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Exploring variant definitions of pointer length in MDL

Aris Xanthos
Department of Linguistics

University of Chicago
Chicago IL 60637

axanthos@uchicago.edu

Yu Hu
Department of

Computer Science
University of Chicago

Chicago IL 60637
yuhu@uchicago.edu

John Goldsmith
Departments of Linguistics and

Computer Science
University of Chicago

Chicago IL 60637
goldsmith@uchicago.edu

Abstract

Within the information-theoretical frame-
work described by (Rissanen, 1989; de
Marcken, 1996; Goldsmith, 2001), point-
ers are used to avoid repetition of phono-
logical material. Work with which we
are familiar has assumed that there is only
one way in which items could be pointed
to. The purpose of this paper is to de-
scribe and compare several different meth-
ods, each of which satisfies MDL’s ba-
sic requirements, but which have different
consequences for the treatment of linguis-
tic phenomena. In particular, we assess
the conditions under which these different
ways of pointing yield more compact de-
scriptions of the data, both from a theoret-
ical and an empirical perspective.

1 Introduction

The fundamental hypothesis underlying the Mini-
mum Description Length (MDL) framework (Rissa-
nen, 1989; de Marcken, 1996; Goldsmith, 2001) is
that the selection of a model for explaining a set of
data should aim at satisfying two constraints: on the
one hand, it is desirable to select a model that can be
described in a highly compact fashion; on the other
hand, the selected model should make it possible to
model the data well, which is interpreted as being
able to describe the data in a maximally compact
fashion. In order to turn this principle into an op-
erational procedure, it is necessary to make explicit

the notion of compactness. This is not a trivial prob-
lem, as the compactness (or conversely, the length)
of a description depends not only on the complexity
of the object being described (in this case, either a
model or a set of data given a model), but also on
the “language” that is used for the description.

Consider, for instance, the model of morphology
described in Goldsmith (2001). In this work, the
data consist in a (symbolically transcribed) corpus
segmented into words, and the “language” used to
describe the data contains essentially three objects:
a list of stems, a list of suffixes, and a list of sig-
natures, i.e. structures specifying which stems asso-
ciate with which suffixes to form the words found in
the corpus. The length of a particular model (or mor-
phology) is defined as the sum of the lengths of the
three lists that compose it; the length of each list is in
turn defined as the sum of the lengths of elements in
it, plus a small cost for the list structure itself1. The
length of an individual morpheme (stem or suffix) is
taken to be proportional to the number of symbols in
it.

Calculating the length of a signature involves the
notion of pointer, with which this paper is primar-
ily concerned. The function of a signature is to re-
late a number of stems with a number of suffixes.
Since each of these morphemes is spelled once in
the corresponding list, there is no need to spell it
again in a signature that contains it. Rather, each
signature comprises a list of pointers to stems and
a list of pointers to suffixes. A pointer is a sym-
bol that stands for a particular morpheme, and the
recourse to pointers relies on the assumption that

1More on this in section 2.1 below
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their length is lesser than that of the morphemes
they replace. Following information-theoretic prin-
ciples (Shannon, 1948), the length of a pointer to a
morpheme (under some optimal encoding scheme)
is equal to -1 times the binary logarithm of that mor-
pheme’s probability. The length of a signature is the
sum of the lengths of the two lists it contains, and
the length of each list is the sum of the lengths of
the pointers it contains (plus a small cost for the list
itself).

This work and related approaches to unsupervised
language learning have assumed that there is only
one way in which items could be pointed to, or iden-
tified. The purpose of this paper is to describe, com-
pare and evaluate several different methods, each of
which satisfies MDL’s basic requirements, but which
have different consequences for the treatment of lin-
guistic phenomena. One the one hand, we contrast
the expected description length of “standard” lists of
pointers with polarized lists of pointers, which are
specified as either (i) pointing to the relevant mor-
phemes (those that belong to a signature, or undergo
a morpho-phonological rule, for instance) or (ii)
pointing to their complement (those that do not be-
long to a signature, or do not undergo a rule). On the
other hand, we compare (polarized) lists of pointers
with a method based on binary strings specifying
each morpheme as relevant or not (for a given sig-
nature, rule, etc.). In particular, we discuss the con-
ditions under which these different ways of pointing
are expected to yield more compact descriptions of
the data.

