
HLT-NAACL 06

BioNLP’06

Linking Natural Language
Processing and Biology:

Towards Deeper Biological
Literature Analysis

Proceedings of the Workshop

8 June 2006
New York City, USA



Production and Manufacturing by
Omnipress Inc.
2600 Anderson Street
Madison, WI 53704

Sponsorship by

c©2006 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ii



Introduction to BioNLP’06

Welcome to the HLT-NAACL’06 BioNLP Workshop, Linking Natural Language Processing and
Biology: Towards Deeper Biological Literature Analysis.

The late 1990s saw the beginning of a trend towards significant growth in the area of biomedical
language processing, and in particular in the use of natural language processing techniques in
the molecular biology and related computational bioscience domains. The figure below gives an
indication of the amount of recent activity in this area: it shows the cumulative number of documents
returned by searching PubMed, the premiere repository of biomedical scientific literature, with
the query ((natural language processing) OR (text mining)) AND (gene OR
protein), limiting the search by year for every year from 1999 through 2005: the three papers
in 1999 had grown to 227 by the end of 2005.

Figure 1: Cumulative hits returned by searching PubMed with the terms ((natural language
processing) OR (text mining)) AND (gene OR protein) for the years 1999-2005.

Significant challenges to biological literature exploitation remain, in particular for such biological
problem areas as automated function prediction and pathway reconstruction and for linguistic
applications such as relation extraction and abstractive summarization. In light of the nature of these
remaining challenges, the focus of this workshop was intended to be applications that move towards
deeper semantic analysis. We particularly solicited work that addresses relatively under-explored areas
such as summarization and question-answering from biological information.

Papers describing applications of semantic processing technologies to the biology domain were
especially invited. That is, the primary topics of interest were applications which require deeper
linguistic analysis of the biological literature. We also solicited papers exploring issues in porting
NLP systems originally constructed for other domains to the biology domain. What makes the biology
domain special? What hurdles must be overcome in performing linguistic analysis of biological text?
Are any special linguistic or knowledge resources required, beyond a domain-specific lexicon? What
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relations in biological text are most interesting to biologists, and hence should be the focus of our future
efforts?

The workshop received 31 submissions: 29 full-paper submissions, and two poster submissions. A
strong program committee, representing BioNLP researchers in North America, Europe, and Asia,
provided thorough reviews, resulting in the acceptance of eleven full papers and nineteen posters, for an
acceptance rate for full papers of 38% (11/29), which we believe made this one of the most competitive
BioNLP workshop or conference sessions to date.

A notable trend in the accepted papers is that only one of them was on the topic of entity identification.
The subject areas of the papers presented at BioNLP’06 included an exceptionally wide range of topics:
question-answering, computational lexical semantics, information extraction, entity normalization,
semantic role labelling, image classification, and syntactic aspects of the sublanguage of molecular
biology.

The intent of this workshop was to bring researchers in text processing in the bioinformatics
and biomedical domains together to discuss how techniques from natural language processing and
information retrieval can be exploited to address biological information needs. Credit for its successes
in reaching that goal is due entirely to the authors of the papers and posters presented in this volume
and to the exceptional program committee.

Finally, Procter & Gamble generously donated money to sponsor the workshop. We were able to invite
Andrey Rzhetsky from Columbia University to speak thanks to this donation. We thank P&G for their
contribution, and Andrey for accepting the invitation to speak.

Karin Verspoor
K. Bretonnel Cohen
Ben Goertzel
Inderjeet Mani
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Abstract 

Most current definitional question an-
swering systems apply one-size-fits-all 
lexicosyntactic patterns to identify defini-
tions. By analyzing a large set of online 
definitions, this study shows that the se-
mantic types of definienda constrain both 
lexical semantics and lexicosyntactic pat-
terns of the definientia. For example, 
“heart” has the semantic type [Body Part, 
Organ, or Organ Component] and its 
definition (e.g., “heart locates between the 
lungs”) incorporates semantic-type-
dependent lexicosyntactic patterns (e.g., 
“TERM locates …”) and terms (e.g., 
“lung” has the same semantic type [Body 
Part, Organ, or Organ Component]). In 
contrast, “AIDS” has a different semantic 
type [Disease or Syndrome]; its definition 
(e.g., “An infectious disease caused by 
human immunodeficiency virus”) consists 
of different lexicosyntactic patterns (e.g., 
“…causes by…”) and terms (e.g., “infec-
tious disease” has the semantic type [Dis-
ease or Syndrome]). The semantic types 
are defined in the widely used biomedical 
knowledge resource, the Unified Medical 
Language System (UMLS).  

1 Introduction 

 
Definitional questions (e.g., “What is X?”) consti-
tute an important question type and have been a 
part of the evaluation at the Text Retrieval Confer-
ence (TREC) Question Answering Track since 
2003. Most systems apply one-size-fits-all lexico-

syntactic patterns to identify definitions (Liang et 
al. 2001; Blair-Goldensohn et al. 2004; 
Hildebrandt et al. 2004; Cui et al. 2005). For ex-
ample, the pattern “NP, (such as|like|including) 
query term” can be used to identify the definition 
“New research in mice suggests that drugs such as 
Ritalin quiet hyperactivity” (Liang et al. 2001).  
 
Few existing systems, however, have explored the 
relations between the semantic type (denoted as 
SDT) of a definiendum (i.e., a defined term (DT)) 
and the semantic types (denoted as SDef) of terms in 
its definiens (i.e., definition). Additionally, few 
existing systems have examined whether the lexi-
cosyntactic patterns of definitions correlate with 
the semantic types of the defined terms.  
 
By analyzing a large set of online definitions, this 
study shows that 1) SDef correlates with SDT, and 2) 
SDT constrains the lexicosyntactic patterns of the 
corresponding definitions. In the following, we 
will illustrate our findings with the following four 
definitions: 
 
  a. Heart[Body Part, Organ, or Organ Component]: The hol-
low[Spatial Concept] muscular[Spatial Concept] organ[Body Part, 

Organ, or Organ Component,Tissue] located[Spatial Concept] be-
hind[Spatial Concept] the sternum[Body Part, Organ, or Organ Com-

ponent] and between the lungs[Body Part, Organ, or Organ 

Component]. 
   b. Kidney[Body Part, Organ, or Organ Component]: The kid-
neys are a pair of glandular organs[Body Part, Organ, or 

Organ Component] located[Spatial Concept] in the abdomi-
nal_cavities[Body Part, Organ, or Organ Component] of mam-
mals[Mammal] and reptiles[Reptile].    
   c. Heart attack[Disease or Syndrome]: also called myo-
cardial_infarction[Disease or Syndrome]; damage[Functional 

Concept] to the heart_muscle[Tissue] due to insufficient 
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blood supply[Organ or Tissue Function] for an extended[Spatial 

Concept] time_period[Temporal Concept]. 
   d. AIDS[Disease or Syndrome]: An infec-
tious_disease[Disease or Syndrome] caused[Functional Concept] 
by human_immunodeficiency_virus[Virus]. 
 
In the above four definitions, the superscripts in 
[brackets] are the semantic types (e.g., [Body Part, 
Organ, or Organ Component] and [Disease or Syn-
drome]) of the preceding terms. A multiword term 
links words with the underscore “_”. For example, 
“heart” IS-A [Body Part, Organ, or Organ Compo-
nent] and “heart_muscle” IS-A [Tissue]. The se-
mantic types are defined in the Semantic Network 
(SN) of the Unified Medical Language System 
(UMLS), the largest biomedical knowledge re-
source. Details of the UMLS and SN will be de-
scribed in Section 2. We applied MMTx (Aronson 
et al. 2004) to automatically map a string to the 
UMLS semantic types. MMTx will also be de-
scribed in Section 2.  
 
Simple analysis of the above four definitions 
shows that given a defined term (DT) with a se-
mantic type SDT (e.g., [Body Part, Organ, or Organ 
Component]), terms that appear in the definition 
tend to have the same or related semantic types 
(e.g., [Body Part, Organ, or Organ Component] 
and [Spatial Concept]). Such observations were 
first reported as “Aristotelian definitions” 
(Bodenreider and Burgun 2002) in the limited do-
main of anatomy. (Rindflesch and Fiszman 2003) 
reported that the hyponym related to the definien-
dum must be in an IS-A relation with the hy-
pernym that is related to the definiens. However, 
neither work demonstrated statistical patterns on a 
large corpus as we report in this study. Addition-
ally, none of the work explicitly suggested the use 
of patterns to support question answering.  
 
In addition to statistical correlations among seman-
tic types, the lexicosyntactic patterns of the defini-
tions correlate with SDT. For example, as shown by 
sentences a~d, when SDT is [Body Part, Organ, or 
Organ Component], its lexicosyntactic patterns 
include “…located…”. In contrast, when SDT is 
[Disease or Syndrome], the patterns include 
“…due to…” and “… caused by…”.  
 
In this study, we empirically studied statistical cor-
relations between SDT and SDef and between SDT and 

the lexicosyntactic patterns in the definitions. Our 
study is a result of detailed statistical analysis of 
36,535 defined terms and their 226,089 online 
definitions. We built our semantic constraint model 
based on the widely used biomedical knowledge 
resource, the UMLS. We also adapted a robust in-
formation extraction system to generate automati-
cally a large number of lexicosyntactic patterns 
from definitions. In the following, we will first 
describe the UMLS and its semantic types. We will 
then describe our data collection and our methods 
for pattern generation. 

2 Unified Medical Language System 

The Unified Medical Language System (UMLS) is 
the largest biomedical knowledge source main-
tained by the National Library of Medicine. It pro-
vides standardized biomedical concept relations 
and synonyms (Humphreys et al. 1998). The 
UMLS has been widely used in many natural lan-
guage processing tasks, including information re-
trieval (Eichmann et al. 1998), extraction 
(Rindflesch et al. 2000), and text summarization 
(Elhadad et al. 2004; Fiszman et al. 2004).  
 
The UMLS includes the Metathesaurus (MT), 
which contains over one million biomedical con-
cepts and the Semantic Network (SN), which 
represents a high-level abstraction from the UMLS 
Metathesaurus. The SN consists of 134 semantic 
types with 54 types of semantic relations (e.g., is-a 
or part-of) that relate the semantic types to each 
other. The UMLS Semantic Network provides 
broad and general world knowledge that is related 
to human health. Each UMLS concept is assigned 
one or more semantic types.  
 
The National Library of Medicine also makes 
available MMTx, a programming implementation 
of MetaMap (Aronson 2001), which maps free text 
to the UMLS concepts and associated semantic 
types. MMTx first parses text into sentences, then 
chunks the sentences into noun phrases.  Each 
noun phrase is then mapped to a set of possible 
UMLS concepts, taking into account spelling and 
morphological variations; each concept is 
weighted, with the highest weight representing the 
most likely mapped concept. One recent study has 
evaluated MMTx to have 79% (Yu and Sable 
2005) accuracy for mapping a term to the semantic 
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type(s) in a small set of medical questions. Another 
study (Lacson and Barzilay 2005) measured 
MMTx to have a recall of 74.3% for capturing the 
semantic types in another set of medical texts. 
 
In this study, we applied MMTx to identify the 
semantic types of terms that appear in their defini-
tions. For each candidate term, MMTx ranks a list 
of UMLS concepts with confidence. In this study, 
we selected the UMLS concept that was assigned 
with the highest confidence by MMTx. The UMLS 
concepts were then used to obtain the correspond-
ing semantic types. 

3 Data Collection 

We collected a large number of online definitions 
for the purpose of our study. Specifically, we ap-
plied more than 1 million of the UMLS concepts as 
candidate definitional terms, and searched for the 
definitions from the World Wide Web using the 
Google:Definition service; this resulted in the 
downloads of a total of 226,089 definitions that 
corresponded to a total of 36,535 UMLS concepts 
(or 3.7% of the total of 1 million UMLS concepts). 
We removed from definitions the defined terms; 
this step is necessary for our statistical studies, 
which we will explain later in the following sec-
tions. We applied MMTx to obtain the correspond-
ing semantic types.   

4 Statistically Correlated Semantic Types 

We then identified statistically correlated semantic 
types between SDT and SDef based on bivariate tabu-
lar chi-square (Fleiss 1981). 

 

 
 
Specifically, given a semantic type STYi, i=1,2,3,…, 134 
of any defined term, the observed numbers of defi-
nitions that were and were not assigned the STYi 
are O(Defi) and O(Defi). All indicates the total 
226,089 definitions. The observed numbers of defi-
nitions in which the semantic type STYi, did and did 
not appear were O(All i) and O(All i). 134 represents 

the total number of the UMLS semantic types. We 
applied formulas (1) and (2) to calculate expected 
frequencies and then the chi-square value (the de-
gree of freedom is one). A high chi-square value 
indicates the importance of the semantic type that 
appears in the definition. We removed the defined 
terms from their definitions prior to the semantic-
type statistical analysis in order to remove the bias 
introduced by the defined terms (i.e., defined terms 
frequently appear in the definitions). 
 
      ( )iDefE =

N

NN iDef *
, ( )

i
DefE =

N

NN iDef *
, 

( )iAllE =
N

NN iAll *
, ( )iAllE =

N

NN iAll *
              (1) 

     
( )

∑
−=
E

OE 2
2χ                                      (2) 

To determine whether the chi-square value is large 
enough for statistical significance, we calculated 
its p-value. Typically, 0.05 is the cutoff of signifi-
cance, i.e. significance is accepted if the corre-
sponding p-value is less than 0.05. This criterion 
ensures the chance of false significance (incor-
rectly detected due to chance) is 0.05 for a single 
SDT-SDef pair. However, since there are 134*134 
possible SDT-SDef pairs, the chance for obtaining at 
least one false significance could be very high. To 
have a more conservative inference, we employed 
a Bonferroni-type correction procedure (Hochberg 
1988).  
 
Specifically, let 

)()2()1( mppp ≤≤≤ L be the or-

dered raw p-values, where m is the total number of 
SDT-SDef pairs. A SDef is significantly associated 
with a SDT if SDef’s corresponding p-value 

)1/()( +−≤≤ imp i α  for some i. This correction 

procedure allows the probability of at-least-one-
false-significance out of the total m pairs is less 
than alpha (=0.05). 
 
The number of definitions for each SDT ranges from 
4 ([Entity]), 10 ([Event]), 17 ([Vertebrate]) to 
8,380 ([Amino Acid, Peptide, or Protein]) and 
18,461 ([Organic Chemical]) in our data collection.  
As the power of a statistical test relies on the sam-
ple size, some correlated semantic types might be 
undetected when the number of available defini-
tions is small. It is therefore worthwhile to know 
what the necessary sample size is in order to have a 
decent chance of detecting difference statistically. 
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For this task, we assume P0 and P1 are true prob-
abilities that a STY will appear in NDef and NAll . 
Based upon that, we calculated the minimal re-
quired number of sentences n such that the prob-
ability of statistical significance will be larger than 
or equal to 0.8. This sample size is determined 
based on the following two assumptions: 1) the 
observed frequencies are approximately normally 
distributed, and 2) we use chi-square significance 
to test the hypothesis P0 = P1 at significance level 
0.05 (
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5 Semantic Type Distribution  

Our null hypothesis is that given any pair of 
{ SDT(X), SDT(Y)}, X ≠ Y, where X and Y represent 
two different semantic types of the total 134 se-
mantic types, there are no statistical differences in 
the distributions of the semantic types of the terms 
that appear in the definitions.  
 
We applied the bivariate tabular chi-square test to 
measure the semantic type distribution. Following 
similar notations to Section 4, we use OXi and OYi  
for the corresponding frequencies of not being ob-
served in SDef(X) and SDef(Y). 
 
For each semantic type STY, we calculate the ex-
pected frequencies of being observed and not being 
observed in SDef(X) and SDef(Y), respectively, and 
their corresponding chi-square value according to 
formulas (3) and (4): 
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where NX and NY are the numbers of sentences in 
SDef(X) and SDef(Y), respectively, and in both (4) 
and (5), 134,...,2,1=i , and (X, Y)=1,2,…, 134 and 
X ≠ Y. The degree of freedom is 1. The chi-square 
value measures whether the occurrences of STYi, 

are equivalent between SDef(X) and SDef(Y). The 
same multiple testing correction procedure will be 
used to determine the significance of the chi-

square value. Note that if at least one STYi has 
been detected to be statistically significant after 
multiple-testing correction, the distributions of the 
semantic types are different between SDef(X) and 
SDef(Y).  

6 Automatically Identifying Semantic-Type-
Dependent Lexicosyntactic Patterns 

Most current definitional question answering sys-
tems generate lexicosyntactic patterns either 
manually or semi-automatically. In this study, we 
automatically generated large sets of lexicosyntac-
tic patterns from our collection of online defini-
tions. We applied the information extraction 
system Autoslog-TS (Riloff and Philips 2004) to 
automatically generate lexicosyntactic patterns in 
definitions. We then identified the statistical corre-
lation between the semantic types of defined terms 
and their lexicosyntactic patterns in definitions. 

AutoSlog-TS is an information extraction system 
that is built upon AutoSlog (Riloff 1996). 
AutoSlog-TS automatically identifies extraction 
patterns for noun phrases by learning from two sets 
of un-annotated texts relevant and non-relevant. 
AutoSlog-TS first generates every possible lexico-
syntactic pattern to extract every noun phrase in 
both collections of text and then computes statis-
tics based on how often each pattern appears in the 
relevant text versus the background and outputs a 
ranked list of extraction patterns coupled with sta-
tistics indicating how strongly each pattern is asso-
ciated with relevant and non-relevant texts.  

We grouped definitions based on the semantic 
types of the defined terms. For each semantic type, 
the relevant text incorporated the definitions, and 
the non-relevant text incorporated an equal number 
of sentences that were randomly selected from the 
MEDLINE collection. For each semantic type, we 
applied AutoSlog-TS to its associated relevant and 
non-relevant sentence collections to generate lexi-
cosyntactic patterns; this resulted in a total of 134 
sets of lexicosyntactic patterns that corresponded 
to different semantic types of defined terms. Addi-
tionally, we identified the common lexicosyntactic 
patterns across the semantic types and ranked the 
lexicosyntactic patterns based on their frequencies 
across semantic types. 
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We also identified statistical correlations between 
SDT and the lexicosyntactic patterns in definitions 
based on chi-square statistics that we have de-
scribed in the previous two sections. For formula 
1~4, we replaced each STY with a lexicosyntactic 
pattern. Our null hypothesis is that given any SDT, 
there are no statistical differences in the distribu-
tions of the lexicosyntactic patterns that appear in 
the definitions. 
 

 
Figure 1: A list of semantic types of de-
fined terms with the top five statistically 
correlated semantic types (P<<0.0001) that 
appear in their definitions.  

7 Results 

Our chi-square statistics show that for any pair of 
semantic types {SDT(X), SDT(Y)}, X ≠ Y, the distri-
butions of SDef are statistically different at al-
pha=0.05; the results show that the semantic types 
of the defined terms correlate to the semantic types 
in the definitions. Our results also show that the 
syntactic patterns are distributed differently among 
different semantic types of the defined terms (al-
pha=0.05). 
 
Our results show that many semantic types that 
appear in definitions are statistically correlated 
with the semantic types of the defined terms. The 
average number and standard deviation of statisti-
cally correlated semantic types is 80.6±35.4 at 
P<<0.0001.  
Figure 1 shows three SDT ([Body Part, Organ, or 
Organ Component], [Disease or Syndrome], and 
[Organization]) with the corresponding top five 

statistically correlated semantic types that appear 
in their definitions. Our results show that in a total 
of 112 (or 83.6%) cases, SDT appears as one of the 
top five statistically correlated semantic types in 
SDef, and that in a total of 94 (or 70.1%) cases,  SDT 
appears at the top in SDef. Our results indicate that 
if a definitional term has a semantic type SDT, then 
the terms in its definition tend to have the same or 
related semantic types. 
 
We examined the cases in which the semantic 
types of definitional terms do not appear in the top 
five semantic types in the definitions. We found 
that in all of those cases, the total numbers of defi-
nitions that were used for statistical analysis were 
too small to obtain statistical significance. For ex-
ample, when SDT is “Entity”, the minimum size for 
a SDef  was 4.75, which is larger than the total num-
ber of the definitions (i.e., 4). As a result, some 
actually correlated semantic types might be unde-
tected due to insufficient sample size. 
 

Our results also show that the lexicosyntactic pat-
terns of definitional sentences are SDT-dependent. 
Our results show that many lexicosyntactic pat-
terns that appear in definitions are statistically cor-
related with the semantic types of defined terms. 
The average number and standard deviation of sta-
tistically correlated lexico-syntactic patterns is 
1656.7±1818.9 at P<<0.0001. We found that the 
more definitions an SDT has, the more lexicosyntac-
tic patterns. 
 

Figure 2 shows the top 10 lexicosyntactic patterns 
(based on chi-square statistics) that were captured 
by Autoslog-TS with three different SDT; namely, 
[Disease or Syndrome], [Body Part, Organ, or 
Organ Component], and [Organization]. Figure 3 
shows the top 10 lexicosyntactic patterns ranked 
by AutoSlog-TS which incorporated the frequen-
cies of the patterns (Riloff and Philips 2004). 
 

Figure 4 lists the top 30 common patterns across 
all different semantic types SDT. We found that 
many common lexicosyntactic patterns (e.g., 
“…known as…”, “…called”, “…include…”) have 
been identified by other research groups through 
either manual or semi-automatic pattern discovery 
(Blair-Goldensohn et al. 2004). 
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Figure 2: The top 10 lexicosyntactic patterns that appear in definitions based on chi-square statis-
tics. The defined terms have one of the three semantic types [Disease_or_Syndrome], [Body Part, 
Organ, or Organ Component], and [Organization].  
 

 
Figure 3: The top 10 lexicosyntactic patterns ranked by Autoslog-TS. The defined terms have 
one of the three semantic types [Disease_or_Syndrome], [Body Part, Organ, or Organ Compo-
nent], and [Organization]. 
 

 
Figure 4: The top 30 common lexicosyntactic patterns generated across patterns with different DTS . 

 
8  Discussion 
 
The statistical correlations between SDT and SDef 
may be useful to enhance the performance of a 
definition-question-answering system by at least 
two means. First, the semantic types may be useful 
for word sense disambiguation. A simple applica-
tion is to rank definitional sentences based on the 
distributions of the semantic types of terms in the 
definitions to capture the definition of a specific 
sense. For example, a biomedical definitional ques-
tion answering system may exclude the definition 

of other senses (e.g., “feeling” as shown in the sen-
tence “The locus of feelings and intuitions; ‘in 
your heart you know it is true’; ‘her story would 
melt your heart.’”) if the semantic types that define 
“heart” do not include [Body Part, Organ, or Organ 
Component] of terms other than “heart”. 
 
Secondly, the semantic-type correlations may be 
used as features to exclude non-definitional sen-
tences. For example, a biomedical definitional 
question answering system may exclude the fol-
lowing non-definitional sentence “Heart rate was 
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unaffected by the drug” because the semantic types 
in the sentence do not include [Body Part, Organ, 
or Organ Component] of terms other than “heart”. 
 
SDT-dependent lexicosyntactic patterns may en-
hance both the recall and precision of a definitional 
question answering system. First, the large sets of 
lexicosyntactic patterns we generated automati-
cally may expand the smaller sets of lexicosyntac-
tic patterns that have been reported by the existing 
question answering systems. Secondly, SDT-
dependent lexicosyntactic patterns may be used to 
capture definitions.  

 
The common lexicosyntactic patterns we identified 
(in Figure 4) may be useful for a generic defini-
tional question answering system. For example, a 
definitional question answering system may im-
plement the most common patterns to detect any 
generic definitions; specific patterns may be im-
plemented to detect definitions with specific SDT.  
 
One limitation of our work is that the lexicosyntac-
tic patterns generated by Autoslog-TS are within 
clauses. This is a disadvantage because 1) lexico-
syntactic patterns can extend beyond clauses (Cui 
et al. 2005) and 2) frequently a definition has mul-
tiple lexicosyntactic patterns. Many of the patterns 
might not be generalizible. For example, as shown 
in Figure 2, some of the top ranked patterns (e.g., 
“Subj_AuxVp_<dobj>_BE_ARMY>”) identified 
by AutoSlog-TS may be too specific to the text 
collection. The pattern-ranking method introduced 
by AutoSlog-TS takes into consideration the fre-
quency of a pattern and therefore is a better rank-
ing method than the chi-square ranking (shown in 
Figure 3). 

 
9  Related Work 
 
Systems have used named entities (e.g., 
“PEOPLE” and “LOCATION”) to assist in infor-
mation extraction (Agichtein and Gravano 2000) 
and question answering (Moldovan et al. 2002; 
Filatova and Prager 2005). Semantic constraints 
were first explored by (Bodenreider and Burgun 
2002; Rindflesch and Fiszman 2003) who observed 
that the principle nouns in definientia are fre-
quently semantically related (e.g., hyponyms, hy-
pernyms, siblings, and synonyms) to definiena. 
Semantic constraints have been introduced to defi-

nitional question answering (Prager et al. 2000; 
Liang et al. 2001). For example, an artist’s work 
must be completed between his birth and death 
(Prager et al. 2000); and the hyponyms of defined 
terms might be incorporated in the definitions 
(Liang et al. 2001). Semantic correlations have 
been explored in other areas of NLP. For example, 
researchers (Turney 2002; Yu and Hatzivassi-
loglou 2003) have identified semantic correlation 
between words and views: positive words tend to 
appear more frequently in positive movie and 
product reviews and newswire article sentences 
that have a positive semantic orientation and vice 
versa for negative reviews or sentences with a 
negative semantic orientation. 

10 Conclusions and Future Work 

This is the first study in definitional question an-
swering that concludes that the semantics of a de-
finiendum constrain both the lexical semantics and 
the lexicosyntactic patterns in the definition. Our 
discoveries may be useful for the building of a 
biomedical definitional question answering system.  
 
Although our discoveries (i.e., that the semantic 
types of the definitional terms determine both the 
lexicosyntactic patterns and the semantic types in 
the definitions) were evaluated with the knowledge 
framework from the biomedical, domain-specific 
knowledge resource the UMLS, the principles may 
be generalizable to any type of semantic classifica-
tion of definitions. The semantic constraints may 
enhance both recall and precision of one-size-fits-
all question answering systems, which may be 
evaluated in future work. 
 
As stated in the Discussion session, one disadvan-
tage of this study is that the lexicosyntactic pat-
terns generated by Autoslog-TS are within clauses. 
Future work needs to develop pattern-recognition 
systems that are capable of detecting patterns 
across clauses.  
 
In addition, future work needs to move beyond 
lexicosyntactic patterns to extract semantic-
lexicosyntactic patterns and to evaluate how the 
semantic-lexicosyntactic   patterns    can    enhance  
definitional question answering. 
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Abstract 

This paper describes a natural language 
query engine that enables users to search 
for entities, relationships, and events that 
are extracted from biological literature. 
The query interpretation is guided by a 
domain ontology, which provides a map-
ping between linguistic structures and 
domain conceptual relations. We focus on 
the usability of the natural language inter-
face to users who are used to keyword-
based information retrieval. Preliminary 
evaluation of our approach using the 
GENIA corpus and ontology shows prom-
ising results. 

1 Introduction 

New scientific research methods have greatly in-
creased the volume of data available in the biologi-
cal domain. A growing challenge for researchers 
and health care professionals is how to access this 
ever-increasing quantity of information [Hersh 
2003]. The general public has even more trouble 
following current and potential applications. Part 
of the difficulty lies in the high degree of speciali-
zation of most resources. There is thus an urgent 
need for better access to current data and the vari-
ous domains of expertise. Key considerations for 
improving information access include: 1) accessi-
bility to different types of users; 2) high precision; 
3) ease of use; 4) transparent retrieval across het-
erogeneous data sources; and 5) accommodation of 
rapid language change in the domain.  
 
Natural language searching refers to approaches 
that enable users to express queries in explicit 

phrases, sentences, or questions. Current informa-
tion retrieval engines typically return too many 
documents that a user has to go through. Natural 
language query allows users to express their in-
formation need in a more precise way and retrieve 
specific results instead of ranked documents. It 
also benefits users who are not familiar with do-
main terminology.   
 
With the increasing availability of textual informa-
tion related to biology, including MEDLINE ab-
stracts and full-text journal articles, the field of 
biomedical text mining is rapidly growing. The 
application of Natural Language Processing (NLP) 
techniques in the biological domain has been fo-
cused on tagging entities, such as genes and pro-
teins, and on detecting relations among those 
entities. The main goal of applying these tech-
niques is database curation. There has been a lack 
of effort or success on improving search engine 
performance using NLP and text mining results. In 
this effort, we explore the feasibility of bridging 
the gap between text mining and search by  

• Indexing entities and relationships ex-
tracted from text, 

• Developing search operators on entities 
and relationships, and 

• Transforming natural language queries to 
the entity-relationship search operators.  

 
The first two steps are performed using our exist-
ing text analysis and search platform, called InFact 
[Liang 2005; Marchisio 2006]. This paper con-
cerns mainly the step of NL query interpretation 
and translation. The processes described above are 
all guided by a domain ontology, which provides a 
conceptual mapping between linguistic structures 
and domain concepts/relations. A major drawback 
to existing NL query interfaces is that their linguis-
tic and conceptual coverage is not clear to the user 
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[Androutsopoulos 1995]. Our approach addresses 
this problem by pointing out which concepts or 
syntactic relations are not mapped when we fail to 
find a consistent interpretation.  

Figure 1 shows the query processing and 
retrieval process.

 
There has been skepticism about the usefulness of 
natural language queries for searching on the web 
or in the enterprise. Users usually prefer to enter 
the minimum number of words instead of lengthy 
grammatically-correct questions. We have devel-
oped a prototype system to deal with queries such 
as “With what genes does AP-1 interact?” The 
queries do not have to be standard grammatical 
questions, but rather have forms such as: “proteins 
regulated by IL-2” or “IL-2 inhibitors”. We apply 
our system to a corpus of molecular biology litera-
ture, the GENIA corpus. Preliminary experimental 
results and evaluation are reported. 

2 Overview of Our Approach 

Molecular biology concerns interaction events be-
tween proteins, drugs, and other molecules. These 
events include transcription, translation, dissocia-
tion, etc. In addition to basic events which focus on 
interactions between molecules, users are also in-
terested in relationships between basic events, e.g. 
the causality between two such events [Hirschman 
2002]. In order to produce a useful NL query tool, 
we must be able to correctly interpret and answer 
typical queries in the domain, e.g.:  

• What genes does transcription factor X 
regulate?  

• With what genes does gene G physically 
interact?   

• What proteins interact with drug D?  
• What proteins affect the interaction of an-

other protein with drug D? 
 
Figure 1 shows the process diagram of our system. 
The query interpretation process consists of two 
major steps: 1) Syntactic analysis – parsing and 
decomposition of the input query; and 2) Semantic 
analysis – mapping of syntactic structures to an 
intermediate conceptual representation. The analy-
sis uses an ontology to extract domain-specific en-
tities/relations and to resolve linguistic ambiguity 
and variations. Then, the extracted semantic ex-
pression is transformed into an entity-relationship 
query language, which retrieves results from pre-
indexed biological literature databases. 

 Natural Language 
Query  

 
 Parsing &  

Decomposition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 Incorporating Domain Ontology 

Domain ontologies explicitly specify the meaning 
of and relation between the fundamental concepts 
in an application domain. A concept represents a 
set or class of entities within a domain. Relations 
describe the interactions between concepts or a 
concept's properties. Relations also fall into two 
broad categories: taxonomies that organize con-
cepts into “is-a” and “is-a-member-of” hierarchy, 
and associative relationships [Stevens 2000]. The 
associative relationships represent, for example, 
the functions and processes a concept has or is in-
volved in. A domain ontology also specifies how 
knowledge is related to linguistic structures such as 
grammars and lexicons. Therefore, it can be used 
by NLP to improve expressiveness and accuracy, 
and to resolve the ambiguity of NL queries.  

 
There are two major steps for incorporating a do-
main ontology: 1) building/augmenting a lexicon 
for entity tagging, including lexical patterns that 
specify how to recognize the concept in text; and 
2) specifying syntactic structure patterns for ex-
tracting semantic relationships among concepts.  
The existing ontologies (e.g. UMLS, Gene Ontol-
ogy) are created mainly for the purpose of database 

Entity-Relationship 
Markup & Indexing

Semantic Analysis

Syntactic Structure 
 
Domain 
Ontology

Semantic Expression 

Translation 

Entity-Relationship 
Query 

Text 
Corpus 
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annotation and consolidation. From those ontolo-
gies, we could extract concepts and taxonomic re-
lations, e.g., is-a. However there is also a need for 
ontologies that specify relevant associative rela-
tions between concepts, e.g. “Protein acetylate Pro-
tein.” In our experiment we investigate the 
problem of augmenting an existing ontology (i.e. 
GENIA) with associative relations and other lin-
guistic information required to guide the query in-
terpretation process.  

2.2 Query Parsing and Normalization 

Our NL parser performs the steps of tokenization, 
part-of-speech tagging, morphological processing, 
lexical analysis, and identification of phrase and 
grammatical relations such as subjects and objects. 
The lexical analysis is based on a customizable 
lexicon and set of lexical patterns, providing the 
abilities to add words or phrases as dictionary 
terms, to assign categories (e.g. entity types), and 
to associate synonyms and related terms with dic-
tionary items. The output of our parser is a de-
pendency tree, represented by a set of dependency 
relationships of the form (head, relation, modifier).   
 
In the next step, we perform syntactic decomposi-
tion to collapse the dependency tree into subject-
verb-object (SVO) expressions. The SVO triples 
can express most types of syntactic relations be-
tween various entities within a sentence. Another 
advantage of this triple expression is that it be-
comes easier to write explicit transformational 
rules that encode specific linguistic variations.  
 
 

Figure 2 shows the subject-action-object triplet.

 
 
 
 
 
 
 
Verb modifiers in the syntactic structure may in-
clude prepositional attachment and adverbials. The 
modifiers add context to the event of the verb, in-
cluding time, location, negation, etc. Subject/object 
modifiers include appositive, nominative, genitive, 
prepositional, descriptive (adjective-noun modifi-
cation), etc. All these modifiers can be either con-
sidered as descriptors (attributes) or reformulated 
as triple expressions by assigning a type to the pair.  

Linguistic normalization is a process by which lin-
guistic variants that contain the same semantic 
content are mapped onto the same representational 
structure. It operates at the morphological, lexical 
and syntactic levels. Syntactic normalization in-
volves transformational rules that recognize the 
equivalence of different structures, e.g.: 

• Verb Phrase Normalization – elimination 
of tense, modality and voice. 

• Verbalization of noun phrases – e.g. Inhi-
bition of X by Y  Y inhibit X.  

 
For example, queries such as: 

Proteins activated by IL-2 
      What proteins are activated by IL-2? 
      What proteins does IL-2 activate? 
      Find proteins that are activated by IL-2 
are all normalized into the relationship: 

IL-2 > activate > Protein 
 
As part of the syntactic analysis, we also need to 
catch certain question-specific patterns or phrases 
based on their part-of-speech tags and grammatical 
roles, e.g. determiners like “which” or “what”, and 
verbs like “find” or “list”. 

2.3 Semantic Analysis 

The semantic analysis typically involves two steps: 
1) Identifying the semantic type of the entity 
sought by the question; and 2) Determining addi-
tional constraints by identifying relations that 
ought to hold between a candidate answer entity 
and other entities or events mentioned in the query 
[Hirschman 2001]. The semantic analysis attempts 
to map normalized syntactic structures to semantic 
entities/relations defined in the ontology. When the 
system is not able to understand the question, the 
cause of failure will be explained to the user, e.g. 
unknown word or syntax, no relevant concepts in 
the ontology, etc. The output of semantic analysis 
is a set of relationship triplets, which can be 
grouped into four categories: 

Subject Action Object

 
Events, including interactions between entities and 
inter-event relations (nested events), e.g. 
    Inhibition(“il-2”, “erbb2”) 
    Inhibition(protein, Activation(DEX, IkappaB)) 
 
Event Attributes, including attributes of an inter-
action event, e.g. 

Subject 
Modifier 

Action 
Modifier 

Object 
Modifier
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    Location(Inhibition(il-2, erbb2), “blood cell”) 
 
Entity Attributes, including attributes of a given 
entity, e.g. 
     Has-Location(“erbb2”, “human”) 
 
Entity Types, including taxonomic paths of a 
given entity, e.g. 
    Is-A(“erbb2”, “Protein”) 
 
A natural language query will be decomposed into 
a list of inter-linked triplets. A user’s specific in-
formation request is noted as “UNKNOWN.” 
 
Starting with an ontology, we determine the map-
ping from syntactic structures to semantic rela-
tions. Given our example “IL-2 > activate > 
Protein”, we recognize “IL-2” as an entity, map the 
verb “activate” to a semantic relation “Activation,” 
and detect the term “protein” as a designator of the 
semantic type “Protein.” Therefore, we could eas-
ily transform the query to the following triplets: 

• Activation(IL-2, UNKNOWN) 
• Is-A(UNKNOWN, Protein)  

 
Given a syntactic triplet of subject/verb/object or 
head/relation/modifier, the ontology-driven seman-
tic analysis performs the following steps: 

1. Assign possible semantic types to the pair 
of terms,  

2. Determine all possible semantic links be-
tween each pair of assigned semantic types 
defined in the ontology,  

3. Given the syntactic relation (i.e. verb or 
modifier-relation) between the two con-
cepts, infer and validate plausible inter-
concept semantic relationships from the set 
determined in Step 2, 

4. Resolve linguistic ambiguity by rejecting 
inconsistent relations or semantic types. 

 
It is simpler and more robust to identify the query 
pattern using the extracted syntactic structure, in 
which linguistic variations have been normalized 
into a canonical form, rather than the original ques-
tion or its full parse tree. 

2.4 Entity-Relationship Indexing and 
Search 

In this section, we describe the annotation, index-
ing and search of text data. In the off-line indexing 
mode, we annotate the text with ontological con-
cepts and relationships. We perform full linguistic 
analysis on each document, which involves split-
ting of text into sentences, sentence parsing, and 
the same syntactic and semantic analysis as de-
scribed in previous sections on query processing. 
This step recognizes names of proteins, drugs, and 
other biological entities mentioned in the texts. 
Then we apply a document-level discourse analysis 
procedure to resolve entity-level coreference, such 
as acronyms/aliases and pronoun anaphora. Sen-
tence-level syntactic structures (subject-verb-
object triples) and semantic markups are stored in a 
database and indexed for efficient retrieval. 
 
In the on-line search mode, we provide a set of 
entity-relationship (ER) search operators that allow 
users to search on the indexed annotations. Unlike 
keyword search engines, we employ a highly ex-
pressive query language that combines the power 
of grammatical roles with the flexibility of Boo-
lean operators, and allows users to search for ac-
tions, entities, relationships, and events. We 
represent the basic relationship between two enti-
ties with an expression of the kind: 

Subject Entity > Action > Object Entity 
We can optionally constrain this expression by 
specifying modifiers or using Boolean logic. The 
arrows in the query refer to the directionality of the 
action. For example,  

Entity 1 <> Action <> Entity 2 
will retrieve all relationships involving Entity 1 
and Entity 2, regardless of their roles as subject or 
object of the action. An asterisk (*) can be used to 
denote unknown or unspecified sources or targets, 
e.g. “Il-2 > inhibit > *”. 
 
In the ER query language we can represent and 
organize entity types using taxonomy paths, e.g.: 
    [substance/compound/amino_acid/protein]  
    [source/natural/cell_type]  
The taxonomic paths can encode the “is-a” relation 
(as in the above examples), or any other relations 
defined in a particular ontology (e.g. the “part-of” 
relation). When querying, we can use a taxonomy 
path to specify an entity type, e.g. [Pro-
tein/Molecule], [Source], and the entity type will 
automatically include all subpaths in the taxonomic 
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hierarchy. The complete list of ER query features 
that we currently support is given in Table 1.  
 
ER Query Features Descriptions and Examples 
Relationships be-
tween two entities or 
entity types 

The query “il-2 <> * <> Ap1” 
will retrieve all relationships 
between the two entities.  

Events involving 
one or more entities 
or types 

The query “il-2 > regulate > 
[Protein]” will return all in-
stances of il-2 regulating a 
protein.  

Events restricted to a 
certain action type - 
categories of actions 
that can be used to 
filter or expand 
search 

The query “[Protein] > [Inhi-
bition] > [Protein]” will re-
trieve all events involving two 
proteins that are in the nature 
of inhibition. 
 

Boolean Operators 
- AND, OR, NOT 

Example: Il-2 OR “interleukin 
2” > inhibit or suppress >* 
Phrases such as “interleukin 
2” can be included in quotes. 

Prepositional Con-
straints 
- Filter results by 
information found in 
a prepositional 
modifier. 

Query Il-2 > activate > [pro-
tein]^[cell_type] 
will only return results men-
tioning a cell type location 
where the activation occurs.  
 

Local context con-
straints - Certain 
keyword(s) must 
appear near the rela-
tionship (within one 
sentence). 

Example: LPS > induce > NF-
kappaB CONTEXT 
CONTAINS “human T cell” 
 

Document keyword 
constraints - Docu-
ments must contain 
certain keyword(s) 

Example: Alpha-lipoic acid > 
inhibit > activation DOC 
CONTAINS “AIDS” OR 
“HIV” 

Document metadata 
constraints 

Restrict results to documents 
that contain the specified 
metadata values. 

Nested Search Allow users to search the re-
sults of a given search. 

Negation Filtering Allow users to filter out ne-
gated results that are detected 
during indexing. 

Table 1 lists various types of ER queries 

2.5 Translation to ER Query 

We extract answers through entity-relational 
matching between the NL query and syntac-
tic/semantic annotations extracted from sentences. 
Given the query’s semantic expression as de-
scribed in Section 2.3, we translate it to one or 

more entity-relationship search operators. The dif-
ferent types of semantic triplets (i.e. Event, Attrib-
ute, and Type) are treated differently when being 
converted to ER queries.  

• The Event relations can be converted di-
rectly to the subject-action-object queries. 

• The inter-event relations are represented as 
local context constraints. 

• The Event Attributes are translated to 
prepositional constraints.  

• The Entity Attribute relations could be ex-
tracted either from same sentence or from 
somewhere else within document context, 
using the nested search feature. 

• The Entity Type relations are specified in 
the ontology taxonomy. 

 
For our example, “proteins activated by il-2”, we 
translate it into an ER query: “il-2 > [activation] > 
[protein]”. Figure 3 shows the list of retrieved sub-
ject-verb-object triples that match the query, where 
each triple is linked to a sentence in the corpus. 

3 Experiment Results 

We tested our approach on the GENIA corpus and 
ontology. The evaluation presented in this section 
focuses on the ability of the system to translate NL 
queries into their normalized representation, and 
the corresponding ER queries. 

3.1 Test Data 

The GENIA corpus contains 2000 annotated 
MEDLINE abstracts [Ohta 2002]. The main reason 
we chose this corpus is that we could extract the 
pre-annotated biological entities to populate a do-
main lexicon, which is used by the NL parser. 
Therefore, we were able to ensure that the system 
had complete terminology coverage of the corpus. 
During indexing, we used the raw text data as input 
by stripping out the annotation tags.  
 
The GENIA ontology has a complete taxonomy of 
entities in molecular biology. It is divided into sub-
stance and source sub-hierarchies. The substances 
include sub-paths such as nucleic_acid/DNA and 
amino_acid/protein. Sources are biological loca-
tions where substances are found and their reac-
tions take place. They are also hierarchically sub-
classified into organisms, body parts, tissues, cells 
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or cell types, etc. Our adoption of the GENIA on-
tology as a conceptual model for guiding query 
interpretation is described as follows. 
           
Entities - For gene and protein names, we added 
synonyms and variations extracted from the Entrez 
Gene database (previously LocusLink). 
 
Interactions – The GENIA ontology does not con-
tain associative relations. By consulting a domain 
expert, we identified a set of relations that are of 
particular interest in this domain. Some examples 
of relevant relations are: activate, bind, interact, 
regulate. For each type of interaction, we created a 
list of corresponding action verbs. 
 
Entity Attributes - We identified two types of 
entity attributes: 

1. Location, e.g. body_part, cell_type, etc. 
identified by path [genia/source] 

 

 
Figure 3 shows our natural language query interface. The retrieved subject-verb-object relationships 
are displayed in a tabular format. The lower screenshot shows the document display page when user 
clicks on the last result link <interleukin 2, activate, NF-kappa B>. The sentence that contains the 
result relationship is highlighted. 
 

2. Subtype of proteins/genes, e.g. enzymes, 
transcription factors, etc., identified by 
types like protein_family_or_group, 
DNA_family_or_group 

 
Event Attributes - Locations were the only event 
attribute we supported in this experiment.  
 
Designators - We added a mapping between each 
semantic type and its natural language names. For 
example, when a term such as "gene" or "nucleic 
acid" appears in a query, we map it to the taxo-
nomic path: [Substance/compound/nucleic_acid] 

3.2 Evaluation 
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To demonstrate our ability to interpret and answer 
NL queries correctly, we selected a set of 50 natu-
ral language questions in the molecular biology 
domain. The queries were collected by consulting a 
domain expert, with restrictions such as: 

1. Focusing on queries concerning entities 
and interaction events between entities. 

2. Limiting to taxonomic paths defined 
within the GENIA ontology, which does 
not contain important entities such as 
drugs and diseases. 

 
For each target question, we first manually created 
the ground-truth entity-relationship model. Then, 
we performed automatic question interpretation 
and answer retrieval using the developed software 
prototype. The extracted semantic expressions 
were verified and validated by comparison against 
the ground-truth. Our system was able to correctly 
interpret all the 50 queries and retrieve answers 
from the GENIA corpus. In the rest of this section, 
we describe a number of representative queries. 
 
Query on events:
    With what genes does ap-1 physically interact?  
Relations: 
    Interaction(“ap-1”, UNKOWN) 
    IS-A(UNKNOWN, “Gene”) 
ER Query:
    ap-1 <>[Interaction] <> [nucleic_acid] 
 
Queries on association: 
    erbb2 and il-2 
    what is the relation between erbb2 and il-2? 
Relations:  
    Association(“erbb2”, “il-2”) 
ER Query:  
    Erbb2 <>*<>il-2 
 
Query of noun phrases:  
    Inhibitor of erbb2 
Relation:  
    Inhibition(UNKNOWN, “erbb2”)  
ER Query:  
    [substance] > [Inhibition] > erbb2 
 
Query on event location: 
    In what cell types is il-2 activated? 
Relations: 
    Activation (*, “Il-2”) 
    Location (Activation(), [cell_type]) 

ER Query: 
    * > [Activation] > il-2 ^ [cell_type] 
 
Entity Attribute Constraints 
An entity’s properties are often mentioned in a 
separate place within the document. We translate 
these types of queries into DOC_LEVEL_AND of 
multiple ER queries. This AND operator is cur-
rently implemented using the feature of nested 
search. For example, given query:  
    What enzymes does HIV-1 Tat suppress? 
we recognize the word "enzyme" is associated with 
the path: [protein/protein_family_or_group], and 
we consider it as an attribute constraint. 
 
Relations: 
    Inhibition (“hiv-1 tat”, UNKNOWN)  
    IS-A(UNKNOWN, “Protein”) 
    HAS-ATTRIBUTE (UNKNOWN, “enzyme”)    
ER query: 
    ( hiv-1 tat > [Inhibition]> [protein] )  
    DOC_LEVEL_AND 
    ( [protein] > be > enzyme ) 
 
One of the answer sentences is displayed below:  

“Thus, our experiments demonstrate that the C-
terminal region of HIV-1 Tat is required to sup-
press Mn-SOD expression” 

while Mn-SOD is indicated as an enzyme in a dif-
ferent sentence: 

“… Mn-dependent superoxide dismutase (Mn-  
SOD), a mitochondrial enzyme … ” 

 
Inter-Event Relations 
The inter-event relations or nested event queries 
(CLAUSE_LEVEL_AND) are currently imple-
mented using the ER query’s local context con-
straints, i.e. one event must appear within the local 
context of the other.  
 
Query on inter-event relations:  

What protein inhibits the induction of Ikappa-
Balpha by DEX? 

Relations: 
    Inhibition ([protein], Activation()) 
    Activation (“DEX”, “IkappaBalpha”) 
ER Query: 
    ( [protein] > [Inhibition] > * )    
    CLAUSE_LEVEL_AND  
    ( DEX > [Activation] > IkappaBalpha ) 
 

15



One of the answer sentences is: 
“In both cell types, the cytokine that inhibits the 
induction of IkappaBapha by DEX, also rescues 
these cells from DEX-induced apoptosis.” 

4 Discussions 

We demonstrated the feasibility of our approach 
using the relatively small GENIA corpus and on-
tology. A key concern with knowledge or semantic 
based methods is the scalability of the methods to 
larger set of data and queries. As future work, we 
plan to systematically measure the effectiveness of 
the approach based on large-scale experiments in 
an information retrieval setting, as we increase the 
knowledge and linguistic coverage of our system. 
 
We are able to address the large data size issue by 
using InFact as an ingestion and deployment plat-
form. With a distributed architecture, InFact is ca-
pable of ingesting large data sets (i.e. millions of 
MEDLINE abstracts) and hosting web-based 
search services with a large number of users.  We 
will investigate the scalability to larger knowledge 
coverage by adopting a more comprehensive on-
tology (i.e. UMLS [Bodenreider 2004]). In addi-
tion to genes and proteins, we will include other 
entity types such as drugs, chemical compounds, 
diseases and phenotypes, molecular functions, and 
biological processes, etc. A main challenge will be 
increasing the linguistic coverage of our system in 
an automatic or semi-automatic way. 

 
Another challenge is to encourage keyword search 
users to use the new NL query format and the 
semi-structured ER query form.  We are investigat-
ing a number of usability enhancements, where the 
majority of them have been implemented and are 
being tested.  
 
For each entity detected within a query, we provide 
a hyperlink that takes the user to an ontology 
lookup page. For example, if the user enters "pro-
tein il-2", we let the user know that we recognize 
"protein" as a taxonomic path and "il-2" as an en-
tity according to the ontology. If a relationship 
triplet has any unspecified component, we provide 
recommendations (or tips) that are hyperlinks to 
executable ER queries. This allows users who are 
not familiar with the underlying ontology to navi-
gate through most plausible results. When the user 

enters a single entity of a particular type, we dis-
play a list of relations the entity type is likely to be 
involved in, and a list of other entity types that are 
usually associated to the given type. Similarly, we 
define a list of relations between each pair of entity 
types according to the ontology. The relations are 
ranked according to popularity. When the user en-
ters a query that involves two entities, we present 
the list of relevant relations to the user. 
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Abstract

The field of molecular biology is growing
at an astounding rate and research findings
are being deposited into public databases,
such as Swiss-Prot. Many of the over
200,000 protein entries in Swiss-Prot 49.1
lack annotations such as subcellular lo-
calization or function, but the vast major-
ity have references to journal abstracts de-
scribing related research. These abstracts
represent a huge amount of information
that could be used to generate annotations
for proteins automatically. Training clas-
sifiers to perform text categorization on
abstracts is one way to accomplish this
task. We present a method for improving
text classification for biological journal
abstracts by generating additional text fea-
tures using the knowledge represented in
a biological concept hierarchy (the Gene
Ontology). The structure of the ontology,
as well as the synonyms recorded in it, are
leveraged by our simple technique to sig-
nificantly improve the F-measure of sub-
cellular localization text classifiers by as
much as 0.078 and we achieve F-measures
as high as 0.935.

1 Introduction

Can computers extract the semantic content of aca-
demic journal abstracts? This paper explores the use
of natural language techniques for processing bio-
logical abstracts to answer this question in a specific

domain. Our prototype method predicts the subcel-
lular localization of proteins (the part of the biolog-
ical cell where a protein performs its function) by
performing text classification on related journal ab-
stracts.

In the last two decades, there has been explosive
growth in molecular biology research. Molecular bi-
ologists organize their findings into a common set
of databases. One such database is Swiss-Prot, in
which each entry corresponds to a protein. As of
version 49.1 (February 21, 2006) Swiss-Prot con-
tains more than 200,000 proteins, 190,000 of which
link to biological journal abstracts. Unfortunately, a
much smaller percentage of protein entries are anno-
tated with other types of information. For example,
only about half the entries have subcellular localiza-
tion annotations. This disparity is partially due to
the fact that humans annotate these databases manu-
ally and cannot keep up with the influx of data. If a
computer could be trained to produce annotations by
processing journal abstracts, proteins in the Swiss-
Prot database could be curated semi-automatically.

