
Workshop on Computationally Hard Problemsand Joint Inference in Speech and Language Processing, pages 17–24,
New York City, New York, June 2006.c©2006 Association for Computational Linguistics

Computational Challenges in Parsing by Classification

Joseph Turian and I. Dan Melamed
{lastname}@cs.nyu.edu

Computer Science Department
New York University

New York, New York 10003

Abstract

This paper presents a discriminative
parser that does not use a generative
model in any way, yet whose accu-
racy still surpasses a generative base-
line. The parser performs feature selec-
tion incrementally during training, as op-
posed toa priori, which enables it to
work well with minimal linguistic clever-
ness. The main challenge in building this
parser was fitting the training data into
memory. We introduce gradient sampling,
which increased training speed 100-fold.
Our implementation is freely available at
http://nlp.cs.nyu.edu/parser/.

1 Introduction

Discriminative machine learning methods have im-
proved accuracy on many NLP tasks, including
POS-tagging, shallow parsing, relation extraction,
and machine translation. However, only limited ad-
vances have been made on full syntactic constituent
parsing. Successful discriminative parsers have used
generative models to reduce training time and raise
accuracy above generative baselines (Collins &
Roark, 2004; Henderson, 2004; Taskar et al., 2004).
However, relying upon information from a gener-
ative model might limit the potential of these ap-
proaches to realize the accuracy gains achieved by
discriminative methods on other NLP tasks. Another
difficulty is that discriminative parsing approaches
can be very task-specific and require quite a bit of

trial and error with different hyper-parameter values
and types of features.

In the present work, we make progress towards
overcoming these obstacles. We propose a flexible,
well-integrated method for training discriminative
parsers, demonstrating techniques that might also
be useful for other structured learning problems.
The learning algorithm projects the hand-provided
atomic features into a compound feature space and
performs incremental feature selection from this
large feature space. We achieve higher accuracy than
a generative baseline, despite not using the standard
trick of including an underlying generative model.
Our training regime does model selection without
ad-hoc smoothing or frequency-based feature cut-
offs, and requires no heuristics to optimize the single
hyper-parameter.

We discuss the computational challenges we over-
came to build this parser. The main difficulty is that
the training data fit in memory only using an indirect
representation,1 so the most costly operation during
training is accessing the features of a particular ex-
ample. We show how to train a parser effectively un-
der these conditions. We also show how to speed up
training by using a principled sampling method to
estimate the loss gradients used in feature selection.
§2 describes the parsing algorithm.§3 presents

the learning method and techniques used to reduce
training time.§4 presents experiments with discrim-
inative parsers built using these methods.§5 dis-

1Similar memory limitations exist in other large-scale NLP
tasks. Syntax-driven SMT systems are typically trained on
an order of magnitude more sentences than English parsers,
and unsupervised estimation methods can generate an arbitrary
number of negative examples (Smith & Eisner, 2005).

17

cusses possible issues in scaling to larger example
sets.

2 Parsing Algorithm

The following terms will help to explain our work.
A spanis a range over contiguous words in the in-
put. Spanscrossif they overlap but neither contains
the other. Anitem is a (span, label) pair. Astateis a
partial parse, i.e. a set of items, none of whose spans
cross. A parseinferenceis a (state, item) pair, i.e. a
state and a (consequent) item to be added to it. The
frontier of a state consists of the items with no par-
ents yet. Thechildrenof an inference are the frontier
items below the item to be inferred, and theheadof
an inference is the child item chosen by head rules
(Collins, 1999, pp. 238–240). A parsepath is a se-
quence of parse inferences. For some input sentence
and training parse tree, a state iscorrectif the parser
can infer zero or more additional items to obtain the
training parse tree and an inference is correct if it
leads to a correct state.

