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Abstract 

We introduce Olympus, a freely available 

framework for research in conversational 

interfaces. Olympus’ open, transparent, 

flexible, modular and scalable nature fa-

cilitates the development of large-scale, 

real-world systems, and enables research 

leading to technological and scientific ad-

vances in conversational spoken language 

interfaces. In this paper, we describe the 

overall architecture, several systems 

spanning different domains, and a number 

of current research efforts supported by 

Olympus.  

1 Introduction  

Spoken language interfaces developed in industrial 

and academic settings differ in terms of goals, the 

types of tasks and research questions addressed, 

and the kinds of resources available.  

In order to be economically viable, most indus-

try groups need to develop real-world applications 

that serve large and varied customer populations. 

As a result, they gain insight into the research 

questions that are truly significant for current-

generation technologies. When needed, they are 

able to focus large resources (typically unavailable 

in academia) on addressing these questions. To 

protect their investments, companies do not gener-

ally disseminate new technologies and results. 

In contrast, academia pursues long-term scien-

tific research goals, which are not tied to immedi-

ate economic returns or customer populations. As a 

result, academic groups are free to explore a larger 

variety of research questions, even with a high risk 

of failure or a lack of immediate payoff. Academic 

groups also engage in a more open exchange of 

ideas and results. However, building spoken lan-

guage interfaces requires significant investments 

that are sometimes beyond the reach of academic 

researchers. As a consequence, research in acade-

mia is oftentimes conducted with toy systems and 

skewed user populations. In turn, this raises ques-

tions about the validity of the results and hinders 

the research impact.  

In an effort to address this problem and facilitate 

research on relevant, real-world questions, we have 

developed Olympus, a freely available framework 

for building and studying conversational spoken 

language interfaces. The Olympus architecture, 

described in Section 3, has its roots in the CMU 

Communicator project (Rudnicky et al., 1999). 

Based on that experience and subsequent projects, 

we have engineered Olympus into an open, trans-

parent, flexible, modular, and scalable architecture. 

To date, Olympus has been used to develop and 

deploy a number of spoken language interfaces 

spanning different domains and interaction types; 

these systems are presented in Section 4. They are 

currently supporting research on diverse aspects of 

spoken language interaction. Section 5 discusses 

three such efforts: error handling, multi-participant 

conversation, and turn-taking. 

We believe that Olympus and other similar tool-

kits, discussed in Section 6, are essential in order 

to bridge the gap between industry and academia. 

Such frameworks lower the cost of entry for re-
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search on practical conversational interfaces. They 

also promote technology transfer through the reuse 

of components, and support direct comparisons 

between systems and technologies.  

2 Desired characteristics 

While developing Olympus, we identified a num-

ber of characteristics that in our opinion are neces-

sary to effectively support and foster research. The 

framework should be open, transparent, flexible, 

modular, and scalable.  

Open. Complete source code should be avail-

able for all the components so that researchers and 

engineers can inspect and modify it towards their 

ends. Ideally, source code should be free for both 

research and commercial purposes and grow 

through contributions from the user community. 

Transparent / Analytic. Open source code 

promotes transparency, but beyond that researchers 

must be able to analyze the system’s behavior. To 

this end, every component should provide detailed 

accounts of their internal state. Furthermore, tools 

for data visualization and analysis should be an 

integral part of the framework. 

Flexible. The framework should be able to ac-

commodate a wide range of applications and re-

search interests, and allow easy integration of new 

technologies. 

Modular / Reusable. Specific functions (e.g. 

speech recognition, parsing) should be encapsu-

lated in components with rich and well-defined 

interfaces, and an application-independent design. 

This will promote reusability, and will lessen the 

system development effort.  

Scalable. While frameworks that rely on sim-

ple, well established approaches (e.g. finite-state 

dialogs in VoiceXML) allow the development of 

large-scale systems, this is usually not the case for 

frameworks that provide the flexibility and trans-

parency needed for research. However, some re-

search questions are not apparent until one moves 

from toy systems into large-scale applications. The 

framework should strive to not compromise scal-

ability for the sake of flexibility or transparency. 

