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Abstract 

This paper introduces the probabilistic 
paradigm, a probabilistic, declarative 
model of morphological structure. We de-
scribe an algorithm that recursively ap-
plies Latent Dirichlet Allocation with an 
orthogonality constraint to discover mor-
phological paradigms as the latent classes 
within a suffix-stem matrix. We apply the 
algorithm to data preprocessed in several 
different ways, and show that when suf-
fixes are distinguished for part of speech 
and allomorphs  or gender/conjugational 
variants are merged, the model is able to 
correctly learn morphological paradigms 
for English and Spanish. We compare our 
system with Linguistica (Goldsmith 
2001), and discuss the advantages of the 
probabilistic paradigm over Linguistica’s 
signature representation. 

1 Introduction 

In recent years researchers have addressed the task 
of unsupervised learning of declarative representa-
tions of morphological structure. These models 
include the signature of (Goldsmith 2001), the con-
flation set of (Schone and Jurafsky 2001), the 
paradigm of (Brent et. al. 2002), and the inflec-
tional class of (Monson 2004). While these repre-
sentations group morphologically related words in 
systematic ways, they are rather different from the 
paradigm, the representation of morphology in tra-
ditional grammars. A paradigm lists the prototypi-
cal morphological properties of lexemes belonging 

to a particular part of speech (POS) category; for 
example, a paradigm for regular English verbs 
would include the suffixes {$,ed$,ing$,s$}1. 
Hand-built computational implementations of 
paradigms as inheritance hierarchies include 
DATR (Evans and Gazdar 1996) and Functional 
Morphology (Forsberg and Ranta 2004). The two 
principal ways in which learned models have dif-
fered from paradigms are that: 1) they do not have 
POS types, and 2) they are not abstractions that 
generalize beyond the words of the input corpus. 

There are important reasons for learning a 
POS-associated, paradigmatic representation of 
morphology. Currently, the dominant technology 
for morphological analysis involves mapping be-
tween inflected and base of forms of words with 
finite-state transducers (FSTs), a procedural model 
of morphological relations. Rewrite rules are hand-
crafted and compiled into FSTs, and it would be 
beneficial if these rules could be learned automati-
cally. One line of research in computational mor-
phology has been directed towards learning finite-
state mapping rules from some sort of paradig-
matic structure, where all morphological forms and 
POS types are presumed known for a set of lex-
emes (Clark 2001, Kazakov and Manandhar 2001, 
Oflazer et. al. 2001, Zajac 2001, Albright 2002). 
This can be accomplished by first deciding on a 
base form, then learning rules to convert other 
forms of the paradigm into this base form. If one 
could develop an unsupervised algorithm for learn-
ing paradigms, it could serve as the input to rule-
learning procedures, effectively leading to an en-
tirely unsupervised system for learning FSTs from 
raw data. This is our long-term goal. 

                                                           
1 $ is the null suffix. 
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An alternative approach is to skip the paradigm 
formulation step and construct a procedural model 
directly from raw data. (Yarowsky and Wicen-
towski 2000) bootstrap inflected and base forms 
directly from raw data and learn mappings between 
them. Their results are quite successful, but the 
morphological information they learn is not struc-
tured as clearly as a paradigmatic model. (Freitag 
2005) constructs a morphological automaton, 
where nodes are clustered word types and arcs are 
suffixation rules. 

This paper addresses the problem of finding an 
organization of stems and suffixes as probabilistic 
paradigms (section 2), a model of morphology 
closer to linguistic notion of paradigm than previ-
ously proposed models. We encode the morpho-
logical structure of a language in a matrix 
containing frequencies of words, and formulate the 
problem of learning paradigms as one of finding 
latent classes within the matrix. We present a re-
cursive LDA, a learning algorithm based on Latent 
Dirichlet Allocation (section 3), and show that un-
der certain conditions (section 5), it can correctly 
learn morphological paradigms for English and 
Spanish. In section 6, we compare the probabilistic 
paradigm to the signature model of (Goldsmith 
2001). In section 7, we sketch some ideas for how 
to make our system more unsupervised and more 
linguistically adequate. 

We assume a model of morphology where 
each word is the concatenation of a stem and a sin-
gle suffix representing all of the word's morpho-
logical and POS properties. Although this is a very 
simplistic view of morphology, there are many 
hitherto unresolved computational issues for learn-
ing even this basic model, and we consider it nec-
essary to address these issues before developing 
more sophisticated models. For a stem/suffix rep-
resentation, the task of learning a paradigm from 
raw data involves proposing suffixes and stems, 
proposing segmentations, and systematically orga-
nizing stems and suffixes into classes. One diffi-
culty is suffix allomorphy: a suffix has multiple 
forms depending on its phonological environment 
(e.g. s$/es$). Another problem is suffix cate-
gorial ambiguity (s$ is ambiguous for noun and 
verb uses). Finally, lexemes appear in only a subset 
of their potential forms, due to sparse data. An un-
supervised learner needs to be able to handle all of 
these difficulties in order to discover abstract para-
digmatic classes. 

