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Abstract

The task of mining relations from collec-
tions of documents is usually approached
in two different ways. One type of sys-
tems do relation extraction from individ-
ual sentences, followed by an aggrega-
tion of the results over the entire collec-
tion. Other systems follow an entirely dif-
ferent approach, in which co-occurrence
counts are used to determine whether the
mentioning together of two entities is due
to more than simple chance. We show
that increased extraction performance can
be obtained by combining the two ap-
proaches into an integrated relation ex-
traction model.

1 Introduction

Information Extraction (IE) is a natural language
processing task in which text documents are ana-
lyzed with the aim of finding mentions of relevant
entities and important relationships between them.
In many cases, the subtask of relation extraction re-
duces to deciding whether a sentence asserts a par-
ticular relationship between two entities, which is
still a difficult, unsolved problem. There are how-
ever cases where the decision whether the two enti-
ties are in a relationship is made relative to an en-
tire document, or a collection of documents. In the
biomedical domain, for example, one may be inter-
ested in finding the pairs of human proteins that are
said to be interacting in any of the Medline abstracts,

where the answer is not required to specify which
abstracts are actually describing the interaction. As-
sembling a ranked list of interacting proteins can be
very useful to biologists - based on this list, they can
make more informed decisions with respect to which
genes to focus on in their research.

In this paper, we investigate methods that use
multiple occurrences of the same pair of entities
across a collection of documents in order to boost
the performance of a relation extraction system.
The proposed methods are evaluated on the task
of finding pairs of human proteins whose interac-
tions are reported in Medline abstracts. The major-
ity of known human protein interactions are derived
from individual, small-scale experiments reported in
Medline. Some of these interactions have already
been collected in the Reactome (Joshi-Tope et al.,
2005), BIND (Bader et al., 2003), DIP (Xenarios et
al., 2002), and HPRD (Peri et al., 2004) databases.
The amount of human effort involved in creating and
updating these databases is currently no match for
the continuous growth of Medline. It is therefore
very useful to have a method that automatically and
reliably extracts interaction pairs from Medline.

Systems that do relation extraction from a col-
lection of documents can be divided into two ma-
jor categories. In one category are IE systems
that first extract information from individual sen-
tences, and then combine the results into corpus-
level results (Craven, 1999; Skounakis and Craven,
2003). The second category corresponds to ap-
proaches that do not exploit much information from
the context of individual occurrences. Instead,
based on co-occurrence counts, various statistical
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or information-theoretic tests are used to decide
whether the two entities in a pair appear together
more often than simple chance would predict (Lee
et al., 2004; Ramani et al., 2005). We believe that
a combination of the two approaches can inherit the
advantages of each method and lead to improved re-
lation extraction accuracy.

The following two sections describe the two or-
thogonal approaches to corpus-level relation extrac-
tion. A model that integrates the two approaches is
then introduced in Section 4. This is followed by a
description of the dataset used for evaluation in Sec-
tion 5, and experimental results in Section 6.

2 Sentence-level relation extraction

Most systems that identify relations between enti-
ties mentioned in text documents consider only pair
of entities that are mentioned in the same sentence
(Ray and Craven, 2001; Zhao and Grishman, 2005;
Bunescu and Mooney, 2005). To decide the exis-
tence and the type of a relationship, these systems
generally use lexico-semantic clues inferred from
the sentence context of the two entities. Much re-
search has been focused recently on automatically
identifying biologically relevant entities and their
relationships such as protein-protein interactions or
subcellular localizations. For example, the sentence
“TR6specifically bindsFas ligand”, states an inter-
action between the two proteinsTR6andFas ligand.
One of the first systems for extracting interactions
between proteins is described in (Blaschke and Va-
lencia, 2001). There, sentences are matched deter-
ministically against a set of manually developed pat-
terns, where a pattern is a sequence of words or Part-
of-Speech (POS) tags and two protein-name tokens.
Between every two adjacent words is a number in-
dicating the maximum number of words that can be
skipped at that position. An example is: “interaction
of (3) <P> (3) with (3)<P>”. This approach is
generalized in (Bunescu and Mooney, 2005), where
subsequences of words (or POS tags) from the sen-
tence are used as implicit features. Their weights are
learned by training a customized subsequence ker-
nel on a dataset of Medline abstracts annotated with
proteins and their interactions.