3 Architecture  

At the high level, a typical Olympus application 

consists of a series of components connected in a 

classical, pipeline architecture, as illustrated by the 

bold components in Figure 1. The audio signal for 

the user utterance is captured and passed through a 

speech recognition module that produces a recog-

nition hypothesis (e.g., two p.m.). The recognition 

hypothesis is then forwarded to a language under-

standing component that extracts the relevant con-

cepts (e.g., [time=2p.m.]), and then through a 

confidence annotation module that assigns a confi-

dence score. Next, a dialog manager integrates this 

semantic input into the current context, and pro-

duces the next action to be taken by the system in 

the form of the semantic output (e.g., {request 

end_time}). A language generation module pro-

duces the corresponding surface form, which is 

subsequently passed to a speech synthesis module 

and rendered as audio.  

Galaxy communication infrastructure. While 

the pipeline shown in bold in Figure 1 captures the 

logical flow of information in the system, in prac-

tice the system components communicate via a 

centralized message-passing infrastructure – Gal-

axy (Seneff et al., 1998). Each component is im-

plemented as a separate process that connects to a 

traffic router – the Galaxy hub. The messages are 

sent through the hub, which forwards them to the 

appropriate destination. The routing logic is de-

scribed via a configuration script. 

Speech recognition. Olympus uses the Sphinx 

decoding engine (Huang et al., 1992). A recogni-

tion server captures the audio stream, forwards it to 

a set of parallel recognition engines, and collects 

the corresponding recognition results. The set of 

best hypotheses (one from each engine) is then 

forwarded to the language understanding compo-

nent. The recognition engines can also generate n-

best lists, but that process significantly slows down 

the systems and has not been used live. Interfaces 

to connect Sphinx-II and Sphinx-III engines, as 

well as a DTMF (touch-tone) decoder to the recog-

nition server are currently available. The individual 

recognition engines can use either n-gram- or 

grammar-based language models. Dialog-state 

specific as well as class-based language models are 

supported, and tools for constructing language and 

acoustic models from data are readily available. 

Most of the Olympus systems described in the next 

section use two gender-specific Sphinx-II recog-

nizers in parallel. Other parallel decoder configura-

tions can also be created and used.  

Language understanding is performed by 

Phoenix, a robust semantic parser (Ward and Issar, 
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1994). Phoenix uses a semantic grammar to parse 

the incoming set of recognition hypotheses. This 

grammar is assembled by concatenating a set of 

reusable grammar rules that capture domain-

independent constructs like [Yes], [No], [Help], 

[Repeat], and [Number], with a set of domain-

specific grammar rules authored by the system de-

veloper. For each recognition hypothesis the output 

of the parser consists of a sequence of slots con-

taining the concepts extracted from the utterance.  

Confidence annotation. From Phoenix, the set 

of parsed hypotheses is passed to Helios, the con-

fidence annotation component. Helios uses features 

from different knowledge sources in the system 

(e.g., recognition, understanding, dialog) to com-

pute a confidence score for each hypothesis. This 

score reflects the probability of correct understand-

ing, i.e. how much the system trusts that the cur-

rent semantic interpretation corresponds to the 

user’s intention. The hypothesis with the highest 

score is forwarded to the dialog manager.  

Dialog management. Olympus uses the Raven-

Claw dialog management framework (Bohus and 

Rudnicky, 2003). In a RavenClaw-based dialog 

manager, the domain-specific dialog task is repre-

sented as a tree whose internal nodes capture the 

hierarchical structure of the dialog, and whose 

leaves encapsulate atomic dialog actions (e.g., ask-

ing a question, providing an answer, accessing a 

database). A domain-independent dialog engine 

executes this dialog task, interprets the input in the 

current dialog context and decides which action to 

engage next. In the process, the dialog manager 

may exchange information with other domain-

specific agents (e.g., application back-end, data-

base access, temporal reference resolution agent). 

Language generation. The semantic output of 

the dialog manager is sent to the Rosetta template-

based language generation component, which pro-

duces the corresponding surface form. Like the 

Phoenix grammar, the language generation tem-

plates are assembled by concatenating a set of pre-

defined, domain-independent templates, with 

manually authored task-specific templates.  