In this paper, we are primarily interested in 
how the co-occurrence of stems and suffixes in a 
corpus leads them to be organized into paradigms. 
We use data preprocessed with correct segmenta-
tions of words into stems and suffixes, in order to 
focus on the issue of determining what additional 
knowledge is needed. We demonstrate that para-
digms for English and Spanish can be successfully 
learned when tokens have been assigned POS tags 
and allomorphs or gender/conjugational variants 
are given a common representation. Our learning 
algorithm is not supervised since the target concept 
of gold standard "input" POS category of stems is 
not known, but rather it is an unsupervised algo-
rithm that relies on preprocessed data for optimal 
performance. 

2 The Probabilistic Paradigm 

We introduce the probabilistic paradigm, a prob-
abilistic, declarative model of regular morphology. 
The probabilistic paradigm model consists of three 
matrices: the data matrix D, the morphological 
probabilities matrix M, and the lexical probabilities 
matrix L. Let m be the number of stems, n the 
number of stems, and p the number of paradigms. 
The D matrix encodes the joint distribution of lexi-
cal and morphological information in a corpus. It is 
of size m x n, and each cell contains the fre-
quency of the word formed by concatenating the 
appropriate stem and suffix. The M matrix is of 
size m x p, and each column contains the condi-
tional probabilities of each suffix given a para-
digm. The L matrix is of size p x n, and contains 
the conditional probabilities of each paradigm 
given a stem. Each suffix should belong to exactly 
one paradigm, and the suffixes of a particular 
paradigm should be conditionally independent. 
Each column of the M matrix defines a canonical 
paradigm, a set of suffixes that attach to stems as-
sociated with that paradigm. A lexical paradigm is 
the full set of word forms for a particular stem, and 
is an instantiation of the canonical paradigm for a 
particular stem.  

The probabilistic paradigm is not well-
developed as the usual notion of "paradigm" in 
linguistics. First, the system employs no labels 
such as "noun", "plural", "past", etc. Second, prob-
abilistic paradigms have only a top-level categori-
zation; induced “verb” paradigms, for example, are 
not substructured into different tenses or conjuga-
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tions. Third, we do not distinguish between inflec-
tional and derivational morphology; traditional 
grammars place derived forms in separate lexical 
paradigms. Fourth, we do not handle syncretism, 
where one suffix belongs in multiple slots of the 
paradigm. Fifth, we do not yet not handle irregular 
and sub-regular forms. Despite these drawbacks, 
our paradigms have an important advantage over 
traditional paradigms, in being probabilistic and 
therefore able to model language usage. 

3 Learning the probabilistic paradigm in a 
latent class model 

We learn the parameters of the probabilistic para-
digm model by applying a dimensionality reduc-
tion algorithm to the D matrix, in order to produce 
the M and L matrices. This reduces the size of the 
representation from m*n to m*p + p*n. The main 
idea is to discover the latent classes (paradigms) 
which represent the underlying structure of the in-
put matrix. This handles two important problems: 
1) that words occur in a subset of their possible 
morphological forms in a corpus, and 2) that the 
words formed from a particular stem can belong to 
multiple POS categories. The second problem can 
be quantified as follows: in our English data, 
14.3% of types occur with multiple open-class base 
POS categories, accounting for 56.5% of tokens; 
for Spanish, 13.7% of types, 37.8% of tokens. 

3.1 LDA model for morphology 

The dimensionality reduction algorithm that we 
employ is Latent Dirichlet Allocation (LDA) (Blei 
et. al. 2003). LDA is a generative probabilistic 
model for discrete data. For the application of topic 
discovery within a corpus of documents, a docu-
ment consists of a mixture of underlying topics, 
and each topic consists of a probability distribution 
over the vocabulary. The topic proportions are 
drawn from a Dirichlet distribution, and the words 
are drawn from a multinomial over the topic. Prob-
ability distributions of documents and words are 
conditionally independent of topics. LDA produces 
two non-negative parameter matrices, Gamma and 
Beta: Gamma is the matrix of Dirichlet posteriors, 
encoding the distribution of documents and topics; 
Beta encodes the distribution of words and topics.  

The mapping of the data structures of LDA to 
the probabilistic paradigm is as follows. The 

document-word matrix is analogous to the suffix-
stem D matrix. For morphology, a "document" is a 
multiset of tokens in a corpus, such that each of 
those tokens decomposes into a stem and a speci-
fied suffix. Different underlying canonical para-
digms ("topics") can be associated with suffixes, 
and each canonical paradigm allows a set of stems 
("words"). For a suffix-stem ("document-word") 
matrix of size m x n and k latent classes, the 
Gamma matrix is of size m x k, and the Beta ma-
trix is of size k x n. The Gamma matrix, normal-
ized by column, is the M matrix, and the Beta 
matrix, normalized by row, is the L matrix. 

3.2 Recursive LDA 

One standard issue in using these types of algo-
rithms is selecting the number of classes. To deal 
with this, we have formulated a recursive wrapper 
algorithm for LDA that accomplishes a divisive 
clustering of suffixes. LDA is run at each stage to 
find the local Gamma and Beta matrices. To split 
the suffixes into two classes, we assign each suffix 
to the class for which its probability is greater, by 
examining the Gamma matrix. The input matrix is 
then divided into two smaller matrices based on 
this split, and the algorithm continues with each 
submatrix. The result is a binary tree describing the 
suffix splits at each node. 

