
tigate the effect of the ordering of the two nouns
within the compound: given two categories named
A and B, our experiment investigates whether the
compound “A B” is interpreted in the same way as
the compound “B A”. In particular, we were in-
terested in whether the relation selected for a com-
pound would tend to be dependent on the concept in
the head position or the concept in the modifier posi-
tion. Also of interest was whether the location of the
more animate concept in the compound would have
an effect on interpretation. For example, since the
combined concept is an instance of the head concept,
we might hypothesize that compounds for which the
head concept is more animate than the modifier con-
cept may be easier to interpret correctly.

Finally, were interested in the effect of concept
similarity: would compounds consisting of similar
constituent categories tend to be interpreted in simi-
lar ways?

learn trans. Nr Rel Bcat Pcat B1 B2 B3 P1 P2 P3

l 1 1 1 3 4 1 1 3 2 3
l 2 1 1 3 4 4 1 2 3 3
l t 3 1 1 3 1 1 1 3 3 2
l t 4 1 1 3 4 1 2 3 3 3

l t 5 2 2 2 2 2 2 2 2 3
l 6 2 2 2 2 2 1 2 3 2
l 7 2 2 2 2 3 2 2 2 1
l t 8 2 2 2 2 2 3 2 2 2

l t 9 3 3 1 3 3 3 4 1 2
l t 10 3 3 1 3 3 2 1 1 1
l 11 3 3 1 2 3 3 4 4 1
l 12 3 3 1 3 2 3 4 1 1

l t 13 1 4 4 1 1 4 4 4 4
l t 14 2 4 4 4 1 4 4 1 4
l t 15 3 4 4 4 4 4 1 1 4

t 16 - 1 1 4 1 1 4 1 1
t 17 - 3 3 3 3 3 3 3 3
t 18 - 2 4 2 2 2 4 1 4
t 19 - 4 2 4 1 4 2 2 2

Table 1: The experiment’s abstract category struc-
ture

2.1 Method

2.1.1 Participants
The participants were 42 university students.

2.1.2 Materials
The abstract category structure used in the exper-

iment is presented in Table 1. There are 19 items
in total; the first and second columns in the table
indicate if the item in question was one of the 15
items used in the learning phase of the experiment
(l) or as one of the 13 items used in the transfer stage
of the experiment (t). There were four beetle cate-
gories (Bcat), four plant categories (Pcat) and three
relation categories used in the experiment. Both the
beetle and plant categories were represented by fea-
tures instantiated on three dimensions (B1, B2 & B3
and P1, P2 & P3, respectively). The beetle and plant
categories were identical with respect to their ab-
stract structure (so, for example, the four exemplars
of Pcat1 have the same abstract features as the four
exemplars of Bcat1).

Beetles and plants were associated with particu-
lar relations; Bcat1, Bcat2 and Bcat3 were associ-
ated with Relations 1, 2 and 3, respectively, whereas
Pcat1, Pcat2 and Pcat3 were associated with Rela-
tions 3, 2 and 1, respectively. Bcat4 and Pcat4 were
not associated with any relations; the three exemplar
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instances of these categories in the learning phase
appeared once with each of the three relations. The
features of beetles and plants were sometimes diag-
nostic of a category (much as the feature has three
wheels is diagnostic for TRICYCLE); for example, a
particular feature associated with Bcat1 is a 1 on the
B3 dimension: 3 of the 4 Bcat1 training phase exem-
plars have a 1 on dimension B3 while only one of the
remaining 11 training phase exemplars do. Also, the
intrinsic features of beetles and plants are sometimes
diagnostic of a relation category (much as the intrin-
sic feature has a flat surface raised off the ground is
diagnostic for the relational scenario sit on); values
on dimensions B1, P1, B2 and P2 are quite diag-
nostic of relations. Participants learned to identify
the plant, beetle and relation categories used in the
experiment by attending to the associations between
beetle, plant and relation categories and feature di-
agnosticity for those categories.