A relation extraction system that works at the
sentence-level and which outputs normalized confi-

dence values for each extracted pair of entities can
also be used for corpus-level relation extraction. A
straightforward way to do this is to apply an aggre-
gation operator over the confidence values inferred
for all occurrences of a given pair of entities. More
exactly, if p1 andp2 are two entities that occur in a
total ofn sentencess1, s2, ...,sn in the entire corpusC, then the confidenceP (R(p1; p2)jC) that they are
in a particular relationshipR is defined as:P (R(p1; p2)jC) = �(fP (R(p1; p2)jsi)ji=1:ng)

Table 1 shows only four of the many possible
choices for the aggregation operator�.

max �max = maxi P (R(p1; p2)jsi)
noisy-or �nor = 1�Yi (1� P (R(p1; p2)jsi))
avg �avg =Xi P (R(p1; p2)jsi)n
and �and =Yi P (R(p1; p2)jsi)1=n

Table 1: Aggregation Operators.

Out of the four operators in Table 1, we believe
that themaxoperator is the most appropriate for ag-
gregating confidence values at the corpus-level. The
question that needs to be answered is whether there
is a sentence somewhere in the corpus that asserts
the relationshipR between entitiesp1 andp2. Us-
ing avg instead would answer a different question -
whetherR(p1; p2) is true in most of the sentences
containingp1 andp2. Also, theandoperator would
be most appropriate for finding whetherR(p1; p2)
is true in all corresponding sentences in the corpus.
The value of thenoisy-or operator (Pearl, 1986) is
too dependent on the number of occurrences, there-
fore it is less appropriate for a corpus where the oc-
currence counts vary from one entity pair to another
(as confirmed in our experiments from Section 6).
For examples, if the confidence threshold is set at0:5, and the entity pair(p1; p2) occurs in 6 sentences
or less, each with confidence0:1, thenR(p1; p2) is
false, according to the noisy-or operator. However,
if (p1; p2) occur in more than 6 sentences, with the
same confidence value of0:1, then the correspond-
ing noisy-or value exceeds0:5, makingR(p1; p2)
true.
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3 Co-occurrence statistics

Given two entities with multiple mentions in a large
corpus, another approach to detect whether a re-
lationship holds between them is to use statistics
over their occurrences in textual patterns that are
indicative for that relation. Various measures such
as pointwise mutual information (PMI) , chi-square
(�2) or log-likelihood ratio (LLR) (Manning and
Schütze, 1999) use the two entities’ occurrence
statistics to detect whether their co-occurrence is due
to chance, or to an underlying relationship.

A recent example is theco-citationapproach from
(Ramani et al., 2005), which does not try to find spe-
cific assertions of interactions in text, but rather ex-
ploits the idea that if many different abstracts refer-
ence both proteinp1 and proteinp2, thenp1 andp2
are likely to interact. Particularly, if the two proteins
are co-cited significantly more often than one would
expect if they were cited independently at random,
then it is likely that they interact. The model used
to compute the probability of random co-citation is
based on the hypergeometric distribution (Lee et al.,
2004; Jenssen et al., 2001). Thus, ifN is the total
number of abstracts,n of which cite the first protein,m cite the second protein, andk cite both, then the
probability of co-citation under a random model is:P (kjN;m; n) = � nk �� N � nm� k �� Nm � (1)

The approach that we take in this paper is to con-
strain the two proteins to be mentioned in the same
sentence, based on the assumption that if there is
a reason for two protein names to co-occur in the
same sentence, then in most cases that is caused by
their interaction. To compute the “degree of inter-
action” between two proteinsp1 andp2, we use the
information-theoretic measure of pointwise mutual
information (Church and Hanks, 1990; Manning
and Schütze, 1999), which is computed based on the
following quantities:

1. N : the total number of protein pairs co-
occurring in the same sentence in the corpus.

2. P (p1; p2) ' n12=N : the probability thatp1
andp2 co-occur in the same sentence;n12 = the

number of sentences mentioning bothp1 andp2.
3. P (p1; p) ' n1=N : the probability thatp1 co-

occurs with any other protein in the same sen-
tence;n1 = the number of sentences mention-
ing p1 andp.

4. P (p2; p) ' n2=N : the probability thatp2 co-
occurs with any other protein in the same sen-
tence;n2 = the number of sentences mention-
ing p2 andp.