To construct a classification of suffixes into 
paradigms, it is necessary to make a cut in the tree. 
Assuming that suffix splits are optimal, we start at 
the root of the tree and go down until reaching a 
node where there is sufficient uncertainty about 
which class a suffix should belong to. A good split 
of suffixes is one where the vectors of probabilities 
of suffixes given a class are orthogonal; we can 
find such a split by minimizing the cosine of the 
two columns of the node's Gamma matrix (we call 
this the "Gamma cosine"). Thus, a node at which 
suffixes should not be split has a high Gamma co-
sine, and when encountering such a node, a cut 
should be made. The suffixes below this node are 
grouped together as a paradigm; tree structure be-
low the cut node is ignored. In our experiments we 
have selected thresholds for the Gamma cosine, but 
we do not know if there is a single value that 
would be successful cross-linguistically. After the 
tree has been cut, the Gamma and Beta matrices 
for ancestor nodes are normalized and combined to 
form the M and L matrices for the language. 
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Another issue is dealing with suboptimal solu-
tions. Random initializations of parameters lead 
the EM training procedure to local maxima in the 
solution space, and as a result LDA produces dif-
fering suffix splits across different runs. To get 
around this, we simply run LDA multiple times (25 
in our experiments) and choose the solution that 
minimizes the Gamma cosine. 

We also experimented with minimizing the 
Beta cosine. The Beta matrix represents stem am-
biguity with respect to a suffix split. Since there 
are inherently ambiguous stems, one should not 
expect the Beta cosine value to be extremely low. 
Minimizing the Beta cosine sometimes made the 
Beta matrix "too disambiguated" and forced the 
representation of ambiguity into Gamma matrix, 
thereby inflating the Gamma cosine and causing 
incorrect classifications of suffixes. 

4 Data 

We conducted experiments on English and 
Spanish. For English, we chose the Penn Treebank 
(Marcus et. al. 1993), which is already POS-
tagged; for Spanish, we chose an equivalent-sized 
portion of newswire (Graff and Galegos 1999), 
POS-tagged by the FreeLing morphological ana-
lyzer (Carreras et. al. 2004). We restricted our data 
to nouns, verbs, adjectives, and adverbs. Words 
that did not follow canonical suffixation patterns 
for their POS category (irregulars, foreign words, 
incorrectly tagged words, etc.) were excluded. We 
segmented each word into stem and suffix for a 
specified set of suffixes. Rare suffixes were ex-
cluded, such as many English adjective-forming 
suffixes and Spanish 2nd person plural forms. 
Stems were not lemmatized, with the result that 
there can be multiple stem variants of a particular 
lemma, as with the words stemm.ing$ and 
stem.s$. Tokens were not disambiguated for 
word sense. Stems that occurred with only one suf-
fix were excluded. 

We use several different representations of suf-
fixes in constructing the data matrices: 1) merged, 
labeled suffixes; 2) merged, unlabeled suffixes; 3) 
unmerged, unlabeled suffixes. For unmerged suf-
fixes, allomorphs2 are represented in their original 
spelling. A merged suffix is a common representa-

                                                           
2 We abuse the standard usage of the term "allomorph" 
to include gender and conjugational variants. 

tion for the multiple surface manifestations of an 
underlyingly identical suffix. Suffixes also can be 
unlabeled, or labeled with base POS tags. For an 
example, a verb created would be segmented as 
create.d$ with an unmerged, labeled suffix, or 
create.d/ed$V with a merged, labeled suffix. 
Labels disambiguate otherwise categorically am-
biguous suffixes. 

The gold standard for each language lists the 
suffixes that belong to a paradigm for stems of a 
particular POS category. We call this the "input" 
POS category, which is not indicated in annota-
tions and is the concept to be predicted. This 
should be differentiated from the "output" POS 
labels on the suffixes: for example, ly$R attaches 
to stems of the input category “adjective”. Each 
suffix is an atomic entity, so the system actually 
has no concept of output POS categories. All that 
we require is that distinct suffixes are given dis-
tinct symbols. 

In the English gold standard (Table 1), each 
slashed pair of suffixes denotes one merged form; 
the unmerged forms are the individual suffixes. 
ally$R is the suffix ly$R preceded by an epen-
thetic vowel, as in the word basically. In the 
Spanish gold standard (Table 2), each slashed 
group of suffixes corresponds to one merged form. 
For adjectives and nouns, a$ and o$ are feminine 
and masculine singular forms, and as$ and os$ 
are the corresponding plurals. $ and s$ do not 
have gender; es$ is a plural allomorph. 
mente/amente$R is a derivational suffix. The 
first two groups of verbal suffixes are past partici-
ples, agreeing in number and gender. For the other 
verb forms, when three are listed they correspond 
to forms for the 1st, 2nd, and 3rd conjugations. 
When there are two, the first is for the 1st conjuga-
tion, and the other is identical for the 2nd and 3rd. 
o$V has the same form across all three conjuga-
tions. 
 