Now, given input sentences we compute:

p̂ = arg min
p∈P(s)

∑
i∈p

l(i)

 (1)

whereP(s) are possible parses of the sentence, and
the loss (or cost) l of parsep is summed over the
inferencesi that lead to the parse. To find ˆp, the
parsing algorithm considers a sequence of states.
The initial state contains terminal items, whose la-
bels are the POS tags given by Ratnaparkhi (1996).
The parser considers a set of (bottom-up) inferences
at each state. Each inference results in a successor
state to be placed on the agenda. The loss function
l can consider arbitrary properties of the input and
parse state,2 which precludes a tractable dynamic
programming solution to Equation 1. Therefore, we
do standard agenda-based parsing, but instead of
items our agenda stores entire states, as per more
general best-first search over parsing hypergraphs
(Klein & Manning, 2001). Each time we pop a state
from the agenda,l computes a loss for the bottom-
up inferences generated from that state. If the loss
of the popped state exceeds that of the current best
complete parse, search is done and we have found
the optimal parse.

2I.e. we make no context-free assumptions.

3 Training Method

3.1 General Setting

From each training inferencei ∈ I we generate the
tuple 〈X(i), y(i),b(i)〉. X(i) is a feature vector de-
scribingi, with each element in{0,1}. The observed
y-valuey(i) ∈ {−1,+1} is determined by whetheri
is a correct inference or not. Some training exam-
ples might be more important than others, so each is
given an initial biasb(i) ∈ R+.

Our goal during training is to induce a real-valued
inference scoring function (hypothesis)h(i;α),
which is a linear model parameterized by a vector
α of reals:

h(i;α) = α · X(i) =
∑

f

α f · Xf (i) (2)

Each f is a feature. The sign ofh(i;α) predicts the
y-value ofi and the magnitude gives the confidence
in this prediction.

The training procedure optimizesα to minimize
the expected riskR:

R(I ;α) = L(I ;α) + Ω(α) (3)

In principle, L can be any loss function, but in the
present work we use the log-loss (Collins et al.,
2002):

L(I ;α) =
∑
i∈I

l(i;α) =
∑
i∈I

b(i) · σ(µ(i;α)) (4)

where:
σ(µ) = ln(1+ exp(−µ)) (5)

and themargin of inference i under the current
modelα is:

µ(i;α) = y(i) · h(i;α) (6)

For a particular choice ofα, l(i) in Equation 1 is
computed according to Equation 4 usingy(i) = +1
andb(i) = 1.
Ω(α) in Equation 3 is a regularizer, which penal-

izes overly complex models to reduce overfitting and
generalization error. We use the`1 penalty:

Ω(α) =
∑

f

λ · |α f | (7)

whereλ is the`1 parameter that controls the strength
of the regularizer. This choice of objectiveR is mo-
tivated by Ng (2004), who suggests that, given a

18

learning setting where the number of irrelevant fea-
tures is exponential in the number of training exam-
ples, we can nonetheless learn effectively by build-
ing decision trees to minimize thè1-regularized
log-loss. Conversely, Ng (2004) suggests that most
of the learning algorithms commonly used by dis-
criminative parserswill overfit when exponentially
many irrelevant features are present.3

Learning over an exponential feature space is the
very setting we have in mind.A priori, we define
only a setA of simple atomic features (see§4).
However, the learner inducescompoundfeatures,
each of which is a conjunction of possibly negated
atomic features. Each atomic feature can have three
values (yes/no/don’t care), so the size of the com-
pound feature space is 3|A|, exponential in the num-
ber of atomic features. It was also exponential in
the number of training examples in our experiments
(|A| ≈ |I |).

We use an ensemble of confidence-rated deci-
sion trees (Schapire & Singer, 1999) to representh.4

Each node in a decision tree corresponds to a com-
pound feature, and the leaves of the decision trees
keep track of the parameter values of the compound
features they represent. To score an inference using
a decision tree, we percolate the inference down to
a leaf and return that leaf’s confidence. The overall
score given to an inference by the whole ensemble
is the sum of the confidences returned by the trees in
the ensemble.