Document classification is the process of cate-
gorizing a set of text documents into one or more
of a predefined set of classes. The classification
of biological abstracts is an interesting specializa-
tion of general document classification, in that sci-
entific language is often not understandable by, nor
written for, the lay-person. It is full of specialized
terms, acronyms and it often displays high levels
of synonymy. For example, the “PAM complex”,
which exists in the mitochondrion of the biologi-
cal cell is also referred to with the phrases “pre-
sequence translocase-associated import motor” and
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“mitochondrial import motor”. This also illustrates
the fact that biological terms often span word bound-
aries and so their collective meaning is lost when
text is whitespace tokenized.

To overcome the challenges of scientific lan-
guage, our technique employs the Gene Ontology
(GO) (Ashburner et al, 2000) as a source of expert
knowledge. The GO is a controlled vocabulary of
biological terms developed and maintained by biol-
ogists. In this paper we use the knowledge repre-
sented by the GO to complement the information
present in journal abstracts. Specifically we show
that:

• the GO can be used as a thesaurus

• the hierarchical structure of the GO can be used
to generalize specific terms into broad concepts

• simple techniques using the GO significantly
improve text classification

Although biological abstracts are challenging
documents to classify, solving this problem will
yield important benefits. With sufficiently accurate
text classifiers, the abstracts of Swiss-Prot entries
could be used to automatically annotate correspond-
ing proteins, meaning biologists could more effi-
ciently identify proteins of interest. Less time spent
sifting through unannotated proteins translates into
more time spent on new science, performing impor-
tant experiments and uncovering fresh knowledge.

2 Related Work

Several different learning algorithms have been ex-
plored for text classification (Dumais et al, 1998)
and support vector machines (SVMs) (Vapnik,
1995) were found to be the most computationally ef-
ficient and to have the highest precision/recall break-
even point (BEP, the point where precision equals
recall). Joachims performed a very thorough evalu-
ation of the suitability of SVMs for text classifica-
tion (Joachims, 1998). Joachims states that SVMs
are perfect for textual data as it produces sparse
training instances in very high dimensional space.

Soon after Joachims’ survey, researchers started
using SVMs to classify biological journal abstracts.
Stapley et al. (2002) used SVMs to predict the sub-
cellular localization of yeast proteins. They created

a data set by mining Medline for abstracts contain-
ing a yeast gene name, which achieved F-measures
in the range [0.31,0.80]. F-measure is defined as

f =
2rp

r + p

wherep is precision andr is recall. They expanded
their training data to include extra biological infor-
mation about each protein, in the form of amino acid
content, and raised their F-measure by as much as
0.05. These results are modest, but before Stapley
et al. most localization classification systems were
built using text rules or were sequence based. This
was one of the first applications of SVMs to bio-
logical journal abstracts and it showed that text and
amino acid composition together yield better results
than either alone.

Properties of proteins themselves were again used
to improve text categorization for animal, plant and
fungi subcellular localization data sets (Höglund
et al, 2006). The authors’ text classifiers were
based on the most distinguishing terms of docu-
ments, and they included the output of four pro-
tein sequence classifiers in their training data. They
measure the performance of their classifier using
what they call sensitivity and specificity, though
the formulas cited are the standard definitions of
recall and precision. Their text-only classifier for
the animal MultiLoc data set had recall (sensitivity)
in the range [0.51,0.93] and specificity (precision)
[0.32,0.91]. The MultiLocText classifiers, which
include sequence-based classifications, have recall
[0.82,0.93] and precision [0.55,0.95]. Their overall
and average accuracy increased by 16.2% and 9.0%
to 86.4% and 94.5% respectively on the PLOC an-
imal data set when text was augmented with addi-
tional sequence-based information.

Our method is motivated by the improvements
that Stapley et al. and Ḧoglund et al. saw when they
included additional biological information. How-
ever, our technique uses knowledge of a textual na-
ture to improve text classification; it uses no infor-
mation from the amino acid sequence. Thus, our ap-
proach can be used in conjunction with techniques
that use properties of the protein sequence.

In non-biological domains, external knowledge
has already been used to improve text categoriza-
tion (Gabrilovich and Markovitch, 2005). In their
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research, text categorization is applied to news docu-
ments, newsgroup archives and movie reviews. The
authors use the Open Directory Project (ODP) as a
source of world knowledge to help alleviate prob-
lems of polysemy and synonymy. The ODP is a
hierarchy of concepts where each concept node has
links to related web pages. The authors mined these
web pages to collect characteristic words for each
concept. Then a new document was mapped, based
on document similarity, to the closest matching ODP
concept and features were generated from that con-
cept’s meaningful words. The generated features,
along with the original document, were fed into an
SVM text classifier. This technique yielded BEP as
high as 0.695 and improvements of up to 0.254.

We use Gabrilovich and Markovitch’s (2005) idea
to employ an external knowledge hierarchy, in our
case the GO, as a source of information. It has
been shown that GO molecular function annotations
in Swiss-Prot are indicative of subcellular localiza-
tion annotations (Lu and Hunter, 2005), and that GO
node names made up about 6% of a sample Medline
corpus (Verspoor et al, 2003). Some consider GO
terms to be too rare to be of use (Rice et al, 2005),
however we will show that although the presence of
GO terms is slight, the terms are powerful enough to
improve text classification. Our technique’s success
may be due to the fact that we include the synonyms
of GO node names, which increases the number of
GO terms found in the documents.

We use the GO hierarchy in a different way than
Gabrilovich et al. use the ODP. Unlike their ap-
proach, we do not extract additional features from all
articles associated with a node of the GO hierarchy.
Instead we use synonyms of nodes and the names
of ancestor nodes. This is a simpler approach, as
it doesn’t require retrieving all abstracts for all pro-
teins of a GO node. Nonetheless, we will show that
our approach is still effective.

3 Methods

The workflow used to perform our experiments is
outlined in Figure 1.

3.1 The Data Set

The first step in evaluating the usefulness of GO as
a knowledge source is to create a data set. This pro-

Set of 
Proteins

Retrieve 
Abstracts

Set of 
Abstracts

Process 
Abstracts

Data Set 1 Data Set 2 Data Set 3

a

b

Figure 1: The workflow used to create data sets used
in this paper. Abstracts are gathered for proteins
with known localization (processa). Treatments are
applied to abstracts to create three Data Sets (pro-
cessb).

cess begins with a set of proteins with known sub-
cellular localization annotations (Figure 1). For this
we use Proteome Analyst’s (PA) data sets (Lu et al,
2004; Szafron et al, 2004). The PA group used these
data sets to create very accurate subcellular classi-
fiers based on the keyword fields of Swiss-Prot en-
tries for homologous proteins. Here we use PA’s
current data set of proteins collected from Swiss-
Prot (version 48.3) and impose one further crite-
rion: the subcellular localization annotation may not
be longer than four words. This constraint is in-
troduced to avoid including proteins where the lo-
calization category was incorrectly extracted from a
long sentence describing several aspects of localiza-
tion. For example, consider the subcellular anno-
tation “attached to the plasma membrane by a lipid
anchor”, which could mean the protein’s functional
components are either cytoplasmic or extracellular
(depending on which side of the plasma membrane
the protein is anchored). PA’s simple parsing scheme
could mistake this description as meaning that the
protein performs its function in the plasma mem-
brane. Our length constraint reduces the chances of
including mislabeled training instances in our data.
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Class Number of Number
Name Proteins of Abstracts
cytoplasm 1664 4078
endoplasmic
reticulum 310 666
extracellular 2704 5655
golgi a 41 71
lysosome 129 599
mitochondrion 559 1228
nucleus 2445 5589
peroxisome 108 221
plasma
membranea 15 38

Total 7652 17175

aClasses with less than 100 abstracts were considered to
have too little training data and are not included in our experi-
ments.

Table 1: Summary of our Data Set. Totals are less
than the sum of the rows because proteins may be-
long to more than one localization class.

PA has data sets for five organisms (animal, plant,
fungi, gram negative bacteria and gram positive bac-
teria). The animal data set was chosen for our study
because it is PA’s largest and medical research has
the most to gain from increased annotations for an-
imal proteins. PA’s data sets have binary labeling,
and each class has its own training file. For exam-
ple, in the nuclear data set a nuclear protein appears
with the label “+1”, and non-nuclear proteins ap-
pear with the label “−1”. Our training data includes
317 proteins that localize to more than one location,
so they will appear with a positive label in more than
one data set. For example, a protein that is both cyto-
plasmic and peroxisomal will appear with the label
“+1” in both the peroxisomal and cytoplasmic sets,
and with the label “−1” in all other sets. Our data
set has 7652 proteins across 9 classes (Table 1). To
take advantage of the information in the abstracts of
proteins with multiple localizations, we use a one-
against-all classification model, rather than a ”single
most confident class” approach.

3.2 Retrieve Abstracts

Now that a set of proteins with known localiza-
tions has been created, we gather each protein’s

abstracts and abstract titles (Figure 1, process a).
We do not include full text because it can be dif-
ficult to obtain automatically and because using
full text does not improve F-measure (Sinclair and
Webber, 2004). Abstracts for each protein are re-
trieved using the PubMed IDs recorded in the Swiss-
Prot database. PubMed (http://www.pubmed.
gov ) is a database of life science articles. It should
be noted that more than one protein in Swiss-Prot
may point to the same abstract in PubMed. Because
the performance of our classifiers is estimated us-
ing cross-validation (discussed in Section 3.4) it is
important that the same abstract does not appear in
both testing and training sets during any stage of
cross-validation. To address this problem, all ab-
stracts that appear more than once in the complete
set of abstracts are removed. The distribution of the
remaining abstracts among the 9 subcellular local-
ization classes is shown in Table 1. For simplicity,
the fact that an abstract may actually be discussing
more than one protein is ignored. However, because
we remove duplicate abstracts, many abstracts dis-
cussing more than one protein are eliminated.

In Table 1 there are more abstracts than proteins
because each protein may have more than one asso-
ciated abstract. Classes with less than 100 abstracts
were deemed to have too little information for train-
ing. This constraint eliminated plasma membrane
and golgi classes, although they remained as nega-
tive data for the other 7 training sets.

It is likely that not every abstract associated with
a protein will discuss subcellular localization. How-
ever, because the Swiss-Prot entries for proteins in
our data set have subcellular annotations, some re-
search must have been performed to ascertain local-
ization. Thus it should be reported in at least one
abstract. If the topics of the other abstracts are truly
unrelated to localization than their distribution of
words may be the same for all localization classes.
However, even if an abstract does not discuss local-
ization directly, it may discuss some other property
that is correlated with localization (e.g. function).
In this case, terms that differentiate between local-
ization classes will be found by the classifier.

3.3 Processing Abstracts

Three different data sets are made by processing our
retrieved abstracts (Figure 1, process b). An ex-
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   We studied the 
effect of p123 on 
the regulation of 
osmotic pressure.

"studi”:1, 
“effect”:1,
“p123”:1,
“regul”:1,
"osmot”:1,
"pressur”:1

"studi”:1, 
“effect”:1,
“p123”:1,
“regul”:1,
"osmot”:1,
"pressur”:1,
"osmoregulation":1

"studi”:1, 
“effect”:1,
“p123”:1,
“regul”:1,
"osmot”:1,
"pressur”:1,
"osmoregulation":1,
"GO_homeostasis":1,
"GO_physiological 

process":1,
"GO_biological process":1

Dataset 1 Dataset 2
Dataset 3

Figure 2: A sentence illustrating our three meth-
ods of abstract processing. Data Set 1 is our base-
line, Data Set 2 incorporates synonym resolution
and Data Set 3 incorporates synonym resolution and
term generalization. Word counts are shown here for
simplicity, though our experiments use TFIDF.

ample illustrating our three processing techniques is
shown in Figure 2.

In Data Set 1, abstracts are tokenized and each
word is stemmed using Porter’s stemming algo-
rithm (Porter, 1980). The words are then trans-
formed into a vector of<word,TFIDF> pairs.
TFIDF is defined as:

TFIDF (wi) = f(wi) ∗ log(
n

D(wi)
)

wheref(wi) is the number of times wordwi ap-
pears in documents associated with a protein,n is
the total number of training documents andD(wi)
is the number of documents in the whole training
set that contain the wordwi. TFIDF was first pro-
posed by Salton and Buckley (1998) and has been
used extensively in various forms for text catego-
rization (Joachims, 1998; Stapley et al, 2002). The
words from all abstracts for a single protein are
amalgamated into one “bag of words” that becomes
the training instance which represents the protein.

3.3.1 Synonym Resolution

The GO hierarchy can act as a thesaurus for
words with synonyms. For example the GO encodes
the fact that “metabolic process” is a synonym for
“metabolism”(see Figure 3). Data Set 2 uses GO’s
“exact synonym” field for synonym resolution and
adds extra features to the vector of words from Data
Set 1. We search a stemmed version of the abstracts

regulation of 
osmotic pressure

biological 
process

physiological 
process

homeostasis metabolism

growth

thermo-
regulation

osmo-
regulation

metabolic 
process

Figure 3: A subgraph of the GO biological process
hierarchy. GO nodes are shown as ovals, synonyms
appear as grey rectangles.

for matches to stemmed GO node names or syn-
onyms. If a match is found, the GO node name
(deemed the canonical representative for its set of
synonyms) is associated with the abstract. In Fig-
ure 2 the phrase “regulation of osmotic pressure”
appears in the text. A lookup in the GO synonym
dictionary will indicate that this is an exact synonym
of the GO node “osmoregulation”. Therefore we as-
sociated the term “osmoregulation” with the training
instance. This approach combines the weight of sev-
eral synonyms into one representative, allowing the
SVM to more accurately model the author’s intent,
and identifies multi-word phrases that are otherwise
lost during tokenization. Table 2 shows the increase
in average number of features per training instance
as a result of our synonym resolution technique.

3.3.2 Term Generalization

In order to express the relationships between
terms, the GO hierarchy is organized in a directed
acyclic graph (DAG). For example, “thermoregula-
tion” is a type of “homeostasis”, which is a “phys-
iological process”. This “is a” relationship is ex-
pressed as a series of parent-child relationships (see
Figure 3). In Data Set 3 we use the GO for synonym
resolution (as in Data Set 2) and we also use its hi-
erarchical structure to generalize specific terms into
broader concepts. For Data Set 3, if a GO node name
(or synonym) is found in an abstract, all names of
ancestors to the match in the text are included in the
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Class Data Data Data
Set 1 Set 2 Set 3

cytoplasm 166 177 203
endoplasmic
reticulum 162 171 192
extracellular 148 155 171
lysosome 244 255 285
mitochondrion 155 163 186
nucleus 147 158 183
peroxisome 147 156 182

Overall Average 167 176 200

Table 2: Average number of features per training
instance for 7 subcellular localization categories in
animals. Data Set 1 is the baseline, Data Set 2 in-
corporates synonym resolution and Data Set 3 uses
synonym resolution and term generalization.

training instance along with word vectors from Data
Set 2 (see Figure 2). These additional node names
are prepended with the string “GO” which allows
the SVM to differentiate between the case where a
GO node name appears exactly in text and the case
where a GO node name’s child appeared in the text
and the ancestor was added by generalization. Term
generalization increases the average number of fea-
tures per training instance (Table 2).

Term generalization gives the SVM algorithm the
opportunity to learn correlations that exist between
general terms and subcellular localization even if
the general term never appears in an abstract and
we encounter only its more specific children. With-
out term generalization the SVM has no concept of
the relationship between child and parent terms, nor
between sibling terms. For some localization cate-
gories more general terms may be the most informa-
tive and in other cases specific terms may be best.
Because our technique adds features to training in-
stances and never removes any, the SVM can as-
sign lower weights to the generalized terms in cases
where the localization category demands it.

3.4 Evaluation

Each of our classifiers was evaluated using 10 fold
cross-validation. In 10 fold cross-validation each
Data Set is split into 10 stratified partitions. For the
first “fold”, a classifier is trained on 9 of the 10 par-

titions and the tenth partition is used to test the clas-
sifier. This is repeated for nine more folds, holding
out a different tenth each time. The results of all
10 folds are combined and composite precision, re-
call and F-measures are computed. Cross-validation
accurately estimates prediction statistics of a classi-
fier, since each instance is used as a test case at some
point during validation.

The SVM implementation libSVM (Chang and
Lin, 2001) was used to conduct our experiments. A
linear kernel and default parameters were used in all
cases; no parameter searching was done. Precision,
recall and F-measure were calculated for each ex-
periment.

4 Results and Discussion

Results of 10 fold cross-validation are reported in
Table 3. Data Set 1 represents the baseline, while
Data Sets 2 and 3 represent synonym resolution and
combined synonym resolution/term generalization
respectively. Paired t-tests (p=0.05) were done be-
tween the baseline, synonym resolution and term
generalization Data Sets, where each sample is one
fold of cross-validation. Those classifiers with sig-
nificantly better performance over the baseline ap-
pear in bold in Table 3. For example, the lysosome
classifiers trained on Data Set 2 and 3 are both sig-
nificantly better than the baseline, and results for
Data Set 3 are significantly better than results for
Data Set 2, signified with an asterisk. In the case
of the nucleus classifier no abstract processing tech-
nique was significantly better, so no column appears
in bold.

In six of the seven classes, classifiers trained on
Data Set 2 are significantly better than the base-
line, and in no case are they worse. In Data Set
3, five of the seven classifiers are significantly bet-
ter than the baseline, and in no case are they worse.
For the lysosome and peroxisome classes our com-
bined synonym resolution/term generalization tech-
nique produced results that are significantly better
than synonym resolution alone. The average results
of Data Set 2 are significantly better than Data Set
1 and the average results of Data Set 3 are signifi-
cantly better than Data Set 2 and Data Set 1. On av-
erage, synonym resolution and term generalization
combined give an improvement of 3%, and synonym
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Class

Data Set 1 Data Set 2 Data Set 3
Baseline Synonym Resolution Term Generalization
F-measure F-Measure ∆ F-Measure ∆

cytoplasm 0.740 (±0.049) 0.758(±0.042) +0.017 0.761 (±0.042) +0.021
endoplasmic
reticulum 0.760 (±0.055) 0.779(±0.068) +0.019 0.786 (±0.072) +0.026
extracellular 0.931 (±0.009) 0.935(±0.009) +0.004 0.935 (±0.010) +0.004
lysosome 0.746 (±0.107) 0.787(± 0.100) +0.041 0.820* (±0.089) +0.074
mitochondrion 0.840 (±0.041) 0.848(±0.038) +0.008 0.852 (±0.039) +0.012
nucleus 0.885 (±0.014) 0.885 (± 0.016) +0.001 0.887 (±0.019) +0.003
peroxisome 0.790 (±0.054) 0.823(±0.042) +0.033 0.868* (±0.046) +0.078

Average 0.815 (±0.016) 0.832(±0.012) +0.017 0.845* (±0.009) +0.030

Table 3: F-measures for stratified 10 fold cross-validation on our three Data Sets. Results deemed signifi-
cantly improved over the baseline (p=0.05) appear inbold, and those with an asterisk (* ) are significantly
better than both other data sets. Change in F-measure compared to baseline is shown for Data Sets 2 and 3.
Standard deviation is shown in parentheses.

resolution alone yields a 1.7% improvement. Be-
cause term generalization and synonym resolution
never produce classifiers that are worse than syn-
onym resolution alone, and in some cases the result
is 7.8% better than the baseline, Data Set 3 can be
confidently used for text categorization of all seven
animal subcellular localization classes.

Our baseline SVM classifier performs quite well
compared to the baselines reported in related
work. At worst, our baseline classifier has F-
measure 0.740. The text only classifier reported
by Höglund et al. has F-measure in the range
[0.449,0.851] (Ḧoglund et al, 2006) and the text
only classifiers presented by Stapley et al. begin with
a baseline classifier with F-measure in the range
[0.31,0.80] (Stapley et al, 2002). Although their
approaches gave a greater increase in performance
their low baselines left more room for improvement.

Though we use different data sets than Höglund
et al. (2006), we compare our results to theirs on a
class by class basis. For those 7 localization classes
for which we both make predictions, the F-measure
of our classifiers trained on Data Set 3 exceed the F-
measures of the Ḧoglund et al. text only classifiers
in all cases, and our Data Set 3 classifier beats the F-
measure of the MutliLocText classifier for 5 classes
(see supplementary materialhttp://www.cs.
ualberta.ca/˜alona/bioNLP ). In addition,
our technique does not preclude using techniques

presented by Ḧoglund et al. and Stapley et al., and
it may be that using a combination of our approach
and techniques involving protein sequence informa-
tion may result in an even stronger subcellular local-
ization predictor.

We do not assert that using abstract text alone is
the best way to predict subcellular localization, only
that if text is used, one must extract as much from
it as possible. We are currently working on incorpo-
rating the classifications given by our text classifiers
into Proteome Analyst’s subcellular classifier to im-
prove upon its already strong predictors (Lu et al,
2004), as they do not currently use any information
present in the abstracts of homologous proteins.

5 Conclusion and Future work

Our study has shown that using an external informa-
tion source is beneficial when processing abstracts
from biological journals. The GO can be used as a
reference for both synonym resolution and term gen-
eralization for document classification and doing so
significantly increases the F-measure of most sub-
cellular localization classifiers for animal proteins.
On average, our improvements are modest, but they
indicate that further exploration of this technique is
warranted.

We are currently repeating our experiments for
PA’s other subcellular data sets and for function pre-
diction. Though our previous work with PA is not
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text based, our experience training protein classifiers
has led us to believe that a technique that works well
for one protein property often succeeds for others
as well. For example our general function classifier
has F-measure within one percent of the F-measure
of our Animal subcellular classifier. Although we
test the technique presented here on subcellular lo-
calization only, we see no reason why it could not be
used to predict any protein property (general func-
tion, tissue specificity, relation to disease, etc.). Fi-
nally, although our results apply to text classification
for molecular biology, the principle of using an on-
tology that encodes synonyms and hierarchical re-
lationships may be applicable to other applications
with domain specific terminology.

The Data Sets used in these experiments are
available athttp://www.cs.ualberta.ca/
˜alona/bioNLP/ .
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Abstract 

With the rising influence of the Gene On-
tology, new approaches have emerged 
where the similarity between genes or 
gene products is obtained by comparing 
Gene Ontology code annotations associ-
ated with them. So far, these approaches 
have solely relied on the knowledge en-
coded in the Gene Ontology and the gene 
annotations associated with the Gene On-
tology database. The goal of this paper is 
to demonstrate that improvements to these 
approaches can be obtained by integrating 
textual evidence extracted from relevant 
biomedical literature. 

1 Introduction 

The establishment of similarity between genes and 
gene products through homology searches has be-
come an important discovery procedure that biolo-
gists use to infer structural and functional 
properties of genes and gene products–see Chang 
et al. (2001) and references therein. With the rising 
influence of the Gene Ontology1 (GO), new ap-
proaches have emerged where the similarity be-
tween genes or gene products is obtained by 
comparing GO code annotations associated with 
them. The Gene Ontology provides three orthogo-
nal networks of functional genomic concepts struc-

                                                           
1 http://www.geneontology.org. 

tured in terms of semantic relationships such as 
inheritance and meronymy, which encode biologi-
cal process (BP), molecular function (MF) and cel-
lular component (CC) properties of genes and gene 
products. GO code annotations explicitly relate 
genes and gene products in terms of participation 
in the same/similar biological processes, presence 
in the same/similar cellular components and ex-
pression of the same/similar molecular functions. 
Therefore, the use of GO code annotations in es-
tablishing gene and gene product similarity pro-
vides significant added functionality to methods 
such as BLAST (Altschul et al. 1997) and FASTA 
(Pearson and Lipman 1988) where gene and gene 
product similarity is calculated using string-based 
heuristics to select maximal segment pair align-
ments across gene and gene product sequences to 
approximate the Smith-Waterman algorithm 
(Smith and Waterman 1981). 

Three main GO-based approaches have emerged 
so far to compute gene and gene product similarity. 
One approach assesses GO code similarity in terms 
of shared hierarchical relations within each gene 
ontology (BP, MF, or CC) (Lord et al. 2002, 2003; 
Couto et al. 2003; Azuaje et al. 2005).  For exam-
ple, the relative semantic closeness of two biologi-
cal processes would be determined by the 
informational specificity of the most immediate 
parent that the two biological processes share in 
the BP ontology. The second approach establishes 
GO code similarity by leveraging associative rela-
tions across the three gene ontologies (Bodenreider 
et al. 2005). Such associative relations make pre-
dictions such as which cellular component is most 
likely to be the location of a given biological proc-
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ess and which molecular function is most likely to 
be involved in a given biological process. The third 
approach computes GO code similarity by combin-
ing hierarchical and associative relations (Posse et 
al. 2006). 

Several studies within the last few years 
(Andrade et al. 1997, Andrade 1999, MacCallum et 
al. 2000, Chang at al. 2001) have shown that the 
inclusion of evidence from relevant scientific lit-
erature improves homology search. It is therefore 
highly plausible that literature evidence can also 
help improve GO-based approaches to gene and 
gene product similarity. Sanfilippo et al. (2004) 
propose a method for integrating literature evi-
dence within an early version of the GO-based 
similarity algorithm presented in Posse et al. 
(2006). However, no effort has been made so far in 
evaluating the potential contribution of textual evi-
dence extracted from relevant biomedical literature 
for GO-based approaches to the computation of 
gene and gene product similarity. The goal of this 
paper is to address this gap with specific reference 
to the assessment of protein similarity. 

2 Background 

GO-based similarity methods that focus on meas-
uring intra-ontological relations have adopted the 
information theoretic treatment of semantic simi-
larity developed in Natural Language Process-
ing−see Budanitsky (1999) for an extensive 
survey. An example of such a treatment is given by 
Resnik (1995), who defines semantic similarity 
between two concept nodes c1 c2 in a graph as the 
information content of the least common su-
perordinate (lcs) of c1 and c2, as shown in (1). The 
information content of a concept node c, IC(c), is 
computed as -log p(c) where p(c) indicates the 
probability of encountering instances of c in a spe-
cific corpus. 

(1)     
)),c p(lcs(c

)),c IC(lcs(c) ,csim(c
21log

2121
−=

==

Jiang and Conrath (1997) provide a refinement of 
Resnik’s measure by factoring in the distance from 
each concept to the least common superordinate, as 
shown in (2).2

                                                           
2 Jiang and Conrath (1997) actually define the distance be-
tween two concepts nodes c1 c2, e.g.     

 )), c IC(lcs(c ) -  IC(c)  IC(c) , cdist(c 2122121 ×+=

(2)
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Lin (1998) provides a slight variant of Jiang’s and 
Conrath’s measure, as indicated in (3).  

(3) 
)  IC(c) IC(c
)), c IC(lcs(c 
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The information theoretic approach is very well 
suited to assess GO code similarity since each gene 
subontology is formalized as a directed acyclic 
graph. In addition, the GO database3 includes nu-
merous curated GO annotations which can be used 
to calculate the information content of each GO 
code with high reliability. Evaluations of this 
methodology have yielded promising results. For 
example, Lord et al. (2002, 2003) demonstrate that 
there is strong correlation between GO-based simi-
larity judgments for human proteins and similarity 
judgments obtained through BLAST searches for 
the same proteins. Azuaje et al. (2005) show that 
there is a strong connection between the degree of 
GO-based similarity and the expression correlation 
of gene products. 

As Bodenreider et al. (2005) remark, the main 
problem with the information theoretic approach to 
GO code similarity is that it does not take into ac-
count associative relations across the gene ontolo-
gies. For example, the two GO codes 0050909 
(sensory perception of taste) and 0008527 (taste 
receptor activity) belong to different gene ontolo-
gies (BP and MF), but they are undeniably very 
closely related. The information theoretic approach 
would simply miss associations of this kind as it is 
not designed to capture inter-ontological relations.  

Bodenreider et al. (2005) propose to recover as-
sociative relations across the gene ontologies using 
a variety of statistical techniques which estimate 
the similarity of two GO codes inter-ontologically 
in terms of the distribution of the gene product an-
notations associated with the two GO codes in the 
GO database. One such technique is an adaptation 
of the vector space model frequently used in In-
formation Retrieval (Salton et al. 1975), where 

                                                                                           
For ease of exposition, we have converted Jiang’s and Con-
rath’s semantic distance measure to semantic similarity by 
taking its inverse, following Pedersen et al. (2005). 
3 http://www.godatabase.org/dev/database.  
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each GO code is represented as a vector of gene-
based features weighted according to their distribu-
tion in the GO annotation database, and the simi-
larity between two GO codes is computed as the 
cosine of the vectors for the two codes. 

The ability to measure associative relations 
across the gene ontologies can significantly aug-
ment the functionality of the information theoretic 
approach so as to provide a more comprehensive 
assessment of gene and gene product similarity. 
However, in spite of their complementarities, the 
two GO code similarity measures are not easily 
integrated. This is because the two measures are 
obtained through different methods, express dis-
tinct senses of similarity (i.e. intra- and inter-
ontological) and are thus incomparable.  

Posse et al. (2006) develop a GO-based similar-
ity algorithm–XOA, short for Cross-Ontological 
Analytics–capable of combining intra- and inter-
ontological relations by “translating” each associa-
tive relation across the gene ontologies into a hier-
archical relation within a single ontology. More 
precisely, let c1 denote a GO code in the gene on-
tology O1 and c2 a GO code in the gene ontology 
O2. The XOA similarity between c1 and c2 is de-
fined as shown in (4), where4

• cos(ci,cj) denotes the cosine associative meas-
ure proposed by Bodenreider et al. (2005) 

• sim(ci,cj) denotes any of the three intra-
ontological semantic similarities described 
above, see (1)-(3) 

• maxci in Oj {f(ci)} denotes the maximum of the 
function f() over all GO codes ci in the gene 
ontology Oj.  

The major innovation of the XOA approach is to 
allow the comparison of two nodes c1, c2 across 
distinct ontologies O1, O2 by mapping c1 into its 
closest node c4 in O2 and c2 into its closest node 
c3 in O1. The inter-ontological semantic similarity 
between c1 and c2 can be then estimated from the 
intra-ontological semantic similarities between c1-

                                                           
4 If c1 and c2 are in the same ontology, i.e. O1=O2, then 
xoa(c1,c2) is still computed as in (4). In most cases, the 
maximum in (4) would be obtained with c3 = c2 and c4 = c1 
so that  XOA(c1,c2) would simply be computed as sim(c1,c2). 
However, there are situations where there exists a GO code c3 
(c4) in the same ontology which 
• is highly associated with c1 (c2),  
•  is semantically close to c2 (c1), and  
•  leads to a value for  sim(c1,c3) x cos(c2,c3)  ((sim(c2,c4) 

x cos(c1,c4)) that is higher than sim(c1,c2). 

c3 and c2-c4, using multiplication with the associa-
tive relations between c2-c3 and c1-c4 as a score 
enrichment device. 
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Posse et al. (2006) show that the XOA similarity 

measure provides substantial advantages. For ex-
ample, a comparative evaluation of protein similar-
ity, following the benchmark study of Lord et al. 
(2002, 2003), reveals that XOA provides the basis 
for a better correlation with protein sequence simi-
larities as measured by BLAST bit score than any 
intra-ontological semantic similarity measure. The 
XOA similarity between genes/gene products de-
rives from the XOA similarity between GO codes. 
Let GP1 and GP2 be two genes/gene products. Let 
c11,c12,…, c1n denote the set of GO codes associ-
ated with GP1 and c21, c22,…., c2m the set of GO 
codes associated with GP2. The XOA similarity 
between GP1 and GP2 is defined as in (5), where 
i=1,…,n and j=1,…,m.  
 

(5) XOA(GP1,GP2) = max {XOA(c1i, c2j)} 
 
The results of the study by Posse et al. (2006) are 
shown in Table 1. Note that the correlation be-
tween protein similarities based on intra-
ontological similarity measures and BLAST bit 
scores in Table 1 is given for each choice of gene 
ontology (MF, BP, CC). This is because intra-
ontological similarity methods only take into ac-
count GO codes that are in the same ontology and 
can therefore only assess protein similarity from a 
single ontology viewpoint. By contrast, the XOA-
based protein similarity measure makes use of GO 
codes that can belong to any of the three gene on-
tologies and needs not be broken down by single 
ontologies, although the contribution of each gene 
ontology or even single GO codes can still be 
fleshed out, if so desired. 

Is it possible to improve on these XOA results 
by factoring in textual evidence? We will address 
this question in the remaining part of the paper. 
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Semantic Similarity 

Measures 
Resnik Lin Jiang &  

Conrath 
Intra-ontological    

Molecular Function 0.307 0.301 0.296 
Biological Process 0.195 0.202 0.203 
Cellular Component 0.229 0.234 0.233 

XOA 0.405 0.393 0.368 
Table 1: Spearman rank order correlation coeffi-

cients between BLAST bit score and semantic 
similarities, calculated using a set of 255,502 pro-
tein pairs–adapted from Posse et al. (2006). 

3 Textual Evidence Selection 

Our first step in integrating textual evidence into 
the XOA algorithm is to select salient information 
from biomedical literature germane to the problem. 
Several approaches can be used to carry out this 
prerequisite. For example, one possibility is to col-
lect documents relevant to the task at hand, e.g. 
through PubMed queries, and use feature weight-
ing and selection techniques from the Information 
Retrieval literature−e.g. tf*idf (Buckley 1985) and 
Information Gain (e.g. Yang and Pedersen 
1997)−to distill the most relevant information. An-
other possibility is to use Information Extraction 
algorithms tailored to the biomedical domain such 
as Medstract (http://www.medstract.org, Puste-
jovsky et al. 2002) to extract entity-relationship 
structures of relevance. Yet another possibility is to 
use specialized tools such as GoPubMed (Doms 
and Schroeder 2005) where traditional keyword-
based capabilities are coupled with term extraction 
and ontological annotation techniques.  

In our study, we opted for the latter solution, us-
ing generic Information Retrieval techniques to 
normalize and weigh the textual evidence ex-
tracted. The main advantage of this choice is that 
tools such as GoPubMed provide very high quality 
term extraction at no cost. Less appealing is the 
fact that the textual evidence provided is GO-based 
and therefore does not offer information which is 
orthogonal to the gene ontology. It is reasonable to 

expect better results than those reported in this pa-
per if more GO-independent textual evidence were 
brought to bear. We are currently working on using 
Medstract as a source of additional textual evi-
dence. 

GoPubMed is a web server which allows users 
to explore PubMed search results using the Gene 
Ontology for categorization and navigation pur-
poses (available at http://www.gopubmed.org). As 
shown in Figure 1 below, the system offers the 
following functionality: 
• It provides an overview of PubMed search re-

sults by categorizing abstracts according to the 
Gene Ontology 

• It verifies its classification by providing an 
accuracy percentage for each 

• It shows definitions of Gene Ontology terms 
• It allows users to navigate PubMed search re-

sults by GO categories 
• It automatically shows GO terms related to the 

original query for each result  
• It shows query terms (e.g. “Rab5” in the mid-

dle windowpane of Figure 1) 
• It automatically extracts terms from search 

results which map to GO categories (e.g. high-
lighted terms other than “Rab5”  in the middle 
windowpane of Figure 1). 

In integrating textual evidence with the XOA al-
gorithm, we utilized the last functionality (auto-
matic extraction of terms) as an Information 
Extraction capability. Details about the term ex-
traction algorithm used in GoPubMed are given in 
Delfs et al. (2004). In short, the GoPubMed term 
extraction algorithm uses word alignment strate-
gies in combination with stemming to match word 
sequences from PubMed abstracts with GO terms. 
In doing so, partial and discontinuous matches are 
allowed. Partial and discontinuous matches are 
weighted according to closeness of fit. This is indi-
cated by the accuracy percentages associated with 
GO in Figure 1 (right side). In this study we did 
not make use of these accuracy percentages, but 
plan to do so in the future. 
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Figure 1: GoPubMed sample query for the “rab5” protein. The abstracts shown are automatically proposed by the 
system after the user issues the protein query and then selects the GO term “late endosome” (bottom left) as the 
discriminating parameter. 
  

Our data set consists of 2360 human protein 
pairs containing 1783 distinct human proteins. This 
data set was obtained as a 1% random sample of 
the human proteins used in the benchmark study of 
Posse et al. (2006)–see Table 1.5 For each of the 
1783 human proteins, we made a GoPubMed query 
and retrieved up to 100 abstracts. We then col-
lected all the terms extracted by GoPubMed for 
each protein across the abstracts retrieved. Table 2 
provides an example of the output of this process. 
 

nutrient, uptake, carbohydrate, metabolism, affect-
ing, cathepsin, activity, protein, lipid, growth, rate, 
habitually, signal, transduction, fat, protein, cad-
herin, chromosomal, responses, exogenous, lactat-
ing, exchanges, affects, mammary, gland, …. 

Table 2: Sample output of the GoPubMed term extrac-
tion process for the Cadherin-related tumor suppressor 
protein. 
                                                           
5 We chose such a small sample to facilitate the collection of 
evidence from GoPubMed, which is not yet fully automated. 
Our XOA approach is very scalable, and we do not anticipate 
any problem running the full protein data set of 255,502 pairs, 
once we fully automate the GoPubMed extraction process. 

4 Integrating Textual Evidence in XOA 

Using the output of the GoPubMed term extraction 
process, we created vector-based signatures for 
each of the 1783 proteins, where  
• features are obtained by stemming the terms 

provided by GoPubMed  
• the value for each feature is derived as the 

tf*idf  for the feature. 
We then calculated the similarity between each of 
the 2360 protein pairs as the cosine value of the 
two vector-based signatures associated with the 
protein pair. 

We tried two different strategies to augment the 
XOA score for protein similarity using the protein 
similarity values obtained as the cosine of the 
GoPubMed term-based signatures. The first strat-
egy adopts a fusion approach in which the two 
similarity measures are first normalized to be 
commensurable and then combined to provide an 
interpretable integrated model. A simple normali-
zation is obtained by observing that the Resnik’s 
information content measure is commensurable to 
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the log of the text based cosine (LC). This leads us 
to the fusion model shown in (5) for XOA, based 
on Resnik’s semantic similarity measure (XOAR). 

(5)      Fusion(Resnik) = XOAR + LC 

We then observe that the XOA measures based on 
Resnik, Lin (XOAL) and Jiang & Conrath (XOAJC) 
are highly correlated (correlations exceed 0.95 on 
the large benchmarking dataset discussed in sec-
tion 2, see Table 1). This suggests the fusion model 
shown in (6), where the averages of the XOA 
scores are computed from the benchmarking data 
set. 

(6)      Fusion(Lin) =  
                XOAL + LC*Ave( XOAL)/Ave(XOAR) 

          Fusion(Jiang & Conrath) =  
               XOAJC + LC*Ave(XOAJC)/Ave(XOAR) 

The second strategy consists in building a predic-
tion model for BLAST bit score (BBS) using the 
XOA score and the log-cosine LC as predictors 
without the constraint of remaining interpretable. 
As in the previous strategy, a different model was 
sought for each of the three XOA variants. In each 
case, we restrict ourselves to cubic polynomial re-
gression models as such models are quite efficient 
at capturing complex nonlinear relationships be-
tween target and predictors (e.g. Weisberg 2005). 
More precisely, for each of the semantic similarity 
measures, we fit the regression model to BBS 
shown in (7), where the subscript x denotes either 
R, L or JC, and the coefficients a to h are found by 
maximizing the Spearman rank order correlations 
between BBS and the regression model. This 
maximization is automatically carried out by using 
a random walk optimization approach (Romeijn 
1992). The coefficients used in this study for each 
semantic similarity measure are shown in Table 3. 

 
(7)    a*XOAx + b*XOAx

2 + c*XOAx +  d*LC 
        + e*LC2 + f*LC3 +  g*XOAx*LC 

5 Evaluation 

Table 4 summarizes the results for both strategies, 
comparing Spearman rank correlations between 
BBS and the models from the fusion and regres-
sion approaches with Spearman rank correlations 
between BBS and XOA alone. Note that the latter 
correlations are lower than the one reported in Ta-
ble 2 due to the small size of our sample (1% of the 

original data set, as pointed out above). P-values 
associated with the changes in the correlation val-
ues are also reported, enclosed in parentheses.  
 
 Resnik Lin Jiang & Conrath 
a -10684.43 2.83453e-05 0.2025174 
b 1.786986 -31318.0 -1.93974 
c 503.3746 45388.66 0.08461453 
d -3.952441 208.5917 4.939535e-06 
e 0.0034074 1.55518e-04 0.0033902 
f 1.4036e-05 9.972911e-05 -0.000838812 
g 713.769 -1.10477e-06 2.461781 

Table 3: Coefficients of the regression model maximiz-
ing Spearman rank correlation between BBS and the 
regression model for each of the three semantic similar-
ity measures. 
 

 XOA Fusion Regression 
Resnik 0.295 0.325 (>0.20) 0.388 (0.0008) 
Lin 0.274 0.301 (>0.20) 0.372 (0.0005) 
Jiang & 
Conrath 0.273 0.285 (>0.20) 0.348 (0.008) 

Table 4: Spearman rank order correlation coefficients 
between BLAST bit score BBS and XOA, BBS and the 
fusion model, and BBS and the regression model. P-
values for the differences between the augmented mod-
els and XOA alone are given in parentheses. 
 

An important finding from Table 4 is that inte-
grating text-based evidence in the semantic simi-
larity measures systematically improves the 
relationships between BLAST and XOA. Not sur-
prisingly, the fusion models yield smaller im-
provements. However, these improvements in the 
order of 3% for the Resnik and Lin variants are 
very encouraging, even though they are not statis-
tically significant. The regression models, on the 
other hand, provide larger and statistically signifi-
cant improvements, reinforcing our hypothesis that 
textual evidence complements the GO-based simi-
larity measures. We expect that a more sophisti-
cated NLP treatment of textual evidence will yield 
significant improvements even for the more inter-
pretable fusion models.   

Conclusions and Further Work 

Our early results show that literature evidence pro-
vides a significant contribution, even using very 
simple Information Extraction and integration 
methods such as those described in this paper. The 
employment of more sophisticated Information 
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Extraction tools and integration techniques is 
therefore likely to bring higher gains.  

Further work using GoPubMed involves factor-
ing in the accuracy percentage which related ex-
tracted terms to their induced GO categories and 
capturing complex phrases (e.g. signal transduc-
tion, fat protein). We also intend to compare the 
advantages provided by the GoPubMed term ex-
traction process with Information Extraction tools 
created for the biomedical domain such as Med-
stract (Pustejovsky et al. 2002), and develop a 
methodology for integrating a variety of Informa-
tion Extraction processes into XOA. 
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Abstract 

We introduce a new approach to named 
entity classification which we term a Pri-
ority Model. We also describe the con-
struction of a semantic database called 
SemCat consisting of a large number of 
semantically categorized names relevant 
to biomedicine. We used SemCat as train-
ing data to investigate name classification 
techniques. We generated a statistical lan-
guage model and probabilistic context-
free grammars for gene and protein name 
classification, and compared the results 
with the new model.  For all three meth-
ods, we used a variable order Markov 
model to predict the nature of strings not 
represented in the training data.  The Pri-
ority Model achieves an F-measure of 
0.958-0.960, consistently higher than the 
statistical language model and probabilis-
tic context-free grammar.   

1 Introduction 

Automatic recognition of gene and protein names 
is a challenging first step towards text mining the 
biomedical literature. Advances in the area of gene 
and protein named entity recognition (NER) have 
been accelerated by freely available tagged corpora 
(Kim et al., 2003, Cohen et al., 2005, Smith et al., 
2005, Tanabe et al., 2005).  Such corpora have 
made it possible for standardized evaluations such 
as Task 1A of the first BioCreative Workshop 
(Yeh et al., 2005). 

Although state-of-the-art systems now perform 
at the level of 80-83% F-measure, this is still well 
below the range of 90-97% for non-biomedical 
NER.  The main reasons for this performance dis-
parity are 1) the complexity of the genetic nomen-
clature and 2) the confusion of gene and protein 
names with other biomedical entities, as well as 
with common English words. In an effort to allevi-
ate the confusion with other biomedical entities we 
have assembled a database consisting of named 
entities appearing in the literature of biomedicine 
together with information on their ontological 
categories. We use this information in an effort to 
better understand how to classify names as repre-
senting genes/proteins or not.  

2 Background  

A successful gene and protein NER system must 
address the complexity and ambiguity inherent in 
this domain.  Hand-crafted rules alone are unable 
to capture these phenomena in large biomedical 
text collections.  Most biomedical NER systems 
use some form of language modeling, consisting of 
an observed sequence of words and a hidden se-
quence of tags.  The goal is to find the tag se-
quence with maximal probability given the 
observed word sequence.  McDonald and Pereira 
(2005) use conditional random fields (CRF) to 
identify the beginning, inside and outside of gene 
and protein names.   GuoDong et al. (2005) use an 
ensemble of one support vector machine and two 
Hidden Markov Models (HMMs).  Kinoshita et al. 
(2005) use a second-order Markov model.  Dingare 
et al. (2005) use a maximum entropy Markov 
model (MEMM) with large feature sets.   
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NER is a difficult task because it requires both 
the identification of the boundaries of an entity in 
text, and the classification of that entity.  In this 
paper, we focus on the classification step.  Spasic 
et al. (2005) use the MaSTerClass case-based rea-
soning system for biomedical term classification.  
MaSTerClass uses term contexts from an annotated 
corpus of 2072 MEDLINE abstracts related to nu-
clear receptors as a basis for classifying new 
terms.  Its set of classes is a subset of the UMLS 
Semantic Network (McCray, 1989), that does not 
include genes and proteins.  Liu et al. (2002) clas-
sified terms that represent multiple UMLS con-
cepts by examining the conceptual relatives of the 
concepts.  Hatzivassiloglou et al. (2001) classified 
terms known to belong to the classes Protein, Gene 
and/or RNA using unsupervised learning, achieving 
accuracy rates up to 85%.  The AZuRE system 
(Podowski et al., 2004) uses a separate modified 
Naive Bayes model for each of 20K genes.  A term 
is disambiguated based on its contextual similarity 
to each model. Nenadic et al. (2003) recognized 
the importance of terminological knowledge for 

biomedical text mining. They used the C/NC-
methods, calculating both the intrinsic characteris-
tics of terms (such as their frequency of occurrence 
as substrings of other terms), and the context of 
terms as linear combinations.  These biomedical 
classification systems all rely on the context sur-
rounding named entities. While we recognize the 
importance of context, we believe one must strive 
for the appropriate blend of information coming 
from the context and information that is inherent in 
the name itself.  This explains our focus on names 
without context in this work.  

We believe one can improve gene and protein 
entity classification by using more training data 
and/or using a more appropriate model for names.  
Current sources of training data are deficient in 
important biomedical terminologies like cell line 
names.  To address this deficiency, we constructed 
the SemCat database, based on a subset of the 
UMLS Semantic Network enriched with categories 
from the GENIA Ontology (Kim et al, 2003), and a 
few new semantic types. We have populated Sem-
Cat with over 5 million entities of interest from 

Figure 1. SemCat Physical Object Hierarchy.  White = UMLS SN, Light Grey = GENIA semantic 
types, Dark Grey = New semantic types. 
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standard knowledge sources like the UMLS 
(Lindberg et al., 1993), the Gene Ontology (GO) 
(The Gene Ontology Consortium, 2000), Entrez 
Gene (Maglott et al., 2005), and GENIA, as well as 
from the World Wide Web.  In this paper, we use 
SemCat data to compare three probabilistic frame-
works for named entity classification.   

3 Methods 

We constructed the SemCat database of biomedical 
entities, and used these entities to train and test 
three probabilistic approaches to gene and protein 
name classification: 1) a statistical language model 
with Witten-Bell smoothing, 2) probabilistic con-
text-free grammars (PCFGs) and 3) a new ap-
proach we call a Priority Model for named entities. 
As one component in all of our classification algo-
rithms we use a variable order Markov Model for 
strings.   

3.1 SemCat Database Construction 

The UMLS Semantic Network (SN) is an ongoing 
project at the National Library of Medicine.  Many 
users have modified the SN for their own research 
domains.  For example, Yu et al. (1999) found that 
the SN was missing critical components in the ge-
nomics domain, and added six new semantic types 
including Protein Structure and Chemical Com-
plex. We found that a subset of the SN would be 
sufficient for gene and protein name classification, 
and added some new semantic types for better cov-
erage.  We shifted some semantic types from 
suboptimal nodes to ones that made more sense 
from a genomics standpoint. For example, there 
were two problems with Gene or Genome. Firstly, 
genes and genomes are not synonymous, and sec-
ondly, placement under the semantic type Fully 
Formed Anatomical Structure is suboptimal from a 
genomics perspective. Since a gene in this context 
is better understood as an organic chemical, we 
deleted Gene or Genome, and added the GENIA 
semantic types for genomics entities under Or-
ganic Chemical. The SemCat Physical Object hier-
archy is shown in Figure 1.  Similar hierarchies 
exist for the SN Conceptual Entity and Event trees.  
A number of the categories have been supple-
mented with automatically extracted entities from 
MEDLINE, derived from regular expression pat-
tern matching.  Currently, SemCat has 77 semantic 
types, and 5.11M non-unique entries. Additional 

entities from MEDLINE are being manually classi-
fied via an annotation website.  Unlike the Ter-
mino database (Harkema et al. (2004), which 
contains terminology annotated with morpho-
syntactic and conceptual information, SemCat cur-
rently consists of gazetteer lists only.  

For our experiments, we generated two sets of 
training data from SemCat, Gene-Protein (GP) and 
Not-Gene-Protein (NGP).  GP consists of specific 
terms from the semantic types DNA MOLECULE, 
PROTEIN MOLECULE, DNA FAMILY, 
PROTEIN FAMILY, PROTEIN COMPLEX and 
PROTEIN SUBUNIT.  NGP consists of entities 
from all other SemCat types, along with generic 
entities from the GP semantic types.  Generic enti-
ties were automatically eliminated from GP using 
pattern matching to manually tagged generic 
phrases like abnormal protein, acid domain, and 
RNA.  

Many SemCat entries contain commas and pa-
rentheses, for example, “receptors, tgf beta.”  A 
better form for natural language processing would 
be “tgf beta receptors.”  To address this problem, 
we automatically generated variants of phrases in 
GP with commas and parentheses, and found their 
counts in MEDLINE.  We empirically determined 
the heuristic rule of replacing the phrase with its 
second most frequent variant, based on the obser-
vation that the most frequent variant is often too 
generic.  For example, the following are the phrase 
variant counts for “heat shock protein (dnaj)”: 
 

• heat shock protein (dnaj) 0 
• dnaj heat shock protein  84 
• heat shock protein  122954 
• heat shock protein dnaj  41 

 
Thus, the phrase kept for GP is dnaj heat shock 
protein.  

After purifying the sets and removing ambigu-
ous full phrases (ambiguous words were retained), 
GP contained 1,001,188 phrases, and NGP con-
tained 2,964,271 phrases. From these, we ran-
domly generated three train/test divisions of 90% 
train/10% test (gp1, gp2, gp3), for the evaluation.   

3.2    Variable Order Markov Model for Strings 

As one component in our classification algorithms 
we use a variable order Markov Model for strings.  
Suppose C represents a class and 1 2 3... nx x x x  repre-
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sents a string of characters. In order to estimate the 
probability that 1 2 3... nx x x x  belongs to  we apply 
Bayes’ Theorem to write 

C

 

( ) ( ) ( )
( )

1 2 3
1 2 3

1 2 3

... |
| ...

