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Abstract

Semantic networks have been used suc-
cessfully to explain access to the men-
tal lexicon. Topological analyses of these
networks have focused on acquisition and
generation. We extend this work to look
at models that distinguish semantic rela-
tions. We find the scale-free properties
of association networks are not found in
synonymy-homonymy networks, and that
this is consistent with studies of childhood
acquisition of these relationships. We fur-
ther find that distributional models of lan-
guage acquisition display similar topolog-
ical properties to these networks.

1 Introduction

Semantic networks have played an important role in
the modelling of the organisation of lexical knowl-
edge. In these networks, words are connected by
graph edges based on their semantic relations. In re-
cent years, researchers have found that many seman-
tic networks aresmall-world, scale-freenetworks,
having a high degree of structure and a short distance
between nodes (Steyvers and Tenenbaum, 2005).

Early models were taxonomic and explained some
aspects of human reasoning (Collins and Quillian,
1969) (and are still used in artificial reasoning sys-
tems), but were replaced by models that focused on
general graph structures (e.g. Collins and Loftus,
1975). These better modelled many observed phe-
nomena but explained only the searching of seman-

tic space, not its generation or properties that exist
at a whole-network level.

Topological analyses, looking at the statistical
regularities of whole semantic networks, can be
used to model phenomena not easily explained from
the smaller scale data found in human experiments.
These networks are typically formed from corpora,
expert compiled lexical resources, or human word-
association data.

Existing work has focused language acquisition
(Steyvers and Tenenbaum, 2005) and generation
(Cancho and Solé, 2001). These models use the gen-
eral notion of semanticassociationwhich subsumes
all specific semantic relations, e.g. synonymy.

There is evidence that there are distinct cogni-
tive processes for different semantic relations (e.g.
Casenhiser, 2005). We perform a graph analysis
of synonymy, nearness of meaning, andhomonymy,
shared lexicalisation.

We find that synonymy and homonymy produce
graphs that are topologically distinct from those pro-
duced using association. They still produce small-
world networks with short path lengths but lack
scale-free properties. Adding edges of different se-
mantic relations, in particular hyponymy, produces
graphs more similar to the association networks. We
argue our analyses consistent with other semantic
network models where nodes of a common type
share edges of different types (e.g. Collins and Lof-
tus, 1975).

We further analyse the distributional model of lan-
guage acquisition. We find that it does not well
explain whole-language acquisition, but provides a
model for synonym and homonym acquisition.
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2 Graph Theory

Our overview of graph theory follows Watts (1999).
A graph consists of a set ofn vertices(nodes) and
a set ofedges, or arcs, which join pairs of ver-
tices. Edges areundirectedand arcs aredirected.
Edges and arcs can beweighted or unweighted,
with weights indicating the relative strength or im-
portance of the edges. We will only consider un-
weighted, undirected networks. Although there is
evidence that semantic relations are both directed
(Tversky, 1977) and weighted (Collins and Loftus,
1975), we do not have access to this information in
a consistent and meaningful format for all our re-
sources.

Two vertices connected by an edge are called
neighbours. The degreek of a vertex is the count
of it neighbours. From this we measure the average
degree〈k〉 for the graph and the degree distribution
P(k) for all values ofk. The degree distribution is
the probability of a vertex having a degreek.

TheneighbourhoodΓv of a vertexv is the set of all
neighbours ofv not includingv. The neighbourhood
ΓS of a subgraphS is the set of all neighbours ofS,
not including the members ofS.

The distancebetween any two vertices is the
shortest path length, or the minimum number of
edges that must be traversed, to reach the first from
the second. Thecharacteristic path lengthL is the
average distance between vertices.1 The diameter
D of a graph is the maximum shortest path length
between any two vertices. At mostD steps are re-
quired to reach any vertex from any other vertex but,
on average, onlyL are required.

For very large graphs, calculating the values forL
andD is computationally difficult. We instead sam-
ple n′ � n nodes and find the mean values ofL and
D across the samples. The diameter produced will
always be less than or equal to the true diameter. We
foundn′ = 100to be most efficient.