The PMI is then defined as in Equation 2 below:PMI(p1; p2) = log P (p1; p2)P (p1; p) � P (p2; p)' logN n12n1 � n2 (2)

Given that the PMI will be used only for ranking
pairs of potentially interacting proteins, the constant
factorN and thelog operator can be ignored. For
sake of simplicity, we use the simpler formula from
Equation 3. sPMI(p1; p2) = n12n1 � n2 (3)

4 Integrated model

ThesPMI(p1; p2) formula can be rewritten as:sPMI(p1; p2) = 1n1 � n2 � n12Xi=1 1 (4)

Let s1, s2, ..., sn12 be the sentence contexts corre-
sponding to then12 co-occurrences ofp1 and p2,
and assume that a sentence-level relation extractor
is available, with the capability of computing nor-
malized confidence values for all extractions. Then
one way of using the extraction confidence is to have
each co-occurrence weighted by its confidence, i.e.
replace the constant1 with the normalized scoresP (R(p1; p2)jsi), as illustrated in Equation 5. This
results in a new formulawPMI (weighted PMI),
which is equal with the product betweensPMI and
the average aggregation operator�avg.wPMI(p1; p2) = 1n1 � n2 � n12Xi=1 P (R(p1; p2)jsi)= n12n1 � n2 � �avg (5)

51



The operator�avg can be replaced with any other ag-
gregation operator from Table 1. As argued in Sec-
tion 2, we considermax to be the most appropriate
operator for our task, therefore the integrated model
is based on the weighted PMI product illustrated in
Equation 6.wPMI(p1; p2) = n12n1 � n2 � �max (6)= n12n1 � n2 �maxi P (R(p1; p2)jsi)

If a pair of entitiesp1 andp2 is ranked bywPMI
among the top pairs, this means that it is unlikely
that p1 andp2 have co-occurred together in the en-
tire corpus by chance, and at the same time there is
at least one mention where the relation extractor de-
cides with high confidence thatR(p1; p2) = 1.

5 Evaluation Corpus

Contrasting the performance of the integrated model
against the sentence-level extractor or the PMI-
based ranking requires an evaluation dataset that
provides two types of annotations:

1. The completelist of interactionsreported in the
corpus (Section 5.1).

2. Annotation ofmentionsof genes and proteins,
together with their correspondinggene identi-
fiers(Section 5.2).

We do not differentiate between genes and their
protein products, mapping them to the same gene
identifiers. Also, even though proteins may partic-
ipate in different types of interactions, we are con-
cerned only with detecting whether they interact in
the general sense of the word.

5.1 Medline Abstracts and Interactions

In order to compile an evaluation corpus and an as-
sociated comprehensive list of interactions, we ex-
ploited information contained in the HPRD (Peri
et al., 2004) database. Every interaction listed in
HPRD is linked to a set of Medline articles where the
corresponding experiment is reported. More exactly,
each interaction is specified in the database as a tuple
that contains the LocusLink (now EntrezGene) iden-
tifiers of all genes involved and the PubMed identi-
fiers of the corresponding articles (as illustrated in
Table 2).

Interaction (XML)(HPRD)<interaction><gene>2318</gene><gene>58529</gene><pubmed>10984498 11171996</pubmed></interaction>
Participant Genes (XML)(NCBI)<gene id=”2318”><name>FLNC</name><description>filamin C, gamma</description><synonyms><synonym>ABPA</synonym><synonym>ABPL</synonym><synonym>FLN2</synonym><synonym>ABP-280</synonym><synonym>ABP280A</synonym></synonyms><proteins><protein>gamma filamin</protein><protein>filamin 2</protein><protein>gamma-filamin</protein><protein>ABP-L, gamma filamin</protein><protein>actin-binding protein 280</protein><protein>gamma actin-binding protein</protein><protein>filamin C, gamma</protein></proteins></gene><gene id=”58529”><name>MYOZ1</name><description>myozenin 1</description><synonyms> ...</synonyms><proteins> ...</proteins></gene>
Medline Abstract (XML)(NCBI)<PMID>10984498</PMID><AbstractText>
We found that this protein binds to three other Z-disc pro-
teins; therefore, we have named itFATZ , gamma-filamin,
alpha-actinin and telethonin binding protein of the Z-disc.</AbstractText>

Table 2: Interactions, Genes and Abstracts.

The evaluation corpus (henceforth referred to as
theHPRD corpus) is created by collecting the Med-
line abstracts corresponding to interactions between
human proteins, as specified in HPRD. In total,
5,617 abstracts are included in this corpus, with an
associated list of 7,785 interactions. This list is com-
prehensive - the HPRD database is based on an an-
notation process in which the human annotators re-
port all interactions described in a Medline article.
On the other hand, the fact that only abstracts are
included in the corpus (as opposed to including the
full article) means that the list may contain interac-
tions that are not actually reported in the HPRD cor-
pus. Nevertheless, if the abstracts were annotated
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with gene mentions and corresponding GIDs, then
a “quasi-exact” interaction list could be computed
based on the following heuristic:
[H] If two genes with identifiersgid1 and gid2 are
mentioned in the same sentence in an abstract with
PubMed identifierpmid, and if gid1 and gid2 are
participants in an interaction that is linked topmid
in HPRD, then consider that the abstract (and con-
sequently the entire HPRD corpus) reports the inter-
action betweengid1 andgid2. �
An application of the above heuristic is shown at
the bottom of Table 2. The HPRD record at the
top of the table specifies that the Medline article
with ID 10984498 reports an interaction between the
proteinsFATZ (with ID 58529) andgamma-filamin
(with ID 2318). The two protein names are men-
tioned in a sentence in the abstract for 10984498,
therefore, by[H] , we consider that the HPRD cor-
pus reports this interaction.