...
n

n
n

p x x x x C p C
p C x x x x

p x x x x
=      (1) 

 
Because ( )1 2 3... np x x x x does not depend on the 

class and because we are generally comparing 
probability estimates between classes, we ignore 
this factor in our calculations and concentrate our 
efforts on evaluating ( ) ( )1 2 3... |np x x x x C p C . 
First we write 
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which is an exact equality. The final step is to give 
our best approximation to each of the num-
bers ( 1 2 3 1| ... ,k kp x x x x x C− . To make these ap-
proximations we assume that we are given a set of 

strings and associated probabilities ( ){ } 1
,

M
i i i

s p
=

 

where for each i ,  and 0ip > ip  is assumed to 
represent the probability that  belongs to the 
class C .  Then for the given string 

is

1 2 3... nx x x x  and 
a given  we let  be the smallest integer for 
which 

k 1r ≥
1 2...r r r kx x x x+ +  is a contiguous substring in 

at least one of the strings .  Now let is N′  be the 
set of all i  for which 1 2...r r r kx x x x+ +  is a substring 
of  and let  be the set of all  for which is N i

1 2... 1r r r kx x x x+ + −  is a substring of . We set is

( )1 2 3 1| ... , ii N
k k

ii N

p
p x x x x x C

p
′∈

−

∈

= ∑
∑

. (3) 

In some cases it is appropriate to assume that 

( )p C  is proportional to 
1

M
ii

p
=∑  or there may be 

other ways to make this estimate. This basic 
scheme works well, but we have found that we can 
obtain a modest improvement by adding a unique 
start character to the beginning of each string. This 
character is assumed to occur nowhere else but as 
the first character in all strings dealt with including 
any string whose probability we are estimating.  
This forces the estimates of probabilities near the 

beginnings of strings to come from estimates based 
on the beginnings of strings.  We use this approach 
in all of our classification algorithms. 
 
Table 1. Each fragment in the left column appears in the 
training data and the probability in the right column 
represents the probability of seeing the underlined por-
tion of the string given the occurrence of the initial un-
underlined portion of the string in a training string.  

GP 
!apoe 79.55 10−×  
oe-e 32.09 10−×  
e-epsilon 24.00 10−×  
( )|p apoe epsilon GP−  117.98 10−×  

( )|p GP apoe epsilon−  0.98448 

NGP 
!apoe 88.88 10−×  
poe- 21.21 10−×  
oe-e 26.10 10−×  
e-epsilon 36.49 10−×  
( )|p apoe epsilon NGP−  134.25 10−×  

( )|p NGP apoe epsilon−  0.01552 
In Table 1, we give an illustrative example of 

the string apoe-epsilon which does not appear in 
the training data.  A PubMed search for apoe-
epsilon gene returns 269 hits showing the name is 
known. But it does not appear in this exact form in 
SemCat. 

3.3   Language Model with Witten-Bell Smooth-
ing 

A statistical n-gram model is challenged when a 
bigram in the test set is absent from the training 
set, an unavoidable situation in natural language 
due to Zipf’s law.  Therefore, some method for 
assigning nonzero probability to novel n-grams is 
required.  For our language model (LM), we used 
Witten-Bell smoothing, which reserves probability 
mass for out of vocabulary values (Witten and 
Bell, 1991, Chen and Goodman, 1998).  The dis-
counted probability is calculated as 
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where  is the number of distinct 
words that can appear after in the 
training data. Actual values assigned to tokens out-
side the training data are not assigned uniformly 
but are filled in using a variable order Markov 
Model based on the strings seen in the training 
data.  

)...( 11 −+− ini wwD

11... −+− ini ww

3.4   Probabilistic Context-Free Grammar 

The Probabilistic Context-Free Grammar 
(PCFG) or Stochastic Context-Free Grammar 
(SCFG) was originally formulated by Booth 
(1969).  For technical details we refer the reader to 
Charniak (1993). For gene and protein name classi-
fication, we tried two different approaches.  In the 
first PCFG method (PCFG-3), we used the follow-
ing simple productions: 

 
1) CATP → CATP CATP 
2) CATP → CATP postCATP 
3) CATP → preCATP CATP 

 
CATP refers to the category of the phrase, GP 

or NGP.  The prefixes pre and post refer to begin-
nings and endings of the respective strings.  We 
trained two separate grammars, one for the positive 
examples, GP, and one for the negative examples, 
NGP.  Test cases were tagged based on their score 
from each of the two grammars. 

In the second PCFG method (PCFG-8), we 
combined the positive and negative training exam-
ples into one grammar.  The minimum number of 
non-terminals necessary to cover the training sets 
gp1-3 was six {CATP, preCATP, postCATP, Not-
CATP, preNotCATP, postNotCATP}. CATP 
represents a string from GP, and NotCATP repre-
sents a string from NGP.  We used the following 
production rules: 

 
1) CATP → CATP CATP 
2) CATP → CATP postCATP 
3) CATP → preCATP CATP 
4) CATP → NotCATP CATP 
5) NotCATP → NotCATP NotCATP 
6) NotCATP → NotCATP postNotCATP 
7) NotCATP→ preNotCATP NotCATP 
8) NotCATP → CATP NotCATP 

 

It can be seen that (4) is necessary for strings like 
“human p53,” and (8) covers strings like “p53 
pathway.” 

     In order to deal with tokens that do not ap-
pear in the training data we use variable order 
Markov Models for strings. First the grammar is 
trained on the training set of names. Then any to-
ken appearing in the training data will have as-
signed to it the tags appearing on the right side of 
any rule of the grammar (essentially part-of-speech 
tags) with probabilities that are a product of the 
training.  We then construct a variable order 
Markov Model for each tag type based on the to-
kens in the training data and the assigned prob-
abilities for that tag type. These Models (three for 
PCFG-3 and six for PCFG-8) are then used to as-
sign the basic tags of the grammar to any token not 
seen in training.  In this way the grammars can be 
used to classify any name even if its tokens are not 
in the training data.  

3.5   Priority Model 

There are problems with the previous ap-
proaches when applied to names. For example, 
suppose one is dealing with the name “human liver 
alkaline phosphatase” and class  represents pro-
tein names and class  anatomical names. In that 
case a language model is no more likely to favor 

 than . We have experimented with PCFGs 
and have found the biggest challenge to be how to 
choose the grammar. After a number of attempts 
we have still found problems of the “human liver 
alkaline phosphatase” type to persist. 

1C

2C

1C 2C

The difficulties we have experienced with lan-
guage models and PCFGs have led us to try a dif-
ferent approach to model named entities. As a 
general rule in a phrase representing a named en-
tity a word to the right is more likely to be the head 
word or the word determining the nature of the 
entity than a word to the left. We follow this rule 
and construct a model which we will call a Priority 
Model. Let  be the set of training data (names) 

for class  and likewise  for . Let 
1T

1C 2T 2C { } A
tα α∈

 
denote the set of all tokens used in names con-
tained in . Then for each token 1T T∪ 2 ,  t Aα α ∈ , 
we assume there are associated two probabilities 
pα  and qα  with the interpretation that pα  is the 
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probability that the appearance of the token tα  in a 
name indicates that name belongs to class  and 1C
qα  is the probability that tα  is a reliable indicator 

of the class of a name. Let  be 

composed of the tokens on the right in the given 
order. Then we compute the probability 

( ) ( ) ( )1 2 kn t t tα α α= …

 
( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 22 1

.| 1 1k k
j i iij

p C n p q q p qα α αα == =
= − + −∑∏ ∏k

jj i α+

      (5)                                         
 
This formula comes from a straightforward in-

terpretation of priority in which we start on the 
right side of a name and compute the probability 
the name belongs to class  stepwise. If  is 

the rightmost token we multiple the reliability 
 times the significance 

1C ( )ktα

( )kqα ( )kpα  to obtain 

, which represents the contribution of 

. The remaining or unused probability is 

 and this is passed to the next token to the 

left, . The probability  is scaled by 

the reliability and then the significance of 

( ) ( )k kq pα α

( )ktα

( )1 kqα−

( )1ktα − ( )1 kqα−

( )1ktα −  to 

obtain , which is the contri-

bution of  toward the probability that the 

name is of class . The remaining probability is 

now  and this is again 

passed to the next token to the left, etc. At the last 
token on the left the reliability is not used to scale 
because there are no further tokens to the left and 
only significance 

( ) ( ) ( )1(1 )k k kq q pα α α−− 1−

)kα

( )1ktα −

1C

( )( ) ( )(11 1kq qα −− −

( )1pα  is used.  

We want to choose all the parameters pα  and 
qα  to maximize the probability of the data. Thus 
we seek to maximize 
 
 ( )( ) ( )( )

1 2
1log | log 2 |

n T n T
F p C n p C n

∈ ∈
= +∑ ∑ .

 (6) 
                 

Because probabilities are restricted to be in the 
interval [ ]0,1 , it is convenient to make a change of 
variables through the definitions 

,  
1 1

x y

x

ep q
e e

α α

y

e
α αα α= =

+ +
. (7) 

Then it is a simple exercise to show that 

( ) (1 ,  1dp dqp p q q
dx dy

α α )α α α
α α

= − = − α . (8) 

From (5), (6), and (8) it is straightforward to com-
pute the gradient of  as a function of F xα  and yα  
and because of (8) it is most naturally expressed in 
terms of pα  and qα . Before we carry out the op-
timization one further step is important. Let B  
denote the subset of Aα ∈  for which all the oc-
currences of tα  either occur in names in  or all 
occurrences occur in names in . For any such 

1T

2T α  
we set 1qα =  and if all occurrences of tα  are in 
names in   we set 1T 1pα = , while if all occur-
rences are in names in  we set .  These 
choices are optimal and because of the form of (8) 
it is easily seen that 

2T 0pα =

0F F
x yα α

∂ ∂
= =

∂ ∂
 (9) 

for such an α . Thus we may ignore all the Bα ∈  
in our optimization process because the values of 
pα  and qα  are already set optimally. We therefore 

carry out optimization of  using the F
,  ,  x y Aα α Bα ∈ − . For the optimization we have 

had good success using a Limited Memory BFGS 
method (Nash et al., 1991). 
 

When the optimization of  is complete we 
will have estimates for all the 

F
pα  and qα , Aα ∈ . 

We still must deal with tokens tβ  that are not in-

cluded among the tα .  For this purpose we train 
variable order Markov Models 1MP  based on the 

weighted set of strings ( ){ },
A

t pα α α∈
 and 2MP  

based on ( ){ },1
A

t pα α α∈
− . Likewise we train 

1MQ  based on ( ){ },
A

t qα α α∈
 and 2MQ  based on 

( ){ },1
A

t qα α α∈
− . Then if we allow ( )imp tβ  to 

represent the prediction from model iMP  and 

( )imq tβ  that from model iMQ , we set 
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( ) ( )
1

1 2 1 2

,  
mp t mq t

p q
mp t mp t mq t mq t

β
β β

β β β

= =
+

1 β

β+

 (10) 
This allows us to apply the priority model to 
any name to predict its classification based on 
equation 5.  

4 Results 

We ran all three methods on the SemCat sets gp1, 
gp2 and gp3.  Results are shown in Table 2.  For 
evaluation we applied the standard information 
retrieval measures precision, recall and F-measure.   

_
( _ _ )

rel retprecision
rel ret non rel ret

=
+ −

 

_
( _ _ _ )

rel retrecall
rel ret rel not ret

=
+

 

 
2* *
( )

precision recallF measure
precision recall

− =
+

 

 
For name classification, rel_ret refers to true posi-
tive entities, non-rel_ret to false positive entities 
and rel_ not_ret to false negative entities. 

 
Table 2. Three-fold cross validation results. P = Preci-
sion, R = Recall, F = F-measure. PCFG = Probabilistic 
Context-Free Grammar, LM = Bigram Model with Wit-
ten-Bell smoothing,  PM = Priority Model. 

Method Run P R F 

PCFG-3 gp1 0.883 0.934 0.908 
 gp2 0.882 0.937 0.909 
 gp3 0.877 0.936 0.906 
PCFG-8 gp1 0.939 0.966 0.952 
 gp2 0.938 0.967 0.952 
 gp3 0.939 0.966 0.952 
LM gp1 0.920 0.968 0.944 
 gp2 0.923 0.968 0.945 
 gp3 0.917 0.971 0.943 
PM gp1 0.949 0.968 0.958 
 gp2 0.950 0.968 0.960 
 gp3 0.950 0.967 0.958 

5 Discussion 

Using a variable order Markov model for strings 
improved the results for all methods (results not 

shown).  The gp1-3 results are similar within each 
method, yet it is clear that the overall performance 
of these methods is PM > PCFG-8 > LM > PCFG-
3. The very large size of the database and the very 
uniform results obtained over the three independ-
ent random splits of the data support this conclu-
sion.  

The improvement of PCFG-8 over PCFG-3 can 
be attributed to the considerable ambiguity in this 
domain. Since there are many cases of term over-
lap in the training data, a grammar incorporating 
some of this ambiguity should outperform one that 
does not. In PCFG-8, additional production rules 
allow phrases beginning as CATPs to be overall 
NotCATPs, and vice versa.   

The Priority Model outperformed all other meth-
ods using F-measure.  This supports our impres-
sion that the right-most words in a name should be 
given higher priority when classifying names.  A 
decrease in performance for the model is expected 
when applying this model to the named entity ex-
traction (NER) task, since the model is based on 
terminology alone and not on the surrounding 
natural language text.  In our classification experi-
ments, there is no context, so disambiguation is not 
an issue. However, the application of our model to 
NER will require addressing this problem. 

 SemCat has not been tested for accuracy, but 
we retain a set of manually-assigned scores that 
attest to the reliability of each contributing list of 
terms.  Table 2 indicates that good results can be 
obtained even with noisy training data.   

6 Conclusion 

In this paper, we have concentrated on the infor-
mation inherent in gene and protein names versus 
other biomedical entities.  We have demonstrated 
the utility of the SemCat database in training prob-
abilistic methods for gene and protein entity classi-
fication.  We have also introduced a new model for 
named entity prediction that prioritizes the contri-
bution of words towards the right end of terms. 
The Priority Model shows promise in the domain 
of gene and protein name classification.  We plan 
to apply the Priority Model, along with appropriate 
contextual and meta-level information, to gene and 
protein named entity recognition in future work.  
We intend to make SemCat freely available. 
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Abstract

The identification of genes in biomedi-
cal text typically consists of two stages:
identifying gene mentions and normaliza-
tion of gene names. We have created an
automated process that takes the output
of named entity recognition (NER) sys-
tems designed to identify genes and nor-
malizes them to standard referents. The
system identifies human gene synonyms
from online databases to generate an ex-
tensive synonym lexicon. The lexicon is
then compared to a list of candidate gene
mentions using various string transforma-
tions that can be applied and chained in
a flexible order, followed by exact string
matching or approximate string matching.

Using a gold standard of MEDLINE ab-
stracts manually tagged and normalized
for mentions of human genes, a com-
bined tagging and normalization system
achieved 0.669 F-measure (0.718 preci-
sion and 0.626 recall) at the mention level,
and 0.901 F-measure (0.957 precision and
0.857 recall) at the document level for
documents used for tagger training.

1 Introduction

Gene and protein name identification and recogni-
tion in biomedical text are challenging problems.
A recent competition, BioCreAtIvE, highlighted the

∗ To whom correspondence should be addressed.

two tasks inherent in gene recognition: identifying
gene mentions in text (task 1A) (Yeh et al., 2005)
and normalizing an identified gene list (task 1B)
(Hirschman et al., 2005). This competition resulted
in many novel and useful approaches, but the results
clearly identified that more important work is neces-
sary, especially for normalization, the subject of the
current work.

Compared with gene NER, gene normalization
is syntactically easier because identification of the
textual boundaries of each mention is not required.
However, gene normalization poses significant se-
mantic challenges, as it requires detection of the ac-
tual gene intended, along with reporting of the gene
in a standardized form (Crim et al., 2005). Several
approaches have been proposed for gene normal-
ization, including classification techniques (Crim et
al., 2005; McDonald et al., 2004), rule-based sys-
tems (Hanisch et al., 2005), text matching with dic-
tionaries (Cohen, 2005), and combinations of these
approaches. Integrated systems for gene identifica-
tion typically have three stages: identifying candi-
date mentions in text, identifying the semantic in-
tent of each mention, and normalizing mentions by
associating each mention with a unique gene identi-
fier (Morgan et al., 2004). In our current work, we
focus upon normalization, which is currently under-
explored for human gene names. Our objective is
to create systems for automatically identifying hu-
man gene mentions with high accuracy that can be
used for practical tasks in biomedical literature re-
trieval and extraction. Our current approach relies
on a manually created and tuned set of rules.
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2 Automatically Extracted Synonym
Dictionaries

Even when restricted to human genes, biomedical
researchers mention genes in a highly variable man-
ner, with a minimum of adherence to the gene nam-
ing standard provided by the Human Gene Nomen-
clature Committee (HGNC). In addition, frequent
variations in spelling and punctuation generate ad-
ditional non-standard forms. Extracting gene syn-
onyms automatically from online databases has sev-
eral benefits (Cohen, 2005). First, online databases
contain highly accurate annotations from expert
curators, and thus serve as excellent information
sources. Second, refreshing of specialized lexicons
from online sources provides a means to obtain new
information automatically and with no human in-
tervention. We thus sought a way to rapidly col-
lect as many human gene identifiers as possible.
All the statistics used in this section are from on-
line database holdings last extracted on February 20,
2006.

2.1 Building the Initial Dictionaries

Nineteen online websites and databases were ini-
tially surveyed to identify a set of resources that col-
lectively contain a large proportion of all known hu-
man gene identifiers. After examination of the 19 re-
sources with a limited but representative set of gene
names, we determined that only four databases to-
gether contained all identifiers (excluding resource-
specific identifiers used for internal tracking pur-
poses) used by the 19 resources. We then built an
automated retrieval agent to extract gene synonyms
from these four online databases: The HGNC Ge-
new database, Entrez Gene, Swiss-Prot, and Stan-
ford SOURCE. The results were collected into a sin-
gle dictionary. Each entry in the dictionary con-
sists of a gene identifier and a corresponding offi-
cial HGNC symbol. For data from HGNC, with-
drawn entries were excluded. Retrieving gene syn-
onyms from SOURCE required a list of gene identi-
fiers to query SOURCE, which was compiled by the
retrieval agent from the other sources (i.e., HGNC,
Entrez Gene and Swiss-Prot). In total, there were
333,297 entries in the combined dictionary.

2.2 Rule-Based Filter for Purification

Examination of the initial dictionary showed that
some entries did not fit our definition of a gene iden-
tifier, usually because they were peripheral (e.g., a
GenBank sequence identifier) or were describing a
gene class (e.g., an Enzyme Commission identifier
or a term such as “tyrosine kinase”). A rule-based
filter was imposed to prune these uninformative syn-
onyms. The rules include removing identifiers under
these conditions:

1. Follows the form of a GenBank or EC acces-
sion ID (e.g., 1-2 letters followed by 5-6 dig-
its).

2. Contains at most 2 characters and 1 letter but
not an official HGNC symbol (e.g., P1).

3. Matches a description in the OMIM morbid
list1 (e.g., Tangier disease).

4. Is a gene EC number.2

5. Ends with ‘, family ?’, where ? is a capital letter
or a digit.

6. Follows the form of a DNA clone (e.g., 1-4 dig-
its followed by a single letter, followed by 1-2
digits).

7. Starts with ‘similar to’ (e.g., similar to zinc fin-
ger protein 533).

Our filter pruned 9,384 entries (2.82%).

2.3 Internal Update Across the Dictionaries

We used HGNC-designated human gene symbols as
the unique identifiers. However, we found that cer-
tain gene symbols listed as “official” in the non-
HGNC sources were not always current, and that
other assigned symbols were not officially desig-
nated as such by HGNC. To remedy these issues, we
treated HGNC as the most reliable source and Entrez
Gene as the next most reliable, and then updated our
dictionary as follows:

1ftp://ftp.ncbi.nih.gov/repository/OMIM/morbidmap
2EC numbers are removed because they often represent gene

classes rather than specific instances.
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• In the initial dictionary, some synonyms are
associated with symbols that were later with-
drawn by HGNC. Our retrieval agent extracted
a list of 5,048 withdrawn symbols from HGNC,
and then replaced any outdated symbols in the
dictionary with the official ones. Sixty with-
drawn symbols were found to be ambiguous,
but we found none of them appearing as sym-
bols in our dictionary.

• If a symbol used by Swiss-Prot or SOURCE
was not found as a symbol in HGNC or En-
trez Gene, but was a non-ambiguous synonym
in HGNC or Entrez Gene, then we replaced
it by the corresponding symbol of the non-
ambiguous synonym.

Among the 323,913 remaining entries, 801 entries
(0.25%) had symbols updated. After removing du-
plicate entries (42.19%), 187,267 distinct symbol-
synonym pairs representing 33,463 unique genes
were present. All tasks addressed in this section
were performed automatically by the retrieval agent.

3 Exact String Matching

We initially invoked several string transformations
for gene normalization, including:

1. Normalization of case.

2. Replacement of hyphens with spaces.

3. Removal of punctuation.

4. Removal of parenthesized materials.

5. Removal of stop words3.

6. Stemming, where the Porter stemmer was em-
ployed (Porter, 1980).

7. Removal of all spaces.

The first four transformations are derived from
(Cohen et al., 2002). Not all the rules we ex-
perimented with demonstrated good results for hu-
man gene name normalization. For example, we
found that stemming is inappropriate for this task.
To amend potential boundary errors of tagged men-
tions, or to match the variants of the synonyms, four

3ftp://ftp.cs.cornell.edu/pub/smart/English.stop

mention reductions (Cohen et al., 2002) were also
applied to the mentions or synonyms:

1. Removal of the first character.

2. Removal of the first word.

3. Removal of the last character.

4. Removal of the last word.

To provide utility, a system was built to allow
for transformations and reductions to be invoked
flexibly, including chaining of rules in various se-
quences, grouping of rules for simultaneous invo-
cation, and application of transformations to ei-
ther or both the candidate mention input and the
dictionary. For example, the mention “alpha2C-
adrenergic receptor” in PMID 8967963 matches
synonym “Alpha-2C adrenergic receptor” of gene
ADRA2C after normalizing case, replacing hyphens
by spaces, and removing spaces. Each rule can be
built into an invoked sequence deemed by evaluation
to be optimal for a given application domain.

A normalization step is defined here as the pro-
cess of finding string matches after a sequence of
chained transformations, with optional reductions
of the mentions or synonyms. We call a normal-
ization step safe if it generally makes only minor
changes to mentions. On the contrary, a normaliza-
tion step is called aggressive if it often makes sub-
stantial changes. However, a normalization step safe
for long mentions may not be safe for short ones.
Hence, our system was designed to allow a user to
set optional parameters factoring the minimal men-
tion length and/or the minimal normalized mention
length required to invoke a match.

A normalization system consists of multiple nor-
malization steps in sequence. Transformations are
applied sequentially and a match searched for; if
no match is identified for a particular step, the al-
gorithm proceeds to the next transformation. The
normalization steps and the optional conditions are
well-encoded in our program, which allows for a
flexible system specified by the sequences of the step
codes. Our general principle is to design a normal-
ization system that invokes safe normalization steps
first, and then gradually moves to more aggressive
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ones. As the process lengthens, the precision de-
creases while the recall increases. The balance be-
tween precision and recall desired for a particular
application can be defined by the user.

Specifically, given string s, we use T (s) to de-
note the transformed string. All the 7 transformation
rules listed at the beginning of this subsection are
idempotent, since T (T (s)) = T (s). Two transfor-
mations, denoted by T1 and T2, are called commuta-
tive, if T1(T2(s)) = T2(T1(s)). The first four trans-
formations listed form a set of commutative rules.
Knowledge of these properties helps design a nor-
malization system.

Recall that NER systems, such as those required
for BioCreAtIvE task 1B, consist of two stages. For
our applications of interest, the normalization in-
put is generated by a gene tagger (McDonald and
Pereira, 2005), followed by the normalization sys-
tem described here as the second stage. In the sec-
ond stage, more synonyms do not necessarily imply
better performance, because less frequently used or
less informative synonyms may result in ambigu-
ous matches, where a match is called ambiguous
if it associates a mention with multiple gene iden-
tifiers. For example, from the Swiss-Prot dictio-
nary we know the gene mention ‘MDR1’ in PMID
8880878 is a synonym uniquely representing the
ABCB1 gene. However, if we include synonyms
from HGNC, it results in an ambiguous match be-
cause the TBC1D9 gene also uses the synonym
‘MDR1’.

We investigated the rules separately, designed the
initial normalization procedure, and tuned our sys-
tem at the end. To evaluate the efficacy of our com-
piled dictionary and its sources, we determined the
accuracy of our system with all transformations and
reductions invoked sequentially, and without any ef-
forts to optimize the sequence (see section 6 for eval-
uation details). The goal in this experiment was to
evaluate the effectiveness of each vocabulary source
alone and in combination. Our experimental re-
sults at the mention level are summarized in Ta-
ble 1. The best two-staged system achieved a preci-
sion of 0.725 and recall of 0.704 with an F-measure
of 0.714, by using only HGNC and Swiss-Prot en-
tries.

As errors can be derived from the tagger or the
normalization alone or in combination, we also as-

Table 1: Results of Gene Normalization Using Exact
String Matching

Steps Recall Precision F-measure
(1) HGNC 0.762 0.511 0.611
(2) Entrez Gene 0.686 0.559 0.616
(3) Swiss-Prot 0.722 0.622 0.669
(4) SOURCE 0.743 0.431 0.545

(1)+(2) 0.684 0.564 0.618
(1)+(3) 0.725 0.704 0.714
(2)+(3) 0.665 0.697 0.681

(1)+(2)+(3) 0.667 0.702 0.684
(1)+(2)+(3)+(4) 0.646 0.707 0.675

sessed the performance of our normalization pro-
gram alone by directly normalizing the mentions in
the gold standard file used for evaluation (i.e., as-
suming the tagger is perfect). Our normalization
system achieved 0.824 F-measure (0.958 precision
and 0.723 recall) in this evaluation.

4 Approximate String Matching

Approximate string matching techniques have been
well-developed for entity identification. Given two
strings, a distance metric generates a score that re-
flects their similarity. Various string distance met-
rics have been developed based upon edit-distance,
string tokenization, or a hybrid of the two ap-
proaches (Cohen et al., 2003). Given a gene men-
tion, we consider the synonym(s) with the high-
est score to be a match if the score is higher than
a defined threshold. Our program also allows op-
tional string transformations and provides a user-
defined parameter for determining the minimal men-
tion length for approximate string matching. The
decision on the method chosen may be affected by
several factors, such as the application domain, fea-
tures of the strings representing the entity class, and
the particular data sets used. For gene NER, vari-
ous scoring methods have been favored (Crim et al.,
2005; Cohen et al., 2003; Wellner et al., 2005).

Approximate string matching is usually consid-
ered more aggressive than exact string matching
with transformations; hence, we applied it as the last
step of our normalization sequence. To assess the
usefulness of approximate string matching, we be-
gan with our best dictionary subset in Subsection 3
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(i.e., using HGNC and SwissProt), and applied ap-
proximate string matching as an additional normal-
ization step.
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Figure 1: Performance of Approximate String
Matching for Gene Normalization.

We selected six existing distance metrics that ap-
peared to be useful for human gene normalization:
Jaro, JaroWinkler, SmithWaterman, TFIDF, Un-
smoothedJS, and Jaccard. Our experiment showed
that TFIDF, UnsmoothedJS and Jaccard outper-
formed the others for human gene normalization in
our system, as shown in Figure 1. By incorpo-
rating approximate string matching using either of
these metrics into our system, overall performance
was slightly improved to 0.718 F-measure (0.724
precision and 0.713 recall) when employing a high
threshold (0.95). However, in most scenarios, ap-
proximate matching did not considerably improve
recall and had a non-trivial detrimental effect upon
precision.

5 Ambiguation Analysis

Gene identifier ambiguity is inherent in synonym
dictionaries as well as being generated during nor-
malization steps that transform mention strings.

5.1 Ambiguity in Synonym Dictionaries

If multiple gene identifiers share the same synonym,
it results in ambiguity. Table 2 shows the level of
ambiguity between and among the four sources of
gene identifiers used by our dictionary. The rate
of ambiguity ranges from 0.89% to 2.83%, which
is a rate comparable with that of mouse (1.5%)
and Drosophila (3.6%) identifiers (Hirschman et al.,
2005).
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Figure 2: Distribution of ambiguous synonyms in
the human gene dictionary.

Figure 2 is a log-log plot showing the distribu-
tion of ambiguous synonyms, where the degree is
the number of gene identifiers that a synonym is as-
sociated with. Comparing Figure 2 with (Hirschman
et al., 2005, Figure 3), we noted that on average, hu-
man gene synonyms are less ambiguous than those
of the three model organisms.

Another type of ambiguity is caused by gene sym-
bols or synonyms being common English words or
other biological terms. Our dictionary contains 11
gene symbols identical to common stop words4: T,
AS, DO, ET, IF, RD, TH, ASK, ITS, SHE and
WAS.

5.2 Ambiguous Matches in Gene
Normalization

We call a match ambiguous if it associates a men-
tion with multiple gene identifiers. Although the

4ftp://ftp.cs.cornell.edu/pub/smart/English.stop
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Table 2: Statistics for Dictionary Sources

Dictionary # Symbols # Synonyms Ratio Max. # of Synonyms # with One Ambiguity
per Gene Definition Rate

HGNC 22,838 78,706 3.446 10 77,389 1.67%
Entrez Gene 33,007 109,127 3.306 22 106,034 2.83%
Swiss-Prot 12,470 61,743 4.951 17 60,536 1.95%
SOURCE 17,130 66,682 3.893 13 66,086 0.89%

Total 33,469 181,061 5.410 22 176,157 2.71%

normalization procedure may create ambiguity, if a
mention matches multiple synonyms, it may not be
strictly ambiguous. For example, the gene mention
“M creatine kinase” in PMID 1690725 matches the
synonyms “Creatine kinase M-type” and “Creatine
kinase, M chain” in our dictionary using the TFIDF
scoring method (with score 0.866). In this case, both
synonyms are associated with the CKM gene, so the
match is not ambiguous. However, even if a mention
matches only one synonym, it can be ambiguous, be-
cause the synonym is possibly ambiguous.

Figure 3 shows the result of an experiment con-
ducted upon 200,000 MEDLINE abstracts, where
the degree of ambiguity is the number of gene iden-
tifiers that a mention is associated with. The maxi-
mum, average, and standard deviation of the ambi-
guity degrees are 20, 1.129 and 0.550, respectively.
The overall ambiguity rate of all matched mentions
was 8.16%, and the rate of ambiguity is less than
10% at each step. Successful disambiguation can
increase the true positive match rate and therefore
improve performance but is beyond the scope of the
current investigation.
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Figure 3: Distribution of Ambiguous Genes in
200,000 MEDLINE Abstracts.

6 Application and Evaluation of an
Optimized Normalizer

Finally, we were interested in determining the effec-
tiveness of an optimized system based upon the gene
normalization system described above, and also cou-
pled with a state-of-the-art gene tagger. To de-
termine the optimal results of such a system, we
created a corpus of 100 MEDLINE abstracts that
together contained 1,094 gene mentions for 170
unique genes (also used in the evaluations above).
These documents were a subset of those used to train
the tagger, and thus measure optimal, rather than
typical MEDLINE, performance (data for a gener-
alized evaluation is forthcoming). This corpus was
manually annotated to identify human genes, ac-
cording to a precise definition of gene mentions that
an NER gene system would be reasonably expected
to tag and normalize correctly. Briefly, the definition
included only human genes, excluded multi-protein
complexes and antibodies, excluded chained men-
tions of genes (e.g., “HDAC1- and -2 genes”), and
excluded gene classes that were not normalizable
to a specific symbol (e.g., tyrosine kinase). Docu-
ments were dual-pass annotated in full and then ad-
judicated by a 3rd expert. Adjudication revealed a
very high level of agreement between annotators.

To optimize the rule set for human gene normal-
ization, we evaluated up to 200 cases randomly cho-
sen from all MEDLINE files for each rule, where
invocation of that specific rule alone resulted in a
match. Most of the transformations worked per-
fectly or very well. Stemming and removal of the
first or last word or character each demonstrated
poor performance, as genes and gene classes were
often incorrectly converted to other gene instances
(e.g., “CAP” and “CAPS” are distinct genes). Re-
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moval of stop words generated a high rate of false
positives. Rules were ranked according to their pre-
cision when invoked separately. A high-performing
sequence was “0 01 02 03 06 016 026 036”, with 0
referring to case-insensitivity, 1 being replacement
of hyphens with spaces, 2 being removal of punc-
tuation, 3 being removal of parenthesized materials,
and 6 being removal of spaces; grouped digits indi-
cate simultaneous invocation of each specified rule
in the group. Table 3 indicates the cumulative accu-
racy achieved at each step5. A formalized determi-
nation of an optimal sequence is in progress. Ap-
proximate matching did not considerably improve
recall and had a non-trivial detrimental effect upon
precision.

Table 3: Results of Gene Normalization after Each
Step of Exact String Matching

Steps Recall Precision F-measure
0 0.628 0.698 0.661

01 0.649 0.701 0.674
02 0.654 0.699 0.676
03 0.665 0.702 0.683
06 0.665 0.702 0.683

016 0.718 0.685 0.701
026 0.718 0.685 0.701
036 0.718 0.685 0.701

The normalization sequence “0 01 02 03 06 016
026 036” was then utilized for two separate evalua-
tions. First, we used the actual textual mentions of
each gene from the gold standard files as input into
our optimized normalization sequence, in order to
determine the accuracy of the normalization process
alone. We also used a previously developed CRF
gene tagger (McDonald and Pereira, 2005) to tag the
gold standard files, and then used the tagger’s output
as input for our normalization sequence. This sec-
ond evaluation determined the accuracy of a com-
bined NER system for human gene identification.

Depending upon the application, evaluation can
be determined more significant at either at the men-
tion level (redundantly), where each individual men-
tion is evaluated independently for accuracy, or as in

5The last two steps did not generate new matches using our
gold standard file and therefore the scores were unchanged.
These rule sets may improve performance in other cases.

the case of BioCreAtIvE task 1B, at the document
level (non-redundantly), where all mentions within a
document are considered to be equivalent. For pure
information extraction tasks, mention level accuracy
is a relevant performance indicator. However, for ap-
plications such as information extraction-based in-
formation retrieval (e.g., the identification of docu-
ments mentioning a specific gene), document-level
accuracy is a relevant gauge of system performance.

For normalization alone, at the mention level
our optimized normalization system achieved 0.882
precision, 0.704 recall, and 0.783 F-measure. At
the document level, the normalization results were
1.000 precision, 0.994 recall, and 0.997 F-measure.

For the combined NER system, the performance
was 0.718 precision, 0.626 recall, and 0.669 F-
measure at the mention level. At the document level,
the NER system results were 0.957 precision, 0.857
recall, and 0.901 F-measure. The lower accuracy of
the combined system was due to the fact that both
the tagger and the normalizer introduce error rates
that are multiplicative in combination.

7 Conclusions and Future Work

In this article we present a gene normalization sys-
tem that is intended for use in human gene NER, but
that can also be readily adapted to other biomedi-
cal normalization tasks. When optimized for human
gene normalization, our system achieved 0.783 F-
measure at the mention level.

Choosing the proper normalization steps depends
on several factors, such as (for genes) the organism
of interest, the entity class, the accuracy of identify-
ing gene mentions, and the reliability of the under-
lying dictionary. While the results of our normalizer
compare favorably with previous efforts, much fu-
ture work can be done to further improve the perfor-
mance of our system, including:

1. Performance of identifying gene mentions.
Only approximately 50 percent of gene men-
tions identified by our tagger were normaliz-
able. While this is mostly due to the fact that
the tagger identifies gene classes that cannot
be normalized to a gene instance, a significant
subset of gene instance mentions are not being
normalized.

2. Reliability of the dictionary. Though we have
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investigated a sizable number of gene identifier
sources, the four representative sources used
for compiling our gene dictionary are incom-
plete and often not precise for individual terms.
Some text mentions were not normalizable due
the the incompleteness of our dictionary, which
limited the recall.

3. Disambiguation. A small portion (typi-
cally 7%-10%) of the matches were ambigu-
ous. Successful development of disambigua-
tion tools can improve the performance.

4. Machine-learning. It is likely possible that op-
timized rules can be used as probabilistic fea-
tures for a machine-learning-based version of
our normalizer.

Gene normalization has several potential applica-
tions, such as for biomedical information extraction,
database curation, and as a prerequisite for relation
extraction. Providing a proper synonym dictionary,
our normalization program is amenable to generaliz-
ing to other organisms, and has already proven suc-
cessful in our group for other entity normalization
tasks. An interesting future study would be to deter-
mine accuracy for BioCreAtIvE data once mouse,
Drosophila, and yeast vocabularies are incorporated
into our system.
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Abstract

The task of mining relations from collec-
tions of documents is usually approached
in two different ways. One type of sys-
tems do relation extraction from individ-
ual sentences, followed by an aggrega-
tion of the results over the entire collec-
tion. Other systems follow an entirely dif-
ferent approach, in which co-occurrence
counts are used to determine whether the
mentioning together of two entities is due
to more than simple chance. We show
that increased extraction performance can
be obtained by combining the two ap-
proaches into an integrated relation ex-
traction model.

1 Introduction

Information Extraction (IE) is a natural language
processing task in which text documents are ana-
lyzed with the aim of finding mentions of relevant
entities and important relationships between them.
In many cases, the subtask of relation extraction re-
duces to deciding whether a sentence asserts a par-
ticular relationship between two entities, which is
still a difficult, unsolved problem. There are how-
ever cases where the decision whether the two enti-
ties are in a relationship is made relative to an en-
tire document, or a collection of documents. In the
biomedical domain, for example, one may be inter-
ested in finding the pairs of human proteins that are
said to be interacting in any of the Medline abstracts,

where the answer is not required to specify which
abstracts are actually describing the interaction. As-
sembling a ranked list of interacting proteins can be
very useful to biologists - based on this list, they can
make more informed decisions with respect to which
genes to focus on in their research.

In this paper, we investigate methods that use
multiple occurrences of the same pair of entities
across a collection of documents in order to boost
the performance of a relation extraction system.
The proposed methods are evaluated on the task
of finding pairs of human proteins whose interac-
tions are reported in Medline abstracts. The major-
ity of known human protein interactions are derived
from individual, small-scale experiments reported in
Medline. Some of these interactions have already
been collected in the Reactome (Joshi-Tope et al.,
2005), BIND (Bader et al., 2003), DIP (Xenarios et
al., 2002), and HPRD (Peri et al., 2004) databases.
The amount of human effort involved in creating and
updating these databases is currently no match for
the continuous growth of Medline. It is therefore
very useful to have a method that automatically and
reliably extracts interaction pairs from Medline.

Systems that do relation extraction from a col-
lection of documents can be divided into two ma-
jor categories. In one category are IE systems
that first extract information from individual sen-
tences, and then combine the results into corpus-
level results (Craven, 1999; Skounakis and Craven,
2003). The second category corresponds to ap-
proaches that do not exploit much information from
the context of individual occurrences. Instead,
based on co-occurrence counts, various statistical
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or information-theoretic tests are used to decide
whether the two entities in a pair appear together
more often than simple chance would predict (Lee
et al., 2004; Ramani et al., 2005). We believe that
a combination of the two approaches can inherit the
advantages of each method and lead to improved re-
lation extraction accuracy.

The following two sections describe the two or-
thogonal approaches to corpus-level relation extrac-
tion. A model that integrates the two approaches is
then introduced in Section 4. This is followed by a
description of the dataset used for evaluation in Sec-
tion 5, and experimental results in Section 6.

2 Sentence-level relation extraction

Most systems that identify relations between enti-
ties mentioned in text documents consider only pair
of entities that are mentioned in the same sentence
(Ray and Craven, 2001; Zhao and Grishman, 2005;
Bunescu and Mooney, 2005). To decide the exis-
tence and the type of a relationship, these systems
generally use lexico-semantic clues inferred from
the sentence context of the two entities. Much re-
search has been focused recently on automatically
identifying biologically relevant entities and their
relationships such as protein-protein interactions or
subcellular localizations. For example, the sentence
“TR6specifically bindsFas ligand”, states an inter-
action between the two proteinsTR6andFas ligand.
One of the first systems for extracting interactions
between proteins is described in (Blaschke and Va-
lencia, 2001). There, sentences are matched deter-
ministically against a set of manually developed pat-
terns, where a pattern is a sequence of words or Part-
of-Speech (POS) tags and two protein-name tokens.
Between every two adjacent words is a number in-
dicating the maximum number of words that can be
skipped at that position. An example is: “interaction
of (3) <P> (3) with (3)<P>”. This approach is
generalized in (Bunescu and Mooney, 2005), where
subsequences of words (or POS tags) from the sen-
tence are used as implicit features. Their weights are
learned by training a customized subsequence ker-
nel on a dataset of Medline abstracts annotated with
proteins and their interactions.

A relation extraction system that works at the
sentence-level and which outputs normalized confi-

dence values for each extracted pair of entities can
also be used for corpus-level relation extraction. A
straightforward way to do this is to apply an aggre-
gation operator over the confidence values inferred
for all occurrences of a given pair of entities. More
exactly, if p1 andp2 are two entities that occur in a
total ofn sentencess1, s2, ...,sn in the entire corpusC, then the confidenceP (R(p1; p2)jC) that they are
in a particular relationshipR is defined as:P (R(p1; p2)jC) = �(fP (R(p1; p2)jsi)ji=1:ng)

Table 1 shows only four of the many possible
choices for the aggregation operator�.

max �max = maxi P (R(p1; p2)jsi)
noisy-or �nor = 1�Yi (1� P (R(p1; p2)jsi))
avg �avg =Xi P (R(p1; p2)jsi)n
and �and =Yi P (R(p1; p2)jsi)1=n

Table 1: Aggregation Operators.

Out of the four operators in Table 1, we believe
that themaxoperator is the most appropriate for ag-
gregating confidence values at the corpus-level. The
question that needs to be answered is whether there
is a sentence somewhere in the corpus that asserts
the relationshipR between entitiesp1 andp2. Us-
ing avg instead would answer a different question -
whetherR(p1; p2) is true in most of the sentences
containingp1 andp2. Also, theandoperator would
be most appropriate for finding whetherR(p1; p2)
is true in all corresponding sentences in the corpus.
The value of thenoisy-or operator (Pearl, 1986) is
too dependent on the number of occurrences, there-
fore it is less appropriate for a corpus where the oc-
currence counts vary from one entity pair to another
(as confirmed in our experiments from Section 6).
For examples, if the confidence threshold is set at0:5, and the entity pair(p1; p2) occurs in 6 sentences
or less, each with confidence0:1, thenR(p1; p2) is
false, according to the noisy-or operator. However,
if (p1; p2) occur in more than 6 sentences, with the
same confidence value of0:1, then the correspond-
ing noisy-or value exceeds0:5, makingR(p1; p2)
true.
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3 Co-occurrence statistics

Given two entities with multiple mentions in a large
corpus, another approach to detect whether a re-
lationship holds between them is to use statistics
over their occurrences in textual patterns that are
indicative for that relation. Various measures such
as pointwise mutual information (PMI) , chi-square
(�2) or log-likelihood ratio (LLR) (Manning and
Schütze, 1999) use the two entities’ occurrence
statistics to detect whether their co-occurrence is due
to chance, or to an underlying relationship.

A recent example is theco-citationapproach from
(Ramani et al., 2005), which does not try to find spe-
cific assertions of interactions in text, but rather ex-
ploits the idea that if many different abstracts refer-
ence both proteinp1 and proteinp2, thenp1 andp2
are likely to interact. Particularly, if the two proteins
are co-cited significantly more often than one would
expect if they were cited independently at random,
then it is likely that they interact. The model used
to compute the probability of random co-citation is
based on the hypergeometric distribution (Lee et al.,
2004; Jenssen et al., 2001). Thus, ifN is the total
number of abstracts,n of which cite the first protein,m cite the second protein, andk cite both, then the
probability of co-citation under a random model is:P (kjN;m; n) = � nk �� N � nm� k �� Nm � (1)

The approach that we take in this paper is to con-
strain the two proteins to be mentioned in the same
sentence, based on the assumption that if there is
a reason for two protein names to co-occur in the
same sentence, then in most cases that is caused by
their interaction. To compute the “degree of inter-
action” between two proteinsp1 andp2, we use the
information-theoretic measure of pointwise mutual
information (Church and Hanks, 1990; Manning
and Schütze, 1999), which is computed based on the
following quantities:

1. N : the total number of protein pairs co-
occurring in the same sentence in the corpus.

2. P (p1; p2) ' n12=N : the probability thatp1
andp2 co-occur in the same sentence;n12 = the

number of sentences mentioning bothp1 andp2.
3. P (p1; p) ' n1=N : the probability thatp1 co-

occurs with any other protein in the same sen-
tence;n1 = the number of sentences mention-
ing p1 andp.

4. P (p2; p) ' n2=N : the probability thatp2 co-
occurs with any other protein in the same sen-
tence;n2 = the number of sentences mention-
ing p2 andp.

The PMI is then defined as in Equation 2 below:PMI(p1; p2) = log P (p1; p2)P (p1; p) � P (p2; p)' logN n12n1 � n2 (2)

Given that the PMI will be used only for ranking
pairs of potentially interacting proteins, the constant
factorN and thelog operator can be ignored. For
sake of simplicity, we use the simpler formula from
Equation 3. sPMI(p1; p2) = n12n1 � n2 (3)

4 Integrated model

ThesPMI(p1; p2) formula can be rewritten as:sPMI(p1; p2) = 1n1 � n2 � n12Xi=1 1 (4)

Let s1, s2, ..., sn12 be the sentence contexts corre-
sponding to then12 co-occurrences ofp1 and p2,
and assume that a sentence-level relation extractor
is available, with the capability of computing nor-
malized confidence values for all extractions. Then
one way of using the extraction confidence is to have
each co-occurrence weighted by its confidence, i.e.
replace the constant1 with the normalized scoresP (R(p1; p2)jsi), as illustrated in Equation 5. This
results in a new formulawPMI (weighted PMI),
which is equal with the product betweensPMI and
the average aggregation operator�avg.wPMI(p1; p2) = 1n1 � n2 � n12Xi=1 P (R(p1; p2)jsi)= n12n1 � n2 � �avg (5)
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The operator�avg can be replaced with any other ag-
gregation operator from Table 1. As argued in Sec-
tion 2, we considermax to be the most appropriate
operator for our task, therefore the integrated model
is based on the weighted PMI product illustrated in
Equation 6.wPMI(p1; p2) = n12n1 � n2 � �max (6)= n12n1 � n2 �maxi P (R(p1; p2)jsi)

If a pair of entitiesp1 andp2 is ranked bywPMI
among the top pairs, this means that it is unlikely
that p1 andp2 have co-occurred together in the en-
tire corpus by chance, and at the same time there is
at least one mention where the relation extractor de-
cides with high confidence thatR(p1; p2) = 1.

5 Evaluation Corpus

Contrasting the performance of the integrated model
against the sentence-level extractor or the PMI-
based ranking requires an evaluation dataset that
provides two types of annotations:

1. The completelist of interactionsreported in the
corpus (Section 5.1).

2. Annotation ofmentionsof genes and proteins,
together with their correspondinggene identi-
fiers(Section 5.2).

We do not differentiate between genes and their
protein products, mapping them to the same gene
identifiers. Also, even though proteins may partic-
ipate in different types of interactions, we are con-
cerned only with detecting whether they interact in
the general sense of the word.

5.1 Medline Abstracts and Interactions

In order to compile an evaluation corpus and an as-
sociated comprehensive list of interactions, we ex-
ploited information contained in the HPRD (Peri
et al., 2004) database. Every interaction listed in
HPRD is linked to a set of Medline articles where the
corresponding experiment is reported. More exactly,
each interaction is specified in the database as a tuple
that contains the LocusLink (now EntrezGene) iden-
tifiers of all genes involved and the PubMed identi-
fiers of the corresponding articles (as illustrated in
Table 2).

Interaction (XML)(HPRD)<interaction><gene>2318</gene><gene>58529</gene><pubmed>10984498 11171996</pubmed></interaction>
Participant Genes (XML)(NCBI)<gene id=”2318”><name>FLNC</name><description>filamin C, gamma</description><synonyms><synonym>ABPA</synonym><synonym>ABPL</synonym><synonym>FLN2</synonym><synonym>ABP-280</synonym><synonym>ABP280A</synonym></synonyms><proteins><protein>gamma filamin</protein><protein>filamin 2</protein><protein>gamma-filamin</protein><protein>ABP-L, gamma filamin</protein><protein>actin-binding protein 280</protein><protein>gamma actin-binding protein</protein><protein>filamin C, gamma</protein></proteins></gene><gene id=”58529”><name>MYOZ1</name><description>myozenin 1</description><synonyms> ...</synonyms><proteins> ...</proteins></gene>
Medline Abstract (XML)(NCBI)<PMID>10984498</PMID><AbstractText>
We found that this protein binds to three other Z-disc pro-
teins; therefore, we have named itFATZ , gamma-filamin,
alpha-actinin and telethonin binding protein of the Z-disc.</AbstractText>

Table 2: Interactions, Genes and Abstracts.

The evaluation corpus (henceforth referred to as
theHPRD corpus) is created by collecting the Med-
line abstracts corresponding to interactions between
human proteins, as specified in HPRD. In total,
5,617 abstracts are included in this corpus, with an
associated list of 7,785 interactions. This list is com-
prehensive - the HPRD database is based on an an-
notation process in which the human annotators re-
port all interactions described in a Medline article.
On the other hand, the fact that only abstracts are
included in the corpus (as opposed to including the
full article) means that the list may contain interac-
tions that are not actually reported in the HPRD cor-
pus. Nevertheless, if the abstracts were annotated
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with gene mentions and corresponding GIDs, then
a “quasi-exact” interaction list could be computed
based on the following heuristic:
[H] If two genes with identifiersgid1 and gid2 are
mentioned in the same sentence in an abstract with
PubMed identifierpmid, and if gid1 and gid2 are
participants in an interaction that is linked topmid
in HPRD, then consider that the abstract (and con-
sequently the entire HPRD corpus) reports the inter-
action betweengid1 andgid2. �
An application of the above heuristic is shown at
the bottom of Table 2. The HPRD record at the
top of the table specifies that the Medline article
with ID 10984498 reports an interaction between the
proteinsFATZ (with ID 58529) andgamma-filamin
(with ID 2318). The two protein names are men-
tioned in a sentence in the abstract for 10984498,
therefore, by[H] , we consider that the HPRD cor-
pus reports this interaction.

This is very similar to the procedure used in
(Craven, 1999) for creating a “weakly-labeled”
dataset ofsubcellular-localizationrelations. [H] is
a strong heuristic – it is already known that the full
article reports an interaction between the two genes.
Finding the two genes collocated in the same sen-
tence in the abstract is very likely to be due to the
fact that the abstract discusses their interaction. The
heuristic can be made even more accurate if a pair
of genes is considered as interacting only if they co-
occur in a (predefined) minimum number of sen-
tences in the entire corpus – with the evaluation
modified accordingly, as described later in Section 6.

5.2 Gene Name Annotation and Normalization

For the annotation of gene names and their normal-
ization, we use a dictionary-based approach similar
to (Cohen, 2005). NCBI1 provides a comprehen-
sive dictionary of human genes, where each gene is
specified by its unique identifier, and qualified with
an official name, a description, synonym names and
one or more protein names, as illustrated in Table 2.
All of these names, including the description, are
considered as potential referential expressions for
the gene entity. Each name string is reduced to a
normal form by: replacing dashes with spaces, intro-
ducing spaces between sequences of letters and se-

1URL: http://www.ncbi.nih.gov

quences of digits, replacing Greek letters with their
Latin counterparts (capitalized), substituting Roman
numerals with Arabic numerals, decapitalizing the
first word if capitalized. All names are further tok-
enized, and checked against a dictionary of close to
100K English nouns. Names that are found in this
dictionary are simply filtered out. We also ignore
all ambiguous names (i.e. names corresponding to
more than one gene identifier). The remaining non-
ambiguous names are added to the final gene dictio-
nary, which is implemented as a trie-like structure in
order to allow a fast lookup of gene IDs based on the
associated normalized sequences of tokens.

Each abstract from the HPRD corpus is tokenized
and segmented in sentences using the OpenNLP2

package. The resulting sentences are then annotated
by traversing them from left to right and finding the
longest token sequences whose normal forms match
entries from the gene dictionary.

6 Experimental Evaluation

The main purpose of the experiments in this section
is to compare the performance of the following four
methods on the task of corpus-level relation extrac-
tion:

1. Sentence-level relation extraction followed by
the application of an aggregation operator that
assembles corpus-level results (SSK.Max).