It is not a requirement that every vertex be reach-
able from every other vertex and in these cases both
L andD will be infinite. In these cases we analyse
the largest connected subgraph.

1Here we follow Steyvers and Tenenbaum (2005) as it is
more commonly used in the cognitive science literature. Watts
(1999) defines the characteristic path length as themedianof
the means of shortest path lengths for each vertex.

2.1 Small-world Networks

Traditional network models assume that networks
are either completely random or completely regu-
lar. Many natural networks are somewhere between
these two extremes. Thesesmall-worldnetworks a
have the high degree of clustering of a regularlattice
and the short average path length of a random net-
work (Watts and Strogatz, 1998). The clustering is
indicative of organisation, and the short paths make
for easier navigation.

The clustering coefficientCv is used to measure
the degree of clustering around a vertexv:

Cv =
|E(Γv)|(

kv
2

)
where|E(Γv)| is the number of edges in the neigh-
bourhoodΓv and

(
kv
2

)
is the total number of possible

edges inΓv. The clustering coefficientC of a graph
is the average over the coefficients of all the vertices.

2.2 The Scale of Networks

Amaral et al. (2000) describe three classes of small
world networks based on their degree distributions:

Scale-free networksare characterised by their
degree distribution decaying as a power law, having
a small number of vertices with many links (hubs)
and many vertices with few links. Networks in this
class include the internet (Faloutsos et al., 1999)
and semantic networks (Steyvers and Tenenbaum,
2005).

Broad-scale networksare characterised by their
degree distribution decaying as a power law fol-
lowed by a sharp cut-off. This class includes col-
laborative networks (Watts and Strogatz, 1998).

Single-scale networksare characterised by fast
decaying degree distribution, such exponential or
Gaussian, in which hubs are scarce or nonexistent.
This class includes power grids (Watts and Strogatz,
1998) and airport traffic (Amaral et al., 2000).

Amaral et al. (2000) model these differences us-
ing a constrained preferential attachment model,
where new nodes prefer to attach to highly con-
nected nodes. Scale-free networks result when there
are no constraints. Broad-scale networks are pro-
duced when ageing and cost-to-add-link constraints
are added, making it more difficult to produce very
high degree hubs. Single-scale networks occur when
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these constraints are strengthened. This is one of
several models for scale-free network generation,
and different models will result in different internal
structures and properties (Keller, 2005).

3 Semantics Networks

Semantic networks represent the structure of hu-
man knowledge through the connections of words.
Collins and Quillian (1969) proposed a taxonomic
representation of knowledge, where words are con-
nected by hyponym relations, like in the WordNet
noun hierarchy (Fellbaum, 1998). While this struc-
ture predicted human reaction times for verifying
facts it allows only a limited portion of knowledge
to be expressed. Later models represented knowl-
edge as semi-structured networks, and focused on
explaining performance in memory retrieval tasks.
One such model isspreading-activation, in which
the degree to which a concept is able to be recalled is
related to its similarity both to other concepts in gen-
eral and to some particularprimeor primes (Collins
and Loftus, 1975). In this way, if one is asked to
name ared vehicle, fire truck is more likely re-
sponse thancar: while both are strongly associated
with vehicle, fire truck is more strongly associated
with red than iscar.

More recently, graph theoretic approaches have
examined the topologies of various semantic net-
works. Cancho and Solé (2001) examine graphs of
English modelled from the British National Corpus.
Since co-occurrence is non-trivial — words in a sen-
tence must share some semantic content for the sen-
tence to be coherent — edges were formed between
adjacent words, with punctuation skipped. Two
graphs were formed: one from all co-occurrences
and the other from only those co-occurrences with
a frequency greater than chance. Both models pro-
duced scale-free networks. They find this model
compelling for word choice during speech, not-
ing function words are the most highly connected.
These give structure without conveying significant
meaning, so can be omitted without rendering a
sentence incoherent, but when unavailable render
speech non-fluent. This is consistent with work by
Albert et al. (2000) showing that scale-free networks
are tolerant to random deletion but sensitive to tar-
geted removal of highly connected vertices.