3.2 Boosting`1-Regularized Decision Trees

Listing 1 presents our training algorithm. (Sampling
will be explained in§3.3. Until then, assume that
the sampleS is the entire training setI .) At the be-
ginning of training, the ensemble is empty,α = 0,
and thè 1 parameterλ is set to∞. We train until the
objective cannot be further reduced for the current
choice ofλ. We then relax the regularization penalty
by decreasingλ and continuing training. We also de-

3including the following learning algorithms:
• unregularized logistic regression
• logistic regression with aǹ2 penalty (i.e. a Gaussian prior)
• SVMs using most kernels
• multilayer neural nets trained by backpropagation
• the perceptron algorithm

4Turian and Melamed (2005) show that that decision trees ap-
plied to parsing have higher accuracy and training speed than
decision stumps.

Listing 1 Training algorithm.
1: procedureT(I)
2: ensemble← ∅
3: h(i)← 0 for all i ∈ I
4: for T = 1 . . .∞ do
5: S← priority sampleI
6: extractX(i) for all i ∈ S
7: build decision treet usingS
8: percolate everyi ∈ I to a leaf node int
9: for each leaf f in t do

10: chooseα f to minimizeR
11: addα f to h(i) for all i in this leaf

termine the accuracy of the parser on a held-out de-
velopment set using the previousλ value (before it
was decreased), and can stop training when this ac-
curacy plateaus. In this way, instead of choosing the
bestλ heuristically, we can optimize it during a sin-
gle training run (Turian & Melamed, 2005).

Our strategy for optimizingα to minimize the ob-
jectiveR (Equation 3) is a variant of steepest descent
(Perkins et al., 2003). Each training iteration has
several steps. First, we choose some new compound
features that have high magnitude gradient with re-
spect to the objective function. We do this by build-
ing a new decision tree, whose leaves represent the
new compound features.5 Second, we confidence-
rate each leaf to minimize the objective over the ex-
amples that percolate down to that leaf. Finally, we
append the decision tree to the ensemble and up-
date parameter vectorα accordingly. In this manner,
compound feature selection is performed incremen-
tally during training, as opposed toa priori.

To build each decision tree, we begin with a root
node, and we recursively split nodes by choosing a
splitting feature that will allow us to decrease the
objective. We have:

∂L(I ;α)
∂α f

=
∑
i∈I

∂l(i;α)
∂µ(i;α)

·
∂µ(i;α)
∂α f

(8)

where:
∂µ(i;α)
∂α f

= y(i) · Xf (i) (9)

We define theweightof an example under the cur-
rent model as:

w(i;α) = −
∂l(i;α)
∂µ(i;α)

= b(i) ·
1

1+ exp(µ(i;α))
. (10)

5Any given compound feature can appear in more than one
tree.

19

and:

Wȳ
f (I ;α) =

∑
i∈I

Xf (i)=1,y(i)=ȳ

w(i;α) (11)

Combining Equations 8–11 gives:6

∂L
∂α f
=W−1

f −W+1
f (12)

We define thegain Gf of featuref as:

G f = max

(
0,

∣∣∣∣∣∣ ∂L∂α f

∣∣∣∣∣∣ − λ
)

(13)

Equation 13 has this form because the gradient of the
penalty term is undefined atα f = 0. This discontinu-
ity is why `1 regularization tends to produce sparse
models. IfG f = 0, then the objectiveR is at its min-
imum with respect to parameterα f . Otherwise,G f

is the magnitude of the gradient of the objective as
we adjustα f in the appropriate direction.

The gain of splitting nodef using some atomic
featurea is defined as

Ǧ f (a) = G f∧a +G f∧¬a (14)

We allow nodef to be split only by atomic features
a that increase the gain, i.e.̌G f (a) > G f . If no such
feature exists, thenf becomes a leaf node of the de-
cision tree andα f becomes one of the values to be
optimized during the parameter update step. Other-
wise, we choose atomic feature ˆa to split nodef :

â = arg max
a∈A

Ǧ f (a) (15)

This split creates child nodesf ∧ â and f ∧¬â. If no
root node split has positive gain, then training has
converged for the current choice of`1 parameterλ.