2. Pointwise Mutual Information (PMI ).

3. The integrated model, a product of the two base
models (PMI.SSK.Max).

4. The hypergeometric co-citation method (HG).

7 Experimental Methodology

All abstracts, either from the HPRD corpus, or
from the entire Medline, are annotated using the
dictionary-based approach described in Section 5.2.
The sentence-level extraction is done with the sub-
sequence kernel (SSK) approach from (Bunescu and
Mooney, 2005), which was shown to give good re-
sults on extracting interactions from biomedical ab-
stracts. The subsequence kernel was trained on a
set of 225 Medline abstracts which were manually

2URL: http://opennlp.sourceforge.net
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annotated with protein names and their interactions.
It is known that PMI gives undue importance to
low frequency events (Dunning, 1993), therefore the
evaluation considers only pairs of genes that occur at
least 5 times in the whole corpus.

When evaluating corpus-level extraction on
HPRD, because the “quasi-exact” list of interactions
is known, we report the precision-recall (PR) graphs,
where the precision (P) and recall (R) are computed
as follows:P = #true interactions extracted#total interaction extractedR = #true interactions extracted#true interactions

All pairs of proteins are ranked based on each scor-
ing method, and precision recall points are com-
puted by considering the topN pairs, whereN
varies from 1 to the total number of pairs.

When evaluating on the entire Medline, we used
the shared protein function benchmark described in
(Ramani et al., 2005). Given the set of interacting
pairs recovered at each recall level, this benchmark
calculates the extent to which interaction partners
in a data set share functional annotation, a measure
previously shown to correlate with the accuracy of
functional genomics data sets (Lee et al., 2004). The
KEGG (Kanehisa et al., 2004) and Gene Ontology
(Ashburner et al., 2000) databases provide specific
pathway and biological process annotations for ap-
proximately 7,500 human genes, assigning human
genes into 155 KEGG pathways (at the lowest level
of KEGG) and 1,356 GO pathways (at level 8 of the
GO biological process annotation).

The scoring scheme for measuring interaction set
accuracy is in the form of a log odds ratio of gene
pairs sharing functional annotations. To evaluate a
data set, a log likelihood ratio (LLR) is calculated as
follows:LLR = ln P (DjI)P (Dj:I) = lnP (IjD)P (:I)P (:IjD)P (I) (7)

where P (DjI) and P (Dj:I) are the probability
of observing the dataD conditioned on the genes
sharing benchmark associations (I) and not sharing
benchmark associations (:I). In its expanded form
(obtained by Bayes theorem),P (IjD) andP (:IjD)

are estimated using the frequencies of interactions
observed in the given data setD between annotated
genes sharing benchmark associations and not shar-
ing associations, respectively, while the priorsP (I)
andP (:I) are estimated based on the total frequen-
cies of all benchmark genes sharing the same asso-
ciations and not sharing associations, respectively.
A score of zero indicates interaction partners in the
data set being tested are no more likely than random
to belong to the same pathway or to interact; higher
scores indicate a more accurate data set.

8 Experimental Results

The results for the HPRD corpus-level extraction are
shown in Figure 1. Overall, the integrated model has
a more consistent performance, with a gain in preci-
sion mostly at recall levels past40%. The SSK.Max
and HG models both exhibit a sudden decrease in
precision at around5% recall level. While SSK.Max
goes back to a higher precision level, the HG model
begins to recover only late at70% recall.
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Figure 1: PR curves for corpus-level extraction.

A surprising result in this experiment is the be-
havior of the HG model, which is significantly out-
performed by PMI, and which does only marginally
better than a simple baseline that considers all pairs
to be interacting.

We also compared the two methods on corpus-
level extraction from the entire Medline, using the
shared protein function benchmark. As before, we
considered only protein pairs occurring in the same
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sentence, with a minimum frequency count of 5. The
resulting 47,436 protein pairs were ranked accord-
ing to their PMI and HG scores, with pairs that are
most likely to be interacting being placed at the top.
For each ranking, the LLR score was computed for
the top N proteins, where N varied in increments of
1,000.

The comparative results for PMI and HG are
shown in Figure 2, together with the scores for three
human curated databases: HPRD, BIND and Reac-
tome. On the top 18,000 protein pairs, PMI outper-
forms HG substantially, after which both converge
to the same value for all the remaining pairs.
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Figure 2: Functional annotation benchmark.

Figure 3 shows a comparison of the four aggre-
gation operators on the same HPRD corpus, which
confirms that, overall,max is most appropriate for
integrating corpus-level results.

9 Future Work

The piece of related work that is closest to the aim of
this paper is the Bayesian approach from (Skounakis
and Craven, 2003). In their probabilistic model, co-
occurrence statistics are taken into account by using
a prior probability that a pair of proteins are inter-
acting, given the number of co-occurrences in the
corpus. However, they do not use the confidences of
the sentence-level extractions. The GeneWays sys-
tem from (Rzhetsky et al., 2004) takes a different
approach, in which co-occurrence frequencies are
simply used to re-rank the ouput from the relation
extractor.

An interesting direction for future research is to
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Figure 3: PR curves for aggregation operators.

design a model that takes into account both the ex-
traction confidences and the co-occurrence statis-
tics, without losing the probabilistic (or information-
theoretic) interpretation. One could investigate ways
of integrating the two orthogonal approaches to
corpus-level extraction based on other statistical
tests, such as chi-square and log-likelihood ratio.

The sentence-level extractor used in this paper
was trained to recognize relation mentionsin iso-
lation. However, the trained model is later used,
through themaxaggregation operator, to recognize
whethermultiple mentionsof the same pair of pro-
teins indicate a relationship between them. This
points to a fundamental mismatch between the train-
ing and testing phases of the model. We expect that
better accuracy can be obtained by designing an ap-
proach that is using information from multiple oc-
currences of the same pair in both training and test-
ing.

10 Conclusion

Extracting relations from a collection of documents
can be approached in two fundamentally different
ways. In one approach, an IE system extracts rela-
tion instances from corpus sentences, and then ag-
gregates the local extractions into corpus-level re-
sults. In the second approach, statistical tests based
on co-occurrence counts are used for deciding if a
given pair of entities are mentioned together more
often than chance would predict. We have described
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a method to integrate the two approaches, and given
experimental results that confirmed our intuition that
an integrated model would have a better perfor-
mance.
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Abstract 

In this paper, we construct a biomedical 
semantic role labeling (SRL) system that 
can be used to facilitate relation extraction. 
First, we construct a proposition bank on 
top of the popular biomedical GENIA 
treebank following the PropBank annota-
tion scheme. We only annotate the predi-
cate-argument structures (PAS’s) of thirty 
frequently used biomedical predicates and 
their corresponding arguments. Second, 
we use our proposition bank to train a 
biomedical SRL system, which uses a 
maximum entropy (ME) model. Thirdly, 
we automatically generate argument-type 
templates which can be used to improve 
classification of biomedical argument 
types. Our experimental results show that 
a newswire SRL system that achieves an 
F-score of 86.29% in the newswire do-
main can maintain an F-score of 64.64% 
when ported to the biomedical domain. 
By using our annotated biomedical corpus, 
we can increase that F-score by 22.9%. 
Adding automatically generated template 
features further increases overall F-score 
by 0.47% and adjunct arguments (AM) F-
score by 1.57%, respectively. 

1 Introduction 

The volume of biomedical literature available has 
experienced unprecedented growth in recent years. 
The ability to automatically process this literature 
would be an invaluable tool for both the design and 
interpretation of large-scale experiments. To this 
end, more and more information extraction (IE) 
systems using natural language processing (NLP) 
have been developed for use in the biomedical 
field. A key IE task in the biomedical field is ex-
traction of relations, such as protein-protein and 
gene-gene interactions. 

Currently, most biomedical relation-extraction 
systems fall under one of the following three ap-
proaches: cooccurence-based (Leroy et al., 2005), 
pattern-based (Huang et al., 2004), and machine-
learning-based. All three, however, share the same 
limitation when extracting relations from complex 
natural language. They only extract the relation 
targets (e.g., proteins, genes) and the verbs repre-
senting those relations, overlooking the many ad-
verbial and prepositional phrases and words that 
describe location, manner, timing, condition, and 
extent. The information in such phrases may be 
important for precise definition and clarification of 
complex biological relations. 

The above problem can be tackled by using se-
mantic role labeling (SRL) because it not only rec-
ognizes main roles, such as agents and objects, but 
also extracts adjunct roles such as location, manner, 
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timing, condition, and extent. The goal of SRL is 
to group sequences of words together and classify 
them with semantic labels. In the newswire domain, 
Morarescu et al. (2005) have demonstrated that 
full-parsing and SRL can improve the performance 
of relation extraction, resulting in an F-score in-
crease of 15% (from 67% to 82%). This significant 
result leads us to surmise that SRL may also have 
potential for relation extraction in the biomedical 
domain. Unfortunately, no SRL system for the 
biomedical domain exists. 

In this paper, we aim to build such a biomedical 
SRL system. To achieve this goal we roughly im-
plement the following three steps as proposed by 
Wattarujeekrit et al., (2004): (1) create semantic 
roles for each biomedical verb; (2) construct a 
biomedical corpus annotated with verbs and their 
corresponding semantic roles (following defini-
tions created in (1) as a reference resource;) (3) 
build an automatic semantic interpretation model 
using the annotated text as a training corpus for 
machine learning. In the first step, we adopt the 
definitions found in PropBank (Palmer et al., 2005), 
defining our own framesets for verbs not in Prop-
Bank, such as “phosphorylate”. In the second step, 
we first use an SRL system (Tsai et al., 2005) 
trained on the Wall Street Journal (WSJ) to auto-
matically tag our corpus. We then have the results 
double-checked by human annotators. Finally, we 
add automatically-generated template features to 
our SRL system to identify adjunct (modifier) ar-
guments, especially those highly relevant to the 
biomedical domain. 

2 Biomedical Proposition Bank  

As proposition banks are semantically annotated 
versions of a Penn-style treebank, they provide 
consistent semantic role labels across different syn-
tactic realizations of the same verb (Palmer et al., 
2005). The annotation captures predicate-argument 
structures based on the sense tags of polysemous 
verbs (called framesets) and semantic role labels 
for each argument of the verb. Figure 1 shows the 
annotation of semantic roles, exemplified by the 
following sentence: “IL4 and IL13 receptors acti-
vate STAT6, STAT3 and STAT5 proteins in the 
human B cells.” The chosen predicate is the word 
“activate”; its arguments and their associated word 
groups are illustrated in the figure. 

 

 
Figure 1. A Treebank Annotated with Semantic 
Role Labels 

Since proposition banks are annotated on top of 
a Penn-style treebank, we selected a biomedical 
corpus that has a Penn-style treebank as our corpus. 
We chose the GENIA corpus (Kim et al., 2003), a 
collection of MEDLINE abstracts selected from 
the search results with the following keywords: 
human, blood cells, and transcription factors. In the 
GENIA corpus, the abstracts are encoded in XML 
format, where each abstract also contains a 
MEDLINE UID, and the title and content of the 
abstract. The text of the title and content is seg-
mented into sentences, in which biological terms 
are annotated with their semantic classes. The 
GENIA corpus is also annotated with part-of-
speech (POS) tags (Tateisi et al., 2004), and co-
references (Yang et al., 2004). 

The Penn-style treebank for GENIA, created by 
Tateisi et al. (2005), currently contains 500 ab-
stracts. The annotation scheme of the GENIA 
Treebank (GTB), which basically follows the Penn 
Treebank II (PTB) scheme (Bies et al., 1995), is 
encoded in XML. However, in contrast to the WSJ 
corpus, GENIA lacks a proposition bank. We 
therefore use its 500 abstracts with GTB as our 
corpus. To develop our biomedical proposition 
bank, BioProp, we add the proposition bank anno-
tation on top of the GTB annotation. 

2.1 Important Argument Types 

In the biomedical domain, relations are often de-
pendent upon locative and temporal factors 
(Kholodenko, 2006). Therefore, locative (AM-
LOC) and temporal modifiers (AM-TMP) are par-
ticularly important as they tell us where and when 
biomedical events take place. Additionally, nega-
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tive modifiers (AM-NEG) are also vital to cor-
rectly extracting relations. Without AM-NEG, we 
may interpret a negative relation as a positive one 
or vice versa. In total, we use thirteen modifiers in 
our biomedical proposition bank. 

2.2 Verb Selection 

We select 30 frequently used verbs from the mo-
lecular biology domain given in Table 1. 

express trigger encode 
associate repress enhance 
interact signal increase 
suppress activate induce 
prevent alter Inhibit 

modulate affect Mediate 
phosphorylate bind Mutated 
transactivate block Reduce 

transform decrease Regulate 
differentiated promote Stimulate 

Table 1. 30 Frequently Biomedical Verbs 

Let us examine a representative verb, “activate”. 
Its most frequent usage in molecular biology is the 
same as that in newswire. Generally speaking, “ac-
tivate” means, “to start a process” or “to turn on.” 
Many instances of this verb express the action of 
waking genes, proteins, or cells up. The following 
sentence shows a typical usage of the verb “acti-
vate.”  
[NF-kappaB

 Arg1
] is [not

 AM-NEG
] [activated

predicate
] [upon tetra-

cycline removal
AM-TMP

] [in the NIH3T3 cell line
AM-LOC

]. 

3 Semantic Role Labeling on BioProp 

In this section, we introduce our BIOmedical Se-
MantIc roLe labEler, BIOSMILE. Like POS tag-
ging, chunking, and named entity recognition, SRL 
can be formulated as a sentence tagging problem. 
A sentence can be represented by a sequence of 
words, a sequence of phrases, or a parsing tree; the 
basic units of a sentence are words, phrases, and 
constituents arranged in the above representations, 
respectively. Hacioglu et al. (2004) showed that 
tagging phrase by phrase (P-by-P) is better than 
word by word (W-by-W). Punyakanok et al., (2004) 
further showed that constituent-by-constituent (C-
by-C) tagging is better than P-by-P. Therefore, we 
choose C-by-C tagging for SRL. The gold standard 
SRL corpus, PropBank, was designed as an addi-
tional layer of annotation on top of the syntactic 
structures of the Penn Treebank. 

SRL can be broken into two steps. First, we 
must identify all the predicates. This can be easily 
accomplished by finding all instances of verbs of 
interest and checking their POS’s. 

Second, for each predicate, we need to label all 
arguments corresponding to the predicate. It is a 
complicated problem since the number of argu-
ments and their positions vary depending on a 
verb’s voice (active/passive) and sense, along with 
many other factors.  

In this section, we first describe the maximum 
entropy model used for argument classification. 
Then, we illustrate basic features as well as spe-
cialized features such as biomedical named entities 
and argument templates.  

3.1 Maximum Entropy Model 

The maximum entropy model (ME) is a flexible 
statistical model that assigns an outcome for each 
instance based on the instance’s history, which is 
all the conditioning data that enables one to assign 
probabilities to the space of all outcomes. In SRL, 
a history can be viewed as all the information re-
lated to the current token that is derivable from the 
training corpus. ME computes the probability, 
p(o|h), for any o from the space of all possible out-
comes, O, and for every h from the space of all 
possible histories, H. 

The computation of p(o|h) in ME depends on a 
set of binary features, which are helpful in making 
predictions about the outcome. For instance, the 
node in question ends in “cell”, it is likely to be 
AM-LOC. Formally, we can represent this feature 
as follows: 

⎪
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Here, current_node_ends_in_cell(h) is a binary 
function that returns a true value if the current 
node in the history, h, ends in “cell”. Given a set of 
features and a training corpus, the ME estimation 
process produces a model in which every feature f i 
has a weight αi. Following Bies et al. (1995), we 
can compute the conditional probability as: 
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The probability is calculated by multiplying the 
weights of the active features (i.e., those of f i (h,o) 
= 1).  αi is estimated by a procedure called Gener-
alized Iterative Scaling (GIS) (Darroch et al., 
1972). The ME estimation technique guarantees 
that, for every feature, f i, the expected value of αi 
equals the empirical expectation of αi in the train-
ing corpus. We use Zhang’s MaxEnt toolkit and 
the L-BFGS (Nocedal et al., 1999) method of pa-
rameter estimation for our ME model. 
BASIC FEATURES 

 Predicate – The predicate lemma 
 Path – The syntactic path through the parsing tree from 

the parse constituent be-ing classified to the predicate 
 Constituent type 
 Position – Whether the phrase is located before or after 

the predicate 
 Voice – passive: if the predicate has a POS tag VBN, 

and its chunk is not a VP, or it is preceded by a form of 
“to be” or “to get” within its chunk; otherwise, it is ac-
tive 

 Head word – calculated using the head word table de-
scribed by (Collins, 1999) 

 Head POS – The POS of the Head Word 
 Sub-categorization – The phrase structure rule that ex-

pands the predicate’s parent node in the parsing tree 
 First and last Word and their POS tags 
 Level – The level in the parsing tree 

PREDICATE FEATURES 
 Predicate’s verb class 
 Predicate POS tag 
 Predicate frequency 
 Predicate’s context POS 
 Number of predicates 

FULL PARSING FEATURES 
 Parent’s, left sibling’s, and right sibling’s paths, con-

stituent types, positions, head words and head POS 
tags 

 Head of PP parent – If the parent is a PP, then the head 
of this PP is also used as a feature 

COMBINATION FEATURES 
 Predicate distance combination 
 Predicate phrase type combination 
 Head word and predicate combination 
 Voice position combination 

OTHERS 
 Syntactic frame of predicate/NP 
 Headword suffixes of lengths 2, 3, and 4 
 Number of words in the phrase 
 Context words & POS tags 

Table 2. The Features Used in the Baseline Argu-
ment Classification Model 

3.2 Basic Features 

Table 2 shows the features that are used in our 
baseline argument classification model. Their ef-

fectiveness has been previously shown by (Pradhan 
et al., 2004; Surdeanu et al., 2003; Xue et al., 
2004). Detailed descriptions of these features can 
be found in (Tsai et al., 2005). 

3.3 Named Entity Features 

In the newswire domain, Surdeanu et al. (2003) 
used named entity (NE) features that indicate 
whether a constituent contains NEs, such as per-
sonal names, organization names, location names, 
time expressions, and quantities of money. Using 
these NE features, they increased their system’s F-
score by 2.12%. However, because NEs in the 
biomedical domain are quite different from news-
wire NEs, we create bio-specific NE features using 
the five primary NE categories found in the 
GENIA ontology1: protein, nucleotide, other or-
ganic compounds, source and others. Table 3 illus-
trates the definitions of these five categories. When 
a constituent exactly matches an NE, the corre-
sponding NE feature is enabled.  
 NE Definition 

Protein Proteins include protein groups, families, 
molecules, complexes, and substructures.  

Nucleotide A nucleic acid molecule or the compounds 
that consist of nucleic acids. 

Other organic 
compounds 

Organic compounds exclude protein and 
nucleotide. 

Source 
Sources are biological locations where 
substances are found and their reactions 
take place.  

Others 
The terms that are not categorized as 
sources or substances may be marked up, 
with 

Table 3. Five GENIA Ontology NE Categories 

3.4 Biomedical Template Features 

Although a few NEs tend to belong almost exclu-
sively to certain argument types (such as “…cell” 
being mainly AM-LOC), this information alone is 
not sufficient for argument-type classification. For 
one, most NEs appear in a variety of argument 
types. For another, many appear in more than one 
constituent (node in a parsing tree) in the same 
sentence. Take the sentence “IL4 and IL13 recep-
tors activate STAT6, STAT3 and STAT5 proteins 
in the human B cells,” for example. The NE “the 
human B cells” is found in two constituents (“the 

                                                           
1 http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/ 

genia-ontology.html  
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human B cells” and “in the human B cells”) as 
shown in figure 1. Yet only “in the human B cells” 
is an AM-LOC because here “human B cells” is 
preceded by the preposition “in” and the deter-
miner “the”. Another way to express this would be 
as a template—<prep> the <cell>.” We believe 
such templates composed of NEs, real words, and 
POS tags may be helpful in identifying constitu-
ents’ argument types. In this section, we first de-
scribe our template generation algorithm, and then 
explain how we use the generated templates to im-
prove SRL performance. 

Template Generation (TG) 

Our template generation (TG) algorithm extracts 
general patterns for all argument types using the 
local alignment algorithm. We begin by pairing all 
arguments belonging to the same type according to 
their similarity. Closely matching pairs are then 
aligned word by word and a template that fits both 
is created. Each slot in the template is given con-
straint information in the form of either a word, NE 
type, or POS. The hierarchy of this constraint in-
formation is word > NE type > POS. If the argu-
ments share nothing in common for a given slot, 
the TG algorithm will put a wildcard in that posi-
tion. Figure 2 shows an aligned pair arguments. 
For this pair, the TG algorithm generated the tem-
plate “AP-1 CC PTN” (PTN: protein name) be-
cause in the first position, both arguments have 
“AP-1;” in the second position, they have the same 
POS “CC;” and in the third position, they share a 
common NE type, “PTN.” The complete TG algo-
rithm is described in Algorithm 1. 

AP-1/PTN/NN and/O/CC NF-AT/PTN/NN 
AP-1/PTN/NN or/O/CC NFIL-2A/PTN/NN 

Figure 2. Aligned Argument Pair 

Applying Generated Templates 

The generated templates may match exactly or par-
tially with constituents. According to our observa-
tions, the former is more useful for argument 
classification. For example, constituents that per-
fectly match the template “IN a * <cell>” are 
overwhelmingly AM-LOCs. Therefore, we only 
accept exact template matches. That is, if a con-
stituent exactly matches a template t, then the fea-
ture corresponding to t will be enabled. 

Algorithm 1 Template Generation 
Input: Sentences set S = {s1, . . . , sn}, 
Output: A set of template T = {t1, . . . , tk}. 
 
1: T = {}; 
2: for each sentence si from s1 to sn-1 do 
3:    for each sentence sj from si to sn do 
4:        perform alignment on si and sj, then 
5:          pair arguments according to similarity; 
6:        generate common template t from argument pairs; 
7:        T←T∪t; 
8:    end; 
9: end; 
10: return T; 

4 Experiments 

4.1 Datasets 

In this paper, we extracted all our datasets from 
two corpora, the Wall Street Journal (WSJ) corpus 
and the BioProp, which respectively represent the 
newswire and biomedical domains. The Wall 
Street Journal corpus has 39,892 sentences, and 
950,028 words. It contains full-parsing information, 
first annotated by Marcus et al. (1997), and is the 
most famous treebank (WSJ treebank). In addition 
to these syntactic structures, it was also annotated 
with predicate-argument structures (WSJ proposi-
tion bank) by Palmer et al. (2005).  

In biomedical domain, there is one available 
treebank for GENIA, created by Yuka Tateshi et al. 
(2005), who has so far added full-parsing informa-
tion to 500 abstracts. In contrast to WSJ, however, 
GENIA lacks any proposition bank. 

Since predicate-argument annotation is essential 
for training and evaluating statistical SRL systems, 
to make up for GENIA’s lack of a proposition 
bank, we constructed BioProp. Two biologists with 
masters degrees in our laboratory undertook the 
annotation task after receiving computational lin-
guistic training for approximately three months.  

We adopted a semi-automatic strategy to anno-
tate BioProp. First, we used the PropBank to train 
a statistical SRL system which achieves an F-score 
of over 86% on section 24 of the PropBank. Next, 
we used this SRL system to annotate the GENIA 
treebank automatically. Table 4 shows the amounts 
of all adjunct argument types (AMs) in BioProp. 
The detail description of can be found in (Babko-
Malaya, 2005).  
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Type Description # Type Description # 
NEG negation 

marker 
103 ADV general  

purpose 
307

LOC location 389 PNC purpose 3
TMP time 145 CAU cause 15
MNR manner 489 DIR direction 22
EXT extent 23 DIS discourse 

connectives 
179

   MOD modal verb 121

Table 4. Subtypes of the AM Modifier Tag 

4.2 Experiment Design 

Experiment 1: Portability 

Ideally, an SRL system should be adaptable to the 
task of information extraction in various domains 
with minimal effort. That is, we should be able to 
port it from one domain to another. In this experi-
ment, we evaluate the cross-domain portability of 
our SRL system. We use Sections 2 to 21 of the 
PropBank to train our SRL system. Then, we use 
our system to annotate Section 24 of the PropBank 
(denoted by Exp 1a) and all of BioProp (denoted 
by Exp 1b). 

Experiment 2: The Necessity of BioProp 

To compare the effects of using biomedical train-
ing data vs. using newswire data, we train our SRL 
system on 30 randomly selected training sets from 
BioProp (g1,.., g30) and 30 from PropBank (w1,.., 
w30), each having 1200 training PAS’s. We then 
test our system on 30 400-PAS test sets from Bio-
Prop, with g1 and w1 being tested on test set 1, g2 
and w2 on set 2, and so on. Then we add up the 
scores for w1-w30 and g1-g30, and compare their 
averages. 

Experiment 3: The Effect of Using Biomedical-
Specific Features 

In order to improve SRL performance, we add do-
main specific features. In Experiment 3, we inves-
tigate the effects of adding biomedical NE features 
and argument template features composed of 
words, NEs, and POSs. The dataset selection pro-
cedure is the same as in Experiment 2. 

5 Results and Discussion 

All experimental results are summarized in Table 5. 
For argument classification, we report the preci-

sion (P), recall (R) and F-scores (F). The details 
are illustrated in the following paragraphs. 

Configuration Training Test P R F 
Exp 1a PropBank PropBank 90.47 82.48 86.29
Exp 1b PropBank BioProp 75.28 56.64 64.64
Exp 2a PropBank BioProp 74.78 56.25 64.20
Exp 2b BioProp BioProp 88.65 85.61 87.10
Exp 3a BioProp BioProp 88.67 85.59 87.11
Exp 3b BioProp BioProp 89.13 86.07 87.57

Table 5. Summary of All Experiments 

Exp 1a Exp 1b Role 
P R F P R F 

+/-(%)

Overall 90.47 82.48 86.29 75.28 56.64 64.64 -21.65
ArgX 91.46 86.39 88.85 78.92 67.82 72.95 -15.90
Arg0 86.36 78.01 81.97 85.56 64.41 73.49   -8.48
Arg1 95.52 92.11 93.78 82.56 75.75 79.01 -14.77
Arg2 87.19 84.53 85.84 32.76 31.59 32.16 -53.68
AM 86.76 70.02 77.50 62.70 32.98 43.22 -34.28
-ADV 73.44 52.32 61.11 39.27 26.34 31.53 -29.58
-DIS 81.71 48.18 60.62 67.12 48.18 56.09 -4.53
-LOC 89.19 57.02 69.57 68.54 2.67 5.14 -64.43
-MNR 67.93 57.86 62.49 46.55 22.97 30.76 -31.73
-MOD 99.42 92.5 95.84 99.05 88.01 93.2 -2.64
-NEG 100 91.21 95.40 99.61 80.13 88.81 -6.59
-TMP 88.15 72.83 79.76 70.97 60.36 65.24 -14.52

Table 6. Performance of Exp 1a and Exp 1b 

Experiment 1 

Table 6 shows the results of Experiment 1. The 
SRL system trained on the WSJ corpus obtains an 
F-score of 64.64% when used in the biomedical 
domain. Compared to traditional rule-based or 
template-based approaches, our approach suffers 
acceptable decrease in overall performance when 
recognizing ArgX arguments. However, Table 6 
also shows significant decreases in F-scores from 
other argument types. AM-LOC drops 64.43% and 
AM-MNR falls 31.73%. This may be due to the 
fact that the head words in PropBank are quite dif-
ferent from those in BioProp. Therefore, to achieve 
better performance, we believe it will be necessary 
to annotate biomedical corpora for training bio-
medical SRL systems. 

Experiment 2 

Table 7 shows the results of Experiment 2. When 
tested on BioProp, BIOSMILE (Exp 2b) outper-
forms the newswire SRL system (Exp 2a) by 
22.9% since the two systems are trained on differ-
ent domains. This result is statistically significant. 

Furthermore, Table 7 shows that BIOSMILE 
outperforms the newswire SRL system in most 
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argument types, especially Arg0, Arg2, AM-ADV, 
AM-LOC, AM-MNR.  

Exp 2a Exp 2b Role 
P R F P R F 

+/-(%)

Overall 74.78 56.25 64.20 88.65 85.61 87.10 22.90
ArgX 78.40 67.32 72.44 91.96 89.73 90.83 18.39
Arg0 85.55 64.40 73.48 92.24 90.59 91.41 17.93
Arg1 81.41 75.11 78.13 92.54 90.49 91.50 13.37
Arg2 34.42 31.56 32.93 86.89 81.35 84.03 51.10
AM 61.96 32.38 42.53 81.27 76.72 78.93 36.40
-ADV 36.00 23.26 28.26 64.02 52.12 57.46 29.20
-DIS 69.55 51.29 59.04 82.71 75.60 79.00 19.96
-LOC 75.51 3.23 6.20 80.05 85.00 82.45 76.25
-MNR 44.67 21.66 29.17 83.44 82.23 82.83 53.66
-MOD 99.38 88.89 93.84 98.00 95.28 96.62 2.78
-NEG 99.80 79.55 88.53 97.82 94.81 96.29 7.76
-TMP 67.95 60.40 63.95 80.96 61.82 70.11 6.16

Table 7. Performance of Exp 2a and Exp 2b 

The performance of Arg0 and Arg2 in our sys-
tem increases considerably because biomedical 
verbs can be successfully identified by BIOSMILE 
but not by the newswire SRL system. For AM-
LOC, the newswire SRL system scored as low as 
76.25% lower than BIOSMILE. This is likely due 
to the reason that in the biomedical domain, many 
biomedical nouns, e.g., organisms and cells, func-
tion as locations, while in the newswire domain, 
they do not. In newswire, the word “cell” seldom 
appears. However, in biomedical texts, cells repre-
sent the location of many biological reactions, and, 
therefore, if a constituent node on a parsing tree 
contains “cell”, this node is very likely an AM-
LOC. If we use only newswire texts, the SRL sys-
tem will not learn to recognize this pattern. In the 
biomedical domain, arguments of manner (AM-
MNR) usually describe how to conduct an experi-
ment or how an interaction arises or occurs, while 
in newswire they are extremely broad in scope. 
Without adequate biomedical domain training cor-
pora, systems will easily confuse adverbs of man-
ner (AM-MNR), which are differentiated from 
general adverbials in semantic role labeling, with 
general adverbials (AM-ADV). In addition, the 
performance of the referential arguments of Arg0, 
Arg1, and Arg2 increases significantly. 

Experiment 3 

Table 8 shows the results of Experiment 3. The 
performance does not significantly improve after 
adding NE features. We originally expected that 
NE features would improve recognition of AM 
arguments such as AM-LOC. However, they failed 

to ameliorate the results since in the biomedical 
domain most NEs are just matched parts of a con-
stituent. This results in fewer exact matches. Fur-
thermore, in matched cases, NE information alone 
is insufficient to distinguish argument types. For 
example, even if a constituent exactly matches a 
protein name, we still cannot be sure whether it 
belongs to the subject (Arg0) or object (Arg1). 
Therefore, NE features were not as effective as we 
had expected. 

NE (Exp 3a) Template (Exp 3b) Role 
P R F P R F 

+/-(%)

Overall 88.67 85.59 87.11 89.13 86.07 87.57 0.46
ArgX 91.99 89.70 90.83 91.89 89.73 90.80 -0.03
Arg0 92.41 90.57 91.48 92.19 90.59 91.38 -0.1
Arg1 92.47 90.45 91.45 92.42 90.44 91.42 -0.03
Arg2 86.93 81.3 84.02 87.08 81.66 84.28 0.26
AM 81.30 76.75 78.96 82.96 78.18 80.50 1.54
-ADV 64.11 52.23 57.56 65.66 55.60 60.21 2.65
-DIS 82.51 75.42 78.81 83.00 75.79 79.23 0.42
-LOC 80.07 85.09 82.50 84.24 85.48 84.86 2.36
-MNR 83.50 82.19 82.84 84.56 84.14 84.35 1.51
-MOD 98.14 95.28 96.69 98.00 95.28 96.62 -0.07
-NEG 97.66 94.81 96.21 97.82 94.81 96.29 0.08
-TMP 81.14 62.06 70.33 83.10 63.95 72.28 1.95

Table 8. Performance of Exp 3a and Exp 3b 

6 Conclusions and Future Work 

In Experiment 3b, we used the argument templates 
as features. Since ArgX’s F-score is close to 90%, 
adding the template features does not improve its 
score. However, AM’s F-score increases by 1.54%. 
For AM-ADV, AM-LOC, and AM-TMP, the in-
crease is greater because the automatically gener-
ated templates effectively extract these AMs.  

In Figure 3, we compare the performance of ar-
gument classification models with and without ar-
gument template features. The overall F-score 
improves only slightly. However, the F-scores of 
main adjunct arguments increase significantly. 

The contribution of this paper is threefold. First, 
we construct a biomedical proposition bank, Bio-
Prop, on top of the popular biomedical GENIA 
treebank following the PropBank annotation 
scheme. We employ semi-automatic annotation 
using an SRL system trained on PropBank, thereby 
significantly reducing annotation effort. Second, 
we create BIOSMILE, a biomedical SRL system, 
which uses BioProp as its training corpus. Thirdly, 
we develop a method to automatically generate 
templates that can boost overall performance, es-
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pecially on location, manner, adverb, and temporal 
arguments. In the future, we will expand BioProp 
to include more verbs and will also integrate an 
automatic parser into BIOSMILE. 

 
Figure 3. Improvement of Template Features 
Overall and on Several Adjunct Types 
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Abstract

The ability to accurately model the con-
tent structure of text is important for
many natural language processing appli-
cations. This paper describes experi-
ments with generative models for analyz-
ing the discourse structure of medical ab-
stracts, which generally follow the pattern
of “introduction”, “methods”, “results”,
and “conclusions”. We demonstrate that
Hidden Markov Models are capable of ac-
curately capturing the structure of such
texts, and can achieve classification ac-
curacy comparable to that of discrimina-
tive techniques. In addition, generative
approaches provide advantages that may
make them preferable to discriminative
techniques such as Support Vector Ma-
chines under certain conditions. Our work
makes two contributions: at the applica-
tion level, we report good performance
on an interesting task in an important do-
main; more generally, our results con-
tribute to an ongoing discussion regarding
the tradeoffs between generative and dis-
criminative techniques.

1 Introduction

Certain types of text follow a predictable structure,
the knowledge of which would be useful in many
natural language processing applications. As an
example, scientific abstracts across many different

fields generally follow the pattern of “introduction”,
“methods”, “results”, and “conclusions” (Salanger-
Meyer, 1990; Swales, 1990; Orăsan, 2001). The
ability to explicitly identify these sections in un-
structured text could play an important role in ap-
plications such as document summarization (Teufel
and Moens, 2000), information retrieval (Tbahriti
et al., 2005), information extraction (Mizuta et al.,
2005), and question answering. Although there is
a trend towards analysis of full article texts, we
believe that abstracts still provide a tremendous
amount of information, and much value can still be
extracted from them. For example, Gay et al. (2005)
experimented with abstracts and full article texts in
the task of automatically generating index term rec-
ommendations and discovered that using full article
texts yields at most a 7.4% improvement in F-score.
Demner-Fushman et al. (2005) found a correlation
between the quality and strength of clinical conclu-
sions in the full article texts and abstracts.

This paper presents experiments with generative
content models for analyzing the discourse struc-
ture of medical abstracts, which has been con-
firmed to follow the four-section pattern discussed
above (Salanger-Meyer, 1990). For a variety of rea-
sons, medicine is an interesting domain of research.
The need for information systems to support physi-
cians at the point of care has been well studied (Cov-
ell et al., 1985; Gorman et al., 1994; Ely et al.,
2005). Retrieval techniques can have a large im-
pact on how physicians access and leverage clini-
cal evidence. Information that satisfies physicians’
needs can be found in the MEDLINE database main-
tained by the U.S. National Library of Medicine
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(NLM), which also serves as a readily available
corpus of abstracts for our experiments. Further-
more, the availability of rich ontological resources,
in the form of the Unified Medical Language Sys-
tem (UMLS) (Lindberg et al., 1993), and the avail-
ability of software that leverages this knowledge—
MetaMap (Aronson, 2001) for concept identification
and SemRep (Rindflesch and Fiszman, 2003) for re-
lation extraction—provide a foundation for studying
the role of semantics in various tasks.

McKnight and Srinivasan (2003) have previously
examined the task of categorizing sentences in med-
ical abstracts using supervised discriminative ma-
chine learning techniques. Building on the work of
Ruch et al. (2003) in the same domain, we present a
generative approach that attempts to directly model
the discourse structure of MEDLINE abstracts us-
ing Hidden Markov Models (HMMs); cf. (Barzilay
and Lee, 2004). Although our results were not ob-
tained from the same exact collection as those used
by authors of these two previous studies, comparable
experiments suggest that our techniques are compet-
itive in terms of performance, and may offer addi-
tional advantages as well.

Discriminative approaches (especially SVMs)
have been shown to be very effective for many
supervised classification tasks; see, for exam-
ple, (Joachims, 1998; Ng and Jordan, 2001). How-
ever, their high computational complexity (quadratic
in the number of training samples) renders them pro-
hibitive for massive data processing. Under certain
conditions, generative approaches with linear com-
plexity are preferable, even if their performance is
lower than that which can be achieved through dis-
criminative training. Since HMMs are very well-
suited to modeling sequences, our discourse model-
ing task lends itself naturally to this particular gener-
ative approach. In fact, we demonstrate that HMMs
are competitive with SVMs, with the added advan-
tage of lower computational complexity. In addition,
generative models can be directly applied to tackle
certain classes of problems, such as sentence order-
ing, in ways that discriminative approaches cannot
readily. In the context of machine learning, we see
our work as contributing to the ongoing debate be-
tween generative and discriminative approaches—
we provide a case study in an interesting domain that
begins to explore some of these tradeoffs.

2 Methods

2.1 Corpus and Data Preparation

Our experiments involved MEDLINE, the biblio-
graphical database of biomedical articles maintained
by the U.S. National Library of Medicine (NLM).
We used the subset of MEDLINE that was extracted
for the TREC 2004 Genomics Track, consisting of
citations from 1994 to 2003. In total, 4,591,008
records (abstract text and associated metadata) were
extracted using the Date Completed (DCOM) field
for all references in the range of 19940101 to
20031231.

Viewing structural modeling of medical abstracts
as a sentence classification task, we leveraged the
existence of so-called structured abstracts (see Fig-
ure 1 for an example) in order to obtain the appro-
priate section label for each sentence. The use of
section headings is a device recommended by the
Ad Hoc Working Group for Critical Appraisal of the
Medical Literature (1987) to help humans assess the
reliability and content of a publication and to facil-
itate the indexing and retrieval processes. Although
structured abstracts loosely adhere to the introduc-
tion, methods, results, and conclusions format, the
exact choice of section headings varies from ab-
stract to abstract and from journal to journal. In our
test collection, we observed a total of 2688 unique
section headings in structured abstracts—these were
manually mapped to the four broad classes of “intro-
duction”, “methods”, “results”, and “conclusions”.
All sentences falling under a section heading were
assigned the label of its appropriately-mapped head-
ing (naturally, the actual section headings were re-
moved in our test collection). As a concrete exam-
ple, in the abstract shown in Figure 1, the “OBJEC-
TIVE” section would be mapped to “introduction”,
the “RESEARCH DESIGN AND METHODS” sec-
tion to “methods”. The “RESULTS” and “CON-
CLUSIONS” sections map directly to our own la-
bels. In total, 308,055 structured abstracts were ex-
tracted and prepared in this manner, serving as the
complete dataset. In addition, we created a reduced
collection of 27,075 abstracts consisting of only
Randomized Controlled Trials (RCTs), which rep-
resent definitive sources of evidence highly-valued
in the clinical decision-making process.

Separately, we manually annotated 49 unstruc-
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Integrating medical management with diabetes self-management training: a randomized control trial of the Diabetes
Outpatient Intensive Treatment program.
OBJECTIVE– This study evaluated the Diabetes Outpatient Intensive Treatment (DOIT) program, a multiday group educa-
tion and skills training experience combined with daily medical management, followed by case management over 6 months.
Using a randomized control design, the study explored how DOIT affected glycemic control and self-care behaviors over a
short term. The impact of two additional factors on clinical outcomes were also examined (frequency of case management
contacts and whether or not insulin was started during the program). RESEARCH DESIGN AND METHODS– Patients
with type 1 and type 2 diabetes in poor glycemic control (A1c ¿8.5%) were randomly assigned to DOIT or a second con-
dition, entitled EDUPOST, which was standard diabetes care with the addition of quarterly educational mailings. A total
of 167 patients (78 EDUPOST, 89 DOIT) completed all baseline measures, including A1c and a questionnaire assessing
diabetes-related self-care behaviors. At 6 months, 117 patients (52 EDUPOST, 65 DOIT) returned to complete a follow-up
A1c and the identical self-care questionnaire. RESULTS– At follow-up, DOIT evidenced a significantly greater drop in A1c
than EDUPOST. DOIT patients also reported significantly more frequent blood glucose monitoring and greater attention to
carbohydrate and fat contents (ACFC) of food compared with EDUPOST patients. An increase in ACFC over the 6-month
period was associated with improved glycemic control among DOIT patients. Also, the frequency of nurse case manager
follow-up contacts was positively linked to better A1c outcomes. The addition of insulin did not appear to be a significant
contributor to glycemic change. CONCLUSIONS– DOIT appears to be effective in promoting better diabetes care and posi-
tively influencing glycemia and diabetes-related self-care behaviors. However, it demands significant time, commitment, and
careful coordination with many health care professionals. The role of the nurse case manager in providing ongoing follow-up
contact seems important.

Figure 1: Sample structured abstract from MEDLINE.

tured abstracts of randomized controlled trials re-
trieved to answer a question about the manage-
ment of elevated low-density lipoprotein cholesterol
(LDL-C). We submitted a PubMed query (“elevated
LDL-C”) and restricted results to English abstracts
of RCTs, gathering 49 unstructured abstracts from
26 journals. Each sentence was annotated with its
section label by the third author, who is a medical
doctor—this collection served as our blind held-out
testset. Note that the annotation process preceded
our experiments, which helped to guard against
annotator-introduced bias. Of 49 abstracts, 35 con-
tained all four sections (which we refer to as “com-
plete”), while 14 abstracts were missing one or more
sections (which we refer to as “partial”).

Two different types of experiments were con-
ducted: the first consisted of cross-validation on the
structured abstracts; the second consisted of train-
ing on the structured abstracts and testing on the
unstructured abstracts. We hypothesized that struc-
tured and unstructured abstracts share the same un-
derlying discourse patterns, and that content models
trained with one can be applied to the other.

2.2 Generative Models of Content

Following Ruch et al. (2003) and Barzilay and
Lee (2004), we employed Hidden Markov Models
to model the discourse structure of MEDLINE ab-
stracts. The four states in our HMMs correspond

to the information that characterizes each section
(“introduction”, “methods”, “results”, and “conclu-
sions”) and state transitions capture the discourse
flow from section to section.

Using the SRI language modeling toolkit, we
first computed bigram language models for each
of the four sections using Kneser-Ney discounting
and Katz backoff. All words in the training set
were downcased, all numbers were converted into
a generic symbol, and all singleton unigrams and bi-
grams were removed. Using these results, each sen-
tence was converted into a four dimensional vector,
where each component represents the log probabil-
ity, divided by the number of words, of the sentence
under each of the four language models.

We then built a four-state Hidden Markov Model
that outputs these four-dimensional vectors. The
transition probability matrix of the HMM was ini-
tialized with uniform probabilities over a fully
connected graph. The output probabilities were
modeled as four-dimensional Gaussians mixtures
with diagonal covariance matrices. Using the sec-
tion labels, the HMM was trained using the HTK
toolkit (Young et al., 2002), which efficiently per-
forms the forward-backward algorithm and Baum-
Welch estimation. For testing, we performed a
Viterbi (maximum likelihood) estimation of the la-
bel of each test sentence/vector (also using the HTK
toolkit).
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In an attempt to further boost performance, we
employed Linear Discriminant Analysis (LDA) to
find a linear projection of the four-dimensional vec-
tors that maximizes the separation of the Gaussians
(corresponding to the HMM states). Venables and
Ripley (1994) describe an efficient algorithm (of lin-
ear complexity in the number of training sentences)
for computing the LDA transform matrix, which en-
tails computing the within- and between-covariance
matrices of the classes, and using Singular Value De-
composition (SVD) to compute the eigenvectors of
the new space. Each sentence/vector is then mul-
tiplied by this matrix, and new HMM models are
re-computed from the projected data.

An important aspect of our work is modeling con-
tent structure using generative techniques. To as-
sess the impact of taking discourse transitions into
account, we compare our fully trained model to
one that does not take advantage of the Markov
assumption—i.e., it assumes that the labels are in-
dependently and identically distributed.

To facilitate comparison with previous work, we
also experimented with binary classifiers specifi-
cally tuned to each section. This was done by creat-
ing a two-state HMM: one state corresponds to the
label we want to detect, and the other state corre-
sponds to all the other labels. We built four such
classifiers, one for each section, and trained them in
the same manner as above.

3 Results

We report results on three distinct sets of experi-
ments: (1) ten-fold cross-validation (90/10 split) on
all structured abstracts from the TREC 2004 MED-
LINE corpus, (2) ten-fold cross-validation (90/10
split) on the RCT subset of structured abstracts from
the TREC 2004 MEDLINE corpus, (3) training on
the RCT subset of the TREC 2004 MEDLINE cor-
pus and testing on the 49 hand-annotated held-out
testset.

The results of our first set of experiments are
shown in Tables 1(a) and 1(b). Table 1(a) reports
the classification error in assigning a unique label to
every sentence, drawn from the set {“introduction”,
“methods”, “results”, “conclusions”}. For this task,
we compare the performance of three separate mod-
els: one that does not make the Markov assumption,

Model Error
non-HMM .220
HMM .148
HMM + LDA .118

(a)

Section Acc Prec Rec F
Introduction .957 .930 .840 .885
Methods .921 .810 .875 .843
Results .921 .898 .898 .898
Conclusions .963 .898 .896 .897

(b)

Table 1: Ten-fold cross-validation results on all
structured abstracts from the TREC 2004 MED-
LINE corpus: multi-way classification on complete
abstract structure (a) and by-section binary classifi-
cation (b).

the basic four-state HMM, and the improved four-
state HMM with LDA. As expected, explicitly mod-
eling the discourse transitions significantly reduces
the error rate. Applying LDA further enhances clas-
sification performance. Table 1(b) reports accuracy,
precision, recall, and F-measure for four separate bi-
nary classifiers specifically trained for each of the
sections (one per row in the table). We only dis-
play results with our best model, namely HMM with
LDA.

The results of our second set of experiments (with
RCTs only) are shown in Tables 2(a) and 2(b).
Table 2(a) reports the multi-way classification er-
ror rate; once again, applying the Markov assump-
tion to model discourse transitions improves perfor-
mance, and using LDA further reduces error rate.
Table 2(b) reports accuracy, precision, recall, and F-
measure for four separate binary classifiers (HMM
with LDA) specifically trained for each of the sec-
tions (one per row in the table). The table also
presents the closest comparable experimental re-
sults reported by McKnight and Srinivasan (2003).1

McKnight and Srinivasan (henceforth, M&S) cre-
ated a test collection consisting of 37,151 RCTs
from approximately 12 million MEDLINE abstracts
dated between 1976 and 2001. This collection has

1After contacting the authors, we were unable to obtain the
same exact dataset that they used for their experiments.
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Model Error
non-HMM .238
HMM .212
HMM + LDA .209

(a)

Present study McKnight and Srinivasan
Section Acc Prec Rec F Acc Prec Rec F
Introduction .931 .898 .715 .807 .967 .920 .970 .945
Methods .904 .812 .847 .830 .895 .810 .830 .820
Results .902 .902 .831 .867 .860 .810 .830 .820
Conclusions .929 .772 .790 .781 .970 .880 .910 .820

(b)

Table 2: Ten-fold cross-validation results on the structured RCT subset of the TREC 2004 MEDLINE
corpus: multi-way classification (a) and binary classification (b). Table (b) also reproduces the results from
McKnight and Srinivasan (2003) for a comparable task on a different RCT-subset of structured abstracts.

Model Complete Partial
non-HMM .247 .371
HMM .226 .314
HMM + LDA .217 .279

(a)

Complete Partial McKnight and Srinivasan
Section Acc Prec Rec F Acc Prec Rec F Acc Prec Rec F
Introduction .923 .739 .723 .731 .867 .368 .636 .502 .896 .630 .450 .524
Methods .905 .841 .793 .817 .859 .958 .589 .774 .897 .880 .730 .799
Results .899 .913 .857 .885 .892 .942 .830 .886 .872 .840 .880 .861
Conclusions .911 .639 .847 .743 .884 .361 .995 .678 .941 .830 .750 .785

(b)

Table 3: Training on the structured RCT subset of the TREC 2004 MEDLINE corpus, testing on corpus of
hand-annotated abstracts: multi-way classification (a) and binary classification (b). Unstructured abstracts
with all four sections (complete), and with missing sections (partial) are shown. Table (b) again repro-
duces the results from McKnight and Srinivasan (2003) for a comparable task on a different subset of 206
unstructured abstracts.
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significantly more training examples than our corpus
of 27,075 abstracts, which could be a source of per-
formance differences. Furthermore, details regard-
ing their procedure for mapping structured abstract
headings to one of the four general labels was not
discussed in their paper. Nevertheless, our HMM-
based approach is at least competitive with SVMs,
perhaps better in some cases.

The results of our third set of experiments (train-
ing on RCTs and testing on a held-out testset of
hand-annotated abstracts) is shown in Tables 3(a)
and 3(b). Mirroring the presentation format above,
Table 3(a) shows the classification error for the four-
way label assignment problem. We noticed that
some unstructured abstracts are qualitatively differ-
ent from structured abstracts in that some sections
are missing. For example, some unstructured ab-
stracts lack an introduction, and instead dive straight
into methods; other unstructured abstracts lack a
conclusion. As a result, classification error is higher
in this experiment than in the cross-validation ex-
periments. We report performance figures for 35 ab-
stracts that contained all four sections (“complete”)
and for 14 abstracts that had one or more miss-
ing sections (“partial”). Table 3(b) reports accu-
racy, precision, recall, and F-measure for four sep-
arate binary classifiers (HMM with LDA) specifi-
cally trained for each section (one per row in the
table). The table also presents the closest compa-
rable experimental results reported by M&S—over
206 hand-annotated unstructured abstracts. Interest-
ingly, M&S did not specifically note missing sec-
tions in their testset.

4 Discussion

An interesting aspect of our generative approach
is that we model HMM outputs as Gaussian vec-
tors (log probabilities of observing entire sentences
based on our language models), as opposed to se-
quences of terms, as done in (Barzilay and Lee,
2004). This technique provides two important ad-
vantages. First, Gaussian modeling adds an ex-
tra degree of freedom during training, by capturing
second-order statistics. This is not possible when
modeling word sequences, where only the probabil-
ity of a sentence is actually used in the HMM train-
ing. Second, using continuous distributions allows

us to leverage a variety of tools (e.g., LDA) that have
been shown to be successful in other fields, such as
speech recognition (Evermann et al., 2004).

Table 2(b) represents the closest head-to-head
comparison between our generative approach
(HMM with LDA) and state-of-the-art results
reported by M&S using SVMs. In some ways, the
results reported by M&S have an advantage because
they use significantly more training examples. Yet,
we can see that generative techniques for the model-
ing of content structure are at least competitive—we
even outperform SVMs on detecting “methods”
and “results”. Moreover, the fact that the training
and testing of HMMs have linear complexity (as
opposed to the quadratic complexity of SVMs)
makes our approach a very attractive alternative,
given the amount of training data that is available
for such experiments.

Although exploration of the tradeoffs between
generative and discriminative machine learning
techniques is one of the aims of this work, our ul-
timate goal, however, is to build clinical systems
that provide timely access to information essential
to the patient treatment process. In truth, our cross-
validation experiments do not correspond to any
meaningful naturally-occurring task—structured ab-
stracts are, after all, already appropriately labeled.
The true utility of content models is to struc-
ture abstracts that have no structure to begin with.
Thus, our exploratory experiments in applying con-
tent models trained with structured RCTs on un-
structured RCTs is a closer approximation of an
extrinsically-valid measure of performance. Such a
component would serve as the first stage of a clin-
ical question answering system (Demner-Fushman
and Lin, 2005) or summarization system (McKe-
own et al., 2003). We chose to focus on randomized
controlled trials because they represent the standard
benchmark by which all other clinical studies are
measured.