The remainder of this paper is organized as fol-
lows. In the next section, we give a formal review
of the standard treatment of lists of pointers as de-
scribed in (Goldsmith, 2001); then we successively
introduce polarized lists of pointers and the method
of binary strings, and make a first, theoretical com-
parison of them. Section three is devoted to an em-
pirical comparison of these methods on a large nat-
ural language corpus. In conclusion, we discuss the
implications of our results in the broader context of
unsupervised language learning.

2 Variant definitions of pointers

In order to simplify the following theoretical discus-
sion, we temporarily abstract away from the com-

plexity of a full-blown model of morphology. Given
a set of N stems and their distribution, we consider
the general problem of pointing to a subset of M
stems (with 0 < M ≤ N ), first by means of “stan-
dard” lists of pointers, then by means of polarized
ones, and finally by means of binary strings.

2.1 Expected length of lists of pointers

Let τ denote a set of N stems; we assume that the
length of a pointer to a specific stem t ∈ τ is its
inverse log probability − log pr(t).2 Now, let {M}
denote the set of all subsets of τ that contain exactly
0 < M ≤ N stems. The description length of a
list of pointers to a particular subset µ ∈ {M} is
defined as the sum of the lengths of the M pointers
it contains, plus a small cost of for specifying the list
structure itself, defined as λ(M) := 0 if M = 0 and
log M bits otherwise3:

DLptr(µ) := λ(M)−
∑
t∈µ

log pr(t)

The expected length of a pointer is equal to the
entropy over the distribution of stems:

hstems := Et∈τ [− log pr(t)] = −
∑
t∈τ

pr(t) log pr(t)

Thus, the expected description length of a list of
pointers to M stems (over all subsets µ ∈ {M})
is:

Eµ∈{M} [DLptr(µ)] = 1
|{M}|

∑

µ∈{M}
DLptr(µ)

= λ(M) + Mhstems

(1)

This value increases as a function of both the num-
ber of stems which are pointed to and the entropy
over the distribution of stems. Since 0 ≤ hstems ≤
log N , the following bounds hold:

0 ≤ hstems ≤ Eµ∈{M} [DLptr(µ)]

≤ log N + Nhstems ≤ (N + 1) log N

2Here and throughout the paper, we use the notation log x
to refer to the binary logarithm of x; thus entropy and other
information-theoretic quantities are expressed in terms of bits.

3Cases where the argument of this function can have the
value 0 will arise in the next section.
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2.2 Polarization
Consider a set of N = 3 equiprobable stems, and
suppose that we need to specify that a given morpho-
phonological rule applies to one of them. In this con-
text, a list with a single pointer to a stem requires
log 1 − log 1

3 = 1.58 bits. Suppose now that the
rule is more general and applies to two of the three
stems. The length of the new list of pointers is thus
log 2 − 2 log 1

3 = 4.17 bits. It appears that for such
a general rule, it is more compact to list the stems to
which it does not apply, and mark the list with a flag
that indicates the “negative” meaning of the point-
ers. Since the flag signals a binary choice (either the
list points to stems that undergo the rule, or to those
that do not), log 2 = 1 bit suffices to encode it, so
that the length of the new list is 1.58 + 1 = 2.58
bits.

We propose to use the term polarized to refer to
lists of pointers bearing a such flag. If it is useful to
distinguish between specific settings of the flag, we
may speak of positive versus negative lists of point-
ers (the latter being the case of our last example).
The expected description length of a polarized list
of M pointers is:

Eµ∈{M} [DLpol(µ)] = 1 + λ(M̂) + M̂hstems

with M̂ := min(M,N −M)
(2)

From (1) and (2), we find that in general, the ex-
pected gain in description length by polarizing a list
of M pointers is:

Eµ∈{M} [DLptr(µ)−DLpol(µ)]

=





−1 iff M ≤ N
2

−1 + λ(M)− λ(N −M) + (2M −N)hstems

otherwise

Thus, if the number of stems pointed to is lesser than
or equal to half the total number of stems, using a
polarized list rather than a non-polarized one means
wasting exactly 1 bit for encoding the superfluous
flag. If the number of stems pointed to is larger than
that, we still pay 1 bit for the flag, but the reduced
number of pointers results in an expected saving of
λ(M) − λ(N − M) bits for the list structure, plus
(2M −N) · hstems bits for the pointers themselves.