Adjectives: $A, d/ed$A,  

  r/er$A, ally/ly$R 

Nouns: $N, 's$N, es/s$N 

Verbs: $V, d/ed$V, es/s$V,  

  ing$V, ing$A, ing$N, r/er$N

 
Table 1. Gold standard for English 
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Adjectives: a/o/$A, as/os/es/s$A,  
            mente/amente$R  
Nouns:      a/o/$N, as/os/es/s$N 
Verbs:      ada/ida/ado/ido$V,  
  adas/idas/ados/idos$V, ando/iendo$V,  
  ar/er/ir$V, o$V, as/es$V, a/e$V,  
  amos/emos/imos$V, an/en$V, aba/ía$V,  
  ábamos/íamos$V, aban/ían$V,  
  aré/eré/iré$V, ará/erá/irá$V,  
  aremos/eremos/iremos$V, arán/erán/irán$V,
  é/í$V, ó/ió$V, aron/ieron$V,  
  aría/ería/iría$V, arían/erían/irían$V 

 
Table 2. Gold standard for Spanish 

5 Experiments 

5.1 Merged, labeled suffixes 

Figure 1 shows the recursion tree for English data 
preprocessed with merged, labeled suffixes. To 
produce a classification of suffixes into paradigms, 
we start at the root and go down until reaching 
nodes with a Gamma cosine greater than or equal 
to the threshold. The cut for a threshold of .0009 
produces three paradigms exactly matching the 
gold standard for verbs, adjectives, and nouns, re-
spectively. Table 3 shows the complete M matrix, 
which contains suffix probabilities for each para-
digm. Table 4 shows a portion of the L matrix, 
which contains the probabilities of stems belonging 
to paradigms. We list the stems that are most am-
biguous with respect to paradigm membership 
(note that this table does not specify the words that 
belong to each category, only their stems). 

 
       "Verb" "Adj" "Noun" 
        $A 0.000 0.829 0.000 
    d/ed$A 0.020 0.000 0.000 
    r/er$A 0.000 0.033 0.000 
     ing$A 0.008 0.000 0.000 
        $N 0.000 0.000 0.706 
      's$N 0.000 0.000 0.036 
    r/er$N 0.037 0.000 0.000 
     ing$N 0.065 0.000 0.000 
    es/s$N 0.000 0.000 0.257 
 ally/ly$R 0.000 0.138 0.000 
        $V 0.342 0.000 0.000 
    d/ed$V 0.284 0.000 0.000 
     ing$V 0.133 0.000 0.000 
    es/s$V 0.110 0.000 0.000 
 
Table 3. M matrix for English merged, labeled 

suffixes. Columns: p(suff|paradigm). 

1: .0004

$A d/ed$A r/er$A ing$A $N 's$N r/er$N ing$N 
es/s$N ally/ly$R $V d/ed$V ing$V es/s$V

2: .0000

$A d/ed$A r/er$A ing$A

r/er$N ing$N ally/ly$R

$V d/ed$V ing$V es/s$V

9: .1413

$N 's$N es/s$N

3: .0009

d/ed$A ing$A r/er$N ing$N

$V d/ed$V ing$V es/s$V

10: .9271

$N 's$N

11: .0000

es/s$N

6: .1604

$A r/er$A

ally/ly$R

4: .0061

d/ed$A $V

d/ed$V ed/s$V

5: .0000

ing$A r/er$N

ing$N ing$V

7: .0000

$A

8: .0000

r/er$A

ally/ly$R

“nouns”

“verbs” “adjectives”

 
Figure 1. Recursion tree for English merged, 
labeled suffixes. Each node shows its current 
suffix set, and the Gamma cosine value for the 
split. Dotted lines indicate paradigms for a 
Gamma cosine threshold of .0009. 

 
            "Verb" "Adj"  "Noun" 
     reset  0.333  0.292  0.375 
     blunt  0.445  0.278  0.277 
      calm  0.417  0.375  0.209 
     total  0.312  0.462  0.226 
     clean  0.478  0.319  0.203 
  parallel  0.222  0.278  0.500 
     alert  0.500  0.222  0.277 
     sound  0.483  0.184  0.333 
  compound  0.372  0.171  0.457 
      pale  0.417  0.417  0.166 
      fine  0.254  0.230  0.516 
   premier  0.235  0.235  0.529 
     brief  0.175  0.524  0.301 
    polish  0.250  0.556  0.194 
       ski  0.378  0.108  0.513 
      fake  0.200  0.600  0.200 
     light  0.092  0.427  0.481 
    foster  0.226  0.161  0.613 
    bottom  0.107  0.304  0.589 
repurchase  0.333  0.095  0.571 

 
Table 4. Portion of L matrix for English merged, 
labeled suffixes, sorted by lowest entropy. 
Columns: p(paradigm|stem). 
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Next, we examine the morphological and lexical 
conditional probabilities in the M and L matrices. 
It is possible that even though the correct 
classification of suffixes into paradigms was 
learned, the probabilities may be off. Table 5 
shows, however, that the M and L matrices are an 
extremely accurate approximation of the true 
morphological and lexical probabilities. We have 
included statistics for the corresponding Spanish 
experiment; the paradigms that were discovered for 
Spanish also match the gold standard. 
 