This is very similar to the procedure used in
(Craven, 1999) for creating a “weakly-labeled”
dataset ofsubcellular-localizationrelations. [H] is
a strong heuristic – it is already known that the full
article reports an interaction between the two genes.
Finding the two genes collocated in the same sen-
tence in the abstract is very likely to be due to the
fact that the abstract discusses their interaction. The
heuristic can be made even more accurate if a pair
of genes is considered as interacting only if they co-
occur in a (predefined) minimum number of sen-
tences in the entire corpus – with the evaluation
modified accordingly, as described later in Section 6.

5.2 Gene Name Annotation and Normalization

For the annotation of gene names and their normal-
ization, we use a dictionary-based approach similar
to (Cohen, 2005). NCBI1 provides a comprehen-
sive dictionary of human genes, where each gene is
specified by its unique identifier, and qualified with
an official name, a description, synonym names and
one or more protein names, as illustrated in Table 2.
All of these names, including the description, are
considered as potential referential expressions for
the gene entity. Each name string is reduced to a
normal form by: replacing dashes with spaces, intro-
ducing spaces between sequences of letters and se-

1URL: http://www.ncbi.nih.gov

quences of digits, replacing Greek letters with their
Latin counterparts (capitalized), substituting Roman
numerals with Arabic numerals, decapitalizing the
first word if capitalized. All names are further tok-
enized, and checked against a dictionary of close to
100K English nouns. Names that are found in this
dictionary are simply filtered out. We also ignore
all ambiguous names (i.e. names corresponding to
more than one gene identifier). The remaining non-
ambiguous names are added to the final gene dictio-
nary, which is implemented as a trie-like structure in
order to allow a fast lookup of gene IDs based on the
associated normalized sequences of tokens.

Each abstract from the HPRD corpus is tokenized
and segmented in sentences using the OpenNLP2

package. The resulting sentences are then annotated
by traversing them from left to right and finding the
longest token sequences whose normal forms match
entries from the gene dictionary.

6 Experimental Evaluation

The main purpose of the experiments in this section
is to compare the performance of the following four
methods on the task of corpus-level relation extrac-
tion:

1. Sentence-level relation extraction followed by
the application of an aggregation operator that
assembles corpus-level results (SSK.Max).

2. Pointwise Mutual Information (PMI ).

3. The integrated model, a product of the two base
models (PMI.SSK.Max).

4. The hypergeometric co-citation method (HG).

7 Experimental Methodology

All abstracts, either from the HPRD corpus, or
from the entire Medline, are annotated using the
dictionary-based approach described in Section 5.2.
The sentence-level extraction is done with the sub-
sequence kernel (SSK) approach from (Bunescu and
Mooney, 2005), which was shown to give good re-
sults on extracting interactions from biomedical ab-
stracts. The subsequence kernel was trained on a
set of 225 Medline abstracts which were manually

2URL: http://opennlp.sourceforge.net
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annotated with protein names and their interactions.
It is known that PMI gives undue importance to
low frequency events (Dunning, 1993), therefore the
evaluation considers only pairs of genes that occur at
least 5 times in the whole corpus.

When evaluating corpus-level extraction on
HPRD, because the “quasi-exact” list of interactions
is known, we report the precision-recall (PR) graphs,
where the precision (P) and recall (R) are computed
as follows:P = #true interactions extracted#total interaction extractedR = #true interactions extracted#true interactions

All pairs of proteins are ranked based on each scor-
ing method, and precision recall points are com-
puted by considering the topN pairs, whereN
varies from 1 to the total number of pairs.

When evaluating on the entire Medline, we used
the shared protein function benchmark described in
(Ramani et al., 2005). Given the set of interacting
pairs recovered at each recall level, this benchmark
calculates the extent to which interaction partners
in a data set share functional annotation, a measure
previously shown to correlate with the accuracy of
functional genomics data sets (Lee et al., 2004). The
KEGG (Kanehisa et al., 2004) and Gene Ontology
(Ashburner et al., 2000) databases provide specific
pathway and biological process annotations for ap-
proximately 7,500 human genes, assigning human
genes into 155 KEGG pathways (at the lowest level
of KEGG) and 1,356 GO pathways (at level 8 of the
GO biological process annotation).

