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Abstract

This paper presents latent semantic gram-
mars for the unsupervised induction of
English grammar. Latent semantic gram-
mars were induced by applying singu-
lar value decomposition to n-gram by
context-feature matrices. Parsing was
used to evaluate performance. Exper-
iments with context, projectivity, and
prior distributions show the relative per-
formance effects of these kinds of prior
knowledge. Results show that prior dis-
tributions, projectivity, and part of speech
information are not necessary to beat the
right branching baseline.

1 Introduction

Unsupervised grammar induction (UGI) generates a
grammar from raw text. It is an interesting problem
both theoretically and practically. Theoretically, it
connects to the linguistics debate on innate knowl-
edge (Chomsky, 1957). Practically, it has the po-
tential to supersede techniques requiring structured
text, like treebanks. Finding structure in text with
little or no prior knowledge is therefore a fundamen-
tal issue in the study of language.

However, UGI is still a largely unsolved problem.
Recent work (Klein and Manning, 2002; Klein and
Manning, 2004) has renewed interest by using a UGI
model to parse sentences from the Wall Street Jour-
nal section of the Penn Treebank (WSJ). These pars-
ing results are exciting because they demonstrate

real-world applicability to English UGI. While other
contemporary research in this area is promising, the
case for real-world English UGI has not been as
convincingly made (van Zaanen, 2000; Solan et al.,
2005).

This paper weaves together two threads of in-
quiry. The first thread is latent semantics, which
have not been previously used in UGI. The second
thread is dependency-based UGI, used by Klein and
Manning (2004), which nicely dovetails with our se-
mantic approach. The combination of these threads
allows some exploration of what characteristics are
sufficient for UGI and what characteristics are nec-
essary.

2 Latent semantics

Previous work has focused on syntax to the exclu-
sion of semantics (Brill and Marcus, 1992; van Zaa-
nen, 2000; Klein and Manning, 2002; Paskin, 2001;
Klein and Manning, 2004; Solan et al., 2005). How-
ever, results from the speech recognition commu-
nity show that the inclusion of latent semantic infor-
mation can enhance the performance of their mod-
els (Coccaro and Jurafsky, 1998; Bellegarda, 2000;
Deng and Khudanpur, 2003). Using latent semantic
information to improve UGI is therefore both novel
and relevant.

The latent semantic information used by the
speech recognition community above is produced
by latent semantic analysis (LSA), also known as
latent semantic indexing (Deerwester et al., 1990;
Landauer et al., 1998). LSA creates a semantic rep-
resentation of both words and collections of words
in a vector space, using a two part process. First,
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a term by document matrix is created in which the
frequency of wordwi in documentdj is the value
of cell cij . Filters may be applied during this pro-
cess which eliminate undesired terms, e.g. common
words. Weighting may also be applied to decrease
the contributions of frequent words (Dumais, 1991).
Secondly, singular value decomposition (SVD) is
applied to the term by document matrix. The re-
sulting matrix decomposition has the property that
the removal of higher-order dimensions creates an
optimal reduced representation of the original ma-
trix in the least squares sense (Berry et al., 1995).
Therefore, SVD performs a kind of dimensionality
reduction such that words appearing in different doc-
uments can acquire similar row vector representa-
tions (Landauer and Dumais, 1997). Words can be
compared by taking the cosine of their correspond-
ing row vectors. Collections of words can likewise
be compared by first adding the corresponding row
vectors in each collection, then taking the cosine be-
tween the two collection vectors.

A stumbling block to incorporating LSA into UGI
is that grammars are inherently ordered but LSA is
not. LSA is unordered because the sum of vectors is
the same regardless of the order in which they were
added. The incorporation of word order into LSA
has never been successfully carried out before, al-
though there have been attempts to apply word or-
der post-hoc to LSA (Wiemer-Hastings and Zipitria,
2001). A straightforward notion of incorporating
word order into LSA is to use n-grams instead of in-
dividual words. In this way a unigram, bigram, and
trigram would each have an atomic vector represen-
tation and be directly comparable.

It may seem counterintuitive that such an n-gram
scheme has never been used in conjunction with
LSA. Simple as this scheme may be, it quickly falls
prey to memory limitations of modern day comput-
ers for computing the SVD. The standard for com-
puting the SVD in the NLP sphere is Berry (1992)’s
SVDPACK, whose single vector Lanczos recursion
method with re-orthogonalization was incorporated
into the BellCore LSI tools. Subsequently, either
SVDPACK or the LSI tools were used by the ma-
jority of researchers in this area (Schütze, 1995;
Landauer and Dumais, 1997; Landauer et al., 1998;
Coccaro and Jurafsky, 1998; Foltz et al., 1998; Bel-
legarda, 2000; Deng and Khudanpur, 2003). Using

John likesstring cheese.