Now, let us assume that we have no informa-
tion regarding the number M of elements which are
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Figure 1: Expected gain in description length by us-
ing polarized rather than non-polarized lists of point-
ers.

pointed to, i.e. that it has a uniform distribution be-
tween 1 and N (M ∼ U [1, N ]). Let us further as-
sume that stems follow a Zipfian distribution of pa-
rameter s, so that the probability of the k-th most
frequent stem is defined as:

f(k, N, s) :=
1/ks

HN,s
with HN,s :=

N∑

n=1

1/ns

where HN,s stands for the harmonic number of order
N of s. The entropy over this distribution is:

hZipf
N,s :=

s

HN,s

N∑

k=1

log k

ks
+ log HN,s

Armed with these assumptions, we may now com-
pute the expected description length gain of polar-
ization (over all values of M ) as a function of N
and s:

EM

(
Eµ∈{M} [DLptr(µ)−DLpol(µ)]

)

=−1+ 1
N

∑N
M=1 λ(M)− λ(M̂) + (M − M̂)hZipf

N,s

Figure 1 shows the gain calculated for N = 1,
400, 800, 1200, 1600 and 2000, and s = 0, 1, 2
and 10. In general, it increases with N , with a
slope that depends on s: the greater the value of s,
the lesser the entropy over the distribution of stems;
since the entropy corresponds to the expected length
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Figure 2: Two ways of pointings to stems: by means
of a polarized list of pointers, or a binary string.

of a pointer, its decrease entails a decrease in the
number of bits that can be saved by using polarized
lists (which generally use less pointers). However,
even for an aberrantly skewed distribution of stems4,
the expected gain of polarization remains positive.
Since the value of s is usually taken to be slightly
greater than 1 for natural languages (Mandelbrot,
1953), it seems that polarized lists generally entail
a considerable gain in description length.

2.3 Binary strings

Consider again the problem of pointing to one out
of three equiprobable stems. Suppose that the list of
stems is ordered, and that we want to point to the
first one, for instance. An alternative to the recourse
to a list of pointers consists in using a binary string
(in this case 100) where the i-th symbol is set to 1
(or +) if the i-th stem is being pointed to, and to 0
(or -) otherwise. Figure 2 gives a schematic view of
these two ways of pointing to items.

There are two main differences between this
method and the previous one. On the one hand,
the number of symbols in the string is constant and
equal to the total number N of stems, regardless of
the number M of stems that are pointed to. On the
other hand, the compressed length of the string de-
pends on the distribution of symbols in it, and not on
the distribution of stems. Thus, by comparison with
the description length of a list of pointers, there is a
loss due to the larger number of encoded symbols,
and a gain due to the use of an encoding specifically

4In the case s = 10, the probability of the most frequent
stem is .999 for N = 2000.

tailored for the relevant distribution of pointed ver-
sus “unpointed” elements.

The entropy associated with a binary string is en-
tirely determined by the number of 1’s it contains,
i.e. the number M of stems which are pointed to,
and the length N of the string:

hbin
N,M := −M

N
log

M

N
− N −M

N
log

N −M

N

The compressed length of a binary string pointing to
M stems is thus:

DLbin(M) := Nhbin
N,M (3)

It is maximal and equal to N bits when M = N
2 ,

and minimal and equal to 0 when M = N , i.e. when
all stems have a pointer on them. Notice that binary
strings are intrinsically polarized, so that intervert-
ing 0’s and 1’s results in the same description length
regardless of their distribution.5

The question naturally arises, under which con-
ditions would binary strings be more or less com-
pact than polarized lists of pointers. If we assume
again that the distribution of the number of elements
pointed to is uniform and the distribution of stems is
Zipfian of parameter s, (2) and (3) justify the follow-
ing expression for the expected description length
gain by using binary strings rather than polarized
lists (as a function of N and s):

EM

[
Eµ∈{M}[DLpol(µ)]−DLbin(M)

]

= 1 + 1
N

∑N
M=1 λ(M̂) + M̂hZipf

N,s −Nhbin
N,M

Figure 3 shows the gain calculated for N = 1, 400,
800, 1200, 1600 and 2000, and s = 0, 1, 2 and 3.
For s small, i.e. when the entropy over the distri-
bution of stems is greater or not much lesser than
that of natural languages, the description length of
binary strings is considerably lesser than that of po-
larized lists. The difference decreases as s increases,

5As one the reviewers has indicated to us, the binary strings
approach is actually very similar to the method of combinato-
rial codes described by (Rissanen, 1989). This method con-
sists in pointing to one among

�
N
M

�
possible combinations of

M stems out of N . Under the assumption that these combi-
nations have a uniform probability, the cost for pointing to M
stems is log

�
N
M

�
bits, which is in general slightly lesser than

the description length of the corresponding binary string (the
difference being maximal for M = N/2, i.e. when the binary
string encoding cannot take advantage of any compression).