Speech synthesis. The prompts are synthesized 

by the Kalliope speech synthesis module. Kalliope 

can be currently configured to use Festival (Black 

and Lenzo, 2000), which is an open-source speech 

synthesis system, or Cepstral Swift (Cepstral 

2005), a commercial engine. Finally, Kalliope also 

supports the SSML markup language.  

Other components. The various components 

briefly described above form the core of the Olym-

pus dialog system framework. Additional compo-

nents have been created throughout the 

development of various systems, and, given the 

modularity of the architecture, can be easily re-

used. These include a telephony component, a text 

Parsing 
PHOENIX 

Recognition 
Server 

Lang. Gen 
ROSETTA 

Synthesis 
KALLIOPE 

☺ 

SPHINX 
SPHINX 

SPHINX 

Confidence 
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HUB 
Text I/O 

TTYSERVER 
Application 
Back-end 

Dialog. Mgr. 
RAVENCLAW 

Date-Time 
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Process 
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Until what time 

would you like  
the room? 

{request end_time} 

Figure 1. The Olympus dialog system reference architecture (a typical system) 

two p.m. [time=2pm] [time=2pm]/0.65 
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input-and-output interface, and a temporal refer-

ence resolution agent that translates complex date-

time expressions (including relative references, 

holidays, etc.) into a canonical form. Recently, a 

Jabber interface was implemented to support inter-

actions via the popular GoogleTalk internet mes-

saging system. A Skype speech client component 

is also available.  

Data Analysis. Last but not least, a variety of 

tools for logging, data processing and data ana-

lytics are also available as part of the framework. 

These tools have been used for a wide variety of 

tasks ranging from system monitoring, to trends 

analysis, to training of internal models. 

A key characteristic shared by all the Olympus 

components is the clear separation between do-

main-independent programs and domain-specific 

resources. This decoupling promotes reuse and 

lessens the system development effort. To build a 

new system, one can focus simply on developing 

resources (e.g., language model, grammar, dialog 

task specification, generation templates) without 

having to do any programming. On the other hand, 

since all components are open-source, any part of 

the system can be modified, for example to test 

new algorithms or compare approaches. 

4 Systems 

To date, the Olympus framework has been used to 

successfully build and deploy several spoken dia-

log systems spanning different domains and inter-

action types (see Table 1). Given the limited space, 

we discuss only three of these systems in a bit 

more detail: Let’s Go!, LARRI, and TeamTalk. 

More information about the other systems can be 

found in (RavenClaw-Olympus, 2007). 

4.1 Let’s Go! 

The Let’s Go! Bus Information System (Raux et al 

2005; 2006) is a telephone-based spoken dialog 

system that provides access to bus schedules. In-

teraction with the system starts with an open 

prompt, followed by a system-directed phase 

where the user is asked the missing information. 

Each of the three or four pieces of information 

provided (origin, destination, time of travel, and 

optional bus route) is explicitly confirmed. The 

system knows 12 bus routes, and about 1800 place 

names. 

Originally developed as an in-lab research sys-

tem, Let’s Go! has been open to the general public 

since March, 2005. Outside of business hours, calls 

to the bus company are transferred to Let’s Go!, 

providing a constant flow of genuine dialogs 

(about 40 calls per weeknight and 70 per weekend 

night). As of March, 2007, a corpus of about 

30,000 calls to the system has been collected and 

partially transcribed and annotated. In itself, this 

publicly available corpus constitutes a unique re-

source for the community. In addition, the system 

itself has been modified for research experiments 

(e.g., Raux et al., 2005, Bohus et al., 2006). Be-

tween-system studies have been conducted by run-

ning several versions of the system in parallel and 

picking one at random for every call. We have re-

cently opened this system to researchers from other 

groups who wish to conduct their own experi-

ments. 

4.2 LARRI 

LARRI (Bohus and Rudnicky, 2002a) is a multi-

modal system for support of maintenance and re-

pair activities for F/A-18 aircraft mechanics. The 

system implements an Interactive Electronic Tech-

nical Manual.  

LARRI integrates a graphical user interface for 

easy visualization of dense technical information 

(e.g., instructions, schematics, video-streams) with 

a spoken dialog system that facilitates information 

access and offers assistance throughout the execu-

tion of procedural tasks. The GUI is accessible via 

a translucent head-worn display connected to a 

wearable client computer. A rotary mouse (dial) 

provides direct access to the GUI elements.  