Figure 1: A Dependency Graph

the equation reported in Larsen (1998), a standard
orthogonal SVD of a unigram/bigram by sentence
matrix of the LSA Touchstone Applied Science As-
sociates Corpus (Landauer et al., 1998) requires over
60 gigabytes of random access memory. This esti-
mate is prohibitive for all but current supercomput-
ers.

However, it is possible to use a non-orthogonal
SVD approach with significant memory savings
(Cullum and Willoughby, 2002). A non-orthogonal
approach creates the same matrix decomposition as
traditional approaches, but the resulting memory
savings allow dramatically larger matrix decompo-
sitions. Thus a non-orthongonal SVD approach is
key to the inclusion of ordered latent semantics into
our UGI model.

3 Dependency grammars

Dependency structures are an ideal grammar repre-
sentation for evaluating UGI. Because dependency
structures have no higher order nodes, e.g.NP, their
evaluation is simple: one may compare with a ref-
erence parse and count the proportion of correct de-
pendencies. For example, Figure 1 has three depen-
dencies{( John, likes ), ( cheese, likes ), ( string,
cheese )}, so the trial parse{( John, likes ), ( string,
likes ), ( cheese, string )} has1/3 directed dependen-
cies correct and2/3 undirected dependencies cor-
rect. This metric avoids the biases created by brack-
eting, where over-generation or undergeneration of
brackets may cloud actual performance (Carroll et
al., 2003). Dependencies are equivalent with lexical-
ized trees (see Figures 1 and 2) so long as the depen-
dencies are projective. Dependencies are projective
when all heads and their dependents are a contigu-
ous sequence.

Dependencies have been used for UGI before with
mixed success (Paskin, 2001; Klein and Manning,
2004). Paskin (2001) created a projective model us-
ing words, and he evaluated on WSJ. Although he
reported beating the random baseline for that task,
both Klein and Manning (2004) and we have repli-
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Slikes

NPJohn VPlikes

John likes NPcheese

string cheese

Figure 2: A Lexicalized Tree

cated the random baseline above Paskin’s results.
Klein and Manning (2004), on the other hand, have
handily beaten a random baseline using a projective
model over part of speech tags and evaluating on a
subset of WSJ, WSJ10.

4 Unanswered questions

There are several unanswered questions in
dependency-based English UGI. Some of these
may be motivated from the Klein and Manning
(2004) model, while others may be motivated
from research efforts outside the UGI community.
Altogether, these questions address what kinds
of prior knowledge are, or are not necessary for
successful UGI.

4.1 Parts of speech

Klein and Manning (2004) used part of speech tags
as basic elements instead of words. Although this
move can be motivated on data sparsity grounds, it
is somewhat at odds with the lexicalized nature of
dependency grammars. Since Paskin (2001)’s previ-
ous attempt using words as basic elements was un-
successful, it is not clear whether parts of speech are
necessary prior knowledge in this context.

4.2 Projectivity

Projectivity is an additional constraint that may not
be necessary for successful UGI. English is a projec-
tive language, but other languages, such as Bulgar-
ian, are not (Pericliev and Ilarionov, 1986). Nonpro-
jective UGI has not previously been studied, and it
is not clear how important projectivity assumptions
are to English UGI. Figure 3 gives an example of a
nonprojective construction: not all heads and their
dependents are a contiguous sequence.

John string likescheese.

Figure 3: A Nonprojective Dependency Graph
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Figure 4: Distance Between Dependents in WSJ10

4.3 Context

The core of several UGI approaches is distributional
analysis (Brill and Marcus, 1992; van Zaanen, 2000;
Klein and Manning, 2002; Paskin, 2001; Klein and
Manning, 2004; Solan et al., 2005). The key idea in
such distributional analysis is that the function of a
word may be known if it can be substituted for an-
other word (Harris, 1954). If so, both words have the
same function. Substitutability must be defined over
a context. In UGI, this context has typically been the
preceding and following words of the target word.
However, this notion of context has an implicit as-
sumption of word order. This assumption is true for
English, but is not true for other languages such as
Latin. Therefore, it is not clear how dependent En-
glish UGI is on local linear context, e.g. preceding
and following words, or whether an unordered no-
tion of context would also be effective.