The beetle and plant categories were also de-
signed to differ in terms of their similarity. For ex-
ample, categories Bcat1 and Bcat4 are more simi-
lar to each other than Bcat3 and Bcat4 are: the fea-
tures for Bcat1 and Bcat4 overlap to a greater extent
than the features for Bcat3 and Bcat4 do. The aim
of varying categories with respect to their similarity
was to investigate whether similar categories would
yield similar patterns of relation likelihood ratings.
In particular, Bcat4 (and Pcat4) occurs equally often
with the three relations; therefore if category simi-
larity has no effect we would expect people to select
each of the relations equally often for this category.
However, if similarity influences participants’ rela-
tion selection, then we would expect that Relation 1
would be selected more often than Relations 2 or 3.

The abstract category structure was mapped to
concrete features in a way that was unique for each
participant. Each beetle dimension was mapped ran-
domly to the concrete dimensions of beetle shell
color, shell pattern and facial expression. Each plant
dimension was randomly mapped to the concrete di-
mensions of leaf color, leaf shape, and stem color.
The three relations were randomly mapped to eats
from leaf, eats from top, and eats from trunk.

2.1.3 Procedure
The experiment consisted of a training phase and

a transfer phase. The training phase itself consisted

Figure 1: Example of a relation learning stimulus

of three sub-stages in which participants learned to
distinguish between the plant, beetle and relation
categories. During each training sub-stage, the 15
training items were presented to participants sequen-
tially on a web-page in a random order. Underneath
each item, participants were presented with a ques-
tion of the form “What kind of plant is seen in this
picture?”, “What type of beetle is seen in this pic-
ture?” and “How does this 〈Bcat〉 eat this 〈Pcat〉?”
in the plant learning, beetle learning, and relation
learning training sub-stages, respectively (e.g. Fig-
ure 1). Underneath the question were radio but-
tons on which participants could select what they
believed to be the correct category; after participants
had made their selection, they were given feedback
about whether their guess had been correct (with the
correct eating relation shown taking place). Each of
the three substages was repeated until participants
had correctly classified 75% or more of the items.
Once they had successfully completed the training
phase they moved on to the transfer phase.

The transfer phase consisted of two stages, an
exemplar transfer stage and a compound transfer
stage. In the exemplar transfer stage, participants
were presented with 13 beetle-plant items, some of
which had appeared in training and some of which
were new items (see Table 1). Underneath each
picture was a question of the form “How does this
〈Bcat〉 eat this 〈Pcat〉?” and three 5-point scales
for the three relations, ranging from 0 (unlikely) to
4 (likely).

The materials used in the compound transfer stage
of the experiment were the 16 possible noun-noun
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compounds consisting of a beetle and plant category
label. Participants were presented with a sentence of
the form “There are a lot of 〈Pcat〉 〈Bcat〉s around
at the moment.” and were asked “What kind of eat-
ing activity would you expect a 〈Pcat〉 〈Bcat〉 to
have?”. Underneath, participants rated the likeli-
hood of each of the three relations on 5-point scales.
One half of participants were presented with the
compounds in the form “〈Bcat〉 〈Pcat〉” whereas
the other half of participants saw the compounds in
the form “〈Pcat〉 〈Bcat〉”.

2.2 Results

2.2.1 Performance during training
Two of the participants failed to complete the

training phase. For the remaining 40 participants,
successful learning took on average 5.8 iterations of
the training items for the plant categories, 3.9 itera-
tions for the beetle categories, and 2.1 iterations for
the relation categories. The participants therefore
learned to distinguish between the categories quite
quickly, which is consistent with the fact that the cat-
egories were designed to be quite easy to learn.

2.2.2 Performance during the exemplar
transfer stage

Participants’ mean ratings of relation likelihood
for the nine previously seen exemplar items is pre-
sented in Figure 2 (items 3 to 15). For each of these
items there was a correct relation, namely the one
that the item was associated with during training.
The difference between the mean response for the
correct relation (M = 2.76) and the mean response
for the two incorrect relations (M = 1.42) was sig-
nificant (ts(39) = 7.50, p < .01; ti(8) = 4.07,
p < .01). These results suggest that participants
were able to learn which relations tended to co-occur
with the items in the training phase.