Sigman and Cecchi (2002) investigate the struc-
ture of WordNet to study the effects of nounal pol-
ysemy on graph navigation. Beginning with synsets
and the hyponym tree, they find adding polysemy
both reduces the characteristic path length and in-
creases the clustering coefficient, producing a small-
world network. They propose, citing word priming
experiments as evidence, that these changes in struc-
ture give polysemy a role in metaphoric thinking and
generalisation by increasing the navigability of se-
mantic networks.

Steyvers and Tenenbaum (2005) examine the
growth of semantic networks using graphs formed
from several resources: the free association index
collected by Nelson et al. (1998), Wordnet and
the 1911 Roget’s thesaurus. All these produced
scale-free networks, and, using an age of acquisi-
tion and frequency weighted preferential attache-
ment model, show that this corresponds to age-of-
acquisition norms for a small set of words. This is
compared to networks produced by Latent Semantic
Analysis (LSA, Landauer and Dumais, 1997), and
conclude thatLSA is an inadequate model for lan-
guage growth as it does not produce the same scale-
free networks as their association models.

3.1 Synonymy and Homonymy

While there have been many studies using human
subjects on the acquisition of particular semantic re-
lations, there have been no topological studies differ-
entiating these from the general notion of semantic
association. This is interesting as psycholinguistic
studies have shown that semantic relationships are
distinguishable (e.g. Casenhiser, 2005). Here we
considersynonymyandhomonymy.

There are very few cases of true synonymy, where
two words are substitutable in all contexts. Near-
synonymy, where two words share some close com-
mon meaning, is more common. Sets of synonyms
can be grouped together intosynsets, representing a
common idea.

Homonymy occurs when a word has multiple
meanings. Formally, homonymy is occurs when
words do not share an etymological root (in lin-
guistics) or when the distinction between meanings
is coarse (in cognitive science). When the words
share a root or meanings are close, the relationship
is called polysemy. This distinction is significant
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in language acquisition, but as yet little research
has been performed on the learning of polysemes
(Casenhiser, 2005). It is also significant for Natural
Language Processing. The effect of disambiguating
homonyms is markedly different from polysemes in
Information Retrieval (Stokoe, 2005).

We do not have access to these distinctions, as
they are not available in most resources, nor are
there techniques to automatically acquire these dis-
tinctions (Kilgarriff and Yallop, 2000). For simplic-
ity, will conflate the categories under homonymy.

There have been several studies into synonymy
and homonymy acquisition in children, and these
have shown that it lags behind vocabulary growth
(Doherty and Perner, 1998; Garnham et al., 2000).
A child will associate bothrabbit andbunny with
the same concept, but before the age of four, most
children have difficulty in choosing the wordbunny
if they have already been presented with the word
rabbit. Similarly, a young child asked to point to two
pictures that have the same name but mean different
things will have difficulty, despite knowing each of
the things independently.

Despite this improvement with age, there are
tendencies for language to avoid synonyms and
homonyms as a more general principle of economy
(Casenhiser, 2005). This is balanced by the utility of
ambiguous relations for mental navigation (Sigman
and Cecchi, 2002) which goes some way to explain-
ing why they still play such a large role in language.

4 The Topology of Synonymy and
Homonymy Relations

For each of our resources we form a graph based on
the relations between lexical items. This differs to
the earlier work of Sigman and Cecchi (2002), who
use synsets as vertices, and Steyvers and Tenenbaum
(2005) who use both lexical items and synsets..

This is motivated largely by our automatic ac-
quisition techniques, and also by human studies, in
which we can only directly access relationships be-
tween words. This also allows us to directly com-
pare resources where we have information about
synsets to those without. We distinguish parts of
speech as disambiguation across them is relatively
easy psychologically (Casenhiser, 2005) and com-
putationally (e.g. Ratnaparkhi, 1996).