  English Spanish 

# suffixes 14 26 

# stems 7315 5115 

 CRE M  .0002 bits  .0003 bits 

 CRE L  .0006 bits  .0020 bits 

 
Table 5. Comparison of M and L matrices with 
true morphological and lexical probabilities, by 
conditional relative entropy (CRE). 

5.2 Unmerged, labeled suffixes 

The next experiments tested the effect of allomor-
phy on paradigm discovery, using data where suf-
fixes are labeled but not merged. There are 
competing pressures at work in determining how 
allomorphs are assigned to paradigms: on the one 
hand, the disjointedness of stem sets for allo-
morphs would tend to place them in separate para-
digms; on the other hand, if those stem sets have 
other suffixes in common that belong to the same 
paradigm, the allomorphs might likewise be placed 
in that paradigm. In our experiments, we found that 
there was much more variability across runs than 
in the merged suffix cases. In English, for exam-
ple, the suffix es$N was sometimes placed in the 
"verb" paradigm, although the maximally orthogo-
nal solution placed it in the “noun” paradigm. 

Figure 2 shows the recursion tree and para-
digms for Spanish. Gold standard noun and adjec-
tive categories are fragmented into multiple 
paradigms in the tree. Although nouns have a 
common parent node (2), the nouns of the different 
genders are placed in separate paradigms -- this is 
because a noun can have only one gender. The 
verbs are all in a single paradigm (node 10). Node 
11 contains all the first-conjugation verbs, and 
node 12 contains all the second/third-conjugation 
verbs. The reason that they are not in separate 

paradigms is that a$V is shared by stems of all 
three conjugations, which leads to a split that is not 
quite orthogonal. 

The case of adjectives is the most interesting. 
Gendered and non-gendered adjective stems are 
disjoint, so adjectives appear in two separate sub-
trees (nodes 4, 13). In node 4, the gender-
ambiguous plural es$A is in conflict with the plu-
ral s$A, but it would conflict with two plurals 
as$A and os$A if it were placed in node 13. 
amente$R appears together in node 14 because it 
shares stems with the feminine adjectives. 
amente$R also shares stems with verbs, as it is 
also the derivational suffix which attaches to ver-
bal past participles in the feminine "a" form. This 
is probably why the group of adjectives at node 13 
is a sister to the verb nodes. The allomorph 
mente$R attaches to non-gendered adjectives, and 
is thus in the first adjective group. 
 

1: .0000

2: .0000 9: .0009

3: .0000

4: .0008

$A es$A s$A 

mente$R

5: .0264

o$N os$N

7: .0000

$N es$N

s$N

10: .0098

8: .0101

a$N as$N

6: .0000

11: .0107

a$V aba$V aban$V ada$V
adas$V ado$V ados$V
amos$V an$V ando$V ar$V
aremos$V aron$V ará$V
arán$V aré$V aría$V
arían$V as$V o$V
ábamos$V ó$V

12: .0056

e$V emos$V en$V er$V eremos$V
erá$V erán$V eré$V ería$V
erían$V es$V ida$V idas$V ido$V
idos$V iendo$V ieron$V imos$V
ir$V iremos$V irá$V irán$V
iré$V iría$V irían$V ió$V é$V 
í$V ía$V íamos$V ían$V

13: .0021

14: .0000

a$A as$A

amente$R

15: .0133

o$A os$A

“verbs”

“adjectives”

“adjectives” “nouns” “nouns” “nouns”

Figure 2. Recursion tree for Spanish, unmerged, 
labeled suffixes, with Gamma cosine values. Dot-
ted lines indicate paradigms for a Gamma cosine 
threshold of .0021. 

5.3 Unmerged, unlabeled suffixes 

The case of unmerged, unlabeled suffixes is not as 
successful. In the Gamma matrix for the root node 
(Table 6), there is no orthogonal division of the 
suffixes, as indicated by the high Gamma cosine 
value of .1705. Despite this, the algorithm has dis-
covered useful information. There is a subpara-
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digm of unambiguous suffixes {'s$,ally$}, and 
another of {d$,ed$,ing$,r$}. The other suf-
fixes ($,er$,es$,ly$,s$) are ambiguous. The 
ambiguity of ly$ seems to be a secondary effect: 
since adjectives with the null suffix $ are found to 
be ambiguous, ly$ is likewise ambiguous. 
 
         $   [0.9055]   0.0703 
       's$   [0.0351]   0.0000 
     ally$   [0.0007]   0.0000 
        d$    0.0000   [0.1139] 
       ed$    0.0000   [0.1332] 
       er$   [0.0087]   0.0084 
       es$   [0.0089]   0.0001 
      ing$    0.0000   [0.1176] 
       ly$    0.0033   [0.0603] 
        r$    0.0000   [0.0198] 
        s$    0.0378   [0.4764] 
 

Table 6. Gamma matrix for root node, English, 
unmerged, unlabeled suffixes; the categorization 
is shown with brackets. Columns indicate 
p(suffix|class). 

