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Abstract 

This paper presents a fully automated lin-

guistic approach to measuring distance 

between phonemes across languages. In 

this approach, a phoneme is represented 

by a feature matrix where feature catego-

ries are fixed, hierarchically related and 

binary-valued; feature categorization ex-

plicitly addresses allophonic variation and 

feature values are weighted based on their 

relative prominence derived from lexical 

frequency measurements. The relative 

weight of feature values is factored into 

phonetic distance calculation. Two pho-

nological distances are statistically de-

rived from lexical frequency 

measurements. The phonetic distance is 

combined with the phonological distances 

to produce a single metric that quantifies 

cross-language phoneme distance. 

The performances of target-language 

phoneme HMMs constructed solely with 

source language HMMs, first selected by 

the combined phonetic and phonological 

metric and then by a data-driven, acous-

tics distance-based method, are compared 

in context-independent automatic speech 

recognition (ASR) experiments. Results 

show that this approach consistently per-

forms equivalently to the acoustics-based 

approach, confirming its effectiveness in  

estimating cross-language similarity be-

tween phonemes in an ASR environment. 

1 Introduction 

Speech technologists typically use acoustic meas-

urements to determine similarity among acoustic 

speech models (phone(me) HMMs) and there are a 

variety of distance metrics available that prove the 

effectiveness of this method (see Sooful and Botha 

2002). Additionally, HMM similarity can be 

evaluated indirectly through comparison of HMM 

performances in ASR experiments. 

For acoustic measurements, speech data must 

be accessible for model training. However, speech 

data unavailability is a practical concern in that 

most commercially available speech databases are 

restricted to widely spoken languages in large 

business markets. The vast majority of languages 

have not been exposed to intense data collection 

and resources for these languages are subsequently 

either limited or completely unavailable. Hence a 

knowledge-based phoneme distance metric poten-

tially has great value in acoustic modeling for re-

source-limited languages in that it can predict 

cross-language HMM similarity in the absence of 

target-language speech data. 

Knowledge-based approaches to HMM similar-

ity generally attempt to identify articulatory simi-

larity between phonemes across languages. The 

typical strategy is subjective and label-based, 

where two phonemes are judged to be more or less 

similar depending on their transcription labels 

(Köhler 1996; Schultz and Waibel 1997, 2000).  

A label-based approach suffers for two obvious 

reasons. First, phone inventories designed for 

speech technology applications are predominantly 

phonemic in orientation. Thus, transcription labels 

do not transfer with the same phonetic value to 

other languages, even where international phonetic 

transcription labels are employed. In a phonemic 

transcription strategy, transcription labels are gen-
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erally restricted to only the most basic symbols, 

usually unmodified letters of the Roman alphabet 

(IPA 1999). Second, phoneme transcription labels 

fail to capture allophony. The best phonetic defini-

tion that a phoneme transcription label can offer is 

the most typical phonetic realization of that pho-

neme. Not surprisingly, label-based cross-language 

transfer experiments have produced poor perform-

ance results. 

In contrast to the subjective, label-based strat-

egy, researchers in such fields as language recon-

struction, dialectometry, and child language 

development, commonly use automatic feature-

based approaches to articulatory similarity between 

phonemes. In these methods, phonemes are repre-

sented by a distinctive feature vector and a pho-

netic distance or similarity algorithm is used to 

align phoneme strings between related words 

(Connolly 1997; Kessler 1995, 2005; Kondrak 

2002; Nerbonne and Heeringa 1997; Somers 

1998). Significantly, in these approaches, phono-

logical similarity is generally assumed.  

In principle, the feature-based approach to pho-

netic distance admits more precise specification of 

phonemes because it supports allophonic variance. 

For example, a standard feature-based approach to 

allophony representation restricts feature inclusion 

to only those features relevant to all realizations of 

the phoneme. Another common approach retains 

features that are relevant to all allophonic variants, 

but leaves their values underspecified (Archangeli 

1988). However, it is unclear from the literature 

whether allophony is explicitly addressed in the 

current feature-based approaches to phoneme simi-

larity. 