4.4 Prior distributions

Klein and Manning (2004) point their model in the
right direction by initializing the probability of de-
pendencies inversely proportional to the distance be-
tween the head and the dependent. This is a very
good initialization: Figure 4 shows the actual dis-
tances for the dataset used, WSJ10.
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Klein (2005) states that, “It should be emphasized
that this initialization was important in getting rea-
sonable patterns out of this model.” (p. 89). How-
ever, it is not clear that this is necessarily true for all
UGI models.

4.5 Semantics

Semantics have not been included in previous UGI
models, despite successful application in the speech
recognition community (see Section 2). However,
there have been some related efforts in unsupervised
part of speech induction (Schütze, 1995). These ef-
forts have used SVD as a dimensionality reduction
step between distributional analysis and clustering.
Although not labelled as “semantic” this work has
produced the best unsupervised part of speech in-
duction results. Thus our last question is whether
SVD can be applied to a UGI model to improve re-
sults.

5 Method

5.1 Materials

The WSJ10 dataset was used for evaluation to be
comparable to previous results (Klein and Manning,
2004). WSJ10 is a subset of the Wall Street Jour-
nal section of the Penn Treebank, containing only
those sentences of 10 words or less after punctuation
has been removed. WSJ10 contains 7422 sentences.
To counteract the data sparsity encountered by using
ngrams instead of parts of speech, we used the en-
tire WSJ and year 1994 of the North American News
Text Corpus. These corpora were formatted accord-
ing to the same rules as the WSJ10, split into sen-
tences (as documents) and concatenated. The com-
bined corpus contained roughly 10 million words
and 460,000 sentences.

Dependencies, rather than the original bracketing,
were used as the gold standard for parsing perfor-
mance. Since the Penn Treebank does not label de-
pendencies, it was necessary to apply rules to extract
dependencies from WSJ10 (Collins, 1999).

5.2 Procedure

The first step is unsupervised latent semantic gram-
mar induction. This was accomplished by first cre-
ating n-gram by context feature matrices, where the
feature varies as per Section 4.3. TheContextglobal

approach uses a bigram by document matrix such
that word order is eliminated. Therefore the value
of cellij is the number of timesngrami occurred
in documentj . The matrix had approximate dimen-
sions 2.2 million by 460,000.

TheContextlocal approach uses a bigram by local
window matrix. If there aren distinct unigrams in
the corpus, the firstn columns contain the counts
of the words preceding a target word, and the lastn
columns contain the counts of the words following
a target word. For example, the value of atcellij
is the number of timesunigramj occurred before
the targetngrami. The value ofcelli(j+n) is the
number of timesunigramj occurred after the target
ngrami. The matrix had approximate dimensions
2.2 million by 280,000.

After the matrices were constructed, each
was transformed using SVD. Because the non-
orthogonal SVD procedure requires a number of
Lanczos steps approximately proportional to the
square of the number of dimensions desired, the
number of dimensions was limited to 100. This kept
running time and storage requirements within rea-
sonable limits, approximately 4 days and 120 giga-
bytes of disk storage to create each.

Next, a parsing table was constructed. For each
bigram, the closest unigram neighbor, in terms of
cosine, was found, cf. Brill and Marcus (1992). The
neighbor, cosine to that neighbor, and cosines of the
bigram’s constituents to that neighbor were stored.
The constituent with the highest cosine to the neigh-
bor was considered the likely head, based on clas-
sic head test arguments (Hudson, 1987). This data
was stored in a lookup table so that for each bigram
the associated information may be found in constant
time.

Next, the WSJ10 was parsed using the parsing
table described above and a minimum spanning
tree algorithm for dependency parsing (McDonald
et al., 2005). Each input sentence was tokenized
on whitespace and lowercased. Moving from left
to right, each word was paired with all remaining
words on its right. If a pair existed in the pars-
ing table, the associated information was retrieved.
This information was used to populate the fully con-
nected graph that served as input to the minimum
spanning tree algorithm. Specifically, when a pair
was retrieved from the parsing table, the arc from
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the stored head to the dependent was given a weight
equal to the cosine between the head and the near-
est unigram neighbor for that bigram pair. Likewise
the arc from the dependent to the head was given a
weight equal to the cosine between the dependent
and the nearest unigram neighbor for that bigram
pair. Thus the weight on each arc was based on the
degree of substitutability between that word and the
nearest unigram neighbor for the bigram pair.