The scoring scheme for measuring interaction set
accuracy is in the form of a log odds ratio of gene
pairs sharing functional annotations. To evaluate a
data set, a log likelihood ratio (LLR) is calculated as
follows:LLR = ln P (DjI)P (Dj:I) = lnP (IjD)P (:I)P (:IjD)P (I) (7)

where P (DjI) and P (Dj:I) are the probability
of observing the dataD conditioned on the genes
sharing benchmark associations (I) and not sharing
benchmark associations (:I). In its expanded form
(obtained by Bayes theorem),P (IjD) andP (:IjD)

are estimated using the frequencies of interactions
observed in the given data setD between annotated
genes sharing benchmark associations and not shar-
ing associations, respectively, while the priorsP (I)
andP (:I) are estimated based on the total frequen-
cies of all benchmark genes sharing the same asso-
ciations and not sharing associations, respectively.
A score of zero indicates interaction partners in the
data set being tested are no more likely than random
to belong to the same pathway or to interact; higher
scores indicate a more accurate data set.

8 Experimental Results

The results for the HPRD corpus-level extraction are
shown in Figure 1. Overall, the integrated model has
a more consistent performance, with a gain in preci-
sion mostly at recall levels past40%. The SSK.Max
and HG models both exhibit a sudden decrease in
precision at around5% recall level. While SSK.Max
goes back to a higher precision level, the HG model
begins to recover only late at70% recall.
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Figure 1: PR curves for corpus-level extraction.

A surprising result in this experiment is the be-
havior of the HG model, which is significantly out-
performed by PMI, and which does only marginally
better than a simple baseline that considers all pairs
to be interacting.

We also compared the two methods on corpus-
level extraction from the entire Medline, using the
shared protein function benchmark. As before, we
considered only protein pairs occurring in the same
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sentence, with a minimum frequency count of 5. The
resulting 47,436 protein pairs were ranked accord-
ing to their PMI and HG scores, with pairs that are
most likely to be interacting being placed at the top.
For each ranking, the LLR score was computed for
the top N proteins, where N varied in increments of
1,000.

The comparative results for PMI and HG are
shown in Figure 2, together with the scores for three
human curated databases: HPRD, BIND and Reac-
tome. On the top 18,000 protein pairs, PMI outper-
forms HG substantially, after which both converge
to the same value for all the remaining pairs.
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Figure 2: Functional annotation benchmark.

Figure 3 shows a comparison of the four aggre-
gation operators on the same HPRD corpus, which
confirms that, overall,max is most appropriate for
integrating corpus-level results.

9 Future Work

The piece of related work that is closest to the aim of
this paper is the Bayesian approach from (Skounakis
and Craven, 2003). In their probabilistic model, co-
occurrence statistics are taken into account by using
a prior probability that a pair of proteins are inter-
acting, given the number of co-occurrences in the
corpus. However, they do not use the confidences of
the sentence-level extractions. The GeneWays sys-
tem from (Rzhetsky et al., 2004) takes a different
approach, in which co-occurrence frequencies are
simply used to re-rank the ouput from the relation
extractor.

An interesting direction for future research is to
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Figure 3: PR curves for aggregation operators.

design a model that takes into account both the ex-
traction confidences and the co-occurrence statis-
tics, without losing the probabilistic (or information-
theoretic) interpretation. One could investigate ways
of integrating the two orthogonal approaches to
corpus-level extraction based on other statistical
tests, such as chi-square and log-likelihood ratio.

The sentence-level extractor used in this paper
was trained to recognize relation mentionsin iso-
lation. However, the trained model is later used,
through themaxaggregation operator, to recognize
whethermultiple mentionsof the same pair of pro-
teins indicate a relationship between them. This
points to a fundamental mismatch between the train-
ing and testing phases of the model. We expect that
better accuracy can be obtained by designing an ap-
proach that is using information from multiple oc-
currences of the same pair in both training and test-
ing.

10 Conclusion

Extracting relations from a collection of documents
can be approached in two fundamentally different
ways. In one approach, an IE system extracts rela-
tion instances from corpus sentences, and then ag-
gregates the local extractions into corpus-level re-
sults. In the second approach, statistical tests based
on co-occurrence counts are used for deciding if a
given pair of entities are mentioned together more
often than chance would predict. We have described
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a method to integrate the two approaches, and given
experimental results that confirmed our intuition that
an integrated model would have a better perfor-
mance.
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