Parameter update is done sequentially on only the
most recently added compound features, which cor-
respond to the leaves of the new decision tree. After
the entire tree is built, we percolate examples down
to their appropriate leaf nodes. We then choose for
each leaf nodef the parameterα f that minimizes the
objectiveR over the examples in that leaf. Decision
trees ensure that these compound features are mu-
tually exclusive, so they can be directly optimized
independently of each other using a line search over
the objectiveR.

6Sinceα is fixed during a particular training iteration andI is
fixed throughout training, we omit parameters (I ;α) henceforth.

3.3 Sampling for Faster Feature Selection

Building a decision tree using the entire example set
I can be very expensive, which we will demonstrate
in §4.2. However, feature selection can be effective
even if we don’t examine every example. Since the
weight of high-margin examples can be several or-
ders of magnitude lower than that of low-margin ex-
amples (Equation 10), the contribution of the high-
margin examples to feature weights (Equation 11)
will be insignificant. Therefore, we can ignore most
examples during feature selection as long as we have
good estimates of feature weights, which in turn give
good estimates of the loss gradients (Equation 12).

As shown in Step 1.5 of Listing 1, before building
each decision tree we use priority sampling (Duffield
et al., 2005) to choose a small subset of the ex-
amples according to the example weights given by
the current classifier, and the tree is built using only
this subset. We make the sample small enough that
its entire atomic feature matrix will fit in memory.
To optimize decision tree building, we compute and
cache the sample’s atomic feature matrix in advance
(Step 1.6).

Even if the sample is missing important informa-
tion in one iteration, the training procedure is capa-
ble of recovering it from samples used in subsequent
iterations. Moreover, even if a sample’s gain esti-
mates are inaccurate and the feature selection step
chooses irrelevant compound features, confidence
updates are based upon the entire training set and
the regularization penalty will prevent irrelevant fea-
tures from having their parameters move away from
zero.

3.4 The Training Set

Our training setI contains all inferences considered
in every state along the correct path for each gold-
standard parse tree (Sagae & Lavie, 2005).7 This
method of generating training examples does not re-
quire a working parser and can be run prior to any
training. The downside of this approach is that it
minimizes the error of the parser atcorrect states
only. It does not account for compounded error or
teach the parser to recover from mistakes gracefully.

7Since parsing is done deterministically right-to-left, there can
be no more than one correct inference at each state.

20

Turian and Melamed (2005) observed that uni-
form example biasesb(i) produced lower accuracy
as training progressed, because the induced classi-
fiers minimized theexample-wiseerror. Since we
aim to minimize the state-wise error, we express this
bias by assigning every trainingstateequal value,
and—for the examples generated from that state—
sharing half the value uniformly among the nega-
tive examples and the other half uniformly among
the positive examples.

Although there areO(n2) possible spans over a
frontier containingn items, we reduce this to the
O(n) inferences that cannot have more than 5 chil-
dren. With no restriction on the number of children,
there would beO(n2) bottom-up inferences at each
state. However, only 0.57% of non-terminals in the
preprocessed development set have more than five
children.

Like Turian and Melamed (2005), we parallelize
training by inducing 26 label classifiers (one for
each non-terminal label in the Penn Treebank). Par-
allelization might not uniformly reduce training time
because different label classifiers train at different
rates. However, parallelization uniformly reduces
memoryusage because each label classifier trains
only on inferences whose consequent item has that
label. Even after parallelization, the atomic feature
matrix cannot be cached in memory. We can store
the training inferences in memory using only anin-
direct representation. More specifically, for each in-
ferencei in the training set, we cache in memory
several values: a pointeri to a tree cut, itsy-value
y(i), its biasb(i), and its confidenceh(i) under the
current model. We cacheh(i) throughout training be-
cause it is needed both in computing the gradient of
the objective during decision tree building (Step 1.7)
as well as subsequent minimization of the objective
over the decision tree leaves (Step 1.10). We update
the confidences at the end of each training iteration
using the newly added tree (Step 1.11).