If a bigram was not in the parsing table, it was
given maximum weight, making that dependency
maximally unlikely. After all the words in the sen-
tence had been processed, the average of all current
weights was found, and this average was used as the
weight from a dummy root node to all other nodes
(the dummy ROOT is further motivated in Section
5.3). Therefore all words were given equal likeli-
hood of being the root of the sentence. The end
result of this graph construction process is ann by
n + 1 matrix, wheren is the number of words and
there is one dummy root node. Then this graph was
input to the minimum spanning tree algorithm. The
output of this algorithm is a non-projective depen-
dency tree, which was directly compared to the gold
standard dependency tree, as well as the respective
baselines discussed in Section 5.3.

To gauge the differential effects of projectivity
and prior knowledge, the above procedure was mod-
ified in additional evaluation trials. Projectivity was
incorporated by using a bottom-up algorithm (Cov-
ington, 2001). The algorithm was applied in two
stages. First, it was applied using the nonprojective
parse as input. By comparing the output parse to the
original nonprojective parse, it is possible to identify
independent words that could not be incorporated
into the projective parse. In the second stage, the
projective algorithm was run again on the nonpro-
jective input, except this time the independent words
were allowed to link to any other words defined by
the parsing table. In other words, the first stage iden-
tifies unattached words, and the second stage “re-
pairs” the words by finding a projective attachment
for them. This method of enforcing projectivity was
chosen because it makes use of the same informa-
tion as the nonprojective method, but it goes a step
further to enforce projectivity.

Prior distributions of dependencies, as depicted in
Figure 4, were incorporated by inversely weighting

ROOTJohnlikes stringcheese

Figure 5: Right Branching Baseline

John likes string cheese ROOT

Figure 6: Left Branching Baseline

graph edges by the distance between words. This
modification transparently applies to both the non-
projective case and the projective case.

5.3 Scoring

Two performance baselines for dependency parsing
were used in this experiment, the so-called right and
left branching baselines. A right branching baseline
predicts that the head of each word is the word to the
left, forming a chain from left to right. An example
is given in Figure 5. Conversely, a left branching
baseline predicts that the head of each word is the
word to the right, forming a chain from right to left.
An example is given in Figure 6. Although perhaps
not intuitively very powerful baselines, the right and
left branching baselines can be very effective for the
WSJ10. For WSJ10, most heads are close to their
dependents, as shown in Figure 4. For example, the
percentage of dependencies with a head either im-
mediately to the right or left is 53%. Of these neigh-
boring heads, 17% are right branching, and 36% are
left branching.

By using the sign test, the statistical significance
of parsing results can be determined. The sign test is
perhaps the most basic non-parametric tests and so is
useful for this task because it makes no assumptions
regarding the underlying distribution of data.

Consider each sentence. Every word must have
exactly one head. That means that forn words, there
is a1/n chance of selecting the correct head (exclud-
ing self-heads and including a dummy root head). If
all dependencies in a sentence are independent, then
a sentence’s dependencies follow a binomial distri-
bution, withn equal to the number of words,p equal
to 1/n, andk equal to the number of correct depen-
dencies. From this it follows that the expected num-
ber of correct dependencies per sentence isnp, or 1.
Thus the random baseline for nonprojective depen-
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dency parsing performance is one dependency per
sentence.

Using the gold standard of the WSJ10, the number
of correct dependencies found by the latent seman-
tic model can be established. The null hypothesis
is that one randomly generated dependency should
be correct per sentence. Suppose thatr+ sentences
have more correct dependencies andr− sentences
have fewer correct dependencies (i.e. 0). Under the
null hypothesis, half of the values should be above
1 and half below, sop = 1/2. Since signed dif-
ference is being considered, sentences with depen-
dencies equal to 1 are excluded. The correspond-
ing binomial distribution of the signs to calculate
whether the model is better than chance isb(n, p) =
b(r+ +r−, 1/2). The corresponding p-value may be
calculated using Equation 1.

1−
r+
−1∑

k=0

n!

k!(n− k)!
1/2(1/2)n−k (1)

This same method can be used for determining
statistically significant improvement over right and
left branching baselines. For each sentence, the dif-
ference between the number of correct dependen-
cies in the candidate parse and the number of cor-
rect dependencies in the baseline may be calculated.
The number of positive and negative signed differ-
ences are counted asr+ and r−, respectively, and
the procedure for calculating statistically significant
improvement is the same.