Participants’ mean ratings of relation likelihood
for the four exemplar items not previously seen in
training are also presented in Figure 2 (items 16 to
19). Each of these four items consisted of a proto-
typical example of each of the four beetle categories
and each of the four plant categories (with each bee-
tle and plant category appearing once; see Table 1
for details). For these four items there was no cor-
rect answer; indeed, the relation consistent with the
beetle exemplar was always different to the relation

Figure 2: Participants’ mean responses for the ex-
emplar transfer items.

suggested by the plant exemplar. For each trial, then,
one relation is consistent with the beetle exemplar
(rb), one is consistent with the plant exemplar (rp)
and one is neutral (rn). One-way repeated measures
ANOVAs with response type (rb, rp or rn) as a fixed
factor and either subject or item as a random factor
were used to investigate the data. There was a signif-
icant effect of response type in both the by-subjects
and by-items analysis (Fs(2, 39) = 19.10, p < .01;
Fi(2, 3) = 24.14, p < .01). Pairwise differences be-
tween the three response types were investigated us-
ing planned comparisons in both the by-subject and
by-items analyses (with paired t-tests used in both
cases). The difference between participants’ mean
response for the relation associated with the beetle
exemplar, rb (M = 2.68), and their mean response
for the neutral relation, rn (M = 1.44) was sig-
nificant (ts(39) = 5.63, p < .001; ti(3) = 5.34,
p = .01). These results suggest that participants
were strongly influenced by the beetle exemplar
when making their category judgments. However,
the difference between participants’ mean response
for the relation associated with the plant exemplar,
rp (M = 1.62), and their mean response for the
neutral relation was not significant (ts(39) = 1.11,
p = .27; ti(3) = 0.97, p = .40). These re-
sults suggest that participants were not influenced
by the plant exemplar when judging relation like-
lihood. Since the beetle and plant categories have
identical abstract structure, these results suggest that
other factors (such as the animacy of a concept or the
role it plays in the relation) are important to interpre-
tation.

The data from all 13 items were also analysed
taken together. To investigate possible effects of cat-
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egory similarity, a repeated measures ANOVA with
beetle category and response relation taken as within
subject factors and subject taken as a random fac-
tor was undertaken. There was a significant effect
of the category that the beetle exemplar belonged to
on participants’ responses for the three relations (the
interaction between beetle category and response re-
lation was significant; F (6, 39) = 26.83, p < .01.
Planned pairwise comparisons (paired t-tests) were
conducted to investigate how ratings for the cor-
rect relation (i.e. the relation consistent with train-
ing) differed for the ratings for the other two rela-
tions. For Bcat1, Bcat2 and Bcat3, the ratings for
the relation consistent with learning was higher than
the two alternative relations (p < .01 in all cases).
However, for the Bcat4 items, there was no evi-
dence that participants we more likely to rate Re-
lation 1 (M = 2.09) higher than either Relation 2
(M = 1.97; t(39) = 0.54, p = .59) or Relation
3 (M = 1.91; t(39) = 0.69, p > .50). Though
the difference is in the direction predicted by Bcat4’s
similarity to Bcat1, there is no evidence that partici-
pants made use of Bcat4’s similarity to Bcat1 when
rating relation likelihood for Bcat4.

In summary, the results suggest that participants
were capable of learning the training items. Partici-
pants appeared to be influenced by the beetle exem-
plar but not the plant exemplar. There was some evi-
dence that conceptual similarity played a role in par-
ticipants’ judgments of relation likelihood for Bcat4
exemplars (e.g. the responses for item 19) but over
all Bcat4 exemplars this effect was not significant.

2.2.3 Performance on the noun-noun
compound transfer stage

In the noun-noun compound transfer stage, each
participant rated relation likelihood for each of the
16 possible noun-noun compounds that could be
formed from combinations of the beetle and plant
category names. Category name order was a be-
tween subject factor: half of the participants saw the
compounds with beetle in the modifier position and
plant in the head position whilst the other half of
participants saw the reverse. First of all, we were
interested in whether or not the training on exem-
plar items would transfer to noun-noun compounds.
Another question of interest is whether or not par-
ticipants’ responses would be affected by the order

in which the categories were presented. For exam-
ple, perhaps it is the concept in the modifier position
that is most influential in determining the likelihood
of different relations for a compound. Alternatively
perhaps it is the concept in the head position that is
most influential.