Table 3(b) shows the effectiveness of our trained
content models on abstracts that had no explicit
structure to begin with. We can see that although
classification accuracy is lower than that from our
cross-validation experiments, performance is quite
respectable. Thus, our hypothesis that unstructured
abstracts are not qualitatively different from struc-
tured abstracts appears to be mostly valid.
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5 Related Work

Although not the first to employ a generative ap-
proach to directly model content, the seminal work
of Barzilay and Lee (2004) is a noteworthy point
of reference and comparison. However, our study
differs in several important respects. Barzilay and
Lee employed an unsupervised approach to building
topic sequence models for the newswire text genre
using clustering techniques. In contrast, because
the discourse structure of medical abstracts is well-
defined and training data is relatively easy to ob-
tain, we were able to apply a supervised approach.
Whereas Barzilay and Lee evaluated their work in
the context of document summarization, the four-
part structure of medical abstracts allows us to con-
duct meaningful intrinsic evaluations and focus on
the sentence classification task. Nevertheless, their
work bolsters our claims regarding the usefulness of
generative models in extrinsic tasks, which we do
not describe here.

Although this study falls under the general topic
of discourse modeling, our work differs from previ-
ous attempts to characterize text in terms of domain-
independent rhetorical elements (McKeown, 1985;
Marcu and Echihabi, 2002). Our task is closer to the
work of Teufel and Moens (2000), who looked at the
problem of intellectual attribution in scientific texts.

6 Conclusion

We believe that there are two contributions as a re-
sult of our work. From the perspective of machine
learning, the assignment of sequentially-occurring
labels represents an underexplored problem with re-
spect to the generative vs. discriminative debate—
previous work has mostly focused on stateless clas-
sification tasks. This paper demonstrates that Hid-
den Markov Models are capable of capturing dis-
course transitions from section to section, and are
at least competitive with Support Vector Machines
from a purely performance point of view.

The other contribution of our work is that it con-
tributes to building advanced clinical information
systems. From an application point of view, the abil-
ity to assign structure to otherwise unstructured text
represents a key capability that may assist in ques-
tion answering, document summarization, and other
natural language processing applications.

Much research in computational linguistics has
focused on corpora comprised of newswire articles.
We would like to point out that clinical texts provide
another attractive genre in which to conduct experi-
ments. Such texts are easy to acquire, and the avail-
ability of domain ontologies provides new opportu-
nities for knowledge-rich approaches to shine. Al-
though we have only experimented with lexical fea-
tures in this study, the door is wide open for follow-
on studies based on semantic features.
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Abstract 

A picture is worth a thousand words. 
Biomedical researchers tend to incorpo-
rate a significant number of images (i.e., 
figures or tables) in their publications to 
report experimental results, to present re-
search models, and to display examples of 
biomedical objects. Unfortunately, this 
wealth of information remains virtually 
inaccessible without automatic systems to 
organize these images. We explored su-
pervised machine-learning systems using 
Support Vector Machines to automatically 
classify images into six representative 
categories based on text, image, and the 
fusion of both. Our experiments show a 
significant improvement in the average F-
score of the fusion classifier (73.66%) as 
compared with classifiers just based on 
image (50.74%) or text features (68.54%). 

1 Introduction 

A picture is worth a thousand words. Biomedical 
researchers tend to incorporate a significant num-
ber of figures and tables in their publications to 
report experimental results, to present research 
models, and to display examples of biomedical 
objects (e.g., cell, tissue, organ and other images). 
For example, we have found an average of 5.2 im-
ages per biological article in the journal Proceed-
ings of the National Academy of Sciences (PNAS). 
We discovered that 43% of the articles in the 

medical journal The Lancet contain biomedical 
images. Physicians may want to access biomedical 
images reported in literature for the purpose of 
clinical education or to assist clinical diagnoses. 
For example, a physician may want to obtain im-
ages that illustrate the disease stage of infants with 
Retinopathy of Prematurity for the purpose of 
clinical diagnosis, or to request a picture of ery-
thema chronicum migrans, a spreading annular 
rash that appears at the site of tick-bite in Lyme 
disease. Biologists may want to identify the ex-
perimental results or images that support specific 
biological phenomenon. For example, Figure 1 
shows that a transplanted progeny of a single mul-
tipotent stem cell can generate sebaceous glands. 

Organizing bioscience images is not a new task. 
Related work includes the building of domain-
specific image databases. For example, the Protein 
Data Bank (PDB) 1  (Sussman et al., 1998) stores 
3-D images of macromolecular structure data. 
WebPath 2  is a medical web-based resource that 
has been created by physicians to include over 
4,700 gross and microscopic medical images. Text-
based image search systems like Google ignore 
image content. The SLIF (Subcellular Location 
Image Finder) system (Murphy et al., 2001; Kou et 
al., 2003) searches protein images reported in lit-
erature. Other work has explored joint text-image 
features in classifying protein subcellular location 
images (Murphy et al., 2004). The existing sys-
tems, however, have not explored approaches that 
automatically classify general bioscience images 
into generic categories. 

                                                           
1 http://www.rcsb.org/pdb/ 
2 http://www-medlib.med.utah.edu/WebPath/webpath.html 
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Classifying images into generic categories is an 
important task that can benefit many other natural 
language processing and image processing tasks. 
For example, image retrieval and question answer-
ing systems may return “Image-of-Thing” images 
(e.g., Figure 1), not the other types (e.g., Figure 
2~5), to illustrate erythema chronicum migrans. 
Biologists may examine “Gel” images (e.g., Figure 
2), rather than “Model” (e.g., Figure 4) to access 
specific biological evidence for molecular interac-
tions. Furthermore, a generic category may ease 
the task of identifying specific images that may be 
sub-categories of the generic category. For exam-
ple, a biologist may want to obtain an image of a 
protein structure prediction, which might be a sub-
category of “Model” (Figure 4), rather than an im-
age of x-ray crystallography that can be readily 
obtained from the PDB database.  

This paper represents the first study that defines 
a generic bioscience image taxonomy, and ex-
plores automatic image classification based on the 
fusion of text and image classifiers. 
 
Gel-Image consists of gel images such as Northern 
(for DNA), Southern (for RNA), and Western (for 
protein).  Figure 2 shows an example. 
 
Graph consists of bar charts, column charts, line 
charts, plots and other graphs that are drawn either 
by authors or by a computer (e.g., results of patch 
clamping). Figure 3 shows an example. 
 
Image-of-Thing refers to images of cells, cell 
components, tissues, organs, or species. Figure 1 
shows an example. 
 
Mix refers to an image (e.g., Figure 5) that incor-
porates two or more other categories of images. 
 
Model: A model may demonstrate a biological 
process, molecular docking, or an experimental 
design. We include as Model any structure (e.g., 
chemical, molecular, or cellular) that is illustrated 
by a drawing. We also include gene or protein se-
quences and sequence alignments, as well as phy-
logenetic trees in this category. Figure 4 shows one 
example.  
 
Table refers to a set of data arranged in rows and 
columns. 

 
Table 1. Bioscience Image Taxonomy 

2 Image Taxonomy 

We downloaded from PubMed Central  a total of 
17,000 PNAS full-text articles (years 1995-2004), 
which contain a total of 88,225 images. We manu-
ally examined the images and defined an image 
taxonomy (as shown in Table 1) based on feedback 
from physicians. The categories were chosen to 
maintain balance between coherence of content in 
each category and the complexity of the taxonomy. 
For example, we keep images of biological objects 
(e.g., cells, tissues, organs etc) in one single cate-
gory in this experiment to avoid over decomposi-
tion of categories and insufficient data in 
individual categories. Therefore we stress princi-
pled approaches for feature extraction and classi-
fier design. The same fusion classification 
framework can be applied to cases where each 
category is further refined to include subclasses. 
 

               
Figure 1. Image of_Thing3  Figure 2. Gel image4 
 

              
Figure 3. Graph image5   Figure 4. Model image6  

           
                        Figure 5. Mix image7     
 

                                                           
3 This image appears in the cover page of PNAS 102 (41): 
14477 – 14936. 
4 The image appears in the article (pmid=10318918) 
5 The image appears in the article (pmid=15699337) 
6 The image appears in the article (pmid=11504922) 
7 The image appears in the article (pmid=15755809)  
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3 Image Classification  

We explored supervised machine-learning methods 
to automatically classify images according to our 
image taxonomy (Table 1). Since it is straightfor-
ward to distinguish table separately by applying 
surface cues (e.g., “Table” and “Figure”), we have 
decided to exclude it from our experiments. 

3.1 Support Vector Machines 

We explored supervised machine-learning systems 
using Support Vector Machines (SVMs) which 
have shown to out-perform many other supervised 
machine-learning systems for text categorization 
tasks (Joachims, 1998). We applied the freely 
available machine learning MATLAB package The 
Spider to train our SVM systems (Sable and Wes-
ton, 2005; MATLAB). The Spider implements 
many learning algorithms including a multi-class 
SVM classifier which was used to learn our dis-
criminative classifiers as described below in sec-
tion 3.4. 

A fundamental concept in SVM theory is the 
projection of the original data into a high-
dimensional space in which separating hyperplanes 
can be found. Rather than actually doing this pro-
jection, kernel functions are selected that effi-
ciently compute the inner products between data in 
the high-dimensional space. Slack variables are 
introduced to handle non-separable cases and this 
requires an upper bound variable, C. 

Our experiments considered three popular ker-
nel function families over five different variants 
and five different values of C. The kernel function 
implementations are explained in the software 
documentation. We considered kernel functions in 
the forms of polynomial, radial basis function, and 
Gaussian. The adjustable parameter for polynomial 
functions is the order of the polynomial. For radial 
basis function and Gaussian functions, sigma is the 
adjustable parameter. A grid search was performed 
over the adjustable parameter for values 1 to 5 and 
for values of C equal to [10^0, 10^1, 10^2, 10^3, 
10^4]. 

3.2 Text Features 

Previous work in the context of newswire image 
classification show that text features in image cap-
tions are efficient for image categorization (Sable, 
2000, 2002, 2003). We hypothesize that image 

captions provide certain lexical cues that effi-
ciently represent image content. For example, the 
words “diameter”, “gene-expression”, “histogram”, 
“lane”, “model“, “stained”, “western”, etc are 
strong indicators for image classes and therefore 
can be used to classify an image into categories. 
The features we explored are bag-of-words and n-
grams from the image captions after processing the 
caption text by the Word Vector Tool (Wurst). 

3.3 Image Features  

We also investigated image features for the tasks 
of image classification. We started with four types 
of image features that include intensity histogram 
features, edge-direction histogram features, edge-
based axis features, and the number of 8-connected 
regions in the binary-valued image obtained from 
thresholding the intensity.  

The intensity histogram was created by quantiz-
ing the gray-scale intensity values into the range 0-
255 and then making a 256-bin histogram for these 
values. The histogram was then normalized by di-
viding all values by the total sum. For the purpose 
of entropy calculations, all zero values in the his-
togram are set to one. From this adjusted, normal-
ized histogram, we calculated the total entropy as 
the sum of the products of the entries with their 
logarithms. Additionally, the mean, 2nd moment, 
and 3rd moment are derived. The combination of 
the total entropy, mean, 2nd, and 3rd moments 
constitute a robust and concise representation of 
the image intensity. 

Edge-Direction Histogram (Jain and Vailaya, 
1996) features may help distinguish images with 
predominantly straight lines such as those found in 
graphs, diagrams, or charts from other images with 
more variation in edge orientation. The EDH be-
gins by convolving the gray-scale image with both 
3x3 Sobel edge operators (Jain, 1989). One opera-
tor finds vertical gradients while the other finds 
horizontal gradients. The inverse tangent of the 
ratio of the vertical to horizontal gradient yields 
continuous orientation values in the range of –pi to 
+pi. These values are subsequently converted into 
degrees in the range of 0 to 179 degrees (we con-
sider 180 and 0 degrees to be equal). A histogram 
is counted over these 180 degrees. Zero values in 
the histogram are set to one in order to anticipate 
entropy calculations and then the modified histo-
gram is normalized to sum to one. Finally, the total 
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entropy, mean, 2nd and 3rd moments are extracted 
to summarize the EDH. 

The edge-based axis features are meant to help 
identify images containing graphs or charts. First, 
Sobel edges are extracted above a sensitivity 
threshold of 0.10 from the gray-scale image. This 
yields a binary-valued intensity image with 1’s 
occurring in locations of all edges that exceed the 
threshold and 0’s occurring otherwise. Next, the 
vertical and horizontal sums of this intensity image 
are taken yielding two vectors, one for each axis. 
Zero values are set to one to anticipate the entropy 
calculations. Each vector is then normalized by 
dividing each element by its total sum. Finally, we 
find the total entropy, mean, 2nd , and 3rd mo-
ments to represent each axis for a total of eight axis 
features. 

The last image feature under consideration was 
the number of 8-connected regions in the binary-
valued, thresholded Sobel edge image as described 
above for the axis features. An 8-connected region 
is a group of edge pixels for which each member 
touches another member vertically, horizontally, or 
diagonally in the eight adjacent pixel positions sur-
rounding it. The justification for this feature is that 
the number of solid regions in an image may help 
separate classes. 

A preliminary comparison of various combina-
tions of these image features showed that the inten-
sity histogram features used alone yielded the best 
classification accuracy of approximately 54% with 
a quadratic kernel SVM using an upper slack limit 
of C = 10^4. 

3.4 Fusion  

We integrated both image and text features for the 
purpose of image classification. Multi-class SVM’s 
were trained separately on the image features and 
the text features. A multi-class SVM attempts to 
learn the boundaries of maximal margin in feature 
space that distinguishes each class from the rest. 
Once the optimal image and text classifiers were 
found, they were used to process a separate set of 
images in the fusion set. We extracted the margins 
from each data point to the boundary in feature 
space.  

Thus, for a five-class classifier, each data point 
would have five associated margins. To make a 
fair comparison between the image-based classifier 
and the text-based classifier, the margins for each 

data point were normalized to have unit magnitude. 
So, the set of five margins for the image classifier 
constitutes a vector that then gets normalized by 
dividing each element by its L2 norm. The same is 
done for the vector of margins taken from the text 
classifier. Finally, both normalized vectors are 
concatenated to form a 10-dimensional fusion vec-
tor. To fuse the margin results from both classifi-
ers, these normalized margins were used to train 
another multi-class SVM.  

A grid search through parameter space with 
cross validation identified near-optimal parameter 
settings for the SVM classifiers.  See Figure 6 for 
our system flowchart. 
 

 
Figure 6. System Flow-chart 

3.5 Training, Fusion, and Testing Data  

We randomly selected a subset of 554 figure im-
ages from the total downloaded image pool. One 
author of this paper is a biologist who annotated 
figures under five classes; namely, Gel_Image 
(102), Graph (179), Image_of_Thing (64), Mix 
(106), and Model (103). 

These images were split up such that for each 
category, roughly a half was used for training, a 
quarter for fusion, and a quarter for testing (see 
Figure 7). The training set was used to train classi-
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fiers for the image-based and text-based features. 
The fusion set was used to train a classifier on top 
of the results of the image-based and text-based 
classifiers. The testing set was used to evaluate the 
final classification system. 

For each division of data, 10 folds were gener-
ated. Thus within the training and fusion data sets, 
there are 10 folds which each have a randomized 
partitioning into 90% for training and 10% for test-
ing. The testing data set did not need to be parti-
tioned into folds since all of it was used to test the 
final classification system. (See Figure 8). 

In the 10-fold cross-validation process, a classi-
fier is trained on the training partition and then 
measured for accuracy (or error rate) on the testing 
partition. Of the 10 resulting algorithms, the one 
which performs the best is chosen (or just one 
which ties for the best accuracy). 
 

 
Figure 7. Image-set Divisions 

3.6 Evaluation Metrics  

We report the widely used recall, precision, and F-
score (also known as F-measure) as the evaluation 
metrics for image classification. Recall is the total 
number of true positive predictions divided by the 
total number of true positives in the set (true pos + 
false neg). Precision is the fraction of the number 
of true positive predictions divided by the total 
number of positive predictions (true pos + false 
pos). F-score is the harmonic mean of recall and 
precision equal to (C. J. van Rijsbergen, 1979): 

( )recallprecisionrecallprecision +/**2  
 

 
Figure 8. Partitioning Method for Training and 

Fusion Datasets 

4 Experimental Results 

Table 2 shows the Confusion Matrix for the image 
feature classifier obtained from the testing part of 
the training data. The actual categories are listed 
vertically and predicted categories are listed hori-
zontally. For instance, of 26 actual GEL images, 
18 were correctly classified as GEL, 4 were mis-
classified as GRAPH, 2 as IMAGE_OF_THING, 0 
as MIX, and 2 as MODEL. 
 

Actual  Predicted Categories 

 Gel Graph Thing Mix Model 

Gel 18 4 2 0 2 

Graph 3 39 0 1 1 

Img_Thing 1 1 12 2 0 

Mix 4 17 0 3 3 

Model 8 13 0 1 3 

Table 2. Confusion Matrix for Image Feature Clas-
sifier 
 

A near-optimal parameter setting for the classi-
fier based on image features alone used a polyno-
mial kernel of order 2 and an upper slack limit of C 
= 10^4. Table 3 shows the performance of image 
classification with image features. True Positives, 
False Positives, False Negatives, Precision = 
TP/(TP+FP), Recall = TP/(TP+FN), and F-score = 
2 * Precision * Recall / (Precision + Recall). Ac-
cording to the F-score scores, this classifier does 
best on distinguishing IMAGE_OF_THING im-
ages. The overall accuracy = sum of true positives / 
total number of images = (18+39+12+3+3)/138 = 
75/138 =  54%. This can be compared with the 
baseline of (3+39+1+1)/138 = 32% if all images 
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were classified as the most popular category, 
GRAPH. Clearly, the image-based classifier does 
best at recognizing IMAGE_OF_THING figures. 

 
Category TP FP FN Prec. Recall Fscore 

Gel 18 16 8 0.529 0.692 0.600 

Graph 39 35 5 0.527 0.886 0.661 

Img_Thing 12 2 4 0.857 0.750 0.800 

Mix 3 4 10 0.429 0.231 0.300 

Model 3 6 22 0.333 0.120 0.176 

Table 3. Precision, Recall, F-score for Image Clas-
sifier 
 

Actual  Predicted Categories 

 Gel Graph Thing Mix Model 
Gel 22 2 0 2 0 
Graph 4 36 0 4 0 
Img_Thing 0 3 11 1 1 
Mix 3 9 1 12 2 
Model 3 5 0 3 14 

Table 4. Confusion Matrix for Caption Text Clas-
sifier 
 

Category TP FP FN Prec Recall Fscore 

Gel 22 10 4 0.688 0.845 0.758 
Graph 36 19 8 0.655 0.818 0.727 
Img_Thing 11 1 5 0.917 0.688 0.786 
Mix 12 10 15 0.545 0.444 0.489 
Model 14 3 11 0.824 0.560 0.667 

Table 5. Precision, Recall, F-score for Caption 
Text Classifier 
 

The text-based classifier excels in finding GEL, 
GRAPH, and IMAGE_OF_THING images. It 
achieves an accuracy of (22+36+11+12+14)/138 = 
95/138 = 69%. 
 

A near-optimal parameter setting for the fusion 
classifier based on both image features and text 
features used a linear kernel with C = 10. The cor-
responding Confusion matrix follows in Table 6. 

 
Actual  Predicted Categories 

 Gel Graph Thing Mix Model 
Gel 23 0 0 3 0 
Graph 2 37 1 2 2 
Img_Thing 0 1 15 0 0 
Mix 2 7 1 14 3 
Model 3 5 0 4 13 

Table 6. Confusion Matrix for Fusion Classifier 
 
 

Category TP FP FN Prec. Recall Fscore 
Gel 23 7 3 0.767 0.885 0.822 
Graph 37 13 7 0.740 0.841 0.787 
Img_Thing 15 2 1 0.882 0.938 0.909 
Mix 14 9 13 0.609 0.519 0.560 
Model 13 5 12 0.722 0.520 0.605 

Table 7. Precision, Recall, F-score for Fusion 
Classifier 
 

From Table 7, it is apparent that the fusion clas-
sifier does best on IMAGE_OF_THING and also 
performs well on GEL and GRAPH. These are 
substantial improvements over the classifiers that 
were based on image or text feature alone. Average 
F-scores and accuracies are summarized below in 
Table 8. 

The overall accuracy for the fusion classifier = 
sum of true positives / total number of image = 
(23+37+15+14+13)/138 = 102/138 = 74%. This 
can be compared with the baseline of 44/138 = 
32% if all images were classified as the most popu-
lar category, GRAPH. 

 
Classifier Average F-score  Accuracy 
Image 50.74% 54% 
Caption 
Text 

68.54% 69% 

Fusion 73.66% 74% 
Table 8. Comparison of Average F-scores and Ac-
curacy among all three Classifiers 

5 Discussion 

It is not surprising that the most difficult category 
to classify is Mix. This was due to the fact that Mix 
images incorporate multiple categories of other 
image types. Frequently, one other image type that 
appears in a Mix image dominates the image fea-
tures and leads to its misclassification as the other 
image type. For example, Figure 9 shows that a 
Mix image was misclassified as Gel_Image.  
 

This mistake is forgivable because the image 
does contain sub-images of gel-images, even 
though the entire figure is actually a mix of gel-
images and diagrams. This type of result highlights 
the overlap between classifications and the diffi-
culty in defining exclusive categories. 

For both misclassifications, it is not easy to 
state exactly why they were classified wrongly 
based on their image or text features. This lack of 
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intuitive understanding of discriminative behavior 
of SVM classifiers is a valid criticism of the tech-
nique. Although generative machine learning 
methods (such as Bayesian techniques or Graphical 
Models) offer more intuitive models for explaining 
success or failure, discriminative models like SVM 
are adopted here due to their higher performance 
and ease of use. 

Figure 10 shows an example of a MIX figure 
that was mislabeled by the image classifier as 
GRAPH and as GEL_IMAGE by the text classi-
fier. However, it was correctly labeled by the fu-
sion classifier. This example illustrates the value of 
the fusion classifier for being able to improve upon 
its component classifiers. 

6 Conclusions 

From the comparisons in Table 8, we see that fus-
ing the results of classifiers based on text and im-
age features yields approximately 5% 
improvement over the text -based classifier alone 
with respect to both average F-score and Accuracy. 
In fact, the F-score improved for all categories ex-
cept for MODEL which experienced a 6% drop. 
The natural conclusion is that the fusion classifier 
combines the classification performance from the 
text and image classifiers in a complementary fash-
ion that unites the strengths of both. 

7 Future Work 

To enhance the performance of the text features, 
one may restrict the vocabulary to functionally im-
portant biological words. For example, “phos-
phorylation” and “3-D” are important words that 
might sufficiently separate “protein function” from 
“protein structure”. 

Further experimentation on a larger image set 
would give us even greater confidence in our re-
sults. It would also expand the diversity within 
each category, which would hopefully lead to bet-
ter generalization performance of our classifiers. 

Other possible extensions of this work include 
investigating different machine learning ap-
proaches besides SVMs and other fusion methods. 
Additionally, different sets of image and text fea-
tures can be explored as well as other taxonomies. 
 
 

 
 
Caption: ”The 2.6-kb HincII XhoI fragment con-
taining approximately half of exon 4 and exon 5 
and 6 was subcloned between the Neo gene and 
thymidine kinase (Fig. 1 A). The location of the 
genomic probe used to screen for homologous re-
combination is shown in Fig. 1 A. Gene Targeting 
in Embryonic Stem (ES) Cells and Generation of 
Mutant Mice. Genomic DNA of resistant clones 
was digested with SacI and hybridized with the 3 
0.9-kb KpnI SacI external probe (Fig. 1 A). Chi-
meric male offspring were bred to C57BL/6J fe-
males and the agouti F1 offspring were tested for 
transmission of the disrupted allele by Southern 
blot analysis of SacI-digested genomic DNA by 
using the 3 external probe (Fig. 1 A and B). A 360-
bp region, including the first 134 bp of the 275-bp 
exon 4, was deleted and replaced with the PGKneo 
cassette in the reverse orientation (Fig. 1 A). After 
selection with G418 and gangciclovir, doubly re-
sistant clones were screened for homologous re-
combination by Southern blotting and 
hybridization with a 3 external probe (Fig. 1 A). 
Offspring were genotyped by Southern blotting of 
genomic tail DNA and hybridized with a 3 external 
probe (Fig. 1 B). To confirm that HFE / mice do 
not express the HFE gene product, we performed 
Northern blot analyses “ 
Figure 9. Above, caption text and image of a MIX 
figure mis-classified as GEL_IMAGE by the Fu-
sion Classifier 
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“Conductance properties of store-operated channels in 
A431 cells. (a) Store-operated channels in A431 cells, 
activated by the mixture of 100 mM BAPTA-AM and 1 
mM Tg in the bath solution, were recorded in c/a mode 
with 105 mM Ba2+ (Left), 105 mM Ca2+ (Center), and 
140 mM Na+ (Right) in the pipette solution at mem-
brane potential as indicated. (b) Fit to the unitary cur-
rent-voltage relationship of store-operated channels with 
Ba2+ (n = 46), Ca2+ (n = 4), Na+ (n = 3) yielded slope 
single-channel conductance of 1 pS for Ca2+ and Ba2+ 
and 6 pS for Na+. (c) Open channel probability of store-
operated channels (NPomax30) expressed as a function 
of membrane potential. Data from six independent ex-
periments in c/a mode with 105 mM Ba2+ as a current 
carrier were averaged at each membrane potential. (b 
and c) The average values are shown as mean ± SEM, 
unless the size of the error bars is smaller than the size 
of the symbols.” 

Figure 10.  Above, caption text and image of a 
MIX figure incorrectly labeled as GRAPH by Im-
age Classifier and GEL_IMAGE by the Text Clas-
sifier 
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Abstract 

I will describe my collaborators' and my 

own effort to compile large models of 

molecular pathways in complex human 

disorders. 

The talk will address a number of interre-

lated questions: 

How to extract facts from texts at a large 

scale? 

How to assess the quality of the extracted 

facts? 

How to identify sets of conflicting or un-

reliable facts and to generate an internally 

consistent model? 

How to use the resulting pathway model 

for automated generation of biological 
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Abstract

We present a small set of attachment
heuristics for postnominal PPs occurring
in full-text articles related to enzymes.
A detailed analysis of the results sug-
gests their utility for extraction of rela-
tions expressed by nominalizations (often
with several attached PPs). The system
achieves 82% accuracy on a manually an-
notated test corpus of over 3000 PPs from
varied biomedical texts.

1 Introduction

The biomedical sciences suffer from an overwhelm-
ing volume of information that is growing at explo-
sive rates. Most of this information is found only
in the form of published literature. Given the large
volume, it is becoming increasingly difficult for re-
searchers to find relevant information. Accordingly,
there is much to be gained from the development of
robust and reliable tools to automate this task.

Current systems in this domain focus primarily
on abstracts. Though the salient points of an article
are present in the abstract, much detailed informa-
tion is entirely absent and can be found only in the
full text (Shatkay and Feldman, 2003; Corney et al.,
2004). Optimal conditions for enzymatic activity,
details of experimental procedures, and useful ob-
servations that are tangential to the main point of the
article are just a few examples of such information.

Full-text articles in enzymology are characterized
by many complex noun phrases (NPs), usually with
chains of several prepositional phrases (PPs). Nom-
inalized relations are particularly frequent, with ar-
guments and adjuncts mentioned in attached PPs.

Thus, the tasks of automated search, retrieval, and
extraction in this domain stand to benefit signifi-
cantly from efforts in semantic interpretation of NPs
and PPs.

There are currently no publicly available biomed-
ical corpora suitable for this task. (See (Cohen et al.,
2005) for an overview of currently available biomed-
ical corpora.) Therefore, statistical approaches that
rely on extensive training data are essentially not
feasible. Instead, we approach the task through care-
ful analysis of the data and development of heuris-
tics. In this paper, we report on a rule-based post-
nominal PP attachment system developed as a first
step toward a more general NP semantics for pro-
teomics.

2 Background

Leroy et al. (2002; 2003) note the importance of
noun phrases and prepositions in the capture of rela-
tional information in biomedical texts, citing the par-
ticular significance of the prepositions by, of, and in.
Their parser can extract many different relations us-
ing few rules by relying on closed-class words (e.g.
prepositions) instead of restricting patterns with spe-
cific predefined verbs and entities. This bottom-
up approach achieves high precision (90%) and a
claimed (though unquantified) high recall. However,
they side-step the issue of prepositional attachment
ambiguity altogether. Also, their system is targeted
specifically and only toward relations. While rela-
tions do cover a considerable portion of the most rel-
evant information in biomedical texts, there is also
much relevant lower frequency information (partic-
ularly in enzymology) such as the conditions under
which these relations are expressed.
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Hahn et al. (2002) point out that PPs are crucial
for semantic interpretation of biomedical texts due
to the wide variety of conceptual relations they in-
troduce. They note that this is reflected in their
training and test data, extracted from findings re-
ports in histopathology, where prepositions account
for about 10% of all words and more than 25% of
the text is contained in PPs. The coverage of PPs in
our development and test data, comprised of varied
texts in proteomics, is even higher with 26% of the
text occurring in postnominal PPs alone.

Little research in the biomedical domain ad-
dresses the problem of PP attachment proper. This
is partly due to the number of systems that pro-
cess text using named-entity-based templates, dis-
regarding PPs. In fact, the only recent BioNLP sys-
tem found in the literature that makes any mention
of PP attachment is Medstract (Pustejovsky et al.,
2002), an automated information extraction system
for Medline abstracts. The shallow parsing module
used in Medstract performs “limited” prepositional
attachment—only of prepositions are attached.

There are, of course, several PP attachment sys-
tems for other domains. Volk (2001) addresses PP
attachment using the frequency of co-occurrence of
a PP’s preposition, object NP, and possible attach-
ment points, calculated from query results of a web-
based search engine. This system was evaluated
on sentences from a weekly computer magazine,
scoring 74% accuracy for both VP and NP attach-
ment. Brill & Resnik (1994) put transformation-
based learning with added word-class information
from WordNet to the task of PP attachment. Their
system achieves 81.8% accuracy on sentences from
the Penn Treebank Wall Street Journal corpus.

The main concerns of both these systems differ
from the requirements for successful PP attachment
in proteomics. The main attachment ambiguity in
these general texts is between VP and NP attach-
ment, where there are few NPs to choose from for a
given PP. In contrast, proteomics texts, where NPs
are the main information carriers, contain many NPs
with long sequences of postnominal PPs. Conse-
quently, the possible attachment points for a given
PP are more numerous. By “postnominal”, we de-
note PPs following an NP, where the attachment
point may be within the NP but may also precede
it. In focusing on postnominal PPs, we exclude here

PPs that trivially attach to the VP for lack of NP at-
tachment points and focus on the subset of PPs with
the highest degree of attachment ambiguity.

3 Approach

For this exploratory study we compiled two manu-
ally annotated corpora1 , a smaller, targeted devel-
opment corpus consisting of sentences referring to
enzymes in five articles, and a larger test corpus con-
sisting of the full text of nine articles drawn from a
wider set of topics. This bias in the data was set de-
liberately to test whether NPs referring to enzymes
follow a distinct pattern. Our results suggest that
the compiled heuristics are in fact not specific to en-
zymes, but work with comparable performance for a
much wider set of NPs.

As our goal is semantic interpretation of NPs,
only postnominal PPs were considered. A large
number of these follow a very simple attachment
principle—right association.

Right association (Kimball, 1973), or late clo-
sure, describes a preference for parses that result in
the parse tree with the most right branches. Sim-
ply stated, right association assumes that new con-
stituents are part of the closest possible constituent
that is under construction. In the case of postnomi-
nal PPs, right association attaches each PP to the NP
that immediately precedes it. An example where this
strategy does fairly well is given below.

The effect of hydrolysis of the hemicelluloses in the
milled wood lignin on the molecular mass distribu-
tion was then examined. . .

Notice that, except for the last PP, attachment to the
preceding NP is correct. The last PP, on the molecu-
lar mass distribution, modifies the head NP effect.

Another frequent pattern in our corpus is given
below with a corresponding text fragment. In this
pattern, the entire NP consists of one reaction fully
described by several PPs that all attach to a nominal-
ization in the head NP. Attachment according to this
pattern is in direct opposition to right association.

<ACTION> <PREPOSITION> <PRODUCT>
<PREPOSITION> <SUBSTRATE>
<PREPOSITION> <ENZYME>
<PREPOSITION> <MEASUREMENT>

1There was a single annotator for both corpora, who was
also the developer of the heuristics.
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. . . the release of reducing sugars from car-
boxymethylcellulose by cellulase at 37 oC, pH
4.8. . .

In general, the attachment behavior of a large per-
centage of PPs in the examined literature can be
characterized by either right association or attach-
ment to a nominalization. The preposition of a PP
seems to be the main criterion for determining which
attachment principle to apply. A few prepositions
were observed to follow right association almost ex-
clusively, while others show a strong affinity toward
nominalizations, defaulting to right association only
when no nominalization is available.

These observations were implemented as attach-
ment heuristics for the most frequently occurring
PPs, as distinguished by their prepositions (see Ta-
ble 1 for frequency data). These rules, as outlined
below, account for 90% of all postnominal PPs in
the corpus. The remaining 10%, for which no clear
pattern could be found, are attached using right as-
sociation.

Devel. Corpus Test Corpus
Prep Freq Syst Base Freq Syst Base
of 50.0 99.0 99.0 53.4 98.2 98.2
in 11.9 74.8 55.6 11.7 67.0 54.6
from 8.3 87.0 87.0 3.67 71.8 71.8
for 4.5 81.1 81.0 5.1 56.1 56.0
with 4.5 83.8 75.7 4.7 70.8 65.2
between 4.2 68.6 68.6 1.2 84.2 84.2
at 3.3 81.5 18.5 4.0 68.3 40.7
on 3.1 84.6 57.7 2.1 80.0 53.9
by 2.5 95.2 23.8 2.4 76.7 45.2
to 2.3 63.2 63.2 5.0 51.6 51.6
as 1.8 66.7 46.7 0.7 40.9 36.4

Table 1: Frequency of prepositions with correspond-
ing PP attachment accuracy for the implemented
heuristics and the baseline (right association) on de-
velopment and test set.

Right Association (of, from, for)
PPs headed by of, from, and for attach almost exclu-
sively according to right association. In particular,
no violation of right association by of PPs has been
found. The system, therefore, attaches any PP from
this class to the NP immediately preceding it.

Strong Nominalization Affinity (by, at)
In contrast, by and at PPs attach almost exclusively
to nominalizations. Only rarely have they been ob-
served to attach to non-nominalization NPs. In most

cases where no nominalizations are present in the
NP, a PP of this class actually attaches to a preced-
ing VP. Typical nominalization and VP attachments
found in the corpus are exemplified in the following
two sentences.

. . . the formation of stalk cells by culB− pkaR−

cells decreased about threefold. . .

. . . xylooligosaccharides were not detected in hy-
drolytic products from corn cell walls by TLC
analysis.

This attachment preference is implemented in the
system as the heuristic for strong nominalization
affinity. Given a PP from this class, the system first
attempts attachment to the closest nominalization to
the left. If no such NP is found, the PP is assumed
to attach to a VP.

Weak Nominalization Affinity (in, with, as)
In, with, and as PPs show similar affinity toward
nominalizations. In fact, initially, these PPs were
attached with the strong affinity heuristic. How-
ever, after further observation it became apparent
that these PPs do often attach to non-nominalization
NPs. A typical example for each of these possibili-
ties is given as follows.

. . . incubation of the substrate pullulan with protein
fractions.

The major form of beta-amylase in Arabidopsis. . .

Here, the system first attempts nominalization at-
tachment. If no nominalizations are present in the
NP, instead of defaulting to VP attachment, the PP
is attached to the closest NP to its left that is not
the object of an of PP. This behavior is intuitively
consistent since in PPs are usually adjuncts to the
main NP (which is usually an entity if not a nom-
inalization) and are unlikely to modify any of the
NP’s modifiers.

“Effect on”
The final heuristic encodes the frequent attachment
of on PPs with NPs indicating effect, influence, im-
pact, etc. While this relationship seems intuitive and
likely to occur in varied texts, it may be dispropor-
tionally frequent in proteomics texts. Nonetheless,
the heuristic does have a strong basis in the exam-
ined literature. An example is provided below.
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. . . the effects of reduced β-amylase activity on seed
formation and germination. . .

The system checks NPs preceding an on PP for the
closest occurrence of an “effect” NP. If no such NPs
are found, right association is used.

4 System Overview

There are three main phases of processing that must
occur before the PP attachment heuristics can be ap-
plied. These include preprocessing and two stages
of NP chunking. Upon completion of these three
phases, the PP attachment module is executed.

The preprocessing phase consists of standard to-
kenization and part-of-speech tagging, as well as
named entity recognition (and other term lookup)
using gazetteer lists and simple transducers. Recog-
nition is currently limited to enzymes, organisms,
chemicals, (enzymological) activities, and measure-
ments. A comprehensive enzyme list including syn-
onyms was compiled from BRENDA2 and some
limited organism lists3, including common abbrevi-
ations, were augmented based on organisms found
in the development corpus. For recognition of sub-
strates and products, some of the chemical entity
lists from BioRAT (Corney et al., 2004) are used.
Activity lists from BioRAT, with several enzyme-
specific additions, are also used.

The next phase of processing uses a chunker re-
ported in (Bergler et al., 2003) and further developed
for a related project. NP chunking is performed in
two stages, using two separate context-free gram-
mars and an Earley-type chart parser. No domain-
specific information is used in either of the gram-
mars; recognized entities and terms are used only for
improved tokenization. The first stage chunks base
NPs, without attachments. Here, the parser input
is segmented into smaller sentence fragments to re-
duce ambiguity and processing time. The fragments
are delimited by verbs, prepositions, and sentence
boundaries, since none of these can occur within a
base NP. In the second chunking stage, entire sen-
tences are parsed to extract NPs containing conjunc-
tions and PP attachments. At this stage, no attempt
is made to determine the proper attachment structure
of the PPs or to exclude postnominal PPs that should

2http://www.brenda.uni-koeln.de
3Compiled for a related project.

actually be attached to a preceding VP—any PP that
follows an NP has the potential to attach somewhere
in the NP.

The final phase of processing is performed by the
PP attachment module. Here, each postnominal PP
is examined and attached according to the rule for its
preposition. Only base NPs within the same NP are
considered as possible attachment points. For the
strong nominalization affinity heuristic, if no nomi-
nalization is found, the PP is assumed to attach to the
closest preceding VP. For both nominalization affin-
ity heuristics, the UMLS SPECIALIST Lexicon4 is
used to determine whether the head noun of each
possible attachment point is a nominalization.

5 Results & Analysis

The development corpus was compiled from five ar-
ticles retrieved from PubMed Central5 (PMC). The
articles were the top-ranked results returned from
five separate queries6 using BioKI:Enzymes, a lit-
erature navigation tool (Bergler et al., 2006). Sen-
tences containing enzymes were extracted and the
remaining sentences were discarded. In total, 476
sentences yielding 830 postnominal PPs were man-
ually annotated as the development corpus.

Attachment accuracy on the development corpus
is 88%. The accuracy and coverage of each rule is
summarized in Table 2 and discussed in the follow-
ing sections. Also, as a reference point for perfor-
mance comparison, the system was tested using only
the right association heuristic resulting in a baseline
accuracy of 80%. The system performance is con-
trasted with the baseline and summarized for each
preposition in Table 1.

Devel. Corpus Test Corpus
Heuristic Freq Accuracy Freq Accuracy
Right Association 62.8 96.2 62.1 93.3
Weak NA 18.2 76.2 17.1 67.0
Strong NA 5.8 87.5 6.4 71.4
“Effect on” 3.1 84.6 2.1 80.0
Default (RA) 10.1 60.7 12.3 49.5

Table 2: Coverage and accuracy of each heuristic.

4http://www.nlm.nih.gov/research/umls/
5http://www.pubmedcentral.com
6Amylase, CGTase, pullulanase, ferulic acid esterase, and

cellwallase were used as the PMC search terms and a list of
different enzymes was used for scoring.
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To measure heuristic performance, the PP attach-
ment heuristics were scored on manual NP and PP
annotations. Thus all reported accuracy numbers re-
flect performance of the heuristics alone, isolated
from possible chunking errors. The PP attachment
module is, however, designed for input from the
chunker and does not handle constructs which the
chunker does not provide (e.g. PP conjunctions and
non-simple parenthetical NPs).

5.1 Right Association

The application of right association for PPs headed
by of, for, and from resulted in correct attachment in
96.2% of their occurrences in the development cor-
pus. Because this class of PPs is processed using
the baseline heuristic without any refinements, it has
no effect on overall system accuracy as compared to
overall baseline accuracy. However, it does provide
a clear delineation of the subset of PPs for which
right association is a sufficient and optimal solution
for attachment. Given the coverage of this class of
PPs (62.8% of the corpus), it also provides an expla-
nation for the relatively high baseline performance.

Of PPs are attached with 99% accuracy.
All errors involve attachment of PP conjunc-
tions, such as “. . . a search of the literature
and of the GenBank database. . . ”, or attachment
to NPs containing non-simple parenthetical state-
ments, such as “The synergy degree (the activi-
ties of XynA and cellulase cellulosome mixtures di-
vided by the corresponding theoretical activities)
of cellulase. . . ”. Sentences of these forms are not
accounted for in the NP chunker, around which the
PP attachment system was designed. Both scenarios
reflect shortcomings in the NP grammars, not in the
heuristic.

For and from PPs are attached with 81% and 87%
accuracy, respectively. The majority of the error
here corresponds to PPs that should be attached to a
VP. For example, attachment errors occurred both in
the sentence “. . . this was followed by exoglucanases
liberating cellobiose from these nicks. . . ” and in the
sentence “. . . the reactions were stopped by placing
the microtubes in boiling water for 2 to 3 min.”

5.2 Strong Nominalization Affinity

The heuristic for strong nominalization affinity deals
with only two types of PPs, those headed by the

prepositions by and at, both of which occur with
relatively low frequency in the development corpus.
Accordingly, the heuristic’s impact on the overall ac-
curacy of the system is rather small. However, it af-
fords the largest increase in accuracy for the PPs of
its class. The heuristic correctly determines attach-
ment with 87.5% accuracy.

While these PPs account for a small portion of
the corpus, they play a critical role in describing
enzymological information. Specifically, by PPs
are most often used in the description of relation-
ships between entities, as in the NP “degradation
of xylan networks between cellulose microfibrils
by xylanases”, while at PPs often quantitatively in-
dicate the condition under which observed behavior
or experiments take place, as in the NP “Incubation
of the enzyme at 40 oC and pH 9.0”.

The heuristic provides a strong performance in-
crease over the baseline, correctly attaching 95.2%
of by PPs in contrast to 23.8% with the baseline. In
fact, only a single error occurred in attaching by PPs
in the development corpus and the sentence in ques-
tion, given below, appears to be ungrammatical in all
of its possible interpretations.

The TLC pattern of liberated cellooligosaccharides
by mixtures of XynA cellulosomes and cellulase cel-
lulosomes was similar to that caused by cellulase
cellulosomes alone.

A few other errors (e.g. typos, omission of words,
and grammatically incorrect or ambiguous con-
structs) were observed in the development corpus.
The extent of such errors and the degree to which
they affect the results (either negatively or posi-
tively) is unknown. However, such errors are in-
escapable and any automated system is susceptible
to their effects.

Although no errors in by PP attachment were
found in the development corpus, aside from the
given problematic sentence, one that would be pro-
cessed erroneously by the system was found manu-
ally in the GENIA Treebank7. It is given below to
demonstrate a boundary case for this heuristic.

. . . modulation of activity in B cells by human T-cell
leukemia virus type I tax gene. . .

Here, the system would attach the by PP to the clos-
est nominalization activity, when in fact, the cor-

7http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/
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rect attachment is to the nominalization modulation.
This error scenario is relevant to all of the PPs with
nominalization affinity. A possible solution is to
separate general nominalizations, such as activity
and action, from more specific ones, such as mod-
ulation, and to favor the latter type whenever possi-
ble. An experiment toward this end, with emphasis
on in PPs, was performed with promising results. It
is discussed in the following section.

For at PPs, 81.5% accuracy was achieved, as com-
pared to 18.5% with the baseline. The higher de-
gree of error with at PPs is indicative of their more
varied usage, requiring more contextual information
for correct attachment. An example of typical vari-
ation is given in the following two sentences, both
of which contain at PPs that the system incorrectly
attached to the nominalization activity.

The amylase exhibited maximal activity at pH 8.7
and 55 oC in the presence of 2.5 M NaCl.

. . . Bacillus sp. strain IMD370 produced alkaline
α-amylases with maxima for activity at pH 10.0.

While both sentences report observed conditions for
maximal enzyme activity using similar language, the
attachment of the at PPs differs between them. In the
first sentence, the activity was exhibited at the given
pH and temperature (VP attachment), but in the sec-
ond sentence, the enzyme was not necessarily pro-
duced at the given pH (NP attachment)—production
may have occurred under different conditions from
those reported for the activity maxima.

For errors of this nature, it seems that employing
semantic information about the preceding VP and
possibly also the head NP would lead to more ac-
curate attachment. There are, however, other similar
errors where even the addition of such information
does not immediately suggest the proper attachment.

5.3 Weak Nominalization Affinity

The weak nominalization affinity heuristic covers a
large portion of the development corpus (18.2%).
Overall system improvement over baseline attach-
ment accuracy can be achieved through successful
attachment of this class of PPs, particularly in and
with PPs, which are the second and fourth most fre-
quently used PPs in the development corpus, respec-
tively. Unfortunately, the usage of these PPs is also
perhaps the hardest to characterize. The heuristic

achieves only 76.2% accuracy. Though noticeably
better than right association alone, it is apparent that
the behavior of this class of PPs cannot be entirely
characterized by nominalization affinity.

Accuracy of in PP attachment increased by 19.2%
from the baseline with this heuristic. A significant
source of attachment error is the problem of mul-
tiple nominalizations in the same NP. As men-
tioned above, splitting nominalizations into general
and specific classes may solve this problem. To ex-
plore this conjecture, the most common (particularly
with in PPs) general nominalization, activity, was
ignored when searching for nominalization attach-
ment points. This resulted in a 3% increase in the
accuracy for in PPs with no adverse effects on any
of the other PPs with nominalization affinity.

Despite further anticipated improvements from
similar changes, attachment of in PPs stands to ben-
efit the most from additional semantic information in
the form of rules that encode containment semantics
(i.e. which types of things can be contained in other
types of things). Possible containment rules exist
for the few semantic categories that are already im-
plemented; enzymes, for instance, can be contained
in organisms, but organisms are rarely contained in
anything (though organisms can be said to be con-
tained in their species, the relationship is rarely ex-
pressed as containment). Further analysis and more
semantic categories are needed to formulate more
generally applicable rules.

With and as PPs are attached with 83.8% and
66.7% accuracy, respectively. All of the errors for
these PPs involve incorrect attachment to an NP
when the correct attachment is to a VP. Presented
below are two sentences that provide examples of
the particular difficulty of resolving these errors.

The xylanase A . . . was expressed by E. coli
with a C-terminal His tag from the vector pET-
29b. . .

The pullulanase-type activity was identified as
ZPU1 and the isoamylase-type activity as SU1.

In the first sentence, the with PP describes the
method by which xylanase A was expressed; it does
not restrict the organism in which the expression
occurred. This distinction requires understanding
the semantic relationship between C-terminal His
tags, protein (or enzyme) expression, and E. coli.
Namely, that His tags (polyhistidine-tags) are amino
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acid motifs used for purification of proteins, specif-
ically proteins expressed in E. coli. Such informa-
tion could only be obtained from a highly domain-
specific knowledge source. In the second sentence,
the verb to which the as PP attaches is omitted. Ac-
cordingly, even if the semantics of verbs were used
to help determine attachment, the system would
need to recognize the ellipsis for correct attachment.

5.4 “Effect on” Heuristic

The attachment accuracy for on PPs is 84.6% using
the “effect on” heuristic, a noticeable improvement
over the 57.7% accuracy of the baseline. The few at-
tachment errors for on PPs were varied and revealed
no regularities suggesting future improvements.

5.5 Unclassified PPs

The remaining PPs, for which no heurisitics were
implemented, represent 10% of the development
corpus. The system attaches these PPs using right
association, with accuracy of 60.7%. Most frequent
are PPs headed by between, which are attached with
68.6% accuracy. A significant improvement is ex-
pected from a heuristic that attaches these PPs based
on observations of semantic features in the corpus.
Namely, that most of the NPs to which between PPs
attach can be categorized as binary relations (e.g.
bond, linkage, difference, synergy). This relational
feature can be expressed in the head noun or in a
prenominal modifier. In fact, more than 25% of be-
tween PPs in the development corpus attach to the
NP synergistic effects (or some similar alternative),
where between shows affinity toward the adjective
synergistic, not the head noun effects, which does
not attract between PP attachment on its own.

6 Evaluation on Varied Texts

To assess the general applicability of the heuristics
to varied texts, the system was evaluated on a test
corpus of an additional nine articles8 from PMC.
The entire text, except the abstract and introduc-
tion, of each article was manually annotated, result-
ing in 1603 sentences with 3079 postnominal PPs.
The system’s overall attachment accuracy on this

8PMC query terms: metabolism, biosynthesis, proteolysis,
peptidyltransferase, hexokinase, epimerase, laccase, ligase, de-
hydrogenase.

test data is 82%, comparable to that for the develop-
ment enzymology data. The accuracy and coverage
of each rule for the test data, as contrasted with the
development set, is given in Table 2. The baseline
heuristic achieved an accuracy of 77.5%. A com-
parative performance breakdown by preposition is
given in Table 1.

Overall, changes in the coverage and accuracy of
the heuristics are much less pronounced than ex-
pected from the increase in size and variance of both
subject matter and writing style between the devel-
opment and test data. The only significant change
in rule coverage is a slight increase in the number of
unclassified PPs to 12.3%. These PPs are also more
varied and the right-associative default heuristic is
less applicable (49.5% accuracy in the test data vs.
60.7% in the development data). The largest contri-
bution to this additional error stems from a doubling
of the frequency of to PPs in the test corpus. Prelim-
inary analysis of the corresponding errors suggests
that these PPs would be much better suited to the
strong nominalization affinity heuristic than the right
association default. The error incurred over all un-
classified PPs accounts for 1.4% of the accuracy dif-
ference between the development and test data. The
larger number of these PPs also explains the smaller
overall difference between the system and baseline
performance.

For PPs were observed to have more frequent VP
attachment in the test data. In particular, for PPs
with object NPs specifying a duration (or other mea-
surement), as exemplified below, attach almost ex-
clusively to VPs and nominalizations.

The sample was spun in a microfuge for 10 min. . .

This behavior is also apparent in the development
data, though in much smaller numbers. Applying the
strong nominalization affinity heuristic to these PPs
resulted in an increase of for PP attachment accuracy
in the test corpus to 75.8% and an overall increase in
accuracy of 1.0%.

A similar pattern was observed for at PPs, where
the pattern <CHEMICAL> at <CONCENTRATION> ac-
counts for 25.6% of all at PP attachment errors and
the majority of the performance decrease for the
strong nominalization affinity heuristic between the
two data sets. The remainder of the performance de-
crease for this heuristic is attributed to gaps in the
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UMLS SPECIALIST Lexicon. For instance, the un-
derlined head nouns in the following examples are
not marked as nominalizations in the lexicon.

The double mutant inhibited misreading by paro-
momycin . . .

. . . the formation of stalk cells by culB− pkaR−

cells. . .

In our test corpus, these errors were only apparent
in by PP attachment, but can potentially affect all
nominalization-based attachment.

Aside from the cases mentioned in this section,
attachment trends in the test corpus are quite similar
to those observed in the development corpus. Given
the diversity in the test data, both in terms of subject
matter (between articles) and writing style (between
sections), the results suggest the suitability of our
heuristics to proteomics texts in general.