4.1 Lexical Semantic Resources

A typical resource for providing this information
are manually constructed lexical semantic resources.
We will consider three: Roget’s, WordNet and Moby

Roget’s thesaurus is a common language the-
saurus providing a hierarchy of synsets. Synsets
with the same general or overlapping meaning and
part of speech are collected into paragraphs. The
parts of speech covered are nouns, verbs, adjectives,
adverbs, prepositions, phrases, pronouns, interjec-
tions, conjunctions, and interrogatives. Paragraphs
with similar meaning are collated by part of speech
into labeled categories. Categories are then collected
into classes using a three-tiered hierarchy, with the
most general concept at the top. Where a word has
several senses, it will appear in several synsets. Sev-
eral editions of Roget’s have been released repre-
senting the change in language since the first edi-
tion in 1852. The last freely available edition is the
1911, which uses outdated vocabulary, but the global
topology has not changed with more recent editions
(Old, 2003). As our analysis is not concerned with
the specifics of the vocabulary, this is the edition we
will use. It consists of a vocabulary of 29,460 nouns,
15,173 verbs, 13,052 adjectives and 3,005 adverbs.

WordNet (Fellbaum, 1998) is an electronic lex-
ical database. Like Roget’s, it main unit of or-
ganisation is the synset, and a word with several
senses will appear in several synsets. These are di-
vided into four parts of speech: nouns, verbs, ad-
jectives and adverbs. Synsets are connected by se-
mantic relationships, e.g antonymy, hyponymy and
meronym. WordNet 2.1 provides a vocabulary of
117,097 nouns, 11,488 verbs, 22,141 adjectives and
4,601 adverbs.

The Moby thesaurus provides synonymy lists
for over 30,000 words, with a total vocabulary of
322,263 words. These lists are not distinguished by
part of speech. A separate file is supplied containing
part of speech mappings for words in the vocabu-
lary. We extracted separate synonym lists for nouns,
verbs, adjectives and adverbs using this list com-
bined with WordNet part of speech information.2

This produces a vocabulary of 42,821 nouns, 11,957
verbs, 16,825 adjectives and 3,572 adverbs.

Table 1 presents the statistics for the largest con-

2http://aspell.sourceforge.net/wl/
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Roget’s WordNet Moby
Noun Verb Adj Adv Noun Verb Adj Adv Noun Verb Adj Adv

n 15,517 8,060 6,327 626 11,746 6,506 4,786 62 42,819 11,934 16,784 3501
〈k〉 8.97 8.46 7.40 7.17 4.58 6.34 5.16 4.97 34.65 51.98 39.26 16.07
L 6.5 6.0 6.4 10.5 9.8 6.0 9.5 5.6 3.7 3.1 3.4 3.7
D 21.4 17 17 31 27 15.3 26.4 14 9.6 9.8 9.3 9.8
C 0.74 0.68 0.69 0.77 0.63 0.62 0.66 0.57 0.60 0.49 0.57 0.55
Lr 4.7 4.5 4.6 3.5 6.3 5.0 5.9 3.3 3.4 2.8 2.9 3.2
Dr 8.5 8.4 9.0 7 13.3 10.1 11.8 8 5.5 5 5 6
Cr 0.00051 0.0011 0.0012 0.00900.00036 0.00099 0.00094 0.0280.00081 0.0043 0.0023 0.0047

Table 1: Topological statistics for nouns, verbs, adjectives and adverbs for our three gold standard resources
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Figure 1: Degree distributions for nouns

nected subgraph for the four parts of speech con-
sidered, along with statistics for random graphs of
equivalent size and average degree (subscriptr). In
all cases the clustering coefficient is significantly
higher than that for the random graph. While the
characteristic path length and diameter are larger
than for the random graphs, they are still short in
comparison to an equivalent latice. This, combined
with the high clustering coefficient, indicates that
they are producing small-world networks. The di-
ameter is larger still than for the random graphs. To-
gether these indicate a more lattice like structure,
which is consistent with the intuition that dissimi-
lar words are unlikely to share similar words. This
is independent of part of speech.

Figure 1 shows the degree distributions for nouns,
and for a random graph plotted on log-log axes.
Other parts of speech produce equivalent graphs.
These clearly show that we have not produced scale-
free networks as we are not seeing straight line
power law distributions. Instead we are seeing what
is closer to single- or broad-scale distributions.