To answer such questions a 4×4×3×2 repeated
measures ANOVA with beetle category, plant cate-
gory and response relation as within subject factors
and category label ordering as a between subject fac-
tor was used to analyze the data. The interaction
between beetle category and response relation was
significant (F (6, 38) = 59.79, p < .001). There-
fore, the beetle category present in the compound
tended to influence participants’ relation selections.
The interaction between plant category and response
relation was weaker, but still significant (F (6, 38) =
5.35, p < 0.01). Therefore, the plant category
present in the compound tended to influence partic-
ipants’ relation selections. These results answer the
first question above; training on exemplar items was
transferred to the noun-noun compounds. However,
there were no other significant interactions found. In
particular, the interaction between category order-
ing, beetle category and response relation was not
significant (F (6, 38) = 1.82, p = .09). In other
words, there is no evidence that the influence of bee-
tle category on participants’ relation selections when
the beetle was in the modifier position differed from
the influence of beetle category on participants’ rela-
tion selections when the beetle was in the head-noun
position. Similarly, the interaction between noun or-
dering, plant category and response relation was not
significant (F (6, 38) = 0.68, p = .67); there is no
evidence that the influence of the plant category on
relation selection differed depending on the location
of the plant category in the compound.

Planned pairwise comparisons (paired t-tests)
were used to investigate the significant interactions
further: for Bcat1, Bcat2 and Bcat3, the ratings
for the relation consistent with learning was sig-
nificantly higher than the two alternative relations
(p < .001 in all cases). However, for Bcat4, there
were no significant differences between the ratings
for the three relations (p > .31 for each of the three
comparisons). For the plants, however, the only sig-
nificant differences were between the response for
Relation 1 and Relation 2 for Pcat2 (t(39) = 2.12,
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p = .041) and between Relation 2 and Relation 3 for
Pcat2 (t(39) = 3.08, p = .004), although the dif-
ferences for Pcat1 and Pcat3 are also in the expected
direction.

In summary, the results of the noun-noun com-
pound stage of the experiment show that partici-
pants’ learning of the relations and their associa-
tions with beetle and plant categories during training
transferred to a task involving noun-noun compound
interpretation. This is important as it demonstrates
how the interpretation of compounds can be derived
from information about how concept exemplars tend
to co-occur together.

2.3 Modelling relation selection

One possible hypothesis about how people decide
on likely relations for a compound is that the men-
tion of the two lexemes in the compound activates
stored memory traces (i.e. exemplars) of the con-
cepts denoted by those lexemes. Exemplars differ
in how typical they are for particular conceptual cat-
egories and we would expect the likelihood of an
exemplar’s activation to be in proportion to its typ-
icality for the categories named in the compound.
As concept instances usually do not happen in isola-
tion but rather in the context of other concepts, this
naturally results in extensional relational informa-
tion about activated exemplars also becoming acti-
vated. This activated relational information is then
available to form a basis for determining the likely
relation or relations for the compound. A strength
of this hypothesis is that it incorporates both inten-
sional information about concepts’ features (in the
form of concept typicality) and also extrinsic, dis-
tributional information about how concepts tend to
combine (in the form of relational information asso-
ciated with activated exemplars). In this section, we
present a model instantiating this hybrid approach.

The hypothesis proposed above assumes that ex-
tensional information about relations is associated
with exemplars in memory. In the context of our
experiment, the extensional, relational information
about beetle and plant exemplars participants held in
memory is revealed in how they rated relational like-
lihood during the exemplar transfer stage of the ex-

1This is not significant if Bonferroni correction is used to
control the familywise Type I error rate amongst the multiple
comparisons

periment. For each of the 13 beetle and plant exem-
plars, we therefore assume that the average ratings
for each of the relations describes our participants’
knowledge about how exemplars combine with other
exemplars. Also, we can regard the three relation
likelihood ratings as being a 3-dimensional vector.
Given that category ordering did not appear to have
an effect on participants’ responses in the compound
transfer phase of the experiment, we can calculate
the relation vector ~rB,P for the novel compounds “B
P ” or “P B” as