7 Conclusion

The next step for BioNLP is to process the full text
of scientific articles, where heavy NPs with poten-
tially long chains of PP attachments are frequent.
This study has investigated the attachment behav-
ior of postnominal PPs in enzyme-related texts and
evaluated a small set of simple attachment heuris-
tics on a test set of over 3000 PPs from a collec-
tion of more varied texts in proteomics. The heuris-
tics cover all prepositions, even infrequent ones,
that nonetheless convey important information. This
approach requires only NP chunked input and a
nominalization dictionary, all readily available from
on-line resources. The heuristics are thus useful
for shallow approaches and their accuracy of 82%
puts them in a position to reliably improve both,
proper recognition of entities and their properties
and bottom-up recognition of relationships between
entities expressed in nominalizations.
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1 Goals

BioKI:Enzymes is a literature navigation system that
uses a two-step process. First, full-text articles are
retrieved from PubMed Central (PMC). Then, for
each article, the most relevant passages are identified
according to a set of user selected keywords, and the
articles are ranked according to the pertinence of the
representative passages.

In contrast to most existing systems in informa-
tion retrieval (IR) and information extraction (IE) for
bioinformatics, BioKI:Enzymes processes full-text
articles, not abstracts. Full-text articles1 permit to
highlight low-frequency information—i.e. informa-
tion that is not redundant, that does not necessarily
occur in many articles, and within each article, may
be expressed only once (most likely in the body of
the article, not the abstract). It contrasts thus with
GoPubMed (Doms and Schroeder, 2005), a cluster-
ing system that retrieves abstracts using PMC search
and clusters them according to terms from the Gene
Ontology (GO).

Scientists face two major obstacles in using IR
and IE technology: how to select the best keywords
for an intended search and how to assess the validity
and relevance of the extracted information.

To address the latter problem, BioKI provides
convenient access to different degrees of context by
allowing the user to view the information in three
different formats. At the most abstract level, the
ranked list of articles provides the first five lines of
the most pertinent text segment selected by BioKI
(similar to the snippets provided by Google). Click-
ing on the article link will open a new window with a

1Only articles that are available in HTML format can cur-
rently be processed.

side-by-side view of the full-text article as retrieved
through PMC on the left and the different text seg-
ments2, ordered by their relevance to the user se-
lected keywords, on the right. The user has thus the
possibility to assess the information in the context of
the text segment first, and in the original, if desired.

2 Keyword-based Ranking

To address the problem of finding the best keywords,
BioKI:Enzymes explores different approaches. For
research in enzymology, our users specified a stan-
dard pattern of information retrieval, which is re-
flected in the user interface.

Enzymes are proteins that catalyze reactions dif-
ferently in different environments (pH and tem-
perature). Enzymes are characterized by the sub-
strate they act on and by the product of their catal-
ysis. Accordingly, a keyphrase pattern has enti-
ties (that tended to recur) prespecified for selection
in four categories: enzymes, their activities (such
as carbohydrate degrading), their qualities (such
as maximum activity), and measurements (such as
pH). The provided word lists are not exhaustive
and BioKI:Enzymes expects the user to specify new
terms (which are not required to conceptually fit the
category). The word lists are convenient for select-
ing alternate spellings that might be hard to enter (α-
amylase) and for setting up keyphrase templates in a
profile, which can be stored under a name and later
reused. Completion of the keyword lists is provided
through stemming and the equivalent treatment of
Greek characters and their different transliterations.

The interface presents the user with a search win-
dow, which has two distinct fields, one to specify

2We use TextTiler (Hearst, 1997) to segment the article.
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the search terms for the PMC search, the other to
specify the (more fine-grained) keywords the sys-
tem uses to select the most relevant passages in the
texts and to rank the texts based on this choice. The
BioKI specific keywords can be chosen from the
four categories of keyword lists mentioned above or
entered. What distinguishes BioKI:Enzymes is the
direct control the user has over the weight of the key-
words in the ranking and the general mode of con-
sidering the keywords. Each of the four keyword
categories has a weight associated with it. In ad-
dition, bonus scores can be assigned for keywords
that co-occur at a distance less than a user-defined
threshold. The two modes of ranking are a basic
“and”, where the weight and threshold settings are
ignored and the text segment that has the most spec-
ified keywords closest together will be ranked high-
est. This is the mode of choice for a targeted search
for specific information, like “pH optima” in a PMC
subcorpus for amylase.

The other mode is a basic “or”, with additional
points for the co-occurrence of keywords within the
same text segment. Here, the co-occurrence bonus
is given for terms from the four different lists, not
for terms from the same list. While the search space
is much too big for a scientist to control all these de-
grees of freedom without support, our initial exper-
iments have shown that we could control the rank-
ing behavior with repeated refinements of the weight
settings, and even simulate the behavior of an “and”
by judicious weight selection.

3 Assessment and Future Work

The evaluation of a ranking of full-text articles, for
which there are no Gold standards as of yet, is dif-
ficult and begins in the anecdotal. Our experts did
not explore the changes in ranking based on differ-
ent weight settings, but found the “and” to be just
what they wanted from the system. We will ex-
periment with different weight distribution patterns
to see whether a small size of different weight set-
tings can be specified for predictable behavior and
whether this will have better acceptance.

The strength of BioKI lies in its adaptability to
user queries. In this it contrasts with template-based
IE systems like BioRAT (Corney et al., 2004), which
extracts information from full-length articles, but

uses handcoded templates to do so. Since BioKI
is not specific to an information need, but is meant
to give more control to the user and thus facilitate
access to any type of PMC search results, it is im-
portant that the same PMC search results can be re-
ordered by successively refining the selected BioKI
keywords until more desirable texts appear at the
top. This behavior is modeled after frequent behav-
ior using search engines such as Google, where of-
ten the first search serves to better select keywords
for a subsequent, better targeted search. This rerank-
ing based on keyword refinement can be done al-
most instantaneously (20 sec for 480 keyphrases on
161 articles), since the downloaded texts from PMC
are cached, and since the system spends most of its
runtime downloading and storing the articles from
PMC. This is currently a feasibility study, targeted to
eventually become a Web service. Performance still
needs to be improved (3:14 min for 1 keyphrase on
161 articles, including downloading), but the quality
of the ranking and variable context views might still
entice users to wait for them.

In conclusion, it is feasible to develop a highly
user-adaptable passage highlighting system over
full-text articles that focuses on low-frequency infor-
mation. This adaptability is provided both through
increased user control of the ranking parameters and
through presentation of results in different contexts
which at the same time justify the ranking and au-
thenticate keyword occurrences in their source text.
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1 Introduction

One step in the curation process isgeneId finding—
the task of finding the database identifier of every
gene discussed in an article. GeneId-finding was
studied experimentally in the BioCreatIvE challenge
(Hirschman et al., 2005), which developed testbed
problems for each of three model organisms (yeast,
mice, and fruitflies). Here we considergeneId rank-
ing, a relaxation of geneId-finding in which the sys-
tem provides a ranked list of genes that might be
discussed by the document. We show how multi-
ple named entity recognition (NER) methods can
be combined into a single high-performance geneId-
ranking system.

2 Methods and Results

We focused on the mouse dataset, which was the
hardest for the BioCreatIvE participants. This
dataset consists of several parts. Thegene synonym
list consists of 183,142 synonyms for 52,594 genes;
the training data consists of 100 mouse-relevant
Medline abstracts, associated with the MGI geneId’s
for those genes that are mentioned in the abstract;
the evaluation dataconsists of an additional 50
mouse-relevant Medline abstracts, also associated
with the MGI geneId’s as above; thetest datacon-
sists of an additional 250 mouse-relevant Medline
abstracts, again associated with MGI geneId’s; fi-
nally the historical data consists of 5000 mouse-
relevant Medline abstracts, each of which is associ-
ated with the MGI geneId’s for all genes which are
(a) associated with the article according to the MGI
database, and (b) mentioned in the abstract, as deter-

mined by an automated procedure based on the gene
synonym list.1 We also annotated the evaluation-
data for NER evaluation.

We used two closely related gene-protein NER
systems in our experiments, both trained using
Minorthird (Min, 2004) on the YAPEX corpus
(Franźen et al., 2002). Thelikely-protein extractor
was designed to have high precision and lower re-
call, and thepossible-protein extractorwas designed
to have high recall and lower precision. As shown in
Table 1, the likely-protein extractor performs well
on the YAPEX test set, but neither system performs
well on the mouse evaluation data—here, they per-
form only comparably to exact matching against the
synonym dictionary. This performance drop is typ-
ical when learning-based NER systems are tested
on data from a statistical distribution different from
their training set.

As a baseline for geneId-ranking, we used a string
similarity metric calledsoft TFIDF, as implemented
in the SecondString open-source software package
(Cohen and Ravikumar, 2003), and soft-matched ex-
tracted gene names against the synonym list. Ta-
ble 2 shows themean average precisionon the eval-
uation data. Note that the geneId ranker based on
possible-protein performs statistically significantly
better2 than the one based on likely-protein, even
though possible-protein has a lower F score.

To combine these two NER systems, we represent
all information as a labeled directed graph which in-

1The training data and evaluation data are subsets of the
BioCreatIvE “devtest” set. The historical data was called “train-
ing data” in the BioCreatIvE publications. The test data is the
same as the blind test set used in BioCreatIvE.

2With z = 3.1, p > 0.995 using a two-tailed paired test.
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Precis. Recall F
mouse eval
likely-prot 0.667 0.268 0.453
possible-prot 0.304 0.566 0.396
dictionary 0.245 0.439 0.314
YAPEX test
likely-prot 0.872 0.621 0.725
YAPEX system 0.678 0.664 0.671

Table 1: Performance of the NER systems on the
mouse evaluation corpus and the YAPEX test cor-
pus.

Mean Average
Precision (MAP)

mouse evaluation data
likely-prot + softTFIDF 0.450
possible-prot + softTFIDF 0.626
graph-based ranking 0.513

+ extra links 0.730
+ extra links & learning 0.807

Table 2: Mean average precision of several geneId-
ranking methods on the 50 abstracts from the mouse
evaluation dataset.

cludes the test abstracts, the extracted names, the
synonym list, and the historical data. We then use
proximity in a graphfor ranking. The graph used
is illustrated in Figure 1. Nodes in this graph can
be eitherfiles, strings, terms, or user-defined types.
Abstracts and gene synonyms are represented asfile
and string nodes, respectively. Files are linked to
the terms (i.e., the words) that they contain, and
terms are linked to the files that contain them.3 File
nodes are also linked tostring nodes corresponding
to the output of an NER system on that file. (String
nodes are simply short files.) The graph also con-
tains geneIdnodes andsynonymstring nodes cre-
ated from the dictionary, and for each historical-data
abstract, we include links to its associated geneId
nodes.

Given this graph, gene identifiers for an abstract
are generated by traversing the graph away from the
abstract node, and looking forgeneIdnodes that are
“close” to the abstract according to a certain proxim-

3In fact, all edges have inverses in the graph.

Figure 1: Part of a simplified version of the graph
used for geneId ranking.

ity measure for nodes. Similarity between two nodes
is defined by alazy walk process, similar to PageR-
ank with decay. The details of this are described in
the full paper and elsewhere (Minkov et al., 2006).
Intuitively, however, this measures the similarity of
two nodes by the weighted sum of all paths that con-
nect the nodes, where shorter paths will be weighted
exponentially higher than longer paths. One conse-
quence of this measure is that information associ-
ated with paths like the one on the left-hand side of
the graph—which represents a soft-match between a
likely-protein and a synonym—can be reinforced by
other types of paths, like the one on the right-hand
side of the figure.

As shown in Table 2, the graph-based approach
has performance intermediate between the two base-
line systems. However, the baseline approaches in-
clude some information which is not available in the
graph, e.g., the softTFIDF distances, and the implicit
knowledge of the “importance” of paths from an ab-
stract to a synonym via an NER-extracted string. To
include this information, we inserted extra edges la-
beledproteinToSynonymbetween the extracted pro-
tein stringsx and comparable synonymsy, and also
“short-cut” edges in the graph that directly link ab-
stractsx to geneIdnodes reachable via one of the
“important” paths described above.

As Table 2 shows, graph search with the aug-
mented graph does indeed improve MAP perfor-
mance on the mouse evaluation data: performance
is better than the simple graph, and also better than

94



MAP Avg Max F
mouse test data
likely-prot + softTFIDF 0.368 0.421
possible-prot + softTFIDF 0.611 0.672
graph-based ranking 0.640 0.695

+ extra links & learning 0.711 0.755

Table 3: Mean average precision of several geneId-
ranking methods on the 250 abstracts from the
mouse test dataset.

either of the baseline methods described above.
Finally we extended the lazy graph walk to pro-

duce, for each nodex reached on the walk, a feature
vector summarizing the walk. Intuitively, the fea-
ture vector records certain features of each edge in
the graph, weighting these features according to the
probability of traversing the edge. We then use a
learning-to-rank method (Collins and Duffy, 2002)
to rerank the top 100 nodes. Table 2 shows that
learning improves performance. In combination, the
techniques described have improved MAP perfor-
mance to 0.807, an improvement of nearly 80% over
the most natural baseline (i.e., soft-matching the dic-
tionary to the NER method with the best F measure).

As a final prospective test, we applied these meth-
ods to the 250-abstract mouse test data. We com-
pared their performance to the graph-based search
method combined with a reranking postpass learned
from the 100-abstract mouse training data. The per-
formance of these methods is summarized in Ta-
ble 3. The somewhat lower performance is proba-
bly due to variation in the two samples.4 We also
computed the maximal F-measure (over any thresh-
old) of each ranked list produced, and then averaged
these measures over all queries. This is compara-
ble to the best F1 scores in the BioCreatIvE work-
shop, although the averaging for BioCreatIvE was
done differently.

3 Conclusion

We evaluate several geneId-ranking systems, in
which an article is associated with a ranked list of
possible gene identifiers. We find that, when used

4For instance, the test-set abstracts contain somewhat more
proteins on average (2.2 proteins/abstract) than the evaluation-
set abstracts (1.7 proteins/abstract).

in the most natural manner, the F-measure perfor-
mance of an NER systems does not correlate well
with MAP of the geneId-ranker based on it: rather,
the NER system with higher recall, but lower overall
performance, has significantly better performance
when used for geneId-ranking.

We also present a graph-based scheme for com-
bining NER systems, which allows many types of
information to be combined. Combining this sys-
tem with learning produces performance much bet-
ter than either NER system can achieve alone. On
average, 68% of the correct proteins will be found in
the top two elements of the list, 84% will be found
in the top five elements, and more than 90% will
be found in the top ten elements. This level of per-
formance is probably good enough to be of use in
curation.
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Abstract

Resolving anaphora is an important step
in the identification of named entities such
as genes and proteins in biomedical sci-
entific articles. The goal of this work
is to resolve associative and coreferential
anaphoric expressions making use of the
rich domain resources (such as databases
and ontologies) available for the biomed-
ical area, instead of annotated training
data. The results are comparable to ex-
tant state-of-the-art supervised methods in
the same domain. The system is integrated
into an interactive tool designed to assist
FlyBase curators by aiding the identifica-
tion of the salient entities in a given paper
as a first step in the aggregation of infor-
mation about them.

1 Introduction

The number of articles being published in biomedi-
cal journals per year is increasing exponentially. For
example, Morgan et al. (2003) report that more than
8000 articles were published in 2000 just in relation
to FlyBase1, a database of genomic research on the
fruit fly Drosophila melanogaster.

The growth in the literature makes it difficult for
researchers to keep track of information, even in
very small subfields of biology. Progress in the
field often relies on the work of professional cura-
tors, typically postdoctoral-level scientists, who are

1http://www.flybase.org

trained to identify important information in a sci-
entific article. This is a very time-consuming task
which first requires identification of gene, allele and
protein names and their synonyms, as well as sev-
eral interactions and relations between them.The in-
formation extracted from each article is then used to
fill in a template per gene or allele.

To extract all information about a specific
biomedical entity in the text and be able to fill in
the corresponding template, a useful first step is
the identification of all textual mentions that are re-
ferring to or are related with that entity. Linking
all these mentions together corresponds to the task
known as anaphora resolution in Natural Language
Processing.

In this paper, we are interested in linking automat-
ically all mentions that refer to a gene or are related
to it (i.e. its ‘products’). For example, in the follow-
ing portion of text, we aim to link the highlighted
mentions:

‘‘... is composed of five proteins(1)

encoded by the male-specific lethal

genes(2) ... The MSL proteins(3)

colocalize to hundreds of sites ... male

animals die when they are mutant for any

one of the five msl genes(4).’’

In this work we use the output of a gene name
recogniser (Vlachos et al., 2006) and information
from the Sequence Ontology (Eilbeck and Lewis,
2004) to identify the entities of interest and the ge-
nomic relations among them. We also use RASP
(Briscoe and Carroll, 2002), a statistical parser, to
identify NPs (and their subconstituents) which may
be anaphorically linked. Our system identifies coref-
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erential relations between biomedical entities (such
as (1) and (3), and (2) and (4) above) as well as as-
sociative links (relations between different entities,
e.g. the link between a gene and its protein as in (2)
and (3) above). A previous version of this system
was presented in (Vlachos et al., 2006); here we im-
prove its results due to refinements on some of the
steps previous to the resolution and to the anaphora
resolution process itself.

The large majority of the entities in biomedi-
cal texts are referred to using non-pronominal noun
phrases, like proper nouns, acronyms or definite de-
scriptions. Hence, we focus on these NPs and do
not resolve pronominal references (as pronouns rep-
resent only about 3% of the noun phrases in our do-
main).

In the following section, we detail the different
components of the anaphora resolution system. The
results are tested against hand-annotated papers, and
an extensive evaluation is provided in Section 3,
where the performance and errors are discussed.

2 The anaphora resolution system

Our system for anaphora resolution makes use of
lexical, syntactic, semantic and positional informa-
tion to link anaphoric expressions. The lexical infor-
mation consists of the words themselves. The syn-
tactic information consists of noun phrase bound-
aries and the distinction between head and pre-
modifiers (extracted from RASP output). The dis-
tance (in words) between the anaphoric expression
and its possible antecedent is taken into account as
positional information. The semantic information
comes from the named entity recognition (NER)
process and some extra tagging based on features
from the Sequence Ontology.

FlyBase is used as source of gene names, sym-
bols and synonyms, giving rise to training data for
the gene name recognition system detailed in Sec-
tion 2.1. The output of this system is tagged named
entities that refer to the fruit fly genes.

We then parse the text using RASP in order to ex-
tract the noun phrases and their subparts (head and
modifiers). Retagging gene names as proper names
before parsing improves the parser’s performance,
but otherwise the parser is used unmodified.

The Sequence Ontology (SO) can be used to iden-

tify words and phrases related to a gene: its sub-
types (e.g. oncogene, transposable element), parts
(e.g. transcript, regulatory region) and products (e.g.
polypeptide, protein). Subsection 2.3 details the in-
formation extracted from SO to type the non-gene
mentions.

2.1 Gene-name recognition

The NER system we use (Vlachos et al., 2006) is
a replication and extension of the system developed
by Morgan et al. (2004): a different training set and
software were used. For training data we used a
total of 16609 abstracts, which were automatically
annotated by a dictionary-based gene name tagger.
The dictionary consists of lists of the gene names,
symbols and synonyms extracted from FlyBase. The
gene names and their synonyms that were recorded
by the curators from the full paper were annotated
automatically in each abstract, giving rise to a large
but noisy set of training data. The recognizer used
is the open source toolkit LingPipe2, implementing
a 1st-order HMM model using Witten-Bell smooth-
ing. A morphologically-based classifier was used
to deal with unknown gene names (that were not
present in the training data).

The performance of the trained recogniser on a
revised version of the test data used in Morgan et
al. (86 abstracts annotated by a biologist curator
and a computational linguist) was 80.81% recall and
84.93% precision.

2.2 Parsing and NP extraction

RASP is a pipelined parser which identifies sentence
boundaries, tokenises sentences, tags the tokens
with their part-of-speech (PoS) and finally parses
PoS tag sequences, statistically ranking the result-
ing derivations. We have made minor modifications
to RASP’s tokeniser to deal with some specific fea-
tures of biomedical articles, and manually modified
a small number of entries in the PoS tagger lexicon,
for example to allow the use of and as a proper name
(referring to a fruit fly gene). Otherwise, RASP uses
a parse ranking module trained on a generic tree-
bank and a grammar also developed from similar re-
sources.

The anaphora resolution system first tags genes

2http://www.alias-i.com/lingpipe/
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using the gene recogniser. This means that identi-
fied gene mentions can be retagged as proper names
before the RASP parser is applied to the resulting
PoS sequences. This improves parser performance
as the accuracy of PoS tagging decreases for un-
known words, especially as the RASP tagger uses an
unknown word handling module which relies heav-
ily on the similarity between unknown words and
extant entries in its lexicon. This strategy works less
well on gene names and other technical vocabulary
from the biomedical domain, as almost no such ma-
terial was included in the training data for the tag-
ger. We have not evaluated the precise improvement
in performance as yet due to the lack of extant gold
standard parses for relevant text.

RASP can output grammatical relations (GRs) for
each parsed sentence (Briscoe, 2006). GRs are fac-
tored into binary lexical relations between a head
and a dependent of the form (GR-type head
dependent). We use the following GR-types to
identify the head-nouns of NPs (the examples of
GRs are based on the example of the first page un-
less specified otherwise):

• ncsubj encodes binary relations between
non-clausal subjects and their verbal heads; e.g.
(ncsubj colocalize proteins).

• dobj encodes a binary relation between ver-
bal or prepositional head and the head of the
NP to its immediate right; e.g. (dobj of
sites).

• obj2 encodes a binary relation between ver-
bal heads and the head of the second NP in a
double object construction; e.g. for the sen-
tence “Xist RNA provides a mark for specific
histones” we get (dobj provides mark)
(obj2 provides histones).

• xcomp encodes a binary relation between
a head and an unsaturated VP complement;
e.g. for the phrase “a class of regulators in
Drosophila is the IAP family” we get (xcomp
is family).

• ta encodes a binary relation between a head
and the head of a text adjunct delimited by
punctuation (quotes, brackets, dashes, com-

mas, etc.); e.g. for “BIR-containing proteins
(BIRPs)” we get (ta proteins BIRPs).

To extract the modifiers of the head nouns, we
search the GRs typed ncmod which encode binary
relations between non-clausal modifiers and their
heads; e.g (ncmod genes msl).

When the head nouns take part in coordination, it
is necessary to search the conj GRs which encode
relations between a coordinator and the head of a
conjunct. There will be as many such binary rela-
tions as there are conjuncts of a specific coordinator;
e.g. for “CED-9 and EGL-1 belong to a large fam-
ily ...” we get (ncsubj belong and) (conj
and CED-9) (conj and EGL-1).

Last but not least, to identify definite descrip-
tions, we search the det GR for a definite speci-
fier, e.g. (det proteins The). By using the
GR representation of the parser output we were able
to improve the performance of the anaphora resolu-
tion system by about 10% over an initial version de-
scribed in (Vlachos et al., 2006) that used the RASP
tree output instead of GRs. GRs generalise more
effectively across minor and irrelevant variations in
derivations such as the X-bar level of attachment in
nominal coordinations.

2.3 Semantic typing and selecting NPs

To identify the noun phrases that refer to the entities
of interest, we classify the head noun as belonging
to one of the five following classes: “part-of-gene”,
“subtype-of-gene”, “supertype-of-gene”, “product-
of-gene” or “is-a-gene”. These classes are referred
to as biotypes.

Figure 1: SO path from gene to protein.

The biotypes reflect the way the SO relates en-
tities to the concept of the gene using the follow-
ing relations: derives from, member of, part of, and
is a, among others.3 We extracted the unique path

3We consider the member of relation to be the same as the
part of relation.
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of concepts and relations which leads from a gene to
a protein. The result is shown in Figure 1.

Besides the facts directly expressed in this path,
we also assumed the following:4

1. Whatever is-a transcript is also part-of a gene.

2. Whatever is part-of a transcript is also part-of a
gene.

3. An mRNA is part-of a gene.

4. Whatever is part-of an mRNA is also part-of a
gene.

5. CDS is part-of a gene.

6. A polypeptide is a product (derived-from) of a
gene.

7. Whatever is part-of a polypeptide is also a
product of a gene.

8. A protein is a product of a gene.

We then used these assumptions to add new deriv-
able facts to our original path. For example, an exon
is a part of a transcript according to the SO, there-
fore, by the 2nd assumption, we add the fact that an
exon is a part of a gene. We also extracted infor-
mation about gene subtypes that is included in the
ontology as an entry called “gene class”. We con-
sider NPs as supertypes of a gene when they refer to
nucleotide sequences that are bigger than but include
the gene.5

Finally, we tagged every NP whose head noun is
one of the items extracted from the SO with its bio-
type. For instance, we would tag “the third exon”
with “part-of-gene”.

The NPs whose head noun is a gene name tagged
in the NER phase also receive the “is-a-gene” bio-
type. Other NPs that still remain without biotype
info are tagged as “other-bio” if any modifier of the
head is a gene name.

This typing process achieves 75% accuracy when
evaluated against the manually annotated corpora
described in Section 3. The majority of the errors

4A curator from FlyBase was consulted to confirm the va-
lidity of these assumptions.

5In the SO a gene holds an is-a relation to “sequence” and
“region” entries.

(70%) are on typing NPs that contain just a proper
name, which can refer to a gene or to a protein. At
the moment, all of these cases are being typed as
“is-a-gene”.

The biotyped NPs are then selected and consid-
ered for anaphora resolution. NPs with the same bio-
type can be coreferent, as well as NPs with is-a-gene
and subtype-of-gene biotypes. The anaphoric rela-
tion between an is-a-gene NP and a part-of-gene or
product-of-gene NP is associative rather than coref-
erential.

2.4 Resolving anaphora cases

We take all proper namer (PNs) and definite de-
scriptions (DDs) among the filtered NPs as poten-
tial anaphoric expressions (anaphors) to be resolved.
As possible antecedents for an anaphor we take all
bio-typed NPs that occur before it in the text. For
each anaphor we look for its antecedent (the closest
previous mention that is related to it). For linking
anaphors to their antecedents we look at:

• headan: anaphor head noun

• heada: antecedent head noun

• modan: set of anaphor pre-modifiers

• moda: set of antecedent pre-modifiers

• biotypean: anaphor biotype

• biotypea: antecedent biotype

• d: distance in sentences from the anaphor

The pseudo-code to find the antecedent for the
DDs and PNs is given below:

• Input: a set A with all the anaphoric expres-
sions (DDs and PNs); a set C with all the possi-
ble antecedents (all NPs with biotype informa-
tion)

• For each anaphoric expression Ai:

– Let antecedent 1 be the closest preceding
NP Cj such that
head(Cj)=head(Ai) and
biotype(Cj)=biotype(Ai)
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– Let antecedent 2 be the closest preceding
NP Cj such that
biotype(Cj)6= biotype(Ai), but
head(Cj)=head(Ai) or
head(Cj)=mod(Ai) or
mod(Cj)=head(Ai) or
mod(Cj)=mod(Ai)

– Take the closest candidate as antecedent,
if 1 and/or 2 are found; if none is found,
the DD/PN is treated as non-anaphoric

• Output: The resolved anaphoric expressions in
A linked to their antecedents.

As naming conventions usually recommend gene
names to be lower-cased and protein names to be
upper-cased, our matching among heads and modi-
fiers is case-insensitive, allowing, for example, msl
gene to be related to MSL protein due to their
common modifiers.

Antecedent 1, if found, is considered coreferent
to Ai, and antecedent 2, associative. For example, in
the passage:

‘‘Dosage compensation, which ensures

that the expression of X-linked genes:Cj

is equal in males and females ... the

hypertranscription of the X-chromosomal

genes:Aj in males ...’’

the NP in bold font which is indexed as antecedent
Cj is taken to be coreferential to the anaphor indexed
as Aj . Additionally, in:

‘‘... the role of the roX genes:Ck

in this process ... which MSL proteins

interact with the roX RNAs:Ak ...’’

Ck meets the conditions to form an associative link
to Ak. The same is true in the following example
in which there is an associative relation between Cj

and Aj :
‘‘The expression of reaper:Cj has been

shown to be regulated by distinct stimuli

... it was shown to bind a specific

region of the reaper promoter:Aj ...’’

If we consider the example from the first page,
mention (1) is returned by the system as the corefer-
ent antecedent for (3), as they have the same biotype
and a common head noun. In the same example, (2)
is returned as a coreferent antecedent to (4), and (3)
as an associative antecedent to (4).

3 Evaluation

We evaluated our system against two hand-
annotated full papers which have been curated in
FlyBase and were taken from PubMed Central in
XML format. Together they contain 302 sentences,
in which 97 DDs and 217 PNs related to biomedical
entities (out of 418 NPs in total) were found.

For each NP, the following information was man-
ually annotated:

• NP form: definite NP, proper name, or NP.

• biotype: gene, part-of-gene, subtype-of-gene,
supertype-of-gene, product-of-gene, other-bio,
or a non-bio noun.

• coreferent antecedent: a link to the closest pre-
vious coreferent mention (if there is one).

• associative antecedent: a link to the closest pre-
vious associative anaphoric mention (if there is
one, and only if there is no closer coreferent
mention).

All coreferent mentions become linked together
as a coreference chain, which allows us to check for
previous coreferent antecedents of a mention besides
the closest one.

Table 1 shows the distributions of the anaphoric
expressions according to the anaphoric relations
they hold to their closest antecedent.

coreferent associative no ant. Total
DDs 34 51 12 97
PNs 132 62 23 217

Total 166 113 35 314

Table 1: Anaphoric relation distribution

DDs and PNs in associative relations account for
27% of all NPs in the test data, which is almost dou-
ble the number of bridging cases (associative plus
coreferent cases where head nouns are not the same)
reported for newspaper texts in Vieira and Poesio
(2000).

Table 2 shows the distribution of the different bio-
types present in the corpus.
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gene part subtype supertype product
67 62 1 7 244

Table 2: Biotype distribution

3.1 Results

The anaphora resolution system reaches 58.8% pre-
cision and 57.3% recall when looking for the clos-
est antecedent for DDs and PNs, after having been
provided with hand-corrected input (that is, perfect
gene name recognition, NP typing and selection). If
we account separately for coreference and associa-
tive relations, we get 59.47% precision and 81.3%
recall for the coreferent cases, and 55.5% precision
and 22.1% recall for the associative ones.

The performance of the system is improved if we
consider that it is able to find an antecedent other
than the closest, which is still coreferential to the
anaphor. These are cases like the following:

‘‘five proteins encoded by the

male-specific lethal genes ... The MSL

proteins ...’’

where the system returns “five proteins” as the coref-
erent antecedent for “the MSL proteins”, instead
of returning “the male-specific lethal genes” as the
closest (in this case, associative) antecedent. Treat-
ing these cases as positive examples we reach 77.5%
precision and 75.6% recall6. It conforms with the
goal of adding the anaphor to a coreferential chain
rather than simply relating it to the closest an-
tecedent.

Table 3 reports the number of coreferent and as-
sociative DDs and PNs that could be resolved. The
numbers on the left of the slash refer to relations
with the closest antecedent, and the numbers on the
right refer to additional relations found when links
with another antecedent are considered (all the new
positive cases on the right are coreferent, since our
evaluation data just contain associative links to the
closest antecedent).

Most of the cases that could be resolved are coref-
erent, and when the restriction to find the closest
antecedent is relaxed, the system manages to re-
solve 35 cases of DD coreference (64.7% recall).

6We are able to compute these rates since our evaluation cor-
pus includes also a coreferent antecedent for each case where an
associative antecedent was selected.

coreferent associative no ant.
DDs 20/+2 14/+13 7
PNs 115/+9 11/+22 16

Table 3: Resolved anaphoric relations

It achieves very high recall (93.9%) on coreferen-
tial PNs. All the associative relations that are hand
annotated in our evaluation corpus are between an
anaphor and its closest antecedent, so when the re-
cency preference is relaxed, we get coreferent in-
stead of associative antecedents: we got 35 corefer-
ent antecedents for anaphors that had a closest asso-
ciative antecedent that could not be recovered. This
conforms to the goal of having coreference chains
that link all the mentions of a single entity.

The system could resolve around 27% of the as-
sociative cases of DDs, although fewer associative
antecedents could be recovered for PNs, mainly due
to the frequent absence of head-noun modifiers and
different forms for the same gene name (expanded
vs. abbreviated).

Although associative anaphora is considered to be
harder than coreference, we believe that certain re-
finements of our resolution algorithm (such as nor-
malizing gene names in order to take more advan-
tage of the string matching among NP heads and
modifiers) could improve its performance on these
cases too.

The anaphora resolution system is not able to
find the correct antecedent when there is no head or
modifier matching as in the anaphoric relation be-
tween ‘‘Dark/HAC-1/Dapaf-1’’ and ‘‘The
Drosophila homolog’’.

The performance rates drop when using the output
of the NER system (presented in Section 2.1), RASP
parsing (Section 2.2) and SO-based NP typing (Sec-
tion 2.3), resulting in 63% precision and 53.4% re-
call.

When the NER system fails to recognise a gene
name, it can decrease the parser performance (as
it would have to deal with an unknown word) and
influences the semantic tagging (the NP containing
such a gene name won’t be selected as a possible an-
tecedent or anaphor unless it contains another word
that is part of SO). When just the NER step is cor-
rected by hand, the system reaches 71.8% precision
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and 64.1% recall.

4 Related work

Previous approaches to solve associative anaphora
have made use of knowledge resources like WordNet
(Poesio et al., 1997), the Internet (Bunescu, 2003)
and a corpus (Poesio et al., 2002) to check if there is
an associative link between the anaphor and a possi-
ble antecedent.

In the medical domain, Castaño et al. (2002)
used UMLS (Unified Medical Language System)7

as their knowledge source. They treat coreferential
pronominal anaphora and anaphoric DDs and aim
to improve the extraction of biomolecular relations
from MEDLINE abstracts. The resolution process
relies on syntactic features, semantic information
from UMLS, and the string itself. They try to resolve
just the DDs that refer to relevant biotypes (corre-
sponding to UMLS types) such as amino acids, pro-
teins or cells. For selecting the antecedents, they cal-
culate salience values based on string similarity, per-
son/number agreement, semantic type matching and
other features. They report precision of 74% and re-
call of 75% on a very small test set.

Yang et al. (2004) test a supervised learning-based
approach for anaphora resolution, evaluating it on
MEDLINE abstracts from the GENIA corpus. They
focus only on coreferent cases and do not attempt to
resolve associative links. 18 features describe the
relationship between an anaphoric expression and
its possible antecedent - their source of semantic
knowledge is the biotype information provided by
the NER component of GENIA. They achieved re-
call of 80.2% and precision of 77.4%. They also ex-
periment with exploring the relationships between
NPs and coreferential clusters (i.e. chains), select-
ing an antecedent based not just on a single candi-
date but also on the cluster that the candidate is part
of. For this they add 6 cluster-related features to
the machine-learning process, and reach 84.4% re-
call and 78.2% precision.

Our system makes use of extant biomedical re-
sources focused on the relevant microdomain (fruit
fly genomics), and attempts to tackle the harder
problem of associative anaphora, as this constitutes
a significant proportion of cases and is relevant to

7http://www.nlm.nih.gov/research/umls/

the curation task. Our performance rates are lower
than the ones above, but did not rely on expensive
training data.

5 Concluding remarks

Our system for anaphora resolution is semi-
supervised and relies on rich domain resources: the
FlyBase database for NER, and the Sequence On-
tology for semantic tagging. It does not need train-
ing data, which is a considerable advantage, as anno-
tating anaphora by hand is a complicated and time-
demanding task, requiring very precise and detailed
guidelines.

The resulting links between the anaphoric entities
are integrated into an interactive tool which aims to
facilitate the curation process by highlighting and
connecting related bio-entities: the curators are able
to navigate among different mentions of the same
entity and related ones in order to find easily the in-
formation they need to curate.

We are currently working on increasing our eval-
uation corpus; we aim to make it available to the
research community together with our annotation
guidelines.

We intend to enhance our system with additional
syntactic features to deal with anaphoric relations
between textual entities that do not have any string
overlap. We also intend to add different weights
to the features. The performance of the fully-
automated version of the system can be improved if
we manage to disambiguate between gene and pro-
tein names and infer the correct biotype for them.
The performance on associative cases could be im-
proved by normalizing the gene names in order to
find more matches among heads and modifiers.
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Abstract 

We describe BioLiterate, a prototype software 
system which infers relationships involving re-
lationships between genes, proteins and ma-
lignancies from research abstracts, and has ini-
tially been tested in the domain of the molecu-
lar genetics of oncology. The architecture uses 
a natural language processing module to ex-
tract entities, dependencies and simple seman-
tic relationships from texts, and then feeds 
these features into a probabilistic reasoning 
module which combines the semantic relation-
ships extracted by the NLP module to form 
new semantic relationships.  One application 
of this system is the discovery of relationships 
that are not contained in any individual ab-
stract but are implicit in the combined knowl-
edge contained in two or more abstracts.  

1 Introduction 

Biomedical literature is growing at a breakneck 
pace, making the task of remaining current with all 
discoveries relevant to a given research area nearly 

impossible without the use of advanced NLP-based 
tools (Jensen et al, 2006). Two classes of tools that 
provide great value in this regard are those that 
help researchers find relevant documents and sen-
tences in  large bodies of biomedical texts (Müller, 
2004; Schuler, 1996; Tanabe, 1999), and those that 
automatically extract knowledge from a set of 
documents (Smalheiser and Swanson, 1998; 
Rzhetsky et al, 2004). Our work falls into the latter 
category.  We have created a prototype software 
system called BioLiterate, which applies depend-
ency parsing and advanced probabilistic inference 
to the problem of combining semantic relationships 
extracted from biomedical texts, have tested this 
system via experimentation on research abstracts in 
the domain of the molecular genetics of oncology. 

In order to concentrate our efforts on the infer-
ence aspect of biomedical text mining, we have 
built our BioLiterate system on top of a number of 
general NLP and specialized bioNLP components 
created by others.  For example, we have handled 
entity extraction -- perhaps the most mature exist-
ing bioNLP technology (Kim, 2004) -- via incorpo-
rating a combination of existing open-source tools.  
And we have handled syntax parsing via integrat-
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ing a modified version of the link parser (Sleator 
and Temperley, 1992). 

 The BioLiterate system is quite general in ap-
plicability, but in our work so far we have focused 
on the specific task of extracting relationships re-
garding interactions between genes, proteins and 
malignancies contained in, or implicit among mul-
tiple, biomedical research abstracts.  This applica-
tion is critical because the extraction of pro-
tein/gene/disease relationships from text is neces-
sary for the discovery of metabolic pathways and 
non-trivial disease causal chains, among other ap-
plications (Nédellec, 2005; Davulcu, 2005, Ah-
med, 2005).   

Systems extracting these sorts of relationships 
from text have been developed using a variety of 
technologies, including support vector machines 
(Donaldson et al, 2003), maximum entropy models 
and graph algorithms (McDonald, 2005), Markov 
models and first order logic (Riedel, 2005) and 
finite state automata (Hakenberg, 2005).   How-
ever, these systems are limited in the relationships 
that they can extract.  Most of them focus on rela-
tionships described in single sentences.  The results 
we report here support the hypothesis that the 
methods embodied in BioLiterate, when developed 
beyond the prototype level and implemented in a 
scalable way, may be significantly more powerful, 
particularly in the extraction of relationships whose 
textual description exists in multiple sentences or 
multiple documents. 

Overall, the extraction of both entities and sin-
gle-sentence-embodied inter-entity relationships 
has proved far more difficult in the biomedical 
domain than in other domains such as newspaper 
text (Nédellec, 2005; Jing et al, 2003; Pyysalo, 
2004).  One reason for this is the lack of resources, 
such as large tagged corpora, to allow statistical 
NLP systems to perform as well as in the news 
domain. Another is that biomedical text has many 
features that are quite uncommon or even non-
existent in newspaper text (Pyysalo, 2004), such as 
numerical post-modifiers of nouns (Serine 38), 
non-capitalized entity names (…ftsY is solely ex-
pressed during...), hyphenated verbs (X cross-links 
Y), nominalizations, and uncommon usage of pa-
rentheses (sigma(H)-dependent expression of 
spo0A).  While recognizing the critical importance 
of overcoming these issues more fully, we have not 
addressed them in any novel way in the context of 
our work on BioLiterate, but have rather chosen to 

focus attention on the other end of the pipeline: 
using inference to piece together relationships ex-
tracted from separate sentences, to construct new 
relationships implicit among multiple sentences or 
documents.  

The BioLiterate system incorporates three main 
components: an NLP system that outputs entities, 
dependencies and basic semantic relations; a prob-
abilistic reasoning system (PLN = Probabilistic 
Logic Networks); and a collection of hand-built 
semantic mapping rules used to mediate between 
the two prior components. 

  One of the hypotheses underlying our work is 
that the use of probabilistic inference in a bioNLP 
context may allow the capturing of relationships 
not covered by existing systems, particularly those 
that are implicit or spread among several abstracts.  
This application of BioLiterate is reminiscent of 
the Arrowsmith system (Smalheiser and Swanson, 
1998), which is focused on creating novel bio-
medical discoveries via combining pieces of in-
formation from different research texts; however, 
Arrowsmith is oriented more toward guiding hu-
mans to make discoveries via well-directed litera-
ture search, rather than more fully automating the 
discovery process via unified NLP and inference. 

Our work with the BioLiterate prototype has 
tentatively validated this hypothesis via the pro-
duction of interesting examples, e.g. of conceptu-
ally straightforward deductions combining prem-
ises contained in different research papers.1  Our 
future research will focus on providing more sys-
tematic statistical validation of this hypothesis. 

2 System Overview 

For the purpose of running initial experiments 
with the BioLiterate system, we restricted our at-
tention to texts from the domain of molecular ge-
netics of oncology, mostly selected from the Pub-
MEd subset selected for the PennBioNE project 
(Mandel, 2006).  Of course, the BioLiterate archi-
tecture in general is not restricted to any particular 
type or subdomain of texts. 

The system is composed of a series of compo-
nents arranged in a pipeline: Tokenizer !Gene, 

                                                           
1  It is worth noting that inference which appear conceptually to be “straight-
forward deductions” often manifest themselves within BioLiterate as PLN 
inference chains with 1-2 dozen inferences.  This is mostly because of the rela-
tively complex way in which logical relationships emerge from semantic map-
ping, and also because of the need for inferences that explicitly incorporate 
“obvious” background knowledge. 
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Protein and Malignancy Tagger ! Nominalization 
Tagger ! Sentence Extractor ! Dependency Ex-
tractor !  Relationship Extractor ! Semantic 
Mapper ! Probabilistic Reasoning System. 

Each component, excluding the semantic map-
per and probabilistic reasoner, is realized as a 
UIMA (Götz and Suhre, 2004) annotator, with in-
formation being accumulated in each document as 
each phase occurs.2

The gene/protein and malignancy taggers collec-
tively constitute our “entity extraction” subsystem. 
Our entity extraction subsystem and the tokenizer 
were adapted from PennBioTagger (McDonald et 
al, 2005; Jin et al, 2005; Lerman et al, 2006).  The 
tokenizer uses a maximum entropy model trained 
upon biomedical texts, mostly in the oncology do-
main. Both the protein and malignancy taggers 
were built using conditional random fields. 

  The nominalization tagger detects nominaliza-
tions that represent possible relationships that 
would otherwise go unnoticed. For instance, in the 
sentence excerpt “… intracellular signal transduc-
tion leading to transcriptional activation…” both 
“transduction” and “activation” are tagged. The 
nominalization tagger uses a set of rules based on 
word morphology and immediate context. 

Before a sentence passes from these early proc-
essing stages into the dependency extractor, which 
carries out syntax parsing, a substitution process is 
carried out in which its tagged entities are replaced 
with simple unique identifiers. This way, many 
text features that often impact parser performance 
are left out, such as entity names that have num-
bers or parenthesis as post-modifiers.

The dependency extractor component carries out 
dependency grammar parsing via a customized 
version of the open-source Sleator and Temperley 
link parser (1993). The link parser outputs several 
parses, and the dependencies of the best one are 
taken.3 

The relationship extractor component is com-
posed of a number of template matching algo-
rithms that act upon the link parser’s output to pro-
duce a semantic interpretation of the parse. This 
component detects implied quantities, normalizes 
passive and active forms into the same representa-

                                                           
2 The semantic mapper will be incorporated into the UIMA framework in a later 
revision of the software.
3 We have experimented with using other techniques for selecting dependencies, 
such as getting the most frequent ones, but variations in this aspect did not 
impact our results significantly.

tion and assigns tense and number to the sentence 
parts. Another way of conceptualizing this compo-
nent is as a system that translates link parser de-
pendencies into a graph of semantic primitives 
(Wierzbicka, 1996), using a natural semantic meta-
language (Goddard, 2002). 

Table 1 below shows some of the primitive se-
mantic relationships used, and their associated link 
parser links: 
 

subj Subject S, R, RS 
Obj Direct object O, Pv, B 
Obj-2 Indirect object O, B 
that Clausal Complement TH, C 
to-do  Subject Raising Complement 

(do)  
I, TO, Pg 

Table 1.  Semantic Primitives and Link Parser Links 
 

For a concrete example, suppose we have the 
sentences: 

 
a) Kim kissed Pat.  
b) Pat was kissed by Kim. 
 

Both would lead to the extracted relationships: 
 
subj(kiss, Kim), obj(kiss, Pat) 

 
For a more interesting case consider: 

 
c) Kim likes to laugh. 
d) Kim likes laughing. 
 

Both will have a to-do (like, laugh) seman-
tic relation. 

Next, this semantic representation, together with 
entity information, is feed into the Semantic Map-
per component, which applies a series of hand-
created rules whose purpose is to transform the 
output of the Relationship Extractor into logical 
relationships that are fully abstracted from their 
syntactic origin and suitable for abstract inference.  
The need for this additional layer may not be ap-
parent a priori, but arises from the fact that the 
output of the Relationship Extractor is still in a 
sense “too close to the syntax.”  The rules used 
within the Relationship Extractor are crisp rules 
with little context-dependency, and could fairly 
easily be built into a dependency parser (though 
the link parser is not architected in such a way as 
to make this pragmatically feasible); on the other 
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hand, the rules used in the Semantic Mapper are 
often dependent upon semantic information about 
the words being interrelated, and would be more 
challenging to integrate into the parsing process. 

As an example, the semantic mapping rule 
 
by($X,$Y) & Inh($X, transitive_event) ! 
subj ($X,$Y) 

 
maps the relationship by(prevention, inhi-
bition), which is output by the Relationship Ex-
tractor, into the relationship subj(prevention, inhi-
bition), which is an abstract conceptual relation-
ship suitable for semantic inference by PLN.  It 
performs this mapping because it has knowledge 
that “prevention” inherits (Inh) from the semantic 
category transitive_event, which lets it guess 
what the appropriate sense of “by” might be. 

Finally, the last stage in the BioLiterate pipeline 
is probabilistic inference, which is carried out by 
the Probabilistic Logic Networks4 (PLN) system 
(Goertzel et al, in preparation) implemented within 
the Novamente AI Engine integrated AI architec-
ture (Goertzel and Pennachin, 2005; Looks et al, 
2004).   PLN is a comprehensive uncertain infer-
ence framework that combines probabilistic and 
heuristic truth value estimation formulas within a 
knowledge representation framework capable of 
expressing general logical information, and pos-
sesses flexible inference control heuristics includ-
ing forward-chaining, backward-chaining and rein-
forcement-learning-guided approaches.   

Among the notable aspects of PLN is its use of 
two-valued truth values: each PLN statement is 
tagged with a truth value containing at least two 
components, one a probability estimate and the 
other a “weight of evidence” indicating the amount 
of evidence that the probability estimate is based 
on.  PLN contains a number of different inference 
rules, each of which maps a premise-set of a cer-
tain logical form into a conclusion of a certain 
logical form, using an associated truth-value for-
mula to map the truth values of the premises into 
the truth value of the conclusion. 

The PLN component receives the logical rela-
tionships output by the semantic mapper, and per-
forms reasoning operations on them, with the aim 
at arriving at new conclusions implicit in the set of 
relationships fed to it.  Some of these conclusions 

                                                           
4 Previously named Probabilistic Term Logic

may be implicit in a single text fed into the system; 
others may emerge from the combination of multi-
ple texts. 

In some cases the derivation of useful conclu-
sions from the semantic relationships fed to PLN 
requires “background knowledge” relationships not 
contained in the input texts.  Some of these back-
ground knowledge relationships represent specific 
biological or medical knowledge, and others repre-
sent generic “commonsense knowledge.”  The 
more background knowledge is fed into PLN, the 
broader the scope of inferences it can draw.   

One of the major unknowns regarding the cur-
rent approach is how much background knowledge 
will need to be supplied to the system in order to 
enable truly impressive performance across the full 
range of biomedical research abstracts.  There are 
multiple approaches to getting this knowledge into 
the system, including hand-coding (the approach 
we have taken in our BioLiterate work so far) and 
automated extraction of relationships from relevant 
texts beyond research abstracts, such as databases, 
ontologies and textbooks.  While this is an ex-
tremely challenging problem, we feel that due to 
the relatively delimited nature of the domain, the 
knowledge engineering issues faced here are far 
less severe than those confronting projects such as 
Cyc (Lenat, 1986; Guha, 1990; Guha, 1994) and 
SUMO (Niles, 2001) which seek to encode com-
monsense knowledge in a broader, non-domain-
specific way.  

3 A Practical Example 

We have not yet conducted a rigorous statistical 
evaluation of the performance of the BioLiterate 
system.  This is part of our research plan, but will 
involve considerable effort, due to the lack of any 
existing evaluation corpus for the tasks that Bio-
Literate performs.  For the time being, we have 
explored BioLiterate’s performance anecdotally 
via observing its behavior on various example “in-
ference problems” implicit in groups of biomedical 
abstracts.  This section presents one such example 
in moderate detail (full detail being infeasible due 
to space limitations). 

Table 2 shows two sentences drawn from differ-
ent PubMed abstracts, and then shows the conclu-
sions that BioLiterate draws from the combination 
of these two sentences.  The table shows the con-
clusions in natural language format, but the system 
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actually outputs conclusions in logical relationship 
form as detailed below. 

 
Premise 1 Importantly, bone loss was almost 

completely prevented by p38 MAPK 
inhibition.  (PID 16447221) 

Premise 2 Thus, our results identify DLC as a 
novel inhibitor of the p38 pathway and 
provide a molecular mechanism by 
which cAMP suppresses p38 activa-
tion and promotes apoptosis. (PID 
16449637) 

(Uncertain) 
Conclusions 

DLC prevents bone loss. 
cAMP prevents bone loss. 

Table 2.  An example conclusion drawn by BioLiterate 
via combining relationships extracted from sentences 
contained in different PubMed abstracts.  The PID 
shown by each premise sentence is the PubMed ID of 
the abstract from which it was drawn. 

 
Tables 3-4 explore this example in more detail.  

Table 3 shows the relationship extractor output, 
and then the semantic mapper output, for the two 
premise sentences.   
 
Premise 1 
Rel Ex. 
Output 

_subj-n(bone, loss)  
_obj(prevention, loss)  
_subj-r(almost, completely)  
_subj-r(completely, prevention)  
by(prevention, inhibition)  
_subj-n(p38 MAPK, inhibition) 
 

Premise 2 
Sem Map 
Output 

subj (prevention, inhibition) 
obj (prevention, loss) 
obj (inhibition, p38_MAPK) 
obj (loss, bone) 

Premise 1 
Rel Ex 
Output 

_subj(identify, results)  
as(identify, inhibitor)  
_obj(identify, DLC)  
_subj-a(novel, inhibitor)  
of(inhibitor, pathway)  
_subj-n(p38, pathway) 

Premise 2 
Sem Map 
Output 

subj (inhibition, DLC) 
obj (inhibition, pathway) 
inh(pathway, p38) 

Table 3.  Intermediary processing stages for the two 
premise sentences in the example in Table 2.   

 
Table 4 shows a detailed “inference trail” consti-

tuting part of the reasoning done by PLN to draw 
the inference “DLC prevents bone loss” from these 
extracted semantic relationships, invoking back-
ground knowledge from its knowledge base as ap-
propriate.  

The notation used in Table 4 is so that, for in-
stance, Inh inhib  inhib  is synonymous with 
inh(inhib , inhib ) and denotes an Inheri-
tance relationship between the terms inhibition  
and inhibition  (the textual shorthands used in the 
table are described in the caption).  The logical 
relationships used are Inheritance, Implication, 
AND (conjunction) and Evaluation.  Evaluation is 
the relation between a predicate and its arguments; 
e.g. Eval subj(inhib , DLC) means that the 
subj predicate holds when applied to the list (in-
hib , DLC).  These particular logical relation-
ships are reviewed in more depth in (Goertzel and 
Pennachin, 2005; Looks et al, 2004).  Finally, in-
dent notation is used to denote argument structure, 
so that e.g.  