The most costly operation during training is to ac-
cess the feature values inX(i). An atomic feature
test determines the valueXa(i) for a single atomic
featurea by examining the tree cut pointed to by in-
ferencei. Alternately, we can perform atomic fea-
ture extraction, i.e. determineall non-zero atomic

features overi.8 Extraction is 100–1000 times more
expensive than a single test, but is necessary during
decision tree building (Step 1.7) because we need
the entire vectorX(i) to accumulate inferences in
children nodes. Essentially, for each inferencei that
falls in some nodef , we accumulatew(i) in Wy(i)

f∧a
for all a with Xa(i) = 1. After all the inferences in a
node have been accumulated, we try to split the node
(Equation 15). The negative child weights are each
determined asWy

f∧¬a =Wy
f −Wy

f∧a.

4 Experiments

We follow Taskar et al. (2004) and Turian and
Melamed (2005) in training and testing on≤ 15
word sentences in the English Penn Treebank (Tay-
lor et al., 2003). We used sections 02–21 for train-
ing, section 22 for development, and section 23,
for testing. We use the same preprocessing steps as
Turian and Melamed (2005): during both training
and testing, the parser is given text POS-tagged by
the tagger of Ratnaparkhi (1996), with capitalization
stripped and outermost punctuation removed.

For reasons given in Turian and Melamed (2006),
items are inferred bottom-up right-to-left. As men-
tioned in§2, the parser cannot infer any item that
crosses an item already in the state. To ensure the
parser does not enter an infinite loop, no two items
in a state can have both the same span and the same
label. Given these restrictions, there were roughly 40
million training examples. These were partitioned
among the constituent label classifiers.

Our atomic feature setA contains features of
the form “is there an item in groupJ whose la-
bel/headword/headtag/headtagclass9 is ‘X’?”. Pos-
sible values of ‘X’ for each predicate are collected
from the training data. Some examples of possible
values forJ include the lastn child items, the firstn
left context items, all right context items, and the ter-
minal items dominated by the non-head child items.
Space constraints prevent enumeration of the head-
tagclasses and atomic feature templates, which are

8Extraction need not take the naı̈ve approach of performing|A|
different tests, and can be optimized by using knowledge about
the nature of the atomic feature templates.

9The predicate headtagclass is a supertype of the headtag.
Given our compound features, these are not strictly neces-
sary, but they accelerate training. An example is “proper noun,”
which contains the POS tags given to singular and plural proper
nouns.

21

Figure 1 F1 score of our parser on the development
set of the Penn Treebank, using only≤ 15 word sen-
tences. The dashed line indicates the percent ofNP

example weight lost due to sampling. The bottom
x-axis shows the number of non-zero parameters in
each parser, summed over all label classifiers.

7.5K5K2.5K1.5K1K
84%

85%

86%

87%

88%

89%

90%

91%
5.42.51.00.5

De
ve

l.
F-

m
ea

su
re

total number of non-zero parameters

training time (days)

0%

5%

10%

15%

20%

25%

30%

35%
5.42.51.00.5

we
ig

ht
 lo

st
 d

ue
 to

 s
am

pl
in

g

instead provided at the URL given in the abstract.
These templates gave 1.1 million different atomic
features. We experimented with smaller feature sets,
but found that accuracy was lower. Charniak and
Johnson (2005) use linguistically more sophisticated
features, and Bod (2003) and Kudo et al. (2005) use
sub-tree features, all of which we plan to try in fu-
ture work.