~rB,P =

∑
e∈U

(typ(eb, B) + typ(ep, P ))α · ~re∑
e∈U

(typ(eb, B) + typ(ep, P ))α

where e denotes one of the 13 beetle-plant ex-
emplar items rated in the exemplar transfer stage,
typ(eb, B) denotes the typicality of the beetle ex-
emplar present in item e in beetle category B and
typ(ep, P ) denotes the typicality of the plant exem-
plar present in item e in plant category P . U is
the set of 13 beetle-plant exemplar pairs and α is a
magnification parameter to be estimated empirically
which describes the relative importance of exemplar
typicality.

In this model, we require a measure of how typical
of a conceptual category an exemplar is (i.e. a mea-
sure of how good a member of a category a partic-
ular category instance is). In our model, we use the
Generalized Context Model (GCM) to derive mea-
sures of exemplar typicality. The GCM is a success-
ful model of category learning that implements an an
exemplar-based account of how people make judg-
ments of category membership in a category learn-
ing task. The GCM computes the probability Pr of
an exemplar e belonging in a category C as a func-
tion of pairwise exemplar similarity according to:

Pr(e, C) =

∑
i∈C

sim(e, i)∑
i∈U

sim(e, i)

where U denotes the set of all exemplars in mem-
ory and sim(e, i) is a measure of similarity between
exemplars e and i. Similarity between exemplars is
in turn defined as a negative-exponential transforma-
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tion of distance:

sim(i, j) = e−cdist(i,j) (1)

where c is a free parameter, corresponding to how
quickly similarity between the exemplars diminishes
as a function of their distance. The distance between
two exemplars is usually computed as the city-block
metric summed over the dimensions of the exem-
plars, with each term weighted by empirically esti-
mated weighting parameters constrained to sum to
one. According to the GCM, the probability that
a given exemplar belongs to a given category in-
creases as the average similarity between the exem-
plar and the exemplars of the category increases; in
other words, as it becomes a more typical member
of the category. In our model, we use the proba-
bility scores produced by the GCM as a means for
computing concept typicality (although other meth-
ods for measuring typicality could have been used).

We compared the relation vector outputted by the
model for the 16 possible compounds to the rela-
tion vectors derived from participants’ ratings in the
compound transfer phase of the experiment. The
agreement between the model and the data was high
across the three relations (for Relation 1, r = 0.84,
p < 0.01; for Relation 2, r = 0.90, p < 0.01; for
Relation 3, r = 0.87, p < 0.01), using only one free
parameter, α, to fit the data2.

3 Conclusions

The empirical findings we have described in this pa-
per have several important implications. Firstly, the
findings have implications for relation-based theo-
ries. In particular, the finding that only beetle exem-
plars tended to influence relation selection suggest
that factors other than relation frequency are rele-
vant to the interpretation process (since the beetle
and plants in our experiment were identical in their
degree of association with relations). Complex inter-
actions between concepts and relations (e.g. agency
in the EATS(AGENT,OBJECT) relation) is informa-
tion that is not possible to capture using a taxonomic
approach to relation meaning.

Secondly, the fact that participants could learn to
identify the relations between exemplars and also

2In the GCM, c was set equal to 1 and the three dimensional
weights in the distance calculation were set equal to 1/3

transfer that knowledge to a task involving com-
pounds has implications for concept-based theories
of compound comprehension. No concept-based
theory of conceptual combination has ever adopted
an exemplar approach to concept meaning; mod-
els based on concept-focused theories tend to rep-
resent concepts as frames or lists of predicates. Our
approach suggests an exemplar representation is a
viable alternative. Also, distributional knowledge
about relations forms a natural component of an ex-
emplar representation of concepts, as different con-
cept instances will occur with instances of other con-
cepts with varying degrees of frequency. Given the
success of our model, assuming an exemplar repre-
sentation of concept semantics would seen to offer a
natural way of incorporating both information about
concept features and information about relation dis-
tribution into a single theory.
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