1 2

1 2

1

2

2

2

 
R 
 A 
 B 

 
is synonymous with R(A,B). 

PLN is an uncertain inference system, which 
means that each of the terms and relationships used 
as premises, conclusions or intermediaries in PLN 
inference come along with uncertain truth values.  
In this case the truth value of the conclusion at the 
end of Table 4 comes out to <.8,.07>, which indi-
cates that the system guesses the conclusion is true 
with probability .8, and that its confidence that this 
probability assessment is roughly correct is .07.  
Confidence values are scaled between 0 and 1: .07 
is a relatively low confidence, which is appropriate 
given the speculative nature of the inference.  Note 
that this is far higher than the confidence that 
would be attached to a randomly generated rela-
tionship, however. 

The only deep piece of background knowledge 
utilized by PLN in the course of this inference is 
the knowledge that: 
 
Implication 

AND 
  Inh X  causal_event 1

  Inh X2 causal_event 
subj(X1, X3) 
subj(X2, X1) 

subj(X2,X3) 
 

which encodes the transitivity of causation in terms 
of the subj relationship.  The other knowledge 
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used consisted of simple facts such as the inheri-
tance of inhibition and prevention from the cate-
gory causal_event. 
 
  

Premises Rule 
Conclusion 
Inh inhib1, inhib 
Inh inhib2, inhib 

 
Abduction 

Inh inhib1, inhib2 <.19, .99> 
Eval subj (prev1, inhib1)  
Inh inhib1, inhib2

Similarity 
Substitution 

Eval subj (prev1   inhib2)  <1, 
.07> 
Inh inhib2, inhib  
Inh inhib, causal_event 

 
Deduction 

Inh inhib2, causal_event <1,1> 
Inh inhib2, causal_event 
Inh prev1, causal_event 
Eval subj (prev1, inhib2)  
Eval subj (inhib2, DLC) 

 
 
 
AND 

AND <1, .07> 
    Inh inhib2, causal_event 
    Inh prev1, causal_event 
    Eval subj (prev1, inhib2)  
    Eval subj (inhib2, DLC) 

 
 

ForAll (X0, X1, X2)  
    Imp  
        AND 
            Inh X0, causal_event 
            Inh X1, causal_event 
            Eval subj (X1, X0)  
            Eval subj (X0, X2)          
        Eval subj (X1,  X2)  
 
AND 
    Inh inhib2, causal_event 
    Inh prev1, causal_event 
    Eval subj (prev1, inhib2)  
    Eval subj (inhib2, DLC)     

 
 
 
 
 
 
 
 
 
 
 
 
 
Unification 

Eval subj (prev1, inhib2)  <1,.07> 
Imp  
    AND 
        Inh inhib2, causal_event 
        Inh prev1, causal_event 
        Eval subj (prev1, inhib2)  
        Eval subj (inhib2, DLC)         
    Eval subj (prev1, DLC) 

 
 
 
Implication 
Breakdown 
(Modus 
Ponens)  

Eval subj (prev1, DLC)  <.8, .07> 
 
Table 4.   Part of the PLN inference trail underlying 
Example 1.  This shows the series of inferences leading 
up to the conclusion that the prevention act prev1 is 
carried out by the subject DLC.  A shorthand notation is 
used here: Eval = Evaluation, Imp = Implication, Inh = 
Inheritance, inhib = inhibition, prev = prevention.  For 
instance, prev1 and prev2 denote terms that are particular 

instances of the general concept of prevention. Relation-
ships used in premises along the trail, but not produced 
as conclusions along the trail, were introduced into the 
trail via the system looking in its knowledge base to 
obtain the previously computed truth value of a relation-
ship, which was found via prior knowledge or a prior 
inference trail. 

4 Discussion 

We have described a prototype bioNLP system, 
BioLiterate, aimed at demonstrating the viability of 
using probabilistic inference to draw conclusions 
based on logical relationships extracted from mul-
tiple biomedical research abstracts using NLP 
technology.  The preliminary results we have ob-
tained via applying BioLiterate in the domain of 
the genetics of oncology suggest that the approach 
is potentially viable for the extraction of hypotheti-
cal interactions between genes, proteins and ma-
lignancies from sets of sentences spanning multiple 
abstracts.  One of our foci in future research will 
be the rigorous validation of the performance of 
the BioLiterate system in this domain, via con-
struction of an appropriate evaluation corpus.  

In our work with BioLiterate so far, we have 
identified a number of examples where PLN is able 
to draw biological conclusions by combining sim-
ple semantic relationships extracted from different 
biological research abstracts.  Above we reviewed 
one of these examples.  This sort of application is 
particularly interesting because it involves soft-
ware potentially creating relationships that may not 
have been explicitly known by any human, because 
they existed only implicitly in the connections be-
tween many different human-written documents.  
In this sense, the BioLiterate approach blurs the 
boundary between NLP information extraction and 
automated scientific discovery. 

Finally, by experimenting with the BioLiterate 
prototype we have come to some empirical conclu-
sions regarding the difficulty of several parts of the 
pipeline.  First, entity extraction remains a chal-
lenge, but not a prohibitively difficult one.  Our 
system definitely missed some important relation-
ships because of imperfect entity extraction but 
this was not the most problematic component. 

Sentence parsing was a more serious issue for 
BioLiterate performance. The link parser in its 
pure form had very severe shortcomings, but we 
were able to introduce enough small modifications 
to obtain adequate performance. Substituting un-
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common and multi-word entity names with simple 
noun identifiers (a suggestion we drew from Pyy-
salo, 2004) reduced the error rate significantly, via 
bypassing problems related to wrong guessing of 
unknown words, improper handling of parentheses, 
and excessive possible-parse production. Other 
improvements we may incorporate in future in-
clude augmenting the parser’s dictionary to include 
biomedical terms (Slozovits, 2003), pre-processing 
so as to split long and complex sentences into 
shorter, simpler ones (Ding et al, 2003), modifying 
the grammar to handle with unknown constructs, 
and changing the link parser’s ranking system (Py-
ysalo, 2004). 

The inferences involved in our BioLiterate work 
so far have been relatively straightforward for PLN 
once the premises have been created.  More com-
plex inferences may certainly be drawn in the bio-
medical domain, but the weak link inference-wise 
seems to be the provision of inference with the ap-
propriate premises, rather than the inference proc-
ess itself.   

The most challenging aspects of the work in-
volved semantic mapping and the supplying of 
relevant background knowledge.  The creation of 
appropriate semantic mapping rules can be subtle 
because these rules sometimes rely on the semantic 
categories of the words involved in the relation-
ships they transform.  The execution of even com-
monsensically simple biomedical inferences often 
requires the combination of abstract and concrete 
background knowledge.  These are areas we will 
focus on in our future work, as achieving a scalable 
approach will be critical in transforming the cur-
rent BioLiterate prototype into a production-
quality system capable of assisting biomedical re-
searchers to find appropriate information, and of 
drawing original and interesting conclusions by 
combining pieces of information scattered across 
the research literature. 
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Abstract 

Nested Named Entities (nested NEs), one 
containing another, are commonly seen in 
biomedical text, e.g., accounting for 
16.7% of all named entities in GENIA 
corpus. While many works have been 
done in recognizing non-nested NEs, 
nested NEs have been largely neglected. 
In this work, we treat the task as a binary 
classification problem and solve it using 
Support Vector Machines. For each token 
in nested NEs, we use two schemes to set 
its class label: labeling as the outmost 
entity or the inner entity. Our preliminary 
results show that while the outmost 
labeling tends to work better in 
recognizing the outmost entities, the inner 
labeling recognizes the inner NEs better. 
This result should be useful for 
recognition of nested NEs. 

1 Introduction 

Named Entity Recognition (NER) is a key task in 
biomedical text mining, as biomedical named 
entities usually represent biomedical concepts of 
research interest (e.g., protein/gene/virus, etc).  

Nested NEs (also called embedded NEs, or 
cascade NEs) exhibit an interesting phenomenon in 
biomedical literature. For example, “human 
immuneodeficiency virus type 2 enhancer” is a 
DNA domain, while “human immunodeficiency 
virus type 2” represents a virus. For simplicity, we 
call the former the outmost entity (if it is not inside 
another entity), while the later the inner entity (it 
may have another one inside).  

Nested NEs account for 16.7% of all entities in 
GENIA corpus (Kim, 2003). Moreover, they often 

represent important relations between entities 
(Nedadic, 2004), as in the above example. 
However, there are few results on recognizing 
them. Many studies only consider the outmost 
entities, as in BioNLP/NLPBA 2004 Shared Task 
(Kim, 2004).  

In this work, we use a machine learning method 
to recognize nested NEs in GENIA corpus. We 
view the task as a classification problem for each 
token in a given sentence, and train a SVM model. 
We note that nested NEs make it hard to be 
considered as a multi-class problem, because a 
token in nested entities has more than one class 
label. We therefore treat it as a binary-class 
problem, using one-vs-rest scheme. 

1.1 Related Work 

Overall, our work is an application of machine 
learning methods to biomedical NER. While most 
of earlier approaches rely on handcrafted rules or 
dictionaries, many recent works adopt machine 
learning approaches, e.g, SVM (Lee, 2003), HMM 
(Zhou, 2004), Maximum Entropy (Lin, 2004) and 
CRF (Settles,2004), especially with the availability 
of annotated corpora such as GENIA, achieving 
state-of-the-art performance. We know only one 
work (Zhou,2004) that deals with nested NEs to 
improve the overall NER performance. However, 
their approach is basically rule-based and they did 
not report how well the nested NEs are recognized. 

2 Methodology 

We use SVM-light (http://svmlight.joachims.org/) 
to train a binary classifier on the GENIA corpus. 

2.1 Data Set 

The GENIA corpus (version 3.02) contains 97876 
named entities (35947 distinct) of 36 types, and 
490941 tokens (19883 distinct). There are 16672 
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nested entities, containing others or nested in 
others (the maximum embedded levels is four). 
Among all the outmost entities, 2342 are protein 
and 1849 are DNA, while there are 9298 proteins 
and 1452 DNAs embedded in other entities.  

2.2 Features and Class Label 

For each token, we generate four types of features, 
reflecting its characteristics on orthography, part-
of-speech, morphology, and special nouns. We 
also use a window of (-2, +2) as its context.

For each token, we use two schemes to set the 
class label: outmost labeling and inner labeling. In 
the outmost labeling, a token is labeled +1 if the 
outmost entity containing it is the target entity, 
while in the inner labeling, a token is labeled +1 if 
any entity containing it is the target entity. 
Otherwise, the token is labeled -1. 

3 Experiment And Discussion 

We report our preliminary experimental results on 
recognizing protein and DNA nested entities. For 
each target entity type (e.g., protein) and each 
labeling scheme, we obtain a data set containing 
490941 instances. We run 5-fold cross-validation, 
and measure performance (P/R/F) of exact match, 
left/right boundary match w.r.t. outmost and inner 
entities respectively. The results are shown in 
Table 1 and Table 2. 
  

  Outmost labeling 
(P/R/F) 

Inner labeling
(P/R/F) 

Exact 0.772 /0.014 /0.028 0.705 /0.017 /0.033
Left 0.363 /0.373 /0.368 0.173 /0.484 /0.254

Outmost 
Entities 

Recognized Right 0.677 /0.199 /0.308 0.674 /0.208 /0.318
 Overall 0.60/0.20/0.23 0.52/0.24/0.20 

Exact 0.692 /0.229 /0.344 0.789 /0.679 /0.730
Left 0.682 /0.289 /0.406 0.732 /0.702 /0.717

Inner 
Entities 

Recognized Right 0.671 /0.255 /0.370 0.769 /0.719 /0.743
 Overall 0.68/0.26/0.37 0.76/0.70/0.73 

Table 1 Performance of nested protein entities 
 
From the tables, we can see that while the outmost 
labeling works (slightly) better for the outmost 
entities, the inner labeling works better for the 
inner entities. This result seems reasonable in that 
each labeling scheme tends to introduces more 
entities of its type in the training set.  

It is interesting to see that the inner labeling 
works much better in identifying inner proteins 
than in inner DNAs. The reason could be due to 

the fact that there are about three times more inner 
proteins than the outmost ones, while the numbers 
of inner DNAs and outmost DNAs are roughly the 
same (see Section 2.1).    

Another observation is that the inner labeling 
gains significantly (over the outmost labeling) in 
the inner entities, comparing to its loss in the 
outmost entities. We are not sure whether this is 
the general trend for other types of entities, and if 
so, what causes it. We will address this issue in our 
following work.  

 
  Outmost labeling 

(P/R/F) 
Inner labeling
(P/R/F) 

Exact 0.853 /0.005 /0.009 0.853 /0.005 /0.009
Left 0.682 /0.542 /0.604 0.543 /0.555 /0.549

Outmost
Entities 

Recognized Right 0.324 /0.070 /0.114 0.321 /0.070 /0.115
 Overall 0.62/0.21/0.24 0.57/0.21/0.22 

Exact 0.269 /0.333 /0.298 0.386 /0.618 /0.475
Left 0.272 /0.405 /0.325 0.336 /0.618 /0.435

Inner 
Entities 

Recognized Right 0.237 /0.376 /0.290 0.350 /0.694 /0.465
 Overall 0.26/0.37/0.30 0.36/0.64/0.46 

Table 2 Performance of nested DNA entities 
 

We hope these results can help in recognizing 
nested NEs, and also attract more attention to the 
nested NE problem. We are going to further our 
study by looking into more related issues.  
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Abstract

We propose a novel approach to the iden-
tification of biomedical terms in research
publications using the Perceptron HMM
algorithm. Each important term is iden-
tified and classified into a biomedical con-
cept class. Our proposed system achieves
a 68.6% F-measure based on 2,000 train-
ing Medline abstracts and 404 unseen
testing Medline abstracts. The system
achieves performance that is close to the
state-of-the-art using only a small feature
set. The Perceptron HMM algorithm pro-
vides an easy way to incorporate many po-
tentially interdependent features.

1 Introduction

Every day, new scientific articles in the biomedi-
cal field are published and made available on-line.
The articles contain many new terms and names
involving proteins, DNA, RNA, and a wide vari-
ety of other substances. Given the large volume of
the new research articles, it is important to develop
systems capable of extracting meaningful relation-
ships between substances from these articles. Such
systems need to recognize and identify biomedical
terms in unstructured texts. Biomedical term recog-
nition is thus a step towards information extraction
from biomedical texts.

The term recognition task aims at locating
biomedical terminology in unstructured texts. The
texts are unannotated biomedical research publica-
tions written in English. Meaningful terms, which

may comprise several words, are identified in order
to facilitate further text mining tasks. The recogni-
tion task we consider here also involves term clas-
sification, that is, classifying the identified terms
into biomedical concepts: proteins, DNA, RNA, cell
types, and cell lines.

Our biomedical term recognition task is defined
as follows: given a set of documents, in each docu-
ment, find and mark each occurrence of a biomedi-
cal term. A term is considered to be annotated cor-
rectly only if all its composite words are annotated
correctly. Precision, recall and F-measure are deter-
mined by comparing the identified terms against the
terms annotated in the gold standard.

We believe that the biomedical term recogni-
tion task can only be adequately addressed with
machine-learning methods. A straightforward dic-
tionary look-up method is bound to fail because
of the term variations in the text, especially when
the task focuses on locating exact term boundaries.
Rule-based systems can achieve good performance
on small data sets, but the rules must be defined
manually by domain experts, and are difficult to
adapt to other data sets. Systems based on machine-
learning employ statistical techniques, and can be
easily re-trained on different data. The machine-
learning techniques used for this task can be divided
into two main approaches: the word-based methods,
which annotate each word without taking previous
assigned tags into account, and the sequence based
methods, which take other annotation decisions into
account in order to decide on the tag for the current
word.

We propose a biomedical term identification
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system based on the Perceptron HMM algo-
rithm (Collins, 2004), a novel algorithm for HMM
training. It uses the Viterbi and perceptron algo-
rithms to replace a traditional HMM’s conditional
probabilities with discriminatively trained parame-
ters. The method has been successfully applied to
various tasks, including noun phrase chunking and
part-of-speech tagging. The perceptron makes it
possible to incorporate discriminative training into
the traditional HMM approach, and to augment it
with additional features, which are helpful in rec-
ognizing biomedical terms, as was demonstrated in
the ABTA system (Jiampojamarn et al., 2005). A
discriminative method allows us to incorporate these
features without concern for feature interdependen-
cies. The Perceptron HMM provides an easy and
effective learning algorithm for this purpose.

The features used in our system include the part-
of-speech tag information, orthographic patterns,
word prefix and suffix character strings. The ad-
ditional features are the word, IOB and class fea-
tures. The orthographic features encode the spelling
characteristics of a word, such as uppercase letters,
lowercase letters, digits, and symbols. The IOB and
class features encode the IOB tags associated with
biomedical class concept markers.

2 Results and discussion

We evaluated our system on the JNLPBA Bio-Entity
recognition task. The training data set contains
2,000 Medline abstracts labeled with biomedical
classes in the IOB style. The IOB annotation method
utilizes three types of tags: <B> for the beginning
word of a term, <I> for the remaining words of a
term, and <O> for non-term words. For the purpose
of term classification, the IOB tags are augmented
with the names of the biomedical classes; for ex-
ample, <B-protein> indicates the first word of
a protein term. The held-out set was constructed
by randomly selecting 10% of the sentences from
the available training set. The number of iterations
for training was determined by observing the point
where the performance on the held-out set starts to
level off. The test set is composed of new 404 Med-
line abstracts.

Table 1 shows the results of our system on all five
classes. In terms of F-measure, our system achieves

Class Recall Precision F-measure
protein 76.73 % 65.56 % 70.71 %
DNA 63.07 % 64.47 % 63.76 %
RNA 64.41 % 59.84 % 62.04 %
cell type 64.71 % 76.35 % 70.05 %
cell line 54.20 % 52.02 % 53.09 %
ALL 70.93 % 66.50 % 68.64 %

Table 1: The performance of our system on the test
set with respect to each biomedical concept class.

the average of 68.6%, which a substantial improve-
ment over the baseline system (based on longest
string matching against a lists of terms from train-
ing data) with the average of 47.7%, and over the
basic HMM system, with the average of 53.9%. In
comparison with the results of eight participants at
the JNLPBA shared tasks (Kim et al., 2004), our
system ranks fourth. The performance gap between
our system and the best systems at JNLPBA, which
achieved the average up to 72.6%, can be attributed
to the use of richer and more complete features such
as dictionaries and Gene ontology.

3 Conclusion

We have proposed a new approach to the biomedical
term recognition task using the Perceptron HMM al-
gorithm. Our proposed system achieves a 68.6% F-
measure with a relatively small number of features
as compared to the systems of the JNLPBA partici-
pants. The Perceptron HMM algorithm is much eas-
ier to implement than the SVM-HMMs, CRF, and
the Maximum Entropy Markov Models, while the
performance is comparable to those approaches. In
the future, we plan to experiment with incorporat-
ing external resources, such as dictionaries and gene
ontologies, into our feature set.
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Abstract

We describe a pilot project in semi-
automatically refactoring a biomedical
corpus. The total time expended was just
over three person-weeks, suggesting that
this is a cost-efficient process. The refac-
tored corpus is available for download at
http://bionlp.sourceforge.net.

1 Introduction

Cohen et al. (2005) surveyed the usage rates of a
number of biomedical corpora, and found that most
biomedical corpora have not been used outside of
the lab that created them. Empirical data on corpus
design and usage suggests that one major factor af-
fecting usage is the format in which it is distributed.

These findings suggest that there would be a large
benefit to the community in refactoring these cor-
pora. Refactoring is defined in the software en-
gineering community as altering the internal struc-
ture of code without altering its external behav-
ior (Fowler et al., 1999). We suggest that in the con-
text of corpus linguistics, refactoring means chang-
ing the format of a corpus without altering its con-
tents, i.e. its annotations and the text that they de-
scribe. The significance of being able to refactor a
large number of corpora should be self-evident: a
likely increase in the use of the already extant pub-
licly available data for evaluating biomedical lan-
guage processing systems, without the attendant cost
of repeating their annotation.

We examined the question of whether corpus
refactoring is practical by attempting a proof-of-

concept application: modifying the format of the
Protein Design Group (PDG) corpus described in
Blaschke et al. (1999) from its current idiosyncratic
format to a stand-off annotation format (WordF-
reak1) and a GPML-like (Kim et al., 2001) embed-
ded XML format.

2 Methods

The target WordFreak and XML-embedded formats
were chosen for two reasons. First, there is some
evidence suggesting that standoff annotation and
embedded XML are the two most highly preferred
corpus annotation formats, and second, these for-
mats are employed by the two largest extant curated
biomedical corpora, GENIA (Kim et al., 2001) and
BioIE (Kulick et al., 2004).

The PDG corpus we refactored was originally
constructed by automatically detecting protein-
protein interactions using the system described in
Blaschke et al. (1999), and then manually review-
ing the output. We selected it for our pilot project
because it was the smallest publicly available cor-
pus of which we were aware. Each block of text has
a deprecated MEDLINE ID, a list of actions, a list of
proteins and a string of text in which the actions and
proteins are mentioned. The structure and contents
of the original corpus dictate the logical steps of the
refactoring process:

1. Determine the current PubMed identifier, given
the deprecated MEDLINE ID. Use the PubMed
identifier to retrieve the original abstract.

1http://venom.ldc.upenn.edu/
resources/info/wordfreak ann.html
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2. Locate the original source sentence in the title
or abstract.

3. Locate the “action” keywords and the entities
(i.e., proteins) in the text.

4. Produce output in the new formats.

Between each file creation step above, human cu-
rators verify the data. The creation and curation pro-
cess is structured this way so that from one step to
the next we are assured that all data is valid, thereby
giving the automation the best chance of performing
well on the subsequent step.

3 Results

The refactored PDG corpus is publicly available at
http://bionlp.sourceforge.net. Total time expended
to refactor the PDG corpus was 122 hours and 25
minutes, or approximately three person-weeks. Just
over 80% of the time was spent on the programming
portion. Much of that programming can be directly
applied to the next refactoring project. The remain-
ing 20% of the time was spent curating the program-
matic outputs.

Mapping IDs and obtaining the correct abstract
returned near-perfect results and required very little
curation. For the sentence extraction step, 33% of
the corpus blocks needed manual correction, which
required 4 hours of curation. (Here and below, “cu-
ration” time includes both visual inspection of out-
puts, and correction of any errors detected.) The
source of error was largely due to the fact that the
sentence extractor returned the best sentence from
the abstract, but the original corpus text was some-
times more or less than one sentence.

For the protein and action mapping step, about
40% of the corpus segments required manual cor-
rection. In total, this required about 16 hours of cu-
ration time. Distinct sources of error included par-
tial entity extraction, incorrect entity extraction, and
incorrect entity annotation in the original corpus ma-
terial. Each of these types of errors were corrected.

4 Conclusion

The underlying motivation for this paper is the hy-
pothesis that corpus refactoring is practical, eco-
nomical, and useful. Erjavec (2003) converted the
GENIA corpus from its native format to a TEI P4

format. They noted that the translation process
brought to light some previously covert problems
with the GENIA format. Similarly, in the process of
the refactoring we discovered and repaired a number
of erroneous entity boundaries and spurious entities.

A number of enhancements to the corpus are now
possible that in its previous form would have been
difficult at best. These include but are not limited
to performing syntactic and semantic annotation and
adding negative examples, which would expand the
usefulness of the corpus. Using revisioning soft-
ware, the distribution of iterative feature additions
becomes simple.

We found that this corpus could be refactored with
about 3 person-weeks’ worth of time. Users can take
advantage of the corrections that we made to the en-
tity component of the data to evaluate novel named
entity recognition techniques or information extrac-
tion approaches.
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1 Introduction 

Part-of-speech (POS) tagging is a fundamental 
component for performing natural language tasks 
such as parsing, information extraction, and ques-
tion answering.  When POS taggers are trained in 
one domain and applied in significantly different 
domains, their performance can degrade dramati-
cally.  We present a methodology for rapid adapta-
tion of POS taggers to new domains.  Our 
technique is unsupervised in that a manually anno-
tated corpus for the new domain is not necessary.  
We use suffix information gathered from large 
amounts of raw text as well as orthographic infor-
mation to increase the lexical coverage. We present 
an experiment in the Biological domain where our 
POS tagger achieves results comparable to POS 
taggers specifically trained to this domain.   

Many machine-learning and statistical tech-
niques employed for POS tagging train a model on 
an annotated corpus, such as the Penn Treebank 
(Marcus et al, 1993). Most state-of-the-art POS 
taggers use two main sources of information: 1) 
Information about neighboring tags, and 2) Infor-
mation about the word itself. Methods using both 
sources of information for tagging are: Hidden 
Markov Modeling, Maximum Entropy modeling, 
and Transformation Based Learning (Brill, 1995).  

In moving to a new domain, performance can 
degrade dramatically because of the increase in the 
unknown word rate as well as domain-specific 
word use. We improve tagging performance by 
attacking these problems. Since our goal is to em-
ploy minimal manual effort or domain-specific 
knowledge, we consider only orthographic, inflec-
tional and derivational information in deriving 
POS. We bypass the time, cost, resource, and con-
tent expert intensive approach of annotating a cor-
pus for a new domain. 

2 Methodology and Experiment 

The initial components in our POS tagging process 
are a lexicon and part of speech (POS) tagger 
trained on a generic domain corpus. The lexicon is 
updated to include domain specific information 
based on suffix rules applied to an un-annotated 
corpus. Documents in the new domain are POS 
tagged using the updated lexicon and orthographic 
information. So, the POS tagger uses the domain 
specific updated lexicon, along with what it knows 
from generic training, to process domain specific 
text and output POS tags. 

In demonstrating feasibility of the approach, we 
used the fnTBL-1.0 POS tagger (Ngai and Florian, 
2001) based on Brill’s Transformation Based 
Learning (Brill, 1995) along with its lexicon and 
contextual rules trained on the Wall Street Journal 
corpus.  

To update the lexicon, we processed 104,322 
abstracts from five of the 500 compressed data 
files in the 2005 PubMed/Medline database (Smith 
et al, 2004). As a result of this update, coverage of 
words with POS tags from the lexicon increased 
from 73.0% to 89.6% in our test corpus. 

Suffix rules were composed based on informa-
tion from Michigan State University’s Suffixes and 
Parts of Speech web page for Graduate Record 
Exams (DeForest, 2000). The suffix endings indi-
cate the POS used for new words. However, as 
seen in the table of suffix examples below, there 
can be significant lack of precision in assigning 
POS based just on suffixes.  

Suffix POS #uses/ %acc 
ize; izes VB VBP; VBZ 23/100% 
ous JJ 195/100% 
er, or; ers, ors NN; NNS 1471/99.5% 
ate; ates VB VBP 576/55.7% 
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Most suffixes did well in determining the actual 
POS assigned to the word. Some such as “-er” and 
“-or” had very broad use as well. “-ate” typically 
forms a verb from a noun or adjective in a generic 
domain. However in scientific domains it often 
indicates a noun or adjective word form. (In work 
just begun, we add POS assignment confirmation 
tests to suffix rules so as to confirm POS tags 
while maintaining our domain independent and 
unsupervised analysis of un-annotated corpora.) 

Since the fnTBL POS tagger gives preliminary 
assignment of POS tags based on the first POS 
listed for that word in the lexicon, it is vital that the 
first POS tag for a common word be correct. 
Words ending in ‘-ing’ can be used in a verbal 
(VBG), adjectival (JJ) or noun (NN) sense. Our 
intuition is that the ‘-ed’ form should also appear 
often when the verbal sense dominates. In contrast, 
if the ratio heavily favors the ‘-ing’ form then we 
expect the noun sense to dominate.  

We incorporated this reasoning into a computa-
tionally defined process which assigned the NN tag 
first to the following words: binding, imaging, 
learning, nursing, processing, screening, signal-
ing, smoking, training, and underlying. Only un-
derlying seems out of place in this list.  

In addition to inflectional and derivational suf-
fixes, we used rules based on orthographic charac-
teristics. These rules defined proper noun and 
number or code categories. 

3 Results and Conclusion 

For testing purposes, we used approximately half 
the abstracts of the GENIA corpus (version 3.02) 
described in (Tateisi et al, 2003). As the GENIA 
corpus does not distinguish between common and 
proper nouns we dropped that distinction in evalu-
ating tagger performance.  

POS tagging accuracy on our GENIA test set 
(second half of abstracts) consisting of 243,577 
words is shown in the table below. 

Source Accuracy 
Original fnTBL lexicon 92.58% 
Adapted lexicon (Rapid) 94.13% 
MedPost 94.04% 
PennBioIE1 93.98% 

                                                             
1 Note that output from the tagger is not fully compatible with 
GENIA annotation. 

The original fnTBL tagger has an accuracy of 
92.58% on the GENIA test corpus showing that it 
deals well with unknown words from this domain. 
Our rapid adaptation tagger achieves a modest 
1.55% absolute improvement in accuracy, which 
equates to a 21% error reduction.   

There is little difference in performance be-
tween our rapid adaptation tagger and the MedPost 
(Smith et al, 2004) and PennBioIE (Kulick et al, 
2004) taggers. The PennBioIE tagger employs 
maximum entropy modeling and was developed 
using 315 manually annotated Medline abstracts. 
The MedPost tagger also used domain-specific 
annotated corpora and a 10,000 word lexicon, 
manually updated with POS tags. 

We have improved the accuracy of the fnTBL-
1.0 tagger for a new domain by adding words and 
POS tags to its lexicon via unsupervised methods 
of processing raw text from the new domain. The 
accuracy of the resulting tagger compares well to 
those that have been trained to this domain using 
annotation effort and domain-specific knowledge.  
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1 Introduction

There has been much interest in recent years on the
topic of extracting Protein-Protein Interaction (PPI)
information automatically from scientific publica-
tions. This is due to the need that has emerged to
organise the large body of literature that is gener-
ated through research, and collected at sites such
as PubMed. Easy access to the information con-
tained in published work is vital for facilitating new
research, but the rate of publication makes manual
collection of all such data unfeasible. Information
Extraction approaches based on Natural Language
Processing can be, and are already being used, to fa-
cilitate this process.

The dominant approach so far has been the use
of hand-built, knowledge-based systems, working
at levels ranging from surface syntax to full parses
(Blaschke and Valencia, 2002; Huang et al., 2004;
Plake et al., 2005; Rebholz-Schuhmann et al., 2005;
Yakushiji et al., 2005). A similar work to the one
presented here is by (Sugiyama et al., 2003), but it
is not possible to compare results due to differing
datasets and the limited information available about
their methods.

2 Data

A gene-interaction corpus derived from the BioCre-
AtIvE task-1A data will be used for the experiments.
This data was kindly made available by Jörg Haken-
berg1 and is described in (Plake et al., 2005). The
data consists of 1000 sentences marked up for POS

1See http://www.informatik.hu-berlin.de/ haken-
ber/publ/suppl/sac05/

tags, genes (both genes and proteins are marked as
‘gene’; the terms will be used interchangeably in
this paper) and iWords. The corpus contains 255
relations, all of which are intra-sentential, and the
“interaction word” (iWord)2 for each relation is also
marked up.

I utilise the annotated entities, and focus only on
relation extraction. The data contains directionality
information for each relation, denoting which entity
is the ‘agent’ and which the ‘target’, or denoting that
this distinction cannot be made. This information
will not be used for the current experiments, as my
main aim is simply to identify relations between en-
tities, and the derivation of this information will be
left for future work.

I will be using the Naive Bayes, KStar, and JRip
classifiers from the Weka toolkit, Zhang Le’s Maxi-
mum Entropy classifier (Maxent), TiMBL, and Lib-
SVM to test performance. All experiments are done
using 10-fold cross-validation. Performance will be
measured using Recall, Precision and F1.

3 Experiments

Each possible combination of proteins and iWords
in a sentence was generated as a possible relation
‘triple’, which combines the relation extraction task
with the additional task of finding the iWord to de-
scribe each relation. 3400 such triples occur in the
data. After each instance is given a probability by
the classifiers, the highest scoring instance for each
protein pairing is compared to a threshold to decide

2A limited set of words that have been determined to be in-
formative of when a PPI occurs, such asinteract, bind, inhibit,
phosphorylation. See footnote 1 for complete list.
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the outcome. Correct triples are those that match the
iWord assigned to a PPI by the annotators.

For each instance, a list of features were used to
construct a ‘generic’ model :

interindices The combination of the indices of the
proteins of the interaction; “P1-position:P2-
position”

interwords The combination of the lexical forms
of the proteins of the interaction; “P1:P2”

p1prevword, p1currword, p1nextword The lexi-
cal form of P1, and the two words surrounding
it

p2prevword, p2currword, p2nextword The lexi-
cal form of P2, and the two words surrounding
it

p2pdistance The distance, in tokens, between the
two proteins

inbetween The number of other identified proteins
between the two proteins

iWord The lexical form of the iWord
iWordPosTag The POS tag of the iWord
iWordPlacement Whether the iWord is between,

before or after the proteins
iWord2ProteinDistance The distance, in words,

between the iWord and the protein nearest to
it

A second model incorporates greater domain-
specific features, in addition to those of the ‘generic’
model :

patterns The 22 syntactic patterns used in (Plake et
al., 2005) are each used as boolean features3.

lemmas and stemsLemma and stem information
was used instead of surface forms, using a sys-
tem developed for the biomedical domain.

4 Results

Tables 1 and 2 show the results for the two models
described above. The system achieves a peak per-

3These patterns are in regular expression form, i.e. “P1
word{0,n} Iverb word{0,m} P2”. This particular pattern
matches sentences where a protein is followed by an iWord that
is a verb, with a maximum ofn words between them, and fol-
lowing this bym words maximum is another protein. In their
paper, (Plake et al., 2005) optimise the values forn andmusing
Genetic Algorithms, but I will simply set them all to 5, which is
what they report as being the best unoptimized setting.

formance of 59.2% F1, which represents a notice-
able improvement over previous results on the same
dataset (52% F1 (Plake et al., 2005)), and demon-
strates the feasibility of the approach adopted.

It is seen that simple contextual features are quite
informative for the task, but that a significant gains
can be made using more elaborate methods.

Algorithm Recall Precision F1
Naive Bayes 61.3 35.6 45.1
KStar 65.2 41.6 50.8
Jrip 66.0 45.4 53.8
Maxent 58.5 48.2 52.9
TiMBL 49.0 41.1 44.7
LibSVM 49.4 56.8 52.9

Table 1: Results using ‘generic’ model

Algorithm Recall Precision F1
Naive Bayes 64.8 44.1 52.5
KStar 60.9 45.0 51.8
Jrip 44.3 45.7 45.0
Maxent 57.7 56.6 57.1
TiMBL 42.7 74.0 54.1
LibSVM 54.5 64.8 59.2

Table 2: Results using extended model
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Named entity recognition of gene names, pro-
tein names, cell-lines, and other biologically rele-
vant concepts has received significant attention by
the research community. In this work, we consid-
ered named entity recognition of experimental tech-
niques in biomedical articles. In our system to mine
gene and disease associations, each association is
categorized by the techniques used to derive the as-
sociation. Categories are used to weight or remove
associations, such as removing associations derived
from microarray experiments.

We report on a pilot study to identify experimen-
tal techniques. Three main activities are discussed:
manual annotation, lexicon-based tagging, and doc-
ument classification. Analysis of manual annota-
tion suggests several interesting linguistic character-
istics arise. Two lexicon-based tagging approaches
demonstrate little agreement, suggesting sophisti-
cated tagging algorithms may be necessary. Docu-
ment classification using abstracts and titles is com-
pared with full-text classification. In most cases, ab-
stracts and titles show comparable performance to
full-text.

Corpus We built a corpus around our interest in
gene associations with breast cancer to leverage the
domain expertise of the authors. The corpus con-
sisted of 247 sampled from 2571 papers associating
breast cancer with a human gene in EntrezGene.

Manual Annotation Manual annotation was pri-
marily performed by a graduate student in bioin-
formatics and a computer science Ph.D. with a re-
search emphasis in bioinformatics. Annotators were
instructed to highlight direct mentions of experimen-

tal techniques. During the study, we noted low inter-
annotator agreement and stopped the manual pro-
cess after annotating 102 of 247 documents.

Results were analyzed for linguistic characteris-
tics. Experimental technique mentions appear with
varying frequency in 6 typical document sections:
Title, Abstract, Introduction, Materials and Meth-
ods, Results and Discussion. In some sections,
such as Introduction, mentions are often for refer-
ences and not the current document. Techniques
such as transfection and immunoblotting, demon-
strated diverse morphology. Other characteristics in-
cluded use of synonyms and abbreviations, conjunc-
tive phrases, and endophora.

Tagging Tagging is commonly used for named en-
tity recognition. In our context, associations are cat-
egorized by generating a list of all tagged techniques
tagged in a document.

Two taggers were tested on 247 documents to
investigate the efficacy of two lexicons — MeSH
and UMLS — containing experimental techniques.
One approach used regular expressions for terms
and permuted terms in the Investigative Techniques
MeSH subhierarchy. The other used a natural lan-
guage approach based on MetaMap Transfer (Aron-
son, 2001), mapping text to UMLS entries with the
Laboratory Procedure semantic type (ID: T059).

Low inter-annotator agreement between taggers
was exhibited with a maximum κ of 0.220. Both tag-
gers exhibited limitations — failing to properly tag
phrases such as “Northern and Western analyses” —
and neither one is clearly superior to the other.
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Full-Text Abstract
Technique 1,000 All(59,628) 1,000 All(4,395)
Electrophoresis (144) 72.4/81.2/76.5 70.3/77.4/73.7 68.9/79.8/74.0 69.2/75.3/72.1
Western Blot Analysis (132) 71.3/83.6/77.0 71.4/77.0/74.1 67.5/79.8/73.1 68.2/76.2/72.0
Gene Transfer Technique (137) 76.3/92.1/83.4 74.6/88.6/81.0 77.0/89.6/82.8 76.2/88.3/81.8
Pedigree(10) 52.0/91.3/66.2 81.2/72.5/76.6 42.9/77.7/55.3 59.9/58.3/59.1
Sequence Alignment (24) 53.0/66.6/59.1 96.6/17.9/30.1 61.2/59.5/60.3 67.0/36.5/47.2
Statistics (107) 70.7/57.7/63.5 70.3/60.8/65.2 73.6/58.6/65.2 71.5/63.5/67.2

Table 1: Precision/Recall/F1-scores for classifiers with different vocabulary sizes.

Document Classification Document classifica-
tion was also used to obtain a list of utilized exper-
imental techniques. Each article is assigned to one
or more classes corresponding to techniques used to
generate results.

Two distinct questions were investigated. First,
how well does classification perform if only the ab-
stract and title of the article are available? Second,
how does vocabulary size affect the classification?

Multinomial Naı̈ve Bayes models were imple-
mented in Rainbow (McCallum, 1996; McCallum
and Nigam, 1998) for 24 MeSH experimental tech-
niques. Document frequency in each class ranged
from 10 (Pedigree) to 144 (Electrophoresis). Vocab-
ularies consist of top information gain ranked words.
Classifiers were evaluated by precision, recall, and
F1-scores averaged over 100 runs. The corpus was
split into 2/3 training and 1/3 testing, randomly cho-
sen for each run.

Selected results are shown in Table 1. Full-text
classifiers performed better than abstract based clas-
sifiers with a few exceptions: “Sequence Align-
ment” and “Gene Transfer Techniques”. The per-
formance of abstract and full-text classifiers is com-
parable: F1 scores often differ by less than 5
points. Smaller vocabularies tend to improve the
recall and overall F1 scores, while larger ones im-
proved precision. Classifiers for low frequency (<
25) techniques generally performed poorly. One
class, “Pedigree”, performed surprisingly well, with
a maximum F1 of 76.6.

Considering that Naı̈ve Bayes models are often
baseline models and the small size of the corpus,
classification performance is good.

Related and Future Work For comprehensive
reviews of current work in biomedical literature
mining, refer to (Cohen and Hersh, 2005) and
(Krallinger et al., 2005). As future work, we will
continue manual annotation, validate the informa-
tive capacity of sections with experiments similar to
Sinclair and Webber (Sinclair and Webber, 2004),
and investigate improvements in tagging and classi-
fication.
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Background and Introduction 

ClinicalTrials.gov, the National Library of 
Medicine clinical trials registry, is a monolingual 
clinical research website with over 29,000 records 
at present. The information is presented in static 
and free-text fields. Static fields contain high-level 
informational text, descriptors, and controlled vo-
cabularies that remain constant across all clinical 
studies (headings, general information). Free-text 
data are detailed and trial-specific, such as the Pur-
pose section, which presents each trial’s goal, with 
large inter-trial variability in length as well as in 
technical difficulty. The crux of the trial purpose is 
generally found in 1-3 sentences, often introduced 
by clearly identified natural language markers. 
 

In the Spanish cross-language information re-
trieval (CLIR) ClinicalTrials.gov prototype, indi-
vidual studies are displayed as abridged Spanish-
language records, with Spanish static field descrip-
tors, and a manual Spanish translation for the free-
text study title. The Purpose section of these ab-
breviated documents only contains a link (in Span-
ish) to the full-text English record. The premise 
was that the gist could be obtained from the Span-
ish title, the link to the English document, and the 
Spanish descriptors. However, in a recently con-
ducted user study on the Spanish CLIR prototype, 
Spanish-speaking consumers did not use the Pur-
pose section link, as doing so entailed leaving a 
Spanish webpage to go to an English one. Further, 
feedback from an earlier study indicated a need for 
some Spanish text in the Purpose section to pro-
vide the gist of the trial while avoiding the infor-
mation overload in the full-text English record. 
Thus, in an alternative display format, extractive 
summarization plus translation was used to en-
hance the abbreviated Spanish document and sup-
plement the link to the English record. The trial 
purpose--up to three sentences--was algorithmi-
cally extracted from the English document Purpose 

section, and translated into Spanish via post-edited 
machine translation for display in the Spanish re-
cord Purpose section (Rosemblat et al., 2005). 
 

Our extraction technique, which combines sen-
tence boundary detection, regular expressions, and 
decision-based rules, was validated by the user 
study for facilitating user relevance judgment. All 
participants endorsed this alternative display for-
mat over the initial schematic design, especially 
when the Purpose extract makes up the entire Pur-
pose section in the English document, as is the case 
in 48% of all trials. For Purpose sections that span 
many paragraphs and exceed 1,000 words, human 
translation is not viable. Machine translation is 
used to reduce the burden, and using excerpts of 
the original text as opposed to entire documents 
further reduces the resource cost. Human post-
editing ensures the accuracy of translations. Auto-
mated extraction of key goal-describing text may 
provide relevant excerpts of the original text via 
topic recognition techniques (Hovy, 2003). 

1 RegExp Detection and Pattern Match-
ing 

Linguistic analysis of the natural language ex-
pressions in the clinical trial records’ Purpose sec-
tion was performed manually on a large sample of 
documents. Common language patterns across 
studies introducing the purpose/goal of each trial 
served as cue phrases. These cue phrases contained 
both quality features and the rhetorical role of 
GOAL (Teufel and Moens, 1999). The crux of the 
purpose was generally condensed in 1-3 sentences 
within the Purpose section, showing definite pat-
terns and a limited set of productive, straightfor-
ward linguistic markers. From these common 
patterns, the ClinicalTrials.gov Purpose Extractor 
Algorithm (PEA) was devised, and developed in 
Java (1.5) using the native regexp package. 
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Natural language expressions in the purpose 
sentences include three basic elements, making 
them well suited to regular expressions: 
a)   A small, closed set of verbs (determine, test)  
b)   Specific purpose triggers or cues (goal, aim) 
c)   Particular types of sentence constructs, as in: 

This study will evaluate two medications… 
 

PEA incorporates sentence boundary detection 
(A), purpose statement matching (B), and a series 
of decision steps (C) to ensure the extracted text is 
semantically and syntactically correct: 
A)   To improve regexp performance and en-
sure that extraction occurred in complete sen-
tences, sentence boundary detection was 
implemented. Grok (OpenNLP), open source Java 
NLP software, was used for this task, corpus-
trained and validated, and supplemented with 
rules-based post-processing. 
B)  Regular expressions were rank ordered 
from most specific to the more general with a de-
fault expression should all others fail to match. The 
regexp patterns allowed for possible tense and op-
tional modal variations, and included a range of all 
possible patterns that resulted from combining 
verbs and triggers, controlled for case-sensitivity. 
The default for cases that differed from the stan-
dard patterns relied solely on the verb set provided. 
C)  Checks were made for (a) length normali-
zation (a maximum of 450 characters), with pur-
pose-specific text in enumerated or bulleted lists 
overriding this restriction; and (b) discourse mark-
ers pointing to extra-sentential information for the 
semantic processing of the text. In this case, PEA 
determines the anchor sentence (main crux of the 
purpose), and then whether to include a leading 
and trailing sentence, or two leading sentences or 
two trailing ones, to reach the 3-sentence limit. 
 

  RegExp Patterns Description  Case 
 PURPOSE  Sentence label (purpose) Yes 
 To VERB_SET Study action starts section No 
 In THIS STUDY General actions in study No 

Table 1. Some purpose patterns used by PEA 

2 Evaluation 

Manual PEA validation was done on a random 
sample of 300 trials. For a stricter test, the 13,110 
studies with Purpose sections short enough to in-
clude in full without any type of processing or de-
cision were not part of the random sample. 

Judgments were provided by the authors, one of 
whom was not involved in the development of 
PEA code. The 300 English extracts (before trans-
lation) were compared against the full-text Purpose 
sections in the clinical trials, with compression rate 
averaging 30%. Evaluation was done on a 3-point 
scale: perfect extraction, appropriate, wrong text. 
Inter-annotator agreement using Cohen’s kappa 
was considered to be good (Kappa = 0.756987). 
Table 2 shows evaluation results after inter-rater 
differences were reconciled: 
 

CRITERIA TRIALS RATIO 
 Perfect extraction 275   92% 
 Appropriate extraction  18     6% 
 Extraction of wrong text    7     2% 

Table 2: Results: 300 Clinical trials random sample 

3 Conclusion 

This pragmatic approach to task-specific (pur-
posive) summary extraction in a limited domain 
(ClinicalTrials.gov) using regular expressions has 
shown a 92% precision. Further research will de-
termine if this method is appropriate for CLIR and 
query language display via machine translation and 
subsequent post-editing in clinical trials informa-
tion systems for other registries and sponsors. 
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Abstract 

In modern biology, digitization of biosys-
tematics publications is an important task. 
Extraction of taxonomic names from such 
documents is one of its major issues. This 
is because these names identify the various 
genera and species. This article reports on 
our experiences with learning techniques 
for this particular task. We say why estab-
lished Named-Entity Recognition tech-
niques are somewhat difficult to use in our 
context. One reason is that we have only 
very little training data available. Our ex-
periments show that a combining approach 
that relies on regular expressions, heuris-
tics, and word-level language recognition 
achieves very high precision and recall and 
allows to cope with those difficulties. 

1 Introduction 
Digitization of biosystematics publications cur-
rently is a major issue. They contain the names 
and descriptions of taxonomic genera and species. 
The names are important because they identify the 
various genera and species. They also position the 
species in the tree of life, which in turn is useful 
for a broad variety of biology tasks. Hence, rec-
ognition of taxonomic names is relevant. How-
ever, manual extraction of these names is time-
consuming and expensive. 
The main problem for the automated recognition 
of these names is to distinguish them from the 
surrounding text, including other Named Entities 
(NE). Named Entity Recognition (NER) currently 
is a big research issue. However, conventional 
NER techniques are not readily applicable here 
for two reasons: First, the NE categories are rather 
high-level, e.g., names of organizations or persons 
(cf. common NER benchmarks such as (Carreras 
2005)). Such a classification is too coarse for our 

context. The structure of taxonomic names varies 
widely and can be complex. Second, those recog-
nizers require large bodies of training data. Since 
digitization of biosystematics documents has 
started only recently, such data is not yet available 
in biosystematics. On the other hand, it is impor-
tant to demonstrate right away that text-learning 
technology is of help to biosystematics as well. 
This paper reports on our experiences with learn-
ing techniques for the automated extraction of 
taxonomic names from documents. The various 
techniques are obviously useful in this context: 
• Language recognition – taxonomic names are 

a combination of Latin or Latinized words, 
with surrounding text written in English, 

• structure recognition – taxonomic names fol-
low a certain structure, 

• lexica support – certain words never are/may 
well be part of taxonomic names. 

On the other hand, an individual technique in iso-
lation is not sufficient for taxonomic name extrac-
tion. Mikheev (1999) has shown that a combining 
approach, i.e., one that integrates the results of 
several different techniques, is superior to the in-
dividual techniques for common NER. Combin-
ing approaches are also promising for taxonomic 
name extraction. Having said this, the article will 
now proceed as follows: 
First, we have conducted a thorough inspection of 
taxonomic names. An important observation is 
that one cannot model taxonomic names both 
concisely and precisely using regular expressions. 
As is done in bootstrapping, we use two kinds of 
regular expressions: precision rules, whose in-
stances are taxonomic names with very high 
probability, and recall rules, whose instances are 
a superset of all taxonomic names. We propose a 
meaningful definition of precision rules and recall 
rules for taxonomic names. 
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Second, the essence of a combining approach is to 
arrange the individual specific approaches in the 
right order. We propose such a composition for 
taxonomic name extraction, and we say why it is 
superior to other compositions that may appear 
feasible as well at first sight. 
Finally, to quantify the impact of the various al-
ternatives described so far, we report on experi-
mental results. The evaluation is based on a cor-
pus of biosystematics documents marked up by 
hand. The best solution achieves about 99.2% in 
precision and recall. It prompts the user for only 
0.2% of the words.  
The remainder of the paper is as follows: Sec-
tion 2 discusses related approaches. Section 3 in-
troduces some preliminaries. Section 4 describes 
one specific combining approach in some detail. 
Section 5 features an evaluation. Section 6 con-
cludes. 

2 Related Work 
This section reviews solutions to problems related 
to the extraction of taxonomic names. 

2.1 Named Entity Recognition 
Taxonomic names are a special case of named 
entity. In the recent past, NER has received much 
attention, which yielded a variety of methods. The 
most common ones are list lookups, grammars, 
rules, and statistical methods like SVMs (Bikel 
1997). All these techniques have been developed 
for tasks like the one presented by Carreras 
(2005). Thus, their focus is the recognition of 
somewhat common NE like locations and per-
sons. Consequently, they are not feasible for the 
complex and variable structure of taxonomic 
names (see Section 3.3). Another problem of 
common NER techniques is that they usually re-
quire several hundred thousand words of pre-
annotated training data. 

2.2 List-based Techniques 
List-based NER techniques (Palmer 1997) make 
use of lists to determine whether a word is a NE 
of the category sought. The sole use of a thesaurus 
as a positive list is not an option for taxonomic 
names. All existing thesauri are incomplete. Nev-
ertheless, such a list allows recognizing known 
parts of taxonomic names. 

The inverse approach would be list-based exclu-
sion, using a common English dictionary. Koning 
(2005) combines such an approach with structural 
rules. In isolation, however, it is not an option 
either. First, it would not exclude proper names 
reliably. Second, it excludes parts of taxonomic 
names that are also used in common English. 
However, exclusion of sure negatives, i.e., words 
that are never part of taxonomic names, simplifies 
the classification. 

2.3 Rule Based Techniques 
Rule based techniques do not require pre-
annotated training data. They extract words or 
word sequences based on their structure. Yoshida 
(1999) applies regular expressions to extract the 
names of proteins. He makes use of the syntax of 
protein names like NG-monomethyl-L-arginine, 
which is very distinctive. 
There are also rules for the syntax of taxonomic 
names, but they are less restrictive. For instance, 
Prenolepis (Nylanderia) vividula Erin subsp. gua-
temalensis Forel var. itinerans Forel is a taxo-
nomic name as well as Dolichoderus decollatus. 
Because of the wide range of optional parts, it is 
impossible to find a regular expression that 
matches all taxonomic names and at the same 
time provides satisfactory precision. Koning 
(2005) presents an approach based on regular ex-
pressions and static dictionaries. This technique 
performs satisfactorily compared to common 
NER approaches, but their conception of what is a 
positive is restricted. For instance, they leave 
aside taxonomic names that do not specify a ge-
nus. However, the idea of rule-based filters for the 
phrases of documents is helpful. 