6 Comparison with Linguistica 

In this section, we compare our system with 
Linguistica3 (Goldsmith 2001), a freely available 
program for unsupervised discovery of morpho-
logical structure. We focus our attention on Lin-
guistica's representation of morphology, rather 
than the algorithm used to learn it. Linguistica 
takes a list of word types, proposes segmentations 
of words into stems and suffixes, and organizes 
them into signatures. A signature is a non-
probabilistic data structure that groups together all 
stems that share a common set of suffixes. Each 
stem belongs to exactly one signature, and the set 
of suffixes for each signature is unique. For exam-
ple, running Linguistica on our raw English text, 
there is a signature {$,ful$,s$} for the stems 
{resource, truth, youth}, indicating the 
morphology of the words {resource$, 
truth$, youth$, resourceful$, truth-
ful$, youthful$, resources$, truths$, 

youths$}. There are no POS types in the system. 
Thus, even for a prototypically "noun" signature 
such as {$,'s$}, it is quite possible that not all of 
the words that the signature represents are actually 
nouns. For example, the word structure$ is in 

                                                           
3 http://linguistica.uchigago.edu 

this signature, but occurs both as a noun (59 times) 
and a verb (2 times) in our corpus. 

The signature model can be derived from the 
suffix-stem data matrix, by first converting all 
positive counts to 1, and then placing in separate 
groups all the stems that have the same 0/1 column 
pattern. Another way to view the signature is as a 
special case of the probabilistic paradigm where all 
probabilities are restricted to being 0 or 1, for if 
this were so, the only way to fit the data would be 
to let there be a canonical paradigm for every dif-
ferent subset of suffixes that some stem appears 
with. In theory, it is possible for the number of sig-
natures to be exponential in the number of suffixes; 
in practice, Linguistica finds hundreds of signa-
tures for English and Spanish. Although there has 
been work on reducing the number of signatures 
(Goldwater and Johnson 2004; Hu et. al. 2005, 
who report a reduction of up to 30%), the number 
of remaining signatures is still two orders of mag-
nitude greater than the number of canonical para-
digms we find. The simplest explanation for this is 
that a suffix can be listed many times in the differ-
ent signatures, but only has one entry in  the M 
matrix of the probabilistic paradigm. 

It is important for a natural language system to 
handle out-of-vocabulary words. A signature does 
not predict the forms of potential but unseen forms 
of stems. To some extent Linguistica could ac-
commodate this, as it identifies when one signa-
ture's suffixes are a proper subset of another's, but 
it does not handle cases where suffixes are partially 
overlapping. One principal advantage of the prob-
abilistic paradigm is that the canonical paradigm 
allows the instantiation of a lexical paradigm con-
taining a complete set of predicted word forms for 
a stem. 

Since Linguistica is a system that starts from 
raw text, it may seem that it cannot be directly 
compared to our work, which assumes that seg-
mentations and suffixes are already known. How-
ever, it is possible to run Linguistica on our data by 
doing further preprocessing. We rewrite the corpus 
in such a way that Linguistica can detect correct 
morphological and POS information for each to-
ken. Each token is replaced by the concatenation of 
its stem, the dummy string 12345, and a single-
character encoding of its merged suffix. For exam-
ple, the token accelerate.d/ed$V is mapped to 
accelerate12345D, where D represents d/ed$V. 
The omnipresence of the dummy string enables 
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Linguistica to discover all the desired stems and 
suffixes, but no more. By mapping the input corpus 
in this way, we can examine the type of grammar 
that Linguistica would find if it knew the informa-
tion that we have assumed in the previous experi-
ments. Linguistica found 565 signatures from the 
"cooked" English data (Figure 3). 50% of word 
types are represented by the first 13 signatures. 
 
1. { $N, es/s$N } 1540 
   abortion absence accent acceptance 
   accident accolade accommodation 
2. { $N, 's$N } 1168 
   aba abbie abc academy achenbaum aclu 
   adams addington addison adobe 
3. { $N, 's$N, es/s$N } 224 
   accountant acquisition actor 
   administration airline airport alliance 
5. { $A, ally/ly$R } 319 
   abrupt absolute abundant accurate 
   actual additional adequate adroit 
6. { $A, $N, es/s$N } 173 
   abrasive acid activist adhesive adult 
   afghan african afrikaner aggregate 
7. { $V, d/ed$V, es/s$V } 135 
   abate achieve administer afflict 
   aggravate alienate amass apologize 
9. { $V, d/ed$V, ing$V, es/s$V } 73 
   abound absorb adopt applaud assert 
   assist attend attract avert avoid 
13. { $N, $V, d/ed$V, es/s$N, es/s$V } 44 
    advocate amount attribute battle 
    bounce cause compromise decline 

 
Figure 3. Selected top signatures for merged, labeled 
suffix English data. Each signature shows the suffix set, 
number of stems, and several example stems. Ranking is 
by log(num stems)* log(num suffixes). 
 