We evaluated our parser using the standard PAR-
SEVAL measures (Black et al., 1991): labelled
precision, labelled recall, and labelled F-measure
(Prec., Rec., and F1, respectively), which are based
on the number of non-terminal items in the parser’s
output that match those in the gold-standard parse.
The solid curve Figure 1 shows the accuracy of
the parser over the development set as training pro-
gressed. The parser exceeded 89% F-measure af-
ter 2.5 days of training. The peak F-measure was
90.55%, achieved at 5.4 days using 6.3K active
parameters. We omit details given by Turian and
Melamed (2006) in favor of a longer discussion in
§4.2.

4.1 Test Set Results

To situate our results in the literature, we compare
our results to those reported by Taskar et al. (2004)
and Turian and Melamed (2005) for their discrimi-
native parsers, which were also trained and tested on
≤ 15 word sentences. We also compare our parser
to a representative non-discriminative parser (Bikel,

Table 1 PARSEVAL results of parsers on the test
set, using only≤ 15 word sentences.

F1 % Rec. % Prec. %
Turian and Melamed (2005) 87.13 86.47 87.80
Bikel (2004) 88.30 87.85 88.75
Taskar et al. (2004) 89.12 89.10 89.14
our parser 89.40 89.26 89.55

Table 2 Profile of anNP training iteration, given
in seconds, using an AMD Opteron 242 (64-bit,
1.6Ghz). Steps refer to Listing 1.

Step Description mean stddev %
1.5 Sample 1.5s 0.07s 0.7%
1.6 Extraction 38.2s 0.13s 18.6%
1.7 Build tree 127.6s 27.60s 62.3%
1.8 Percolation 31.4s 4.91s 15.3%

1.9–11 Leaf updates 6.2s 1.75s 3.0%
1.5–11 Total 204.9s 32.6s 100.0%

2004),10 the only one that we were able to train and
test under exactly the same experimental conditions
(including the use of POS tags from Ratnaparkhi
(1996)). Table 1 shows the PARSEVAL results of
these four parsers on the test set.

4.2 Efficiency

40% of non-terminals in the Penn Treebank are
NPs. Consequently, the bottleneck in training is
induction of theNP classifier. It was trained on
1.65 million examples. Each example had an aver-
age of 440 non-zero atomic features (stddev 123),
so the direct representation of each example re-
quires a minimum 440· sizeof(int) = 1760 bytes,
and the entire atomic feature matrix would re-
quire 1760 bytes· 1.65 million = 2.8 GB. Con-
versely, an indirectly represent inference requires
no more 32 bytes: two floats (the cached confi-
denceh(i) and the bias termb(i)), a pointer to a
tree cut (i), and a bool (they-value y(i)). Indi-
rectly storing the entire example set requires only
32 bytes· 1.65 million = 53 MB plus the treebank
and tree cuts, a total of 400 MB in our implementa-
tion.

We used a sample size of|S| = 100,000 examples
to build each decision tree, 16.5 times fewer than
the entire example set. The dashed curve in Figure 1

10Bikel (2004) is a “clean room” reimplementation of the
Collins (1999) model with comparable accuracy.

22

shows the percent ofNP example weight lost due
to sampling. As training progresses, fewer examples
are informative to the model. Even though we ignore
94% of examples during feature selection, sampling
loses less than 1% of the example weight after a day
of training.

The NP classifier used in our final parser was
an ensemble containing 2316 trees, which took
five days to build. Overall, there were 96871 de-
cision tree leaves, only 2339 of which were non-
zero. There were an average of 40.4 (7.4 std-
dev) decision tree splits between the root of a
tree and a non-zero leaf, and nearly all non-
zero leaves were conjunctions of atomic fea-
ture negations(e.g. ¬(some child item is a verb)∧
¬(some child item is a preposition)). The non-zero
leaf confidences were quite small in magnitude
(0.107 mean, 0.069 stddev) but the training exam-
ple margins over the entire ensemble were nonethe-
less quite high: 11.7 mean (2.92 stddev) for correct
inferences, 30.6 mean (11.2 stddev) for incorrect in-
ferences.