6 Results

Each model in Table 6 has significantly better per-
formance than item above using statistical proce-
dure described in Section 5.2. A number of ob-
servations can be drawn from this table. First, all
the models outperform random and right branching
baselines. This is the first time we are aware of
that this has been shown with lexical items in de-
pendency UGI. Secondly, local context outperforms
global context. This is to be expected given the rel-
atively fixed word order in English, but it is some-
what surprising that the differences between local
and global are not greater. Thirdly, it is clear that the
addition of prior knowledge, whether projectivity or
prior distributions, improves performance. Fourthly,

Method
Context/Projectivity/Prior Dependencies Correct
Random/no/no 14.2%
Right branching 17.6%
Global/no/no 17.9%
Global/no/yes 21.0%
Global/yes/no 21.4%
Global/yes/yes 21.7%
Local/no/no 22.5%
Local/no/yes 25.7%
Local/yes/yes 26.3%
Local/yes/no 26.7%
Left branching 35.8%

Table 1: Parsing results on WSJ10

projectivity and prior distributions have little addi-
tive effect. Thus it appears that they bring to bear
similar kinds of constraints.

7 Discussion

The results in Section 6 address the unanswered
questions identified in Section 4, i.e. parts of speech,
semantics, context, projectivity, and prior distribu-
tions.

The most salient result in Section 6 is successful
UGI without part of speech tags. As far as we know,
this is the first time dependency UGI has been suc-
cessful without the hidden syntactic structure pro-
vided by part of speech tags. It is interesting to note
that latent semantic grammars improve upon Paskin
(2001), even though that model is projective. It ap-
pears that lexical semantics are the reason. Thus
these results address two of the unanswered ques-
tions from Section 6 regarding parts of speech and
semantics. Semantics improve dependency UGI. In
fact, they improve dependency UGI so much so that
parts of speech are not necessary to beat a right
branching baseline.

Context has traditionally been defined locally, e.g.
the preceding and following word(s). The results
above indicate that a global definition of context is
also effective, though not quite as highly perform-
ing as a local definition on the WSJ10. This sug-
gests that English UGI is not dependent on local lin-
ear context, and it motivates future exploration of
word-order free languages using global context. It is
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also interesting to note that the differences between
global and local contexts begin to disappear as pro-
jectivity and prior distributions are added. This sug-
gests that there is a certain level of equivalence be-
tween a global context model that favors local at-
tachments and a local context model that has no at-
tachment bias.

Projectivity has been assumed in previous cases
of English UGI (Klein and Manning, 2004; Paskin,
2001). As far as we know, this is the first time a
nonprojective model has outperformed a random or
right branching baseline. It is interesting that a non-
projective model can do so well when it assumes so
little about the structure of a language. Even more
interesting is that the addition of projectivity to the
models above increases performance only slightly.
It is tempting to speculate that projectivity may be
something of a red herring for English dependency
parsing, cf. McDonald et al. (2005).

Prior distributions have been previously assumed
as well (Klein and Manning, 2004). The differential
effect of prior distributions in previous work has not
been clear. Our results indicate that a prior distribu-
tion will increase performance. However, as with
projectivity, it is interesting how well the models
perform without this prior knowledge and how slight
an increase this prior knowledge gives. Overall, the
prior distribution used in the evaluation is not neces-
sary to beat the right branching baseline.

Projectivity and prior distributions have signifi-
cant overlap when the prior distribution favors closer
attachments. Projectivity, by forcing a head to gov-
ern a contiguous subsequence, also favors closer at-
tachments. The results reported in Section 6 suggest
that there is a great deal of overlap in the benefit pro-
vided by projectivity and the prior distribution used
in the evaluation. Either one or the other produces
significant benefits, but the combination is much less
impressive.

It is worthwhile to reiterate the sparseness of prior
knowledge contained in the basic model used in
these evaluations. There are essentially four compo-
nents of prior knowledge. First, the ability to create
an ngram by context feature matrix. Secondly, the
application of SVD to that matrix. Thirdly, the cre-
ation of a fully connected dependency graph from
the post-SVD matrix. And finally, the extraction
of a minimum spanning tree from this graph. Al-

though we have not presented evaluation on word-
order free languages, the basic model just described
has no obvious bias against them. We expect that
latent semantic grammars capture some of the uni-
versals of grammar induction. A fuller exploration
and demonstration is the subject of future research.

8 Conclusion

This paper presented latent semantic grammars for
the unsupervised induction of English grammar. The
creation of latent semantic grammars and their appli-
cation to parsing were described. Experiments with
context, projectivity, and prior distributions showed
the relative performance effects of these kinds of
prior knowledge. Results show that assumptions of
prior distributions, projectivity, and part of speech
information are not necessary for this task.
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