The differences in the graphs is explained by the

WordNet Roget’s
Hyp Synset Para Cat

n 11,746 118,264 15,517 27,989 29,431
〈k〉 4.58 6.61 8.97 26.84 140.36
L 9.8 6.3 6.5 4.3 2.9
D 27 16.4 21.4 12.6 7
C 0.63 0.74 0.74 0.85 0.86

Table 2: Effect of adding hyponym relations

granularity of the synonymy relations presented, as
indicated by the characteristic path length. WordNet
has fine grained synsets and the smallest characteris-
tic path length, while Moby has coarse grained syn-
onyms and the largest characteristic path length.

4.2 Synonymy-Like Relations

Having seen that synonymy and homonymy alone
do not produce scale-free networks, we investigate
the synonymy-like relations ofhyponymyand topic
relatedness. Hyponymy is the IS-A class subsump-
tion relationship and occurs between noun synsets in
WordNet. Topic relatedness occurs in the grouping
of synsets in Roget’s in paragraphs and categories.

Table 2 compares adding hyponym edges to the
graph of WordNet nouns and increasing the gran-
ularity of Roget’s synsets using edges between all
words in a paragraph or category. Adding hyponymy
relations increases the connectivity of the graph sig-
nificantly and there are no longer any disconnected
subgraphs. At the same time the diameter is nearly
halved and characteristic path length reduce one
third, but average degree only increases by one third.
To achieving the same reduction in path length and
diameter by the granularity of Roget’s requires the
average degree to increase by nearly three times.

Figure 2 shows the degree distributions when hy-
ponyms are added to WordNet nouns and the granu-
larity of Roget’s is increased. Roget’s category level
graph is omitted for clarity. We can see that the orig-

77



 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

P(
k)

k

Roget’s
Paragraph
WordNet

Hyponym

Figure 2: Degree distributions adding hyponym re-
lations to nouns

inally broad-scale structure of the Roget’s distribu-
tion is tending to have a more gaussian distribution.
The addition of hyponyms produces a power law dis-
tribution fork > 10of P(k) ≈ k−1.7.

Additional constraints on attachment reduce the
ability of networks to be scale-free (Amaral et
al., 2000). The difference between synonymy-
homonymy networks and association networks can
be explained by this. Steyvers and Tenenbaum
(2005) propose a plausible attachment model for
their association networks which has no additional
constraint function. If we use the tendency for lan-
guages to avoid lexical ambiguity from synonymy
and homonymy as a constraint to the production of
edges we will produce broad-scale networks rather
than scale-free networks.

As hyponymy is primarily semantic and does not
produce lexical ambiguity, adding hyponym edges
weakens the constraint on ambiguity, producing a
scale-free network. Generalising synonymy to in-
clude topicality weakens the constraints, but at the
same time reduces preference in attachment. The
results of this is the gaussian-like distribution with
very few low degree nodes. The difference between
this thesaurus based topicality and that found in hu-
man association data is that human association data
only includes the most similar words.

5 Distributional Similarity Networks

Lexical semantic resources can be automatically ex-
tracted using distributional similarity. Here words
are projected into a vector space using the contexts
in which they appear as axes. Contexts can be as
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Figure 3: Degree distributions of Jaccard

wide as document (Landauer and Dumais, 1997)
or close as grammatical dependencies (Grefenstette,
1994). The distance between words in this space ap-
proximates the similarity measured by synonymy.

We use the noun similarities produced by Gor-
man and Curran (2006) using theweighted Jac-
card measure and thet-test weight and grammat-
ical relations extracted from their LARGE corpus,
the method found to perform best against their gold-
standard evaluation. Only words with a corpus fre-
quency higher than 100 are included. This method
is comparable to that used inLSA, although using
grammatical relations as context produces similar-
ity much more like synonymy than those taken at a
document level (Kilgarriff and Yallop, 2000).