35



0 500 1000 1500 2000

−
10

00
0

10
00

30
00

Binary strings vs. polarized lists
(uniform distribution of M)

Total number of stems N

D
es

cr
ip

tio
n 

le
ng

th
 g

ai
n 

(in
 b

its
)

s=0

s=1

s=2
s=3

Figure 3: Expected gain in description length by us-
ing binary strings rather than polarized lists under
the assumption that M ∼ U [1, N ].

until at some point (around s = 2), the situation re-
verses and polarized lists become more compact. In
both cases, the trend increases with the number N
of stems (within the range of values observed).

By contrast, it is instructive to consider a case
where the distribution of the number of elements
pointed to departs from uniformity. For instance, we
can make the assumption that M follows a binomial
distribution (M ∼ B[N, p]).6 Under this assump-
tion (and, as always, that of a Zipfian distribution of
stems), the expected description length gain by us-
ing binary strings rather than polarized lists is:

EM

[
Eµ∈{M}[DLptr(µ)]−DLbin(M)

]

=
∑N

M=1 pr(M)
(
1+λ(M̂)+M̂hZipf

N,s−Nhbin
N,M

)

with pr(M) =
(

N
M

)
pM (1− p)N−M

Letting N and s vary as in the previous computation,
we set the probability for a stem to have a pointer on
it to p = 0.01, so that the distribution of pointed ver-
sus “unpointed” elements is considerably skewed.7

6This model predicts that most of the time, the number M
of elements pointed to is equal to N · p (where p denotes the
probability for a stem to have a pointer on it), and that the prob-
ability pr(M) of other values of M decreases as they diverge
from N · p.

7By symmetry, the same results would be found with p =
0.99.
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Figure 4: Expected gain in description length by us-
ing binary strings rather than polarized lists under
the assumption that M ∼ B[N, 0.01].

As shown on figure 4, under these conditions, the ab-
solute value of the gain of using binary strings gets
much smaller in general, and the value of s for which
the gain becomes negative for N large gets close to 1
(for this particular value, it becomes positive at some
point between N = 1200 and N = 1600).

Altogether, under the assumptions that we have
used, these theoretical considerations suggest that
binary strings generally yield shorter description
lengths than polarized lists of pointers. Of course,
data for which these assumptions do not hold could
arise. In the perspective of unsupervised learning,
it would be particularily interesting to observe that
such data drive the learner to induce a different
model depending on the representation of pointers
being adopted.

It should be noted that nothing prevents binary
strings and lists of pointers from coexisting in a sin-
gle system, which would select the most compact
one for each particular case. On the other hand, it is
a logical necessity that all lists of pointers be of the
same kind, either polarized or not.

3 Experiments

In the previous section, by assuming frequencies of
stems and possible distributions of M (the num-
ber of stems per signature), we have explored the-
oretically the differences between several encoding
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Figure 5: Frequency versus rank (stems) in English
corpus.

methods in the MDL framework. In this section, we
apply these methods to the problem of suffix discov-
ery in natural language corpora, in order to verify the
theoretical predictions we made previously. Thus,
the purpose of these experiments is not to state that
one encoding is preferable to the others; rather, we
want to answer the three following questions:

1. Are our assumptions on the frequency of stems
and size of signatures appropriate for natural
language corpora?

2. Given these assumptions, do our theoretical
analyses correctly predict the difference in de-
scription length of two encodings?

3. What is the relationship between the gain in de-
scription length and the size of the corpus?

3.1 Experimental methodology

In this experiment, for the purpose of calculating
distinct description lengths while using different en-
coding methods, we modified Linguistica8 by imple-
menting list of pointers and binary strings as alter-
native means to encode the pointers from signatures
to their associated stems9. As a result, given a set

8The source and binary files can be freely downloaded at
http://linguistica.uchicago.edu.

9Pointers to suffixes are not considered here.
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Figure 6: Distribution of number of stems per signa-
ture (English corpus)

of signatures, we are able to compute a description
length for each encoding methods.

Within Linguistica, the morphology learning pro-
cess can be divided into a sequence of heuristics,
each of which searches for possible incremental
modifications to the current morphology. For exam-
ple, in the suffix-discovery procedure, ten heuristics
are carried out successively; thus, we have a dis-
tinct set of signatures after applying each of the ten
heuristics. Then, for each of these sets, we encode
the pointers from each signature to its correspond-
ing stems in three rival ways: as a list of pointers
(polarized or not), as traditionally understood, and
as a binary string. This way, we can compute the to-
tal description length of the signature-stem-linkage
for each of the ten sets of signatures and for each of
three two ways of encoding the pointers. We also
collect statistics on word frequencies and on the dis-
tribution of the size of signatures M , i.e. the number
M of stems which are are pointed to, both of which
are important parametric components in our theoret-
ical analysis.