We have formulated two metrics to evaluate the 
quality of a collection of signatures or paradigms. 
Ideally, all suffixes of a particular signature would 
be of the same category, and all the words of a par-
ticular category would be contained within one 
signature. POS fragmentation measures to what 
extent the words of an input POS category are scat-
tered across different signatures. It is the average 
number of bits required to encode the probability 
distribution of some category’s words over signa-
tures. Signature impurity measures the extent to 
which the suffixes of a signature are of mixed in-
put POS types. It is the expected value of the num-
ber of bits required to encode the probability 
distribution of some signature’s suffixes over input 
POS categories. Table 7 shows that, according to 
these metrics, the signature does not organize mor-

phological information as efficiently as probabilis-
tic paradigms4. Linguistica’s impurity scores are 
reasonably low because many of the signatures 
with the most stems are categorically homogene-
ous. Fragmentation scores show that the placement 
of the majority of words within top signatures off-
sets the scattering of a POS category’s suffixes 
over many signatures. 
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  Linguistica Recursive LDA 

English fragmentation 5.422 bits  0 bits 
English impurity .404 bits  0 bits 
Spanish fragmentation 6.084 bits  0 bits 
Spanish impurity .332 bits   0 bits 
 
Table 7. Comparison of Linguistica and recursive LDA 
on merged, labeled suffix data. The maximum possible 
impurity for 3 POS categories is log2(3) = 1.585 bits. 

 
Finally, a morphological grammar should reflect 

the general, abstract morphological structure of the 
language from which a corpus was sampled. To 
test for consistency of morphological grammars 
across corpora, we split our cooked English data 
into two equal parts. Linguistica found 449 total 
signatures for the first half and 462 for the second. 
296 signatures were common to both (in terms of 
the suffixes contained by the signatures). Of the 
3506 stems shared by both data sets, 1831 (52.2%) 
occurred in the same signature. Of the top 50 sig-
natures for each half-corpus, 45 were in common, 
and 1651 of 2403 shared stems (68.7%) occurred 
in the same signature. Recursive LDA found the 
                                                           
4 Our scores would not be so good if we had chosen a 
poor Gamma cosine threshold value for classification. 
However, Linguistica’s scores cannot be decreased, as 
there is only one signature model for a fixed set of 
stems and suffixes. 
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same canonical paradigms for both data sets 
(which matched the gold standard). Differences in 
word counts between the corpus halves altered 
stem inventories and lexical probabilities, but not 
the structure of the canonical paradigms. Our sys-
tem thus displays a robustness to corpus choice 
that does not hold for Linguistica.  

7 Future Work 

This section sketches some ideas for future work to 
increase the linguistic adequacy of the system, and 
to make it more unsupervised. 
1. Bootstrapping: for fully unsupervised learning, 
we need to hypothesize stems and suffixes. The 
output of recursive LDA indicates which suffixes 
may be ambiguous. To bootstrap a disambiguator 
for the different categorial uses of these suffixes, 
one could use various types of distributional in-
formation, as well as knowledge of partial para-
digmatic structure for non-ambiguous suffixes. 
2. Automated detection of cut nodes: currently the 
system requires that the user select a Gamma co-
sine threshold for extracting paradigms from the 
recursion tree. We would like to automate this 
process, perhaps with different heuristics. 
3. Suffix merging and formulation of generation 
rules: when we decide that two suffixes should be 
merged (based on some measures of distributional 
similarity and word-internal context), we also need 
to formulate phonological (i.e., spelling) rules to 
determine which surface form to use when instan-
tiating a form from the canonical paradigm.  
4. Non-regular forms: we can take advantage of 
empty cells in the data matrix in order to identify 
non-regularities such as suppletives, stem variants, 
semi-regular subclasses, and suffix allomorphs. If 
the expected frequency of a word form (as derived 
from the M matrix and frequency of a stem) is rela-
tively high but the value in the D matrix is zero, 
this is evidence that a non-regular form may oc-
cupy this cell. Locating irregular words could use 
methods similar to those of (Yarowsky and Wicen-
towski 2000), who pair irregular inflections and 
their roots from raw text. Stem variants and allo-
morphic suffixes could be detected in a similar 
manner, by finding sets of stems/suffixes with mu-
tually exclusive matrix entries. 
5. Multiple morphological properties per word: we 
currently represent all morphological and POS in-
formation with a single suffix. The learning algo-

rithm and representation could perhaps be 
modified to allow for multiple morphological 
properties. One could perform recursive LDA on a 
particular morphological property, then take each 
of the learned paradigms and perform recursive 
LDA again, but for a different morphological 
property. This method might discover Spanish con-
jugational classes as subclasses within “verbs”. 

8 Discussion 

This paper has introduced the probabilistic para-
digm model of morphology. It has some important 
benefits: it is an abstract, compact representation of 
a language's morphology, it accommodates lexical 
ambiguity, and it predicts forms of words not seen 
in the input data. 

We have formulated the problem of learning 
probabilistic paradigms as one of discovering la-
tent classes within a suffix-stem count matrix, 
through the recursive application of LDA with an 
orthogonality constraint. Under optimal data condi-
tions, it can learn the correct paradigms, and also 
models morphological and lexical probabilities 
extremely accurately. It is robust to corpus choice, 
so we can say that it learns a morphological gram-
mar for the language. This is a new application of 
matrix factorization algorithms, and an usual one: 
whereas in document topic modeling, one tries to 
find that a document consists of multiple topics, 
we want to find orthogonal decompositions where 
each suffix (document) belongs to only one input 
POS category (topic). 