Distributional similarity produces a list of vocab-
ulary words, their similar neighbours and the sim-
ilarity to the neighbours. These lists approximate
synonymy by measuring substitutability in context,
and do not only find synonyms as near neighbours
as both antonyms and hyponyms are frequently sub-
stitutable in a grammatical context (Weeds, 2003).
From this we generate graphs by taking either thek
nearest neighbours to each word (k-NN), or by us-
ing a threshold. To produce a threshold we take the
mean similarity of thekth neighbour of all words (*k-
NN). We compare both these methods.

Figure 3 compares the degree distributions of
these. Usingk-NN produces a degree distribution
that is close to a Gaussian, where as *k-NN pro-
duces a distribution much more like that of our ex-
pert compiled resources. This is unsurprising when
the distribution of distributional distances is consid-
ered. Some words will have many near neighbours,
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Roget’s WordNet Hyp k-NN *k-NN

n 15,517 11,746 118,264 35,592 19,642
〈k〉 8.97 4.58 6.61 8.26 13.86
L 6.5 9.8 6.3 6.2 6.4
D 21.4 27 16.4 12 25.6
C 0.74 0.63 0.74 0.18 0.37

Table 3: Comparing nouns in expert and distribu-
tional resources

and other few. In the first case,k-NN will fail to in-
clude some near neighbours, and in the second will
include some distant neighbours that are note se-
mantically related. This result is consistent between
k = 5 and 50. Introduction of random edges from
the noise of distant neighbours reduces the diameter
and missing near neighbours reduces the clustering
coefficient (Table 3).

In Table 3 we also compare these to noun syn-
onymy in Roget’s, and to synonymy and hyponymy
in WordNet. Distributional similarity (*k-NN) pro-
duces a network with similar degree, characteristic
path length and diameter. The clustering coefficient
is much less than that from expert resources, is still
several orders of magnitude larger than an equivalent
random graph (Table 1).

Figure 4 compares a distributional network to net-
works WordNet and Moby. We can see the same
broad-scale in the distributional and synonym net-
works, and a distinct difference with the scale-free
WordNet hyponym distribution.

The distributional similarity distribution is sim-
ilar to that found in networks formed fromLSA

by Steyvers and Tenenbaum (2005). Steyvers and
Tenenbaum hypothesise that the distributions pro-
duced byLSA might be due more to frequency dis-
tribution effects that correct language modelling.

In light of our analysis of synonymy relations,
we propose a new explanation. Given that: dis-
tributional similarity has been shown to approx-
imate the semantic similarity in synonymy rela-
tions found in thesaurus type resources (Curran,
2004); distributional similarity produces networks
with similar statistical properties to those formed by
synonym and homonymy relations; and, the syn-
onym and homonymy relations found in thesauri
produce networks with different statistical proper-
ties to those found in the association networks anal-
ysed by Steyvers and Tenenbaum; it can be plausibly
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Figure 4: Degree distributions for nouns

hypothesised that distributional techniques are mod-
eling the acquisition of synonyms and homonyms,
rather than all semantic relationships.

This is given further credence by experimental
findings that acquisition of homonyms occurs at a
different rate to the acquisition of vocabulary. This
indicates that there are different mechanisms for
learning the meaning of lexical items and learning
to relate the meanings of lexical items. Any whole-
language model would then be composed of a com-
mon set of lexical items related by disparate rela-
tions, such as synonymy, homonymy and hyponymy.
This type of model is predicted by spreading activa-
tion (Collins and Loftus, 1975).

It is unfortunate that there is a lack of data
with which to validate this model, or our constraint
model, empirically. This should not prevent further
analysis of network models that distiguish semantic
relations, so long as this limitation is understood.

6 Conclusion

Semantic networks have been used successfully to
explain access to the mental lexicon. We use both
expert-compiled and automatically extracted seman-
tic resources, we compare the networks formed from
semantic association and synonymy and homonymy.
These relations produce small-world networks, but
do not share the same scale-free properties as for se-
mantic association.

We find that this difference can be explained using
a constrained attachment model informed by child-
hood language acquisition experiments. It is also
predicted by spreading-activation theories of seman-
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tic access where a common set of lexical items is
connected by a disparate set of relations. We further
find that distributional models of language acquisi-
tion produce relations that approximate synonymy
and networks topologically similar to synonymy-
homonymy networks.
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world of human language.Proceedings of The Royal Society
of London. Series B, Biological Sciences, 268(1482):2261–
2265, November.