Table 2 profiles anNP training iteration, in which
one decision tree is created and added to the
NP ensemble. Feature selection in our algorithm
(Steps 1.5–1.7) takes 1.5+38.2+127.6 = 167.3s, far
faster than in näıve approaches. If we didn’t do sam-
pling but had 2.8GB to spare, we could eliminate the
extraction step (Step 1.6) and instead cache the en-
tire atomic feature matrix before the loop. However,
tree building (Step 1.7) scales linearly in the number
of examples, and would take 16.5·127.6s= 2105.4s
using the entire example set. If we didn’t do sam-
pling and couldn’t cache the atomic feature matrix,
tree building would also require repeatedly perform-
ing extraction. The number of individual feature ex-
tractions needed to build a single decision tree is the
sum over the internal nodes of the number of exam-
ples that percolate down to that node. There are an
average of 40.8 (7.8 stddev) internal nodes in each
tree and most of the examples fall in nearly all of
them. This property is caused by the lopsided trees
induced under̀1 regularization. A conservative es-
timate is that each decision tree requires 25 extrac-
tions times the number of examples. So extraction
would add at least 25· 16.5 · 38.2s = 15757.5s on
top of 2105.40s, and hence building each decision
tree would take at least (15757.5+2105.40)/167.3 ≈

100 timesas long as it does currently.
Our decision tree ensembles contain over two or-

ders of magnitude more compound features than
those in Turian and Melamed (2005). Our overall
training time was roughly equivalent to theirs. This
ratio corroborates the above estimate.

5 Discussion

TheNP classifier was trained only on the 1.65 mil-
lion NP examples in the 9753 training sentences with
≤ 15 words (168.8 examples/sentence). The number
of examples generated is quadratic in the sentence
length, so there are 41.7 millionNP examples in all
39832 training sentences of the whole Penn Tree-
bank (1050 examples/sentence), 25 times as many
as we are currently using.

The time complexity of each step in the train-
ing loop (Steps 1.5–11) is linear over the number
of examples used by that step. When we scale up
to the full treebank, feature selection will not re-
quire a sample 25 times larger, so it will no longer
be the bottleneck in training. Instead, each itera-
tion will be dominated by choosing leaf confidences
and then updating the cached example confidences,
which would require 25· (31.4s+ 6.2s)= 940s per
iteration. These steps are crucial to the current train-
ing algorithm, because it is important to have exam-
ple confidences that are current with respect to the
model. Otherwise, we cannot determine the exam-
ples most poorly classified by the current model, and
will have no basis for choosing an informative sam-
ple.

We might try to save training time by building
manydecision trees over a single sample and then
updating the confidences of the entire example set
using all the new trees. But, if this confidence up-
date is done using feature tests, then we have merely
deferred the cost of the confidence update over the
entire example set. The amount of training done on
a particular sample is proportional to the time sub-
sequently spent updating confidences over the entire
example set. To spend less time doing confidence
updates, we must use a training regime that issub-
linear with respect to the training time. For exam-
ple, Riezler (2004) reports that the`1 regularization
term drives many of the model’s parameters to zero
during conjugate gradient optimization, which are

23

then pruned before subsequent optimization steps to
avoid numerical instability. Instead of building de-
cision tree(s) at each iteration, we could performn-
best feature selection followed by parallel optimiza-
tion of the objective over the sample.

The main limitation of our work so far is that
we can do training reasonably quickly only on short
sentences, because a sentence withn words gen-
eratesO(n2) training inferences in total. Although
generating training examples in advance without a
working parser (Sagae & Lavie, 2005) is much faster
than using inference (Collins & Roark, 2004; Hen-
derson, 2004; Taskar et al., 2004), our training time
can probably be decreased further by choosing a
parsing strategy with a lower branching factor. Like
our work, Ratnaparkhi (1999) and Sagae and Lavie
(2005) generate examples off-line, but their parsing
strategies are essentially shift-reduce so each sen-
tence generates onlyO(n) training examples.