We have demonstrated that the algorithm can 
successfully learn morphological paradigms for 
English and Spanish under the conditions that 
segmentations are known, categorically ambiguous 
suffixes have been distinguished, and allomorphs 
have been merged. When suffixes have not been 
merged, there is a tendency to place allomorphic 
variants in different paradigms. The algorithm is 
the least successful in the unmerged, unlabeled 
case, as ambiguous suffixes do not allow for a 
clear split of suffixes into paradigms. However, the 
program output indicates which suffixes are poten-
tially ambiguous or unambiguous, and this infor-
mation could be used by bootstrapping procedures 
for suffix disambiguation. 

Some of the behavior of the learning algorithm 
can be explained in terms of several constraints. 
First, LDA assumes conditional independence of 
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documents (suffixes) given topics (paradigms). A 
stem should be able to occur with each suffix of a 
canonical paradigm. But if a stem occurs with one 
allomorphic variant of a suffix, we know that it 
necessarily cannot occur with the other. Therefore, 
allomorphy violates conditional independence of 
suffixes given a paradigm, and we cope with this 
by merging allomorphs. Second, LDA also as-
sumes conditional independence of words (stems) 
given topics (paradigm). As our data contains stem 
variants, this assumption does not hold either, but 
it is a less serious violation due to the large number 
of total stems. Third, we have imposed the con-
straint of orthogonality of suffixes and paradigms, 
which is not required by LDA (and actually unde-
sired in document topic modeling, since documents 
can contain multiple topics). Orthogonal suffix 
splits are possible when categorically ambiguous 
suffixes have been disambiguated. 

In conclusion, we view morphology learning 
as a process of manipulating the representation of 
data to fit a learnable computational model. The 
alternative would be to complicate the model and 
learning algorithm to accommodate raw data and 
all its concurrent ambiguities and dependencies. 
We hypothesize that successful, fully unsupervised 
learning of linguistically adequate representations 
of morphology will be more easily accomplished 
by first bootstrapping the sorts of information that 
we have assumed, or, in other words, fitting the 
data to the model. 

Acknowledgements 

This work was supported by the National Science 
Foundation under grant NSF IIS-0415138. The 
author thanks Mitch Marcus and anonymous re-
viewers for their helpful comments. 

References  

A. Albright. 2002. The identification of bases in mor-
phological paradigms. Ph.D. thesis, UCLA. 

D. Blei, A. Ng, and M. Jordan. 2003. Latent dirichlet 
allocation. Journal of Machine Learning Research 3, 
993-1022. 

X. Carreras, I. Chao, L. Padró, and M. Padró. 2004. 
FreeLing: an open-source suite of language analyz-
ers. Proceedings of LREC. Lisbon, Portugal. 

A. Clark. 2001. Learning morphology with pair hidden 
markov models. Proceedings of the Student Work-
shop at ACL. 

R. Evans and G. Gazdar. 1996. DATR: A language for 
lexical knowledge representation. Computational 
Linguistics 22(2), 167-216. 

M. Forsberg and A. Ranta. 2004. Functional morphol-
ogy. Proceedings of the ICFP, 213-223. ACM Press. 

D. Freitag. 2005. Morphology induction from term clus-
ters. Proceedings of CoNLL. 

J. Goldsmith. 2001. Unsupervised learning of the mor-
phology of a natural language. Computational Lin-
guistics 27(2), 153-198. 

S. Goldwater and M. Johnson. 2004. Priors in bayesian 
learning of phonological rules. Proceedings of 
SIGPHON. 

D. Graff and G. Gallegos. 1999. Spanish newswire text, 
volume 2. Linguistic Data Consortium, Philadelphia, PA. 

Y. Hu, I. Matveeva, J. Goldsmith, and C. Sprague. 
2005. Using morphology and syntax together in un-
supervised learning. Workshop on Psychocomputa-
tional Models of Human Language Acquisition. 

D. Kazakov and S. Manandhar. 2001. Unsupervised 
learning of word segmentation rules with genetic al-
gorithms and inductive logic programming. Machine 
Learning 43, 121-162. 

M. Marcus, B. Santorini and M.A. Marcinkiewicz. 
1993. Building a large annotated corpus of English: 
The Penn Treebank. Computational Linguistics 
19(2), 313-330. 

C. Monson, A. Lavie, J. Carbonell, and L. Levin. 2004. 
Unsupervised induction of natural language mor-
phology inflection classes. Proc. of SIGPHON. 

K. Oflazer, S. Nirenburg, and M. McShane. 2001. Boot-
strapping morphological analyzers by combining 
human elicitation and machine learning. Computa-
tional Linguistics 27(1), 59-85. 

P. Schone and D. Jurafsky. 2001. Knowledge-free in-
duction of inflectional morphologies. Proc.  NAACL. 

M. Snover, G. Jarosz, and M. Brent. 2002. Unsuper-
vised learning of morphology using a novel directed 
search algorithm: taking the first step. Proceedings of 
SIGPHON. 

D. Yarowsky and R. Wicentowski. 2000. Minimally 
supervised morphological analysis by multimodal 
alignment. Proceedings of ACL. 

R. Zajac. 2001. Morpholog: constrained and supervised 
learning of morphology. Proceedings of CoNLL. 

78