After an initial log-in phase, LARRI guides the 

user through the selected task, which consists of a 

sequence of steps containing instructions, option-

ally followed by verification questions. Basic steps 

can include animations or short video sequences 

that can be accessed by the user through the GUI 

or through spoken commands. The user can also 

take the initiative and access the documentation, 

either via the GUI or by simple commands such as 

“go to step 15” or “show me the figure”. 

The Olympus architecture was easily adapted 

for this mobile and multi-modal setting. The wear-

able computer hosts audio input and output clients, 

as well as the graphical user interface. The Galaxy 

hub architecture allows us to easily connect these 

35



components to the rest of the system, which runs 

on a separate server computer. The rotary-mouse 

events from the GUI are rendered as semantic in-

puts and are sent to Helios which in turn forwards 

the corresponding messages to the dialog manager.  

4.3 TeamTalk 

TeamTalk (Harris et al., 2005) is a multi-modal 

interface that facilitates communication between a 

human operator and a team of heterogeneous ro-

bots, and is designed for a multi-robot-assisted 

treasure-hunt domain. The human operator uses 

spoken language in concert with pen-gestures on a 

shared live map to elicit support from teams of ro-

bots. This support comes in the forms of mapping 

unexplored areas, searching explored areas for ob-

jects of interest, and leading the human to said ob-

jects. TeamTalk has been built as a fully functional 

interface to real robots, including the Pioneer 

P2DX and the Segway RMP. In addition, it can 

interface with virtual robots within the high-

fidelity USARSim (Balakirsky et al., 2006) simula-

tion environment. TeamTalk constitutes an excel-

lent platform for multi-agent dialog research. 

To build TeamTalk, we had to address two chal-

lenges to current architecture. The multi-

participant nature of the interaction required multi-

ple dialog managers; the live map with pen-

gestured references required a multi-modal integra-

tion. Again, the flexibility and transparency of the 

Olympus framework allowed for relatively simple 

solutions to both of these challenges. To accom-

modate multi-participant dialog, each robot in the 

domain is associated with its own RavenClaw-

based dialog manager, but all robots share the 

other Olympus components: speech recognition, 

language understanding, language generation and 

speech synthesis. To accommodate the live map 

GUI, a Galaxy server was built in Java that could 

send the user’s inputs to Helios and receive outputs 

from RavenClaw. 

5 Research 

The Olympus framework, along with the systems 

developed using it, provides a robust basis for re-

search in spoken language interfaces. In this sec-

tion, we briefly outline three current research 

efforts supported by this architecture. Information 

about other supported research can be found in 

(RavenClaw-Olympus, 2007). 

5.1 Error handling  

A persistent and important problem in today’s spo-

ken language interfaces is their lack of robustness 

when faced with understanding errors. This prob-

lem stems from current limitations in speech rec-

ognition, and appears across most domains and 

interaction types. In the last three years, we con-

ducted research aimed at improving robustness in 

spoken language interfaces by: (1) endowing them 

with the ability to accurately detect errors, (2) de-

System name Domain / Description Genre 

RoomLine 
(Bohus and Rudnicky 2005) 

telephone-based system that provides support for conference 
room reservation and scheduling within the School of Com-
puter Science at CMU. 

information access (mixed 
initiative) 

Let’s Go! Public 
(Raux et al 2005) 

telephone-based system that provides access to bus schedule 
information in the greater Pittsburgh area. 

information access 
(system initiative) 

LARRI 
(Bohus and Rudnicky 2002) 

multi-modal system that provides assistance to F/A-18 aircraft 
personnel during maintenance tasks. 

multi-modal task guidance 
and procedure browsing 

Intelligent Procedure  
Assistant 
(Aist et al 2002) 

early prototype for a multi-modal system aimed at providing 
guidance and support to the astronauts on the International 
Space Station during the execution of procedural tasks and 
checklists. 

multi-modal task guidance 
and procedure browsing 

TeamTalk 
(Harris et al 2005) 

multi-participant spoken language command-and-control inter-
face for a team of robots in the treasure-hunt domain. 