6 Conclusion

Our work has made advances in both accuracy and
training speed of discriminative parsing. As far as
we know, we present the first discriminative parser
that surpasses a generative baseline on constituent
parsing without using a generative component, and
it does so with minimal linguistic cleverness.

The main bottleneck in our setting was memory.
We could store the examples in memory only using
an indirect representation. The most costly opera-
tion during training was accessing the features of a
particular example from this indirect representation.
We showed how to train a parser effectively under
these conditions. In particular, we used principled
sampling to estimate loss gradients and reduce the
number of feature extractions. This approximation
increased the speed of feature selection 100-fold.

We are exploring methods for scaling training
up to larger example sets. We are also investigat-
ing the relationship between sample size, training
time, classifier complexity, and accuracy. In addi-
tion, we shall make some standard improvements
to our parser. Our parser should infer its own POS
tags. A shift-reduce parsing strategy will generate
fewer examples, and might lead to shorter training
time. Lastly, we plan to give the model linguistically
more sophisticated features. We also hope to apply

the model to other structured learning tasks, such as
syntax-driven SMT.

References

Bikel, D. M. (2004). Intricacies of Collins’ parsing model.
Computational Linguistics.

Black, E., Abney, S., Flickenger, D., Gdaniec, C., Grishman,
R., Harrison, P., et al. (1991). A procedure for quantitatively
comparing the syntactic coverage of English grammars. In
Speech and Natural Language.

Bod, R. (2003). An efficient implementation of a new DOP
model. InEACL.

Charniak, E., & Johnson, M. (2005). Coarse-to-fine n-best pars-
ing and MaxEnt discriminative reranking. InACL.

Collins, M. (1999).Head-driven statistical models for natural
language parsing. Doctoral dissertation.

Collins, M., & Roark, B. (2004). Incremental parsing with the
perceptron algorithm. InACL.

Collins, M., Schapire, R. E., & Singer, Y. (2002). Logistic re-
gression, AdaBoost and Bregman distances.Machine Learn-
ing, 48(1-3).

Duffield, N., Lund, C., & Thorup, M. (2005). Prior-
ity sampling estimating arbitrary subset sums.(http:
//arxiv.org/abs/cs.DS/0509026)

Henderson, J. (2004). Discriminative training of a neural net-
work statistical parser. InACL.

Klein, D., & Manning, C. D. (2001). Parsing and hypergraphs.
In IWPT.

Kudo, T., Suzuki, J., & Isozaki, H. (2005). Boosting-based
parse reranking with subtree features. InACL.

Ng, A. Y. (2004). Feature selection,`1 vs.`2 regularization, and
rotational invariance. InICML.

Perkins, S., Lacker, K., & Theiler, J. (2003). Grafting: Fast,
incremental feature selection by gradient descent in function
space.Journal of Machine Learning Research, 3.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech
tagger. InEMNLP.

Ratnaparkhi, A. (1999). Learning to parse natural language
with maximum entropy models.Machine Learning, 34(1-3).

Riezler, S. (2004). Incremental feature selection of`1 regular-
ization for relaxed maximum-entropy modeling. InEMNLP.

Sagae, K., & Lavie, A. (2005). A classifier-based parser with
linear run-time complexity. InIWPT.

Schapire, R. E., & Singer, Y. (1999). Improved boosting using
confidence-rated predictions.Machine Learning, 37(3).

Smith, N. A., & Eisner, J. (2005). Contrastive estimation: Train-
ing log-linear models on unlabeled data. InACL.

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning, C.
(2004). Max-margin parsing. InEMNLP.

Taylor, A., Marcus, M., & Santorini, B. (2003). The Penn Tree-
bank: an overview. In A. Abeilĺe (Ed.),Treebanks: Building
and using parsed corpora(chap. 1).

Turian, J., & Melamed, I. D. (2005). Constituent parsing by
classification. InIWPT.

Turian, J., & Melamed, I. D. (2006). Advances in discriminative
parsing. InACL.

24