2.4 Bootstrapping 
Instead of a large amount of labeled training data, 
Bootstrapping uses some labeled examples 
(“seeds”) and an even larger amount of unlabeled 
data for the training. Jones (1999) has shown that 
this approach performs equal to techniques requir-
ing labeled training data. However, Bootstrapping 
is not readily applicable to our particular problem. 
Niu (2003) used an unlabeled corpus of 
88.000.000 words for training a named entity rec-
ognizer. For our purpose, even unlabeled training 
data is not available in this order of magnitude, at 
least right now. 
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2.5 Active Learning 
According to Day (1997), the original idea of Ac-
tive Learning was to speed up the creation of 
large labeled training corpora from unlabeled 
documents. The system uses all of its knowledge 
during all phases of the learning. Thus, it labels 
most of the data items automatically and requires 
user interaction only in rare cases. In order to in-
crease data quality, we include user-interaction in 
our taxonomic name extractor as well. 

2.6 Gene and Protein Name Extraction 
In the recent past, the major focus of biomedical 
NER has been the recognition of gene and protein 
names. Tanabe (2002) gives a good overview of 
various approaches to this task. Frequently used 
techniques are structural rules, dictionary lookups 
and Hidden Markov Models. Most of the ap-
proaches use the output of a part-of-speech tagger 
as additional evidence. Both gene and protein 
names differ from taxonomic names in that the 
nomenclature rules for them are by far stricter. 
For instance, they never include the names of the 
discoverer / author of a given part. In addition, 
there are parts which are easily distinguished from 
the surrounding text based on their structure, 
which is not true for taxonomic names. Conse-
quently, the techniques for gene or protein name 
recognition are not feasible for the extraction of 
taxonomic names. 

3 Preliminaries 
This section introduces some preliminaries re-
garding word-level language recognition. We also 
describe a measure to quantify the user effort in-
duced by interactions. 

3.1 Measure for User Effort 
In NLP, the f-Measure is popular to quantify the 
performance of a word classifier: 
P(P) := positives classified as positive 
N(P) := positives classified as negative 
P(N) := negatives classified as positive 
N(N) := negatives classified as negative 
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:p ecisionPr
+

=    
N(P)  P(P)

P(P)
:r callRe

+
=  

rp
rp2

:fMeasure
+

××
=  

But components that use active learning have 
three possible outputs. If the decision between 
positive or negative is narrow, they may classify a 

word as uncertain and prompt the user. This pre-
vents misclassifications, but induces intellectual 
effort. To quantify this effort as well, there are 
two further measures: 
U(P) := positives not classified (uncertain) 
U(N) := negatives not classified (uncertain) 

Given this, Coverage C is defined as the fraction 
of all classifications that are not uncertain: 

)N(U)N(N)N(P)P(U)P(N)P(P

)N(N)N(P)P(N)P(P
:C

+++++

+++
=  

To obtain a single measure for overall classifica-
tion quality, we multiply f-Measure and coverage 
and define Quality Q as 

CfMeasure:Q ×=  

3.2 Word-Level Language Recognition 
for Taxonomic Name Extraction 

In earlier work (Sautter 2006), we have presented 
a technique to classify words as parts of taxo-
nomic names or as common English, respectively. 
It is based on two statistics containing the N-
Gram distribution of taxonomic names and of 
common English. Both statistics are built from 
examples from the respective languages. It uses 
active learning to deal with the lack of training 
data. Precision and recall reach a level of 98%. 
This is satisfactory, compared to common NER 
components. At the same time, the user has to 
classify about 3% of the words manually. In a text 
of 10.000 words, this would be 300 manual classi-
fications. We deem this relatively high. 

3.3 Formal Structure of Taxonomic Names 
The structure of taxonomic names is defined by 
the rules of Linnaean nomenclature (Ereshefsky 
1997). They are not very restrictive and include 
many optional parts. For instance, both Prenole-
pis (Nylanderia) vividula Erin subsp. guatemalen-
sis Forel var. itinerans Forel and Dolichoderus 
decollatus are taxonomic names. There are only 
two mandatory parts in such a name: the genus 
and the species. Table 1 shows the decomposition 
of the two examples. The parts with their names 
in brackets are optional. More formally, the rules 
of Linnaean nomenclature define the structure of 
taxonomic names as follows: 
• The genus is mandatory. It is a capitalized 

word, often abbreviated by its first one or two 
letters, followed by a dot. 
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• The subgenus is optional. It is a capitalized 
word, often enclosed in brackets. 

• The species is mandatory. It is a lower case 
word. It is often followed by the name of the 
scientist who first described the species. 

• The subspecies is optional. It is a lower case 
word, often preceded by subsp. or subspecies 
as an indicator. It is often followed by the 
name of the scientist who first described it. 

• The variety is optional. It is a lower case 
word, preceded by var. or variety as an indi-
cator. It is often followed by the name of the 
scientist who first described it. 

Part   
Genus Prenolepis Dolichoderus 
(Subgenus) (Nylanderia)  
Species vividula decollatus 
(Discoverer) Erin  
(Subspecies) subsp. guatemalensis  
(Discoverer) Forel  
(Variety) var. itinerans  
(Discoverer) Forel  

Table 1: The parts of taxonomic names 

4 Combining Techniques  
for Taxonomic Name Extraction 

Due to its capability of learning at runtime, the 
word-level language recognizer needs little train-
ing data, but it still does. In addition, the manual 
effort induced by uncertain classifications is high. 
Making use of the typical structure of taxonomic 
names, we can improve both aspects. First, we 
can use syntax-based rules to harvest training data 
directly from the documents. Second, we can use 
these rules to reduce the number of words the 
classifier has to deal with. However, it is not pos-
sible to find rules that extract taxonomic names 
with both high precision and recall, as we will 
show later. But we have found rules that fulfill 
one of these requirements very well. In what fol-
lows, we refer to these as precision rules and re-
call rules, respectively. 

4.1 The Classification Process 
1. We apply the precision rules. Every word 

sequence from the document that matches 
such a rule is a sure positive. 

2. We apply the recall rules to the phrases that 
are not sure positives. A phrase not matching 
one of these rules is a sure negative. 

3. We make use of domain-specific vocabulary 
and filter out word sequences containing at 
least one known negative word. 

4. We collect a set of names from the set of sure 
positives (see Subsection 4.5). We then use 
these names to both include and exclude fur-
ther word sequences. 

5. We train the word-level language recognizer 
with the surely positive and surely negative 
words. We then apply it to the remaining un-
certain word sequences. 

Figure 1 visualizes the classification process. At 
first sight, other orders seem to be possible as 
well, e.g., the language recognizer classifies each 
word first, and then we apply the rules. But this is 
not feasible: It would require external training 
data. In addition, the language recognizer would 
have to classify all the words of the document. 
This would incur more manual classifications. 

 
Figure 1: The Classification Process 

This approach is similar to the bootstrapping algo-
rithm proposed by Jones (1999). The difference is 
that this process works solely with the document 
it actually processes. In particular, it does not 
need any external data or a training phase. Aver-
age biosystematics documents contain about 
15.000 words, which is less than 0.02% of the 
data used by Niu (2003). On the other hand, with 
the classification process proposed here, the accu-
racy of the underlying classifier has to be very 
high from the start. 
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4.2 Structural Rules 
In order to make use of the structure of taxonomic 
names, we use rules that refer to this structure. 
We use regular expressions for the formal repre-
sentation of the rules. In this section, we develop 
a regular expression matching any word sequence 
that conforms to the Linnaean rules of nomencla-
ture (see 3.3). Table 2 provides some abbrevia-
tions, to increase readability. We model taxo-
nomic names as follows: 

_ one white space character 
<LcW> [a-z](3,) 
<CapW> [A-Z][a-z](2,) 
<CapA> [A-Z]{[a-z]}?. 
<Name> {<CapA>_}(0,2)<CapW> 

Table 2: Abbreviations 
• The genus is a capitalized word, often abbre-

viated. We denote it as <genus>, which 
stands for {<CapW>|<CapA>}. 

• The subgenus is a capitalized word, option-
ally surrounded by brackets. We denote it as 
<subGenus>, which stands for 
<CapW>|(<CapW>). 

• The species is a lower case word, optionally 
followed by a name. We denote it as 
<species>, which stands for 
<LcW>{_<Name>}?. 

• The subspecies is a lower case word, pre-
ceded by the indicator subsp. or subspecies, 
and optionally followed by a name. We de-
note it as <subSpecies>, standing for 
{subsp.|subspecies}_<LcW>{_<Name>}?. 

• The variety is a lower case word, preceded by 
the indicator var. or variety, and optionally 
followed by a name. We denote it as 
<variety>, which stands for {var.| 

variety}_<LcW>{_<Name>}?. 
A taxonomic name is now modeled as follows. 
We refer to the pattern as <taxName>: 
 <genus>{_<subGenus>}? 
 _<species>{_<subSpecies>}? 
 {_<variety>}? 

4.3 Precision Rules 
Because <taxName> matches any sequence of 
words that conforms to the Linnaean rules, it is 
not very precise. The simplest match is a capital-
ized word followed by one in lower case. Any two 
words at the beginning of a sentence are a match! 

To obtain more precise regular expressions, we 
rely on the optional parts of taxonomic names. In 
particular, we classify a sequence of words as a 
sure positive if it contains at least one of the op-
tional parts <subGenus>, <subSpecies> and 
<variety>. Even though these regular expres-
sions may produce false negatives, our evaluation 
will show that this happens very rarely. Our set of 
precise regular expressions has three elements: 
• <taxName> with subgenus in brackets, 

<subspecies> and <variety> optional:  
 <genus>_(<CapW>) 
 _<species>{_<subSpecies>}? 
 {_<variety>}? 

• <taxName> with <subspecies> given, 
<subGenus> and <variety> optional:  
 <genus>{_<subGenus>}? 
 _<species>_<subSpecies> 
 {_<variety>}? 

• <taxName> with <variety> mandatory, 
<subGenus> and <subSpecies> optional:  
 <genus>{_<subGenus>}? 
 _<species>{_<subSpecies>}? 
 {_<variety>} 

To classify a word sequence as a sure positive if it 
matches at least one of these regular expressions, 
we combine them disjunctively and call the result 
<preciseTaxName>. 
A notion related to that of a sure positive is the 
one of a surely positive word. A surely positive 
word is a part of a taxonomic name that is not part 
of a scientist’s name. For instance, the taxonomic 
name Prenolepis (Nylanderia) vividula Erin 
subsp. guatemalensis Forel var. itinerans Forel 
contains the surely positive words Prenolepis, 
Nylanderia, vividula, guatemalensis, and itiner-
ans. We assume that surely positive words exclu-
sively appear as parts of taxonomic names. 

4.4 Recall Rules 
<taxName> matches any sequence of words that 
conforms to the Linnaean rules, but there is a fur-
ther issue: Enumerations of several species of the 
same genus tend to contain the genus only once. 
For instance, in Pseudomyrma arboris-sanctae 
Emery, latinoda Mayr and tachigalide Forel”we 
want to extract latinoda Mayr and tachigalide 
Forel as well. To address this, we make use of the 
surely positive words: We use them to extract 
parts of taxonomic names that lack the genus. 
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Our technique also extracts the names of the sci-
entists from the sure positives and collects them 
in a name lexicon. Based on the structure de-
scribed in Section 3.3, a capitalized word in a sure 
positive is a name if it comes after the second po-
sition. From the sure positive Pseudomyrma 
(Minimyrma) arboris-sanctae Emery, the tech-
nique extracts Pseudomyrma, Minimyrma and 
arboris-sanctae. In addition, it would add Emery 
to the name lexicon. 
We cannot be sure that the list of sure positive 
words suffices to find all species names in an 
enumeration. Hence, our technique additionally 
collects all lower-case words followed by a word 
contained in the name lexicon. In the example, we 
extract latinoda Mayr and tachigalide Forel if 
Mayr and Forel are in the name lexicon. 

4.5 Data Rules 
Because we want to achieve close to 100% in re-
call, the recall rules are very weak. In conse-
quence, many word sequences that are not taxo-
nomic names are considered uncertain. Before the 
word-level language recognizer deals with them, 
we see some more ways to exclude negatives. 
Sure Negatives . As mentioned in Subsection 4.3, 
<taxName> matches any capitalized word fol-
lowed by a word in lower case. This includes the 
start of any sentence. Making use of the sure 
negatives, we can recognize these phrases. In par-
ticular, out technique classifies any word se-
quence as negative that contains a word which is 
also in the set of sure negatives. For instance, in 
sentence “Additional evidence results from …”, 
Additional evidence matches <taxName>. An-
other sentence contains an additional advantage, 
which does not match <taxName>. Thus, the set of 
sure negatives contains an, additional, and advan-
tage. Knowing that additional is a sure negative, 
we exclude the phrase Additional evidence. 
Names of Scientists. Though the names of sci-
entists are valid parts of taxonomic names, they 
also cause false matches. The reason is that they 
are capitalized. A misclassification occurs if they 
are matched with the genus or subgenus part – 
<taxName> cannot exclude this. In addition, they 
might appear elsewhere in the text without be-
longing to a taxonomic name. Similarly to sure 
negatives, we exclude a match of <taxName> if 

the first or second word is contained in the name 
lexicon. For instance, in “…, and Forel further 
concludes”, Forel further matches <taxName>. If 
the name lexicon contains Forel, we know that it 
is not a genus, and thus exclude Forel further. 

4.6 Classification of Remaining Words 
After applying the rules, some word sequences 
still remain uncertain. To deal with them, we use 
word-level language recognition. We train the 
classifier with the sure positive and sure negative 
words. We do not classify every word separately, 
but compute the classification score of all words 
of a sequence and then classify the sequence as a 
whole. This has several advantages: First, if one 
word of a sequence is uncertain, this does not 
automatically incur a feedback request. Second, if 
a word sequence is uncertain as a whole, the user 
gives feedback for the entire sequence. This re-
sults in several surely classified uncertain words 
at the cost of only one feedback request. In addi-
tion, it is easier to determine the meaning of a 
word sequence than the one of a single word. 

5 Evaluation 
A combining approach gives rise to many ques-
tions, e.g.: How does a word-level classifier per-
form with training data automatically generated? 
How does rule-based filtering affect precision, 
recall, and coverage? What is the effect to dy-
namic lexicons? Which kinds of errors remain? 
We run two series of experiments: We first proc-
ess individual documents. We then process the 
documents incrementally, i.e., we do neither clear 
the sets of known positives and negatives after 
each document, nor the statistics of the word-level 
language recognizer. This is to measure the bene-
fit of reusing data obtained from one document in 
the processing of subsequent ones. Finally, we 
take a closer look at the effects of the individual 
steps and heuristics from Section 4. 
The platform is implemented in JAVA 1.4.2. 
We use the java.util.regex package to repre-
sent the rules. All tests are based on 20 issues of 
the American Museum Novitates, a natural science 
periodical published by the American Museum of 
Natural History. The documents contain about 
260.000 words, including about 2.500 taxonomic 
names. The latter consist of about 8.400 words. 

131



5.1 Tests with Individual Documents 
First, we test the combined classifier with indi-
vidual documents. The Docs column in Table 3 
contains the results. The combination of rules and 
word-level classification provides very high pre-
cision and recall. The former is 99.7% on average, 
the latter 98.2%. The manual effort is very low: 
The average coverage is 99.7%. 

5.2 Tests with Entire Corpus 
In the first test the classifier did not transfer any 
experience from one document to later ones. We 
now process the documents one after another. The 
Corp column of Table 3 shows the results. As 
expected, the classifier performs better than with 
individual documents. The average recall is 
99.2%, coverage is 99.8% on average. Only preci-
sion is a little less, 99.1% on average. 

  Docs Corp 
<preciseTaxName> 22,6 
<taxName> 414,1 
SN excluded 78,5 
Names excluded 176,15 
Scorings 139,9 
User Feedbacks 19,6 10,35 
False positives 4,25 1,5 
False negatives 0,55 1,5 
Precision 0,997 0,991 
Recall 0,982 0,992 
f-Measure 0,990 0,992 
Coverage 0,997 0,998 
Quality 0,987 0,990 

Table 3: Test results 

The effect of the incremental learning is obvious. 
The false positives are less than half of those in 
the first test. A comparison of Line False 
Positives in Table 3 shows this. The same is 
true for the number feedback requests (Line User 
Feedbacks). The slight decrease in precision 
(Line False Negatives) results from the propa-
gation of misclassifications between documents. 
The reason for the improvement becomes clear 
for documents where the number of word se-
quences in <preciseTaxName> is low: experience 
from previous documents compensates the lack of 
positive examples. This reduces both false posi-
tives and manual classifications. 

5.3 The Data Rules 
The exclusion of word sequences containing a 
sure negative turns out to be effective to filter the 
matches of <taxName>. Lines <taxName> and SN 

excluded of Tables 3 show this. On average, this 
step excludes about 20% of the word sequences 
matching <taxName>. Lines <taxName> and Names 
excluded tell us that the rule based on the names 
of scientists is even more effective. On average, it 
excludes about 40% of the matches of <taxName>. 
Both data rules decrease the number of words the 
language recognizer has to deal with and eventu-
ally the manual effort. This is because they reduce 
the number of words classified uncertain. 

5.4 Comparison to Word-Level Classifier 
and TaxonGrab 

A word-level classifier (WLC) is the core compo-
nent of the combining technique. We compare it 
in standalone use to the combining technique 
(Comb) and to the TaxonGrab (T-Grab) approach 
(Koning 2005). See Table 4. The combining tech-
nique is superior to both TaxonGrab and stand-
alone word-level classification. The reason for 
better precision and recall is that it uses more dif-
ferent evidence. The better coverage results from 
the lower number of words that the word-level 
classifier has to deal with. On average, it has to 
classify only 2.5% of the words in a document. 
This reduces the classification effort, leading to 
less manual feedback. It also decreases the num-
ber of potential errors of the word-level classifier. 
All these positive effects result in about 99% f-
Measure and 99.7% coverage. This means the 
error is reduced by 75% compared to word-level 
classification, and by 80% compared to Taxon-
Grab. The manual effort decreases by 94% com-
pared to the standalone word-level classifier. 

 Precision Recall f-Measure Coverage 
T-Grab 96% 94% 95% - 
WLC 97% 95% 96% 95% 
Comb 99.1% 99.2% 99% 99.7% 

Table 4: Comparison to Related Approaches 

5.5 Misclassified Words 
Despite all improvements, there still are word se-
quences that are misclassified. 
False Negatives. The regular expressions in 
<preciseTaxName> are intended to be 100% pre-
cise. There are, however, some (rare) exceptions. 
Consider the following phrase: “… In Guadeloup 
(Mexico) another subspecies killed F. Smith.” 
Except for the word In, this sentence matches the 
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regular expression from <preciseTaxName> 
where <subSpecies> is mandatory. Similar 
pathologic cases could occur for the variety part. 
Another class of false negatives contains two 
word sequences, and the first one is the name of a 
genus. For instance, “Xenomyrmex varies …” falls 
into this category. The classifier (correctly) rec-
ognizes the first word as a part of a taxonomic 
name. The second one is not typical enough to 
change the overall classification of the sequence. 
To recognize these false negatives, one might use 
POS-tagging. We could exclude word sequences 
containing words whose meaning does not fit into 
a taxonomic name. 
False Positives. Though <taxName> matches any 
taxonomic name, the subsequent exclusion 
mechanisms may misclassify a sequence of 
words. In particular, the word-level classifier has 
problems recognizing taxonomic names contain-
ing proper names of persons. The problem is that 
these words consist of N-Grams that are typical 
for common English. “Wheeleria rogersi Smith”, 
for instance, is a fictitious but valid taxonomic 
name. A solution to this problem might be to use 
the scientist names for constructing and recogniz-
ing the genus and species names derived from 
them. 

6 Conclusions  
This paper has reported on our experiences with 
the automatic extraction of taxonomic names from 
English text documents. This task is essential for 
modern biology. A peculiarity of taxonomic name 
extraction is a shortage of training data. This is 
one reason why deployment of established NER 
techniques has turned out to be infeasible, at least 
without adaptations. A taxonomic-name extractor 
must circumvent that shortage. Our experience 
has been that designing regular expressions that 
generate training data directly from the documents 
is feasible in the context of taxonomic name ex-
traction. A combining approach where individual 
techniques are carefully tuned and assigned in the 
right order has turned out to be superior to other 
potential solutions with regard to precision, recall, 
and number of user interactions. – Finally, is 
seems promising to use document and term fre-
quencies as additional evidence. The ides is that 
both are low for taxonomic names. 
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Citationshave greatpotentialto bea valuablere-
sourcein mining thebioscienceliterature(Nakov et
al., 2004). The text aroundcitations(or citances)
tendsto statebiological factswith referenceto the
originalpapersthatdiscoveredthem.Thecitedfacts
are typically statedin a more conciseway in the
citing papersthan in the original. We hypothesize
that in many cases,as time goesby, the citation
sentencescanmoreaccuratelyindicatethemostim-
portantcontributionsof a paperthanits original ab-
stract.

One can usevariousNLP tools to identify and
normalizethe importantentitiesin (a) the abstract
of the original article, (b) the body of the original
article, and (c) the citancesto the article. We hy-
pothesizethatgroupingentitiesby their occurrence
in the citancesrepresentsa bettersummaryof the
original paperthanusingonly the first two sources
of information.

To helpdeterminetheutility of theapproach,we
are applying it to the problemof identifying arti-
clesthatdiscusscritical residuefunctionality, for use
in PhyloFactsa phylogenomicdatabase(Sjolander,
2004).

Considerthearticleshown in Figure1. Thispaper
is a prominentone,publishedin 1992,with nearly
500papersciting it. For about200of thesepapers,
wedownloadedthesentencesthatsurroundthecita-
tion within the full text. Someexamplesareshown
in Figure2.

We are developing a statisticalmodel that will
group these entities into potentially overlapping
groups,whereeachgrouprepresentsa centralidea
in theoriginalpaper. In theexampleshown, someof
thecitancesemphasizewhatthepaperreportsabout
thestructuralelementsof theSH2domain,whereas

otheremphasizeits findingson interactionsandoth-
ersfocuson thecritical residues.

Oftenseveralarticlesarecitedin thesamecitance,
so it is importantto untanglewhich entitiesbelong
to which citation;by pursuingoverlappingsets,our
modelshouldbeableto eliminatemostspuriousref-
erences.

Thesameentity is oftendescribedin many differ-
entways. Prior work hasshown how to useredun-
dant informationacrosscitationsto help normalize
entities(Wellner et al., 2004; Pasulaet al., 2003);
similar techniquesmay work with entities men-
tionedin citances.This canbecombinedwith prior
work onnormalizingentitynamesin biosciencetext,
e.g,(Morganet al., 2004). For a detailedreview of
relatedwork see(Nakov et al., 2004).

By emphasizingentities the model potentially
missesimportantrelationshipsbetweentheentities.
It remainsto bedeterminedwhetheror not relation-
shipsmustbemodeledexplicitly in orderto createa
usefulsummary.
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Three-dimensionalstructuresof complexesof theSH2domainof thev-srconcogeneproductwith two
phosphotyrosylpeptideshave beendeterminedby X-ray crystallography at resolutionsof 1.5 and2.0
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Figure1: Targetarticlefor summarization.

Binding of IFNgamma R andgp130 phosphotyrosine peptides to theSTAT SH2 domains wasmod-
eledby usingthecoordinatesof peptides pYIIPL (pY, phosphotyrosine) andpYVPML boundto the
phospholipase C-gamma 1 andv-src kinase SH2 domains, respectively (#OTHER CITATION, #TAR-
GET CITATION).

The ligand-bindingsurfaceof the SH2 domain of the Lck nonreceptor protein tyrosine kinase con-
tainstwo pockets,onefor the Tyr(P) residue andanotherfor the amino acid residue threepositions
C-terminalto it, the+3 aminoacid(#OTHER CITATION, #TARGET CITATION).

Given the inherentspecificity of SH2 phosphopeptide interactions (#TARGET CITATION), a high
degreeof selectivity is possiblefor STAT dimerizations andfor STAT activation by differentligand-
receptorcombinations.

In fact,thev-src SH2 domain waspreviouslyshown to bindapeptide pYVPML of theplatelet-derived
growth factor receptor in a ratherunconventionalmanner(#TARGET CITATION).

Figure2: Samplecitancespointingto targetarticle,with somekey termshighlighted.
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Subdomain adaptation of a POS tagger with a small corpus 

 

1 Introduction    

For the domain of biomedical research abstracts, 
two large corpora, namely GENIA (Kim et al 
2003) and Penn BioIE (Kulik et al 2004) are avail-
able. Both are basically in human domain and the 
performance of systems trained on these corpora 
when they are applied to abstracts dealing with 
other species is unknown. In machine-learning-
based systems, re-training the model with addition 
of corpora in the target domain has achieved prom-
ising results (e.g. Tsuruoka et al 2005, Lease et al 
2005). In this paper, we compare two methods for 
adaptation of POS taggers trained for GENIA and 
Penn BioIE corpora to Drosophila melanogaster 
(fruit fly) domain. 

2 Method 

Maximum Entropy Markov Models (MEMMs) 
(Ratnaparkhi 1996) and their extensions (Tutanova 
et al 2003, Tsuruoka et al 2005) have been success-
fully applied to English POS tagging. Here we use 
second-order standard MEMMs for learning POS. 
where the model parameters are determined with 
maximum entropy criterion in combination a regu-
larization method called inequality constraints 
(Kazama and Tsujii 2003). This regularization 
method has one non-negative meta-parameter 
called width-factor that controls the “fitness” of the 
model parameters to the training data.
We used two methods of adapting a POS tagging 
model. One is to add the domain corpus to the 
training set. The other is to use the reference distri-
bution modeling, in which the training is per-
                                                           
    This work is partially supported by SORST program, Japan 
Science and Technology Agency. 

formed only on the domain corpus and the infor-
mation about the original training set is incorpo-
rated in the form of the reference distribution in 
the maximum entropy formulation (Johnson et al 
2000, Hara et al 2005). 
A set of 200 MEDLINE abstracts on D. 
melanogaster, was manually annotated with POS 
according to the scheme of the GENIA POS corpus 
(Tateisi et al 2004) by one annotator. The new cor-
pus consists of 40,200 tokens in 1676 sentences. 
From this corpus which we call “Fly” hereafter, 
1024 sentences are randomly taken and used for 
training. Half of the remaining is used for devel-
opment and the rest is used for testing.  
We measured the accuracy of the POS tagger 
trained in three settings:  

Original: The tagger is trained with the union of 
Wall Street Journal (WSJ) section of Penn 
Treebank (Marcus et al 1993), GENIA, and 
Penn BioIE. In WSJ, Sections 0-18 for train-
ing, 19-21 for development, and 22-24 for 
test. In GENIA and Penn BioIE, 90% of the 
corpus is used for training and the rest is 
used for test. 

Combined: The tagger is trained with the union 
of the Original set plus N sentences from Fly.  

Refdist: Tagger is trained with N sentences 
from Fly, plus the Original set as reference. 

In Combined and Refdist settings, N is set to 8, 16, 
32, 64, 128, 256, 512, 1024 sentences to measure 
the learning curve. 

3 Results 

The accuracies of the tagger trained in the Origi-
nal setting were 96.4% on Fly, 96.7% on WSJ, 
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98.1% on GENIA and 97.7% on Penn BioIE cor-
pora respectively. In the Combined setting, the ac-
curacies were 97.9% on Fly, 96.7% on WSJ, 
98.1% on GENIA and 97.7% on Penn BioIE. With 
Refdist setting, the accuracy on the Fly corpus was 
raised but those for WSJ and Penn BioIE corpora 
dropped from Original. When the width factor w 
was 10, the accuracy was 98.1% on Fly, but 95.4% 
on WSJ, 98.3% on GENIA and 96.6% on Penn 
BioIE. When the tagger was trained only on WSJ 
the accuracies were 88.7% on Fly, 96.9% on WSJ, 
85.0% on GENIA and 86.0% on Penn BioIE. 
When the tagger was trained only on Fly, the accu-
racy on Fly was even lower (93.1%). The learning 
curve indicated that the accuracies on the Fly cor-
pus were still rising in both Combined and Refdist 
settings, but both accuracies are almost as high as 
those of the original tagger on the original corpora 
(WSJ, GENIA and Penn BioIE), so in practical 
sense, 1024 sentences is a reasonable size for the 
additional corpus. When the width factor was 
smaller (2.5 and 5) the accuracies on the Fly cor-
pus were saturated with N=1024 with lower values 
(97.8% with w=2.5 and 98.0% with w=5).  

The amount of resources required for the Com-
bined and the Refdist settings were drastically dif-
ferent. In the Combined setting, the learning time 
was 30632 seconds and the required memory size 
was 6.4GB. On the other hand, learning in the Ref-
dist setting took only 21 seconds and the required 
memory size was 157 MB. 

The most frequent confusions involved the con-
fusion between FW (foreign words) with another 
class. Further investigation revealed that most of 
the error involved Linnaean names of species. Lin-
naean names are tagged differently in the GENIA 
and Penn BioIE corpora. In the GENIA corpus, 
tokens that constitute a Linnaean name are tagged 
as FW (foreign word) but in the Penn BioIE corpus 
they are tagged as NNP (proper noun). This seems 
to be one of the causes of the drop of accuracy on 
the Penn BioIE corpus when more sentences from 
the Fly corpus, whose tagging scheme follows that 
of GENIA, are added for training.

4 Conclusions 

We compared two methods of adapting a POS tag-
ger trained on corpora in human domain to fly do-
main. Training in Refdist setting required much 
smaller resources to fit to the target domain, but 

the resulting tagger is less portable to other do-
mains. On the other hand, training in Combined 
setting is slower and requires huge memory, but 
the resulting tagger is more robust, and fits rea-
sonably to various domains. 
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Abstract

We demonstrate that bootstrapping a gene
name recognizer for FlyBase curation
from automatically annotated noisy text is
more effective than fully supervised train-
ing of the recognizer on more general
manually annotated biomedical text. We
present a new test set for this task based on
an annotation scheme which distinguishes
gene names from gene mentions, enabling
a more consistent annotation. Evaluating
our recognizer using this test set indicates
that performance on unseen genes is its
main weakness. We evaluate extensions
to the technique used to generate training
data designed to ameliorate this problem.

1 Introduction

The biomedical domain is of great interest to in-
formation extraction, due to the explosion in the
amount of available information. In order to deal
with this phenomenon, curated databases have been
created in order to assist researchers to keep up with
the knowledge published in their field (Hirschman et
al., 2002; Liu and Friedman, 2003). The existence
of such resources in combination with the need to
perform information extraction efficiently in order
to promote research in this domain, make it a very
interesting field to develop and evaluate information
extraction approaches.

Named entity recognition (NER) is one of the
most important tasks in information extraction. It
has been studied extensively in various domains,
including the newswire (Tjong Kim Sang and

De Meulder, 2003) domain and more recently the
biomedical domain (Blaschke et al., 2004; Kim et
al., 2004). These shared tasks aimed at evaluat-
ing fully supervised trainable systems. However,
the limited availability of annotated material in most
domains, including the biomedical, restricts the ap-
plication of such methods. In order to circum-
vent this obstacle several approaches have been pre-
sented, among them active learning (Shen et al.,
2004) and rule-based systems encoding domain spe-
cific knowledge (Gaizauskas et al., 2003).

In this work we build on the idea of bootstrapping,
which has been applied by Collins & Singer (1999)
in the newsire domain and by Morgan et al. (2004)
in the biomedical domain. This approach is based on
creating training material automatically using exist-
ing domain resources, which in turn is used to train
a supervised named entity recognizer.

The structure of this paper is the following. Sec-
tion 2 describes the construction of a new test set
to evaluate named entity recognition for Drosophila
fly genes. Section 3 compares bootstrapping to the
use of manually annotated material for training a su-
pervised method. An extension to the evaluation of
NER appear in Section 4. Based on this evaluation,
section 5 discusses ways of improving the perfor-
mance of a gene name recognizer bootstrapped on
FlyBase resources. Section 6 concludes the paper
and suggests some future work.

2 Building a test set

In this section we present a new test set created to
evaluate named entity recognition for Drosophila fly
genes. To our knowledge, there is only one other
test set built for this purpose, presented in Morgan et
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al. (2004), which was annotated by two annotators.
The inter-annotator agreement achieved was 87% F-
score between the two annotators, which according
to the authors reflects the difficulty of the task.

Vlachos et al (2006) evaluated their system on
both versions of this test set and obtained signifi-
cantly different results. The disagreements between
the two versions were attributed to difficulties in ap-
plying the guidelines used for the annotation. There-
fore, they produced a version of this dataset resolv-
ing the differences between these two versions using
revised guidelines, partially based on those devel-
oped for ACE (2004). In this work, we applied these
guidelines to construct a new test set, which resulted
in their refinement and clarification.

The basic idea is that gene names (<gn>) are an-
notated in any position they are encountered in the
text, including cases where they are not referring to
the actual gene but they are used to refer to a differ-
ent entity. Names of gene families, reporter genes
and genes not belonging to Drosophila are tagged as
gene names too:

• the <gn>faf</gn> gene

• the <gn>Toll</gn> protein

• the <gn>string</gn>-<gn>LacZ</gn>
reporter genes

In addition, following the ACE guidelines, for
each gene name we annotate the shortest surround-
ing noun phrase. These noun phrases are classified
further into gene mentions (<gm>) and other men-
tions (<om>), depending on whether the mentions
refer to an actual gene or not respectively. Most of
the times, this distinction can be performed by look-
ing at the head noun of the noun phrase:

• <gm>the <gn>faf</gn> gene</gm>

• <om>the <gn>Reaper</gn> protein</om>

However, in many cases the noun phrase itself
is not sufficient to classify the mention, especially
when the mention consists of just the gene name, be-
cause it is quite common in the biomedical literature
to use a gene name to refer to a protein or to other
gene products. In order to classify such cases, the
annotators need to take into account the context in
which the mention appears. In the following exam-
ples, the word of the context that enables us to make

Morgan et al. new dataset
abstracts 86 82
tokens 16779 15703

gene-names 1032 629
unique 347 326

gene-names

Table 1: Statistics of the datasets

the distinction between gene mentions (<gm>) and
other mentions is underlined:

• ... ectopic expression of
<gm><gn>hth</gn></gm> ...

• ... transcription of
<gm><gn>string</gn></gm> ...

• ... <om><gn>Rols7</gn></om> localizes ...

It is worth noticing as well that sometimes more
than one gene name may appear within the same
noun phrase. As the examples that follow demon-
strate, this enables us to annotate consistently cases
of coordination, which is another source of disagree-
ment (Dingare et al., 2004):

• <gm><gn>male-specific lethal-1</gn>,
<gn>-2</gn> and <gn>-3</gn> genes</gm>

The test set produced consists of the abstracts
from 82 articles curated by FlyBase1. We used the
tokenizer of RASP2 (Briscoe and Carroll, 2002) to
process the text, resulting in 15703 tokens. The size
and the characteristics of the dataset is comparable
with that of Morgan et al (2004) as it can be observed
from the statistics of Table 1, except for the num-
ber of non-unique gene-names. Apart from the dif-
ferent guidelines, another difference is that we used
the original text of the abstracts, without any post-
processing apart from the tokenization. The dataset
from Morgan et al. (2004) had been stripped from
all punctuation characters, e.g. periods and commas.
Keeping the text intact renders this new dataset more
realistic and most importantly it allows the use of
tools that rely on this information, such as syntactic
parsers.

The annotation of gene names was performed
by a computational linguist and a FlyBase curator.

1www.flybase.net
2http://www.cogs.susx.ac.uk/lab/nlp/rasp/
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We estimated the inter-annotator agreement in two
ways. First, we calculated the F-score achieved be-
tween them, which was 91%. Secondly, we used the
Kappa coefficient (Carletta, 1996), which has be-
come the standard evaluation metric and the score
obtained was 0.905. This high agreement score
can be attributed to the clarification of what gene
name should capture through the introduction of
gene mention and other mention. It must be men-
tioned that in the experiments that follow in the rest
of the paper, only the gene names were used to eval-
uate the performance of bootstrapping. The identifi-
cation and the classification of mentions is the sub-
ject of ongoing research.

The annotation of mentions presented greater dif-
ficulty, because computational linguists do not have
sufficient knowledge of biology in order to use the
context of the mentions whilst biologists are not
trained to identify noun phrases in text. In this ef-
fort, the boundaries of the mentions where defined
by the computational linguist and the classification
was performed by the curator. A more detailed de-
scription of the guidelines, as well as the corpus it-
self in IOB format are available for download3.

3 Bootstrapping NER

For the bootstrapping experiments presented in this
paper we employed the system developed by Vla-
chos et al. (2006), which was an improvement of the
system of Morgan et al. (2004). In brief, the ab-
stracts of all the articles curated by FlyBase were
retrieved and tokenized by RASP (Briscoe and Car-
roll, 2002). For each article, the gene names and
their synonyms that were recorded by the curators
were annotated automatically on its abstract using
longest-extent pattern matching. The pattern match-
ing is flexible in order to accommodate capitaliza-
tion and punctuation variations. This process re-
sulted in a large but noisy training set, consisting
of 2,923,199 tokens and containing 117,279 gene
names, 16,944 of which are unique. The abstracts
used in the test set presented in the previous section
were excluded. We used them though to evaluate the
performance of the training data generation process
and the results were 73.5% recall, 93% precision and
82.1% F-score.

3www.cl.cam.ac.uk/users/av308/Project Index/node5.html

Training Recall Precision F-score
std 75% 88.2% 81.1%

std-enhanced 76.2% 87.7% 81.5%
BioCreative 35.9% 37.4% 36.7%

Table 2: Results using Vlachos et al. (2006) system

This material was used to train the HMM-based
NER module of the open-source toolkit LingPipe4.
The performance achieved on the corpus presented
in the previous section appears in Table 2 in the row
“std”. Following the improvements suggested by
Vlachos et al. (2006), we also re-annotated as gene-
names the tokens that were annotated as such by the
data generation process more than 80% of the time
(row “std-enhanced”), which slightly increased the
performance.

In order to assess the usefulness of this bootstrap-
ping method, we evaluated the performance of the
HMM-based tagger if we trained it on manually an-
notated data. For this purpose we used the anno-
tated data from BioCreative-2004 (Blaschke et al.,
2004) task 1A. In that task, the participants were re-
quested to identify which terms in a biomedical re-
search article are gene and/or protein names, which
is roughly the same task as the one we are deal-
ing with in this paper. Therefore we would expect
that, even though the material used for the anno-
tation is not drawn from the exact domain of our
test data (FlyBase curated abstracts), it would still
be useful to train a system to identify gene names.
The results in Table 2 show that this is not the case.
Apart from the domain shift, the deterioration of the
performance could also be attributed to the differ-
ent guidelines used. However, given that the tasks
are roughly the same, it is a very important result
that manually annotated training material leads to
so poor performance, compared to the performance
achieved using automatically created training data.
This evidence suggests that manually created re-
sources, which are expensive, might not be useful
even in slightly different tasks than those they were
initially designed for. Moreover, it suggests that
the use of semi-supervised or unsupervised methods
for creating training material are alternatives worth-
exploring.

4http://www.alias-i.com/lingpipe/
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4 Evaluating NER

The standard evaluation metric used for NER is the
F-score (Van Rijsbergen, 1979), which is the har-
monic average of Recall and Precision. It is very
successful and popular, because it penalizes systems
that underperform in any of these two aspects. Also,
it takes into consideration the existence multi-token
entities by rewarding systems able to identify the
entity boundaries correctly and penalizing them for
partial matches. In this section we suggest an exten-
sion to this evaluation, which we believe is mean-
ingful and informative for trainable NER systems.

Two are the main expectations from trainable sys-
tems. The first one is that they will be able to iden-
tify entities that they have encountered during their
training. This is not as easy as it might seem, be-
cause in many domains token(s) representing en-
tity names of a certain type can appear as common
words or representing an entity name of a different
type. Using examples from the biomedical domain,
“to” can be a gene name but it is also used as a prepo-
sition. Also gene names are commonly used as pro-
tein names, rendering the task of distinguishing be-
tween the two types non-trivial, even if examples of
those names exist in the training data. The second
expectation is that trainable systems should be able
to learn from the training data patterns that will al-
low it to generalize to unseen named entities. Im-
portant role in this aspect of the performance play
the features that are dependent on the context and
on observations on the tokens. The ability to gener-
alize to unseen named entities is very significant be-
cause it is unlikely that training material can cover
all possible names and moreover, in most domains,
new names appear regularly.

A common way to assess these two aspects is to
measure the performance on seen and unseen data
separately. It is straightforward to apply this in tasks
with token-based evaluation, such as part-of-speech
tagging (Curran and Clark, 2003). However, in the
case of NER, this is not entirely appropriate due
to the existence of multi-token entities. For exam-
ple, consider the case of the gene-name “head inhi-
bition defective”, which consists of three common
words that are very likely to occur independently of
each other in a training set. If this gene name ap-
pears in the test set but not in the training set, with

a token-based evaluation its identification (or not)
would count towards the performance on seen to-
kens if the tokens appeared independently. More-
over, a system would be rewarded or penalized for
each of the tokens. One approach to circumvent
these problems and evaluate the performance of a
system on unseen named entities, is to replace all
the named entities of the test set with strings that
do not appear in the training data, as in Morgan et
al. (2004). There are two problems with this eval-
uation. Firstly, it alters the morphology of the un-
seen named entities, which is usually a source of
good features to recognize them. Secondly, it affects
the contexts in which the unseen named entities oc-
cur, which don’t have to be the same as that of seen
named entities.

In order to overcome these problems, we used the
following method. We partitioned the correct an-
swers and the recall errors according to whether the
named entity at question have been encountered in
the training data as a named entity at least once. The
precision errors are partitioned in seen and unseen
depending on whether the string that was incorrectly
annotated as a named entity by the system has been
encountered in the training data as a named entity
at least once. Following the standard F-score defi-
nition, partially recognized named entities count as
both precision and recall errors.

In examples from the biomedical domain, if “to”
has been encountered at least once as a gene name in
the data but an occurrence of in the test dataset is er-
roneously tagged as a gene name, this will count as a
precision error on seen named entities. Similarly, if
“to” has never been encountered in the training data
as a gene name but an occurrence of it in the test
dataset is erroneously tagged as a common word,
this will count as a recall error on unseen named en-
tities. In a multi-token example, if “head inhibition
defective” is a gene name in the test dataset and it
has been seen as such in the training data but the
NER system tagged (erroneously) “head inhibition”
as a gene name (which is not the training data), then
this would result in a recall error on seen named en-
tities and a precision error on unseen named entities.

5 Improving performance

Using this extended evaluation we re-evaluated the
named entity recognition system of Vlachos et
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Recall Precision F-score # entities
seen 95.9% 93.3% 94.5% 495

unseen 32.3% 63% 42.7% 134
overall 76.2% 87.7% 81.5% 629

Table 3: Extended evaluation

al. (2006) and Table 3 presents the results. The big
gap in the performance on seen and unseen named
entities can be attributed to the highly lexicalized
nature of the algorithm used. Tokens that have not
been seen in the training data are passed on to a mod-
ule that classifies them according to their morphol-
ogy, which given the variety of gene names and their
overlap with common words is unlikely to be suffi-
cient. Also, the limited window used by the tagger
(previous label and two previous tokens) does not
allow the capture of long-range contexts that could
improve the recognition of unseen gene names.

We believe that this evaluation allows fair com-
parison between the data generation process that
creating the training data and the HMM-based tag-
ger. This comparison should take into account the
performance of the latter only on seen named enti-
ties, since the former is applied only on those ab-
stracts for which lists of the genes mentioned have
been compiled manually by the curators. The re-
sult of this comparison is in favor of the HMM,
which achieves 94.5% F-score compared to 82.1%
of the data generation process, mainly due to the im-
proved recall (95.9% versus 73.5%). This is a very
encouraging result for bootstrapping techniques us-
ing noisy training material, because it demonstrates
that the trained classifier can deal efficiently with the
noise inserted.

From the analysis performed in this section, it
becomes obvious that the system is rather weak in
identifying unseen gene names. The latter contribute
31% of all the gene names in our test dataset, with
respect to the training data produced automatically
to train the HMM. Each of the following subsec-
tions describes different ideas employed to improve
the performance of our system. As our baseline,
we kept the version that uses the training data pro-
duced by re-annotating as gene names tokens that
appear as part of gene names more than 80% of
times. This version has resulted in the best perfor-
mance obtained so far.

Training Recall Precision F-score cover
bsl 76.2% 87.7% 81.5% 69%
sub 73.6% 83.6% 78.3% 69.6%

bsl+sub 82.2% 83.4% 82.8% 79%

Table 4: Results using substitution

5.1 Substitution

A first approach to improve the overall performance
is to increase the coverage of gene names in the
training data. We noticed that the training set
produced by the process described earlier contains
16944 unique gene names, while the dictionary of
all gene names from FlyBase contains 97227 entries.
This observation suggests that the dictionary is not
fully exploited. This is expected, since the dictio-
nary entries are obtained from the full papers while
the training data generation process is applied only
to their abstracts which are unlikely to contain all of
them.

In order to include all the dictionary entries in
the training material, we substituted in the training
dataset produced earlier each of the existing gene
names with entries from the dictionary. The pro-
cess was repeated until each of the dictionary entries
was included once in the training data. The assump-
tion that we take advantage of is that gene names
should appear in similar lexical contexts, even if the
resulting text is nonsensical from a biomedical per-
spective. For example, in a sentence containing the
phrase “the sws mutant”, the immediate lexical con-
text could justify the presence of any gene name in
the place “sws”, even though the whole sentence
would become untruthful and even incomprehensi-
ble. Although through this process we are bound
to repeat errors of the training data, we expect the
gains from the increased coverage to alleviate their
effect. The resulting corpus consisted of 4,062,439
tokens containing each of the 97227 gene names of
the dictionary once. Training the HMM-based tag-
ger with this data yielded 78.3% F-score (Table 4,
row “sub”). 438 out of the 629 genes of the test set
were seen in the training data.

The drop in precision exemplifies the importance
of using naturally occurring training material. Also,
59 gene names that were annotated in the training
data due to the flexible pattern matching are not in-
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Training Recall Precision F unseen
score F score

bsl 76.2% 87.7% 81.5% 42.7%
bsl-excl 80.8% 81.1% 81% 51.3%

Table 5: Results excluding sentences without enti-
ties

cluded anymore since they are not in the dictionary,
which explains the drop in recall. Given these ob-
servations, we trained HMM-based tagger on both
versions of the training data, which consisted of
5,527,024 tokens, 218,711 gene names, 106,235 of
which are unique. The resulting classifier had seen
in its training data 79% of the gene names in the
test set (497 out of 629) and it achieved 82.8% F-
score (row “bsl+sub” in Table 4). It is worth point-
ing out that this improvement is not due to amelio-
rating the performance on unseen named entities but
due to including more of them in the training data,
therefore taking advantage of the high performance
on seen named entities (93.7%). Direct comparisons
between these three versions of the system on seen
and unseen gene names are not meaningful because
the separation in seen and seen gene names changes
with the the genes covered in the training set and
therefore we would be evaluating on different data.

5.2 Excluding sentences not containing entities

From the evaluation of the dictionary based tagger in
Section 3 we confirmed our initial expectation that
it achieves high precision and relatively low recall.
Therefore, we anticipate most mistakes in the train-
ing data to be unrecognized gene names (false neg-
atives). In an attempt to reduce them, we removed
from the training data sentences that did not contain
any annotated gene names. This process resulted
in keeping 63,872 from the original 111,810 sen-
tences. Apparently, such processing would remove
many correctly identified common words (true neg-
atives), but given that the latter are more frequent in
our data we expect it not to have significant impact.
The results appear in Table 5.

In this experiment, we can compare the perfor-
mances on unseen data because the gene names that
were included in the training data did not change.
As we expected, the F-score on unseen gene names
rose substantially, mainly due to the improvement in

recall (from 32.3% to 46.2%). The overall F-score
deteriorated, which is due to the drop in precision.
An error analysis showed that most of the precision
errors introduced were on tokens that can be part
of gene names as well as common words, which
suggests that removing from the training data sen-
tences without annotated entities, deprives the clas-
sifier from contexts that would help the resolution
of such cases. Still though, such an approach could
be of interest in cases where we expect a significant
amount of novel gene names.

5.3 Filtering contexts

The results of the previous two subsections sug-
gested that improvements can be achieved through
substitution and exclusion of sentences without en-
tities, attempting to include more gene names in the
training data and exclude false negatives from them.
However, the benefits from them were hampered be-
cause of the crude way these methods were applied,
resulting in repetition of mistakes as well as exclu-
sion of true negatives. Therefore, we tried to fil-
ter the contexts used for substitution and the sen-
tences that were excluded using the confidence of
the HMM based tagger.

In order to accomplish this, we used the “std-
enhanced” version of the HMM based tagger to re-
annotate the training data that had been generated
automatically. From this process, we obtained a sec-
ond version of the training data which we expected
to be different from the original one by the data gen-
eration process, since the HMM based tagger should
behave differently. Indeed, the agreement between
the training data and its re-annotation by the HMM
based tagger was 96% F-score. We estimated the
entropy of the tagger for each token and for each
sentence we calculated the average entropy over all
its tokens. We expected that sentences less likely
to contain errors would be sentences on which the
two versions of the training data would agree and
in addition the HMM based tagger would annotate
with low entropy, an intuition similar to that of co-
training (Blum and Mitchell, 1998). Following this,
we removed from the dataset the sentences on which
the HMM-based tagger disagree with the annota-
tion of the data generation process, or it agreed with
but the average entropy of their tokens was above
a certain threshold. By setting this threshold at
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Training Recall Precision F-score cover
filter 75.6% 85.8% 80.4% 65.5%

filter-sub 80.1% 81% 80.6% 69.6%
filter-sub 83.3% 82.8% 83% 79%

+bsl

Table 6: Results using filtering

0.01, we kept 72,534 from the original 111,810 sen-
tences, which contained 61798 gene names, 11,574
of which are unique. Using this dataset as training
data we achieved 80.4% F-score (row “filter” in Ta-
ble 6). Even though this score is lower than our
baseline (81.5% F-score), this filtered dataset should
be more appropriate to apply substitution because it
would contain fewer errors.

Indeed, applying substitution to this dataset re-
sulted in better results, compared to applying it to
the original data. The performance of the HMM-
based tagger trained on it was 80.6% F-score (row
“filter-sub” in Table 6) compared to 78.3% (row
“sub” in Table 4). Since both training datasets
contain the same gene names (the ones contained
in the FlyBase dictionary), we can also compare
the performance on unseen data, which improved
from 46.7% to 48.6%. This improvement can be
attributed to the exclusion of some false negatives
from the training data, which improved the recall on
unseen data from 42.9% to 47.1%. Finally, we com-
bined the dataset produced with filtering and substi-
tution with the original dataset. Training the HMM-
based tagger on this dataset resulted in 83% F-score,
which is the best performance we obtained.

6 Conclusions - Future work

In this paper we demonstrated empirically the effi-
ciency of using automatically created training mate-
rial for the task of Drosophila gene name recogni-
tion by comparing it with the use of manually an-
notated material from the broader biomedical do-
main. For this purpose, a test dataset was created
using novel guidelines that allow more consistent
manual annotation. We also presented an informa-
tive evaluation of the bootstrapped NER system that
revealed that indicated its weakness in identifying
unseen gene names. Based on this result we ex-
plored ways to improve its performance. These in-

cluded taking fuller advantage of the dictionary of
gene names from FlyBase, as well as filtering out
likely mistakes from the training data using confi-
dence estimations from the HMM-based tagger.

Our results point out some interesting directions
for research. First of all, the efficiency of bootstrap-
ping calls for its application in other tasks for which
useful domain resources exist. As a complement
task to NER, the identification and classification of
the mentions surrounding the gene names should
be tackled, because it is of interest to the users of
biomedical IE systems to know not only the gene
names but also whether the text refers to the actual
gene or not. This could also be useful to anaphora
resolution systems. Future work for bootstrapping
NER in the biomedical domain should include ef-
forts to incorporate more sophisticated features that
would be able to capture more abstract contexts. In
order to evaluate such approaches though, we be-
lieve it is important to test them on full papers which
present greater variety of contexts in which gene
names appear.
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