multi-participant command-
and-control 

VERA 
telephone-based taskable agent that can be instructed to de-
liver messages to a third party and make wake-up calls. 

voice mail / message deliv-
ery 

Madeleine text-based dialog system for medical diagnosis. diagnosis 

ConQuest 
(Bohus et al 2007) 

telephone-based spoken dialog system that provides confer-
ence schedule information. 

information access 
(mixed-initiative) 

RavenCalendar 
(Stenchikova et al 2007). 

multimodal dialog system for managing personal calendar 
information, such as meetings, classes, appointments and 
reminders (uses Google Calendar as a back-end)  

information access and 
scheduling 

 
Table 1. Olympus-based spoken dialog systems (shaded cells indicate deployed systems) 
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veloping a rich repertoire of error recovery strate-

gies and (3) developing scalable, data-driven ap-

proaches for building error recovery policies
1
. Two 

of the dialog systems from Table 1 (Let’s Go! and 

RoomLine) have provided a realistic experimental 

platform for investigating these issues and evaluat-

ing the proposed solutions.   

With respect to error detection, we have devel-

oped tools for learning confidence annotation 

models by integrating information from multiple 

knowledge sources in the system (Bohus and Rud-

nicky, 2002b). Additionally, Bohus and Rudnicky 

(2006) proposed a data-driven approach for con-

structing more accurate beliefs in spoken language 

interfaces by integrating information across multi-

ple turns in the conversation. Experiments with the 

RoomLine system showed that the proposed belief 

updating models led to significant improvements 

(equivalent with a 13.5% absolute reduction in 

WER) in both the effectiveness and the efficiency 

of the interaction.  

With respect to error recovery strategies, we 

have developed and evaluated a large set of strate-

gies for handling misunderstandings and non-

understandings (Bohus and Rudnicky, 2005). The 

strategies are implemented in a task-decoupled 

manner in the RavenClaw dialog management 

framework. 

Finally, in (Bohus et al., 2006) we have pro-

posed a novel online-learning based approach for 

building error recovery policies over a large set 

of non-understanding recovery strategies. An em-

pirical evaluation conducted in the context of the 

Let’s Go! system showed that the proposed ap-

proach led to a 12.5% increase in the non-

understanding recovery rate; this improvement was 

attained in a relatively short (10-day) time period.  

The models, tools and strategies developed 

throughout this research can and have been easily 

reused in other Olympus-based systems. 

5.2 Multi-participant conversation  

Conversational interfaces are generally built for 

one-on-one conversation. This has been a workable 

assumption for telephone-based systems, and a 

useful one for many single-purpose applications. 

However this assumption will soon become 

strained as a growing collection of always-
                                                           
1 A policy specifies how the system should choose between 

different recovery strategies at runtime.  

available agents (e.g., personal trainers, pedestrian 

guides, or calendar systems) and embodied agents 

(e.g., appliances and robots) feature spoken lan-

guage interfaces. When there are multiple active 

agents that wish to engage in spoken dialog, new 

issues arise. On the input side, the agents need to 

be able to identify the addressee of any given user 

utterance. On the output side, the agents need to 

address the problem of channel contention, i.e., 

multiple participants speaking over each other. 

Two architectural solutions can be envisioned: 

(1) the agents share a single interface that under-

stands multi-agent requirements, or (2) each agent 

uses its own interface and handles multi-participant 

behavior. Agents that provide different services 

have different dialog requirements, and we believe 

this makes a centralized interface problematic. Fur-

thermore, the second solution better fits human 

communication behavior and therefore is likely to 

be more natural and habitable.  

TeamTalk is a conversational system that fol-

lows the second approach: each robot has its own 

dialog manager. Processed user inputs are sent to 

all dialog managers in the system; each dialog 

manager decides based on a simple algorithm 

(Harris et al., 2004) whether or not the current in-

put is addressed to it. If so, an action is taken. Oth-

erwise the input is ignored; it will be processed and 

responded to by another robot. On the output side, 

to address the channel contention problem, each 

RavenClaw output message is augmented with in-

formation about the identity of the robot that gen-

erated it. The shared synthesis component queues 

the messages and plays them back sequentially 

with the corresponding voice. 