Devin M. Casenhiser. 2005. Children’s resistance to
homonymy: an experimental study of pseudohomonyms.
Journal of Child Language, 32:319–343.

Allan M. Collins and Elizabeth F. Loftus. 1975. A spreading-
activation theory of semantic processing.Psychological re-
view, 82(6):407–428.

Allan M. Collins and M. Ross Quillian. 1969. Retrieval time
from semantic memory.Journal of Verbal Learning and Ver-
bal Behavior, 8:240–247.

James R. Curran. 2004.From Distributional to Semantic Simi-
larity. Ph.D. thesis, University of Edinburgh.

Martin Doherty and Josef Perner. 1998. Metalinguistic aware-
ness and theory of mind: just two words for the same thing?
Congitive Development, 13:279–305.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos.
1999. On power-law relationships of the internet topology.
In Proceedings of the conference on Applications, technolo-
gies, architectures, and protocols for computer communica-
tion, pages 251–262.

Christiane Fellbaum, editor. 1998.WordNet: an electronic lex-
ical database. The MIT Press, Cambridge, MA, USA.

Wendy A. Garnham, Julie Brooks, Alan Garnham, and Anne-
Marie Ostenfeld. 2000. From synonyms to homonyms:
exploring the role of metarepresentation in language under-
standing.Developmental Science, 3(4):428–441.

James Gorman and James R. Curran. 2006. Scaling distribu-
tional similarity to large corpora. InProceedings of the 44th
Annual Meeting of the Association for Computational Lin-
guistics, Sydney, Australia, 17–21 July.

Gregory Grefenstette. 1994.Explorations in Automatic The-
saurus Discovery. Kluwer Academic Publishers, Boston.

Evelyn F. Keller. 2005. Revisiting ”scale-free” networks.
Bioessays, 27(10):1060–1068, October.

Adam Kilgarriff and Colin Yallop. 2000. What’s in a the-
saurus? InProceedings of the Second International Confer-
ence on Language Resources and Evaluation, pages 1371–
1379.

Thomas K. Landauer and Susan T. Dumais. 1997. A solu-
tion to plato’s problem: The latent semantic analysis theory
of acquisition, induction, and representation of knowledge.
Psychological Review, 104(2):211–240, April.

Douglas L. Nelson, Cathy L. McEvoy, and Thomas A.
Schreiber. 1998. The university of south florida
word association, rhyme, and word fragment norms.
http://www.usf.edu/FreeAssociation/.

L. John Old. 2003.The Semantic Structure of Roget’s, a Whole-
Language Thesaurus. Ph.D. thesis, Indiana University.

Adwait Ratnaparkhi. 1996. A maximum entropy part-of-
speech tagger. InProceedings of the Conference on Empir-
ical Methods in Natural Language Processing, pages 133–
142, 17–18 May.

Mariano Sigman and Guillermo A. Cecchi. 2002. Global or-
ganization of the WordNet lexicon.Proceedings of the Na-
tional Academy of Sciences, 99(3):1742–1747.

Mark Steyvers and Joshua B. Tenenbaum. 2005. The large-
scale structure of semantic networks: statistical analyses and
a model of semantic growth.Cognitive Science, 29(1):41–
78.

Christopher Stokoe. 2005. Differentiating homonymy and
polysemy in information retrieval. InProceedings of the
Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, pages 403–410.

Amos Tversky. 1977. Features of similarity.Psychological
Review, 84(4):327–352, July.

Duncan J. Watts and Steven H. Strogatz. 1998.Collective dy-
namics of small-world networks, 393:440–442, 4 June.

Duncan J. Watts. 1999.Small Worlds: The Dynamics of Net-
works between Order and Randomness. Princeton Univer-
sity Press, Princeton, NJ, USA.

Julie E. Weeds. 2003.Measures and Applications of Lexical
Distributional Similarity. Ph.D. thesis, University of Sussex.

80