A strategy for specifying allophony and charac-

terizing phonetic distance between phonemes is 

only one component in predicting phoneme simi-

larity among diverse languages without acoustic 

data in an ASR environment. Because HMMs rep-

resent phonemes and significant allophones in a 

language-dependent context, it is necessary to con-

sider the overall constructed target-language HMM 

system. Thus phonological distance quantities that 

regulate the priority of source languages for pho-

neme selection in accordance to their phonological 

similarity to the target language are also in order. 

In this paper, we describe an automated, com-

bined phonetic-phonological (CPP) approach to 

estimating phoneme similarity across languages in 

ASR.  Elsewhere, we provide the phonetic and 

phonological distance algorithms (Liu and Melnar 

2005, 2006), though offer little linguistic justifica-

tion of the approach or evaluation of the experi-

ment results due to space limitations. Here, we 

focus on explaining the linguistic principles behind 

the algorithms and analyzing the results. 

The CPP approach is fundamentally based on 

articulatory phonetic features and is designed to 

handle allophonic variation. Feature salience and 

phonetic distance are automatically calculated and 

phoneme distance is constrained by statistically-

derived phonological similarity biases. Unlike 

other distinctive feature-based approaches to pho-

neme similarity, phonological distance is not as-

sumed. In testing this approach in cross-language 

transfer experiments, target-language resources are 

restricted to lexica and phonology descriptions and 

do not include speech data. 

In the next section, we describe our feature-

based phoneme specification method. In section 

three, we show how our phoneme specification 

approach is used in calculating phonetic distance 

between phonemes. Section four describes two 

other distance metrics that predict phonological 

similarity between languages.  We explain how the 

three distance metrics combine to quantify cross-

language phoneme distance and select target-

language phoneme HMM inventories.  In section 

five, we describe the experiments that we con-

ducted to evaluate our approach to phoneme simi-

larity prediction.  Here, the CPP method is 

compared with an acoustic distance method in con-

text-independent speech recognition.  We offer our 

evaluation and conclusions in section 6. 

2 Phoneme specification 

In the CPP approach to estimating cross-language 

phoneme similarity, each phoneme in our multilin-

gual ASR dataset is associated with a distinctive 

feature matrix.  Feature categories are fixed for all 

phonemes, hierarchically related, and binary-

valued.  Feature-contradiction, associated with al-

lophonic variance, is explicitly addressed through 

the introduction of a small set of special corollary 

features.   

2.1 The phoneme feature matrix 

As noted in the introduction, cross-language pho-

neme comparison requires accurate feature specifi-

cation. Because a phoneme comprises one or more 
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allophones which may contrast in particular fea-

tures, a distinctive feature strategy that allows for 

feature contradiction is preferred. Omitting contra-

dictory features and underspecifying contradictory 

values are two well-known methods. 

However, cross-language phoneme comparison 

in a computational environment is greatly facili-

tated by agreeing on a fixed set of binary-valued 

features for all phonemes. A fixed set of distinctive 

features is favored as this enables cross-class pho-
neme comparison. A binary-valued system is easy 

to manipulate and naturally lends itself to mathe-
matical formulation. However, strict binary-valued 

feature systems only indicate the presence or ab-

sence of a feature, and feature contradiction must 
then be indicated by feature omission - which is 
not possible in a fixed distinctive feature set. 

The phoneme specification method that we em-
ploy indicates feature contradiction associated with 
allophony in a strict binary-valued, fixed set of 
distinctive features through the introduction of 

special feature categories. Specifically, we utilize a 

small set of corollary features to mark the occa-
sional, allophonic realizations of some primary 

features. A corollary feature is defined as a feature 

that supplements a primary feature in the system. 

The corollary features mark “occasionality” (asso-

ciated with context dependency, dialectal variation, 

speech style variation, etc.) in the primary feature 

as either present or absent. 

2.2 Primary and corollary features 

Our feature set includes twenty-six primary articu-
latory features and six corollary features. The se-

lected primary features conform to a