We are currently looking into two additional 

challenges related to multi-participant dialog. We 

are interested in how to address groups and sub-

groups in addition to individuals of a group, and 

we are also interested in how to cope with multiple 

humans in addition to multiple agents. Some ex-

periments investigating solutions to both of these 

issues have been conducted. Analysis of the results 

and refinements of these methods are ongoing. 

5.3 Timing and turn-taking  

While a lot of research has focused on higher lev-

els of conversation such as natural language under-

standing and dialog planning, low-level inter-

actional phenomena such as turn-taking have not 
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received as much attention. As a result, current 

systems either constrain the interaction to a rigid 

one-speaker-at-a-time style or expose themselves 

to interactional problems such as inappropriate 

delays, spurious interruptions, or turn over-taking 

(Raux et al., 2006). To a large extent, these issues 

stem from the fact that in common dialog architec-

tures, including Olympus, the dialog manager 

works asynchronously from the real world (i.e., 

utterances and actions that are planned are as-

sumed to be executed instantaneously). This means 

that user barge-ins and backchannels are often in-

terpreted in an incorrect context, which leads to 

confusion, unexpected user behavior and potential 

dialog breakdowns. Additionally, dialog systems’ 

low-level interactional behavior is generally the 

result of ad-hoc rules encoded in different compo-

nents that are not precisely coordinated. 

In order to investigate and resolve these is-

sues, we are currently developing version 2 of the 

Olympus framework. In addition to all the compo-

nents described in this paper, Olympus 2 features 

an Interaction Manager which handles the precise 

timing of events perceived from the real world 

(e.g., user utterances) and of system actions (e.g., 

prompts). By providing an interface between the 

actual conversation and the asynchronous dialog 

manager, Olympus 2 allows a more reactive behav-

ior without sacrificing the powerful dialog man-

agement features offered by RavenClaw. Olympus 

2 is designed so that current Olympus-based sys-

tems can be upgraded with minimal effort.  

This novel architecture, initially deployed in 

the Let’s Go system, will enable research on turn-

taking and other low-level conversational phenom-

ena. Investigations within the context of other ex-

isting systems, such as LARRI and TeamTalk, will 

uncover novel challenges and research directions.  

6 Discussion and conclusion 

The primary goal of the Olympus framework is to 

enable research that leads to technological and sci-

entific advances in spoken language interfaces.  

Olympus is however by no means a singular ef-

fort. Several other toolkits for research and devel-

opment are available to the community. They 

differ on a number of dimensions, such as objec-

tives, scientific underpinnings, as well as techno-

logical and implementation aspects. Several 

toolkits, both commercial, e.g., TellMe, BeVocal, 

and academic, e.g., Ariadne (2007), SpeechBuilder 

(Glass et al., 2004), and the CSLU toolkit (Cole, 

1999), are used for rapid development. Some, e.g., 

CSLU and SpeechBuilder, have also been used for 

educational purposes. And yet others, such as 

Olympus, GALATEEA (Kawamoto et al., 2002) 

and DIPPER (Bos et al., 2003) are primarily used 

for research. Different toolkits rely on different 

theories and dialog representations: finite-state, 

slot-filling, plan-based, information state-update. 

Each toolkit balances tradeoffs between complex-

ity, ease-of-use, control, robustness, flexibility, etc. 

We believe the strengths of the Olympus 

framework lie not only in its current components, 

but also in its open, transparent, and flexible na-

ture. As we have seen in the previous sections, 

these characteristics have allowed us to develop 

and deploy practical, real-world systems operating 

in a broad spectrum of domains. Through these 

systems, Olympus provides an excellent basis for 

research on a wide variety of spoken dialog issues. 

The modular construction promotes the transfer 

and reuse of research contributions across systems.  

While desirable, an in-depth understanding of 

the differences between all these toolkits remains 

an open question. We believe that an open ex-

change of experiences and resources across toolkits 

will create a better understanding of the current 

state-of-the-art, generate new ideas, and lead to 

better systems for everyone. Towards this end, we 

are making the Olympus framework, as well as a 

number of systems and dialog corpora, freely 

available to the community. 
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