Experiments are carried out on two orthographic
corpora (English and French), each of which has
100,000 word tokens.

3.2 Frequency of stems and size of signatures

The frequency of stems as a function of their rank
and the distribution of the size of signatures are plot-
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Figure 7: Frequency versus rank (stems) in French
corpus.

ted in figures 5 and 6 for the English corpus, and in
figures 7 and 8 for the French corpus. These graphs
show that in both the English and the French cor-
pora, stems appear to have a distribution similar to a
Zipfian one. In addition, in both corpora, M follows
a distribution whose character we are not sure of, but
which appears more similar to a binomial distribu-
tion. To some extent, these observations are consis-
tent with the assumptions we made in the previous
theoretical analysis.

3.3 Description length of each encoding

The description length obtained with each encoding
method is displayed in figures 9 (English corpus)
and 10 (French corpus), in which the x-axis refers to
the set of signatures resulting from the application
of each successive heuristics, and the y-axis corre-
sponds to the description length in bits. Note that
we only plot description lengths of non-polarized
lists of pointers, because the number of stems per
signature is always less than half the total number of
stems in these data (and we expect that this would
be true for other languages as well).10

These two plots show that in both corpora, there is
always a gain in description length by using binary
strings rather than lists of pointers for encoding the
pointers from signatures to stems. This observation
is consistent with our conclusion in section 2.3, but

10See figures 6 and 8 as well as section 2.2 above.
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Figure 8: Distribution of number of stems per signa-
ture (French corpus)

it is important to emphasize again that for other data
(or other applications), lists of pointers might turn
out to be more compact.

3.4 Description length gain as a function of
corpus size

In order to evaluate the effect of corpus size on
the gain in description length by using binary string
rather than lists of variable-length pointers, we ap-
plied Linguistica to a number of English corpora of
different sizes ranging between 5,000 to 200,000 to-
kens. For the final set of signatures obtained with
each corpus, we then compute the gain of binary
strings encoding over lists of pointers as we did in
the previous experiments. The results are plotted in
figure 11.

This graph shows a strong positive correlation be-
tween description length gain and corpus size. This
is reminiscent of the results of our theoretical simu-
lations displayed in figures 3 and 4. As before, we
interpret the match between the experimental results
and the theoretical expectations as evidence support-
ing the validity of our theoretical predictions.

3.5 Discussion of experiments

These experiments are actually a number of case
studies, in which we verify the applicability of our
theoretical analysis on variant definitions of pointer
lengths in the MDL framework. For the particu-
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phologies using pointers versus binary strings (En-
glish corpus).

lar application we considered, learning morphology
with Linguistica, binary strings encoding proves to
be more compact than lists of variable-length point-
ers. However, the purpose of this paper is not to
predict that one variant is always better, but rather to
explore the mathematics behind different encodings.
Armed with the mathematical analysis of different
encodings, we hope to be better capable of making
the right choice under specific conditions. In partic-
ular, in the suffix-discovery application (and for the
languages we examined), our results are consistent
with the assumptions we made and the predictions
we derived from them.

4 Conclusion

The overall purpose of this paper has been to illus-
trate what was for us an unexpected aspect of us-
ing Minimum Description Length theory: not only
does MDL not specify the form of a grammar (or
morphology), but it does not even specify the pre-
cise form in which the description of the abstract
linkages between concepts (such as stems and sig-
natures) should be encoded and quantitatively eval-
uated. We have seen that in a range of cases, us-
ing binary strings instead of the more traditional
frequency-based pointers leads to a smaller overall
grammar length, and there is no guarantee that we
will not find an even shorter way to accomplish the
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Figure 10: Comparison of DL of 10 successive
morphologies using pointers versus binary strings
(French corpus)

same thing tomorrow11. Simply put, MDL is em-
phatically an evaluation procedure, and not a discov-
ery procedure.

We hope to have shown, as well, that a system-
atic exploration of the nature of the difference be-
tween standard frequency-based pointer lengths and
binary string based representations is possible, and
we can develop reasonably accurate predictions or
expectations as to which type of description will be
less costly in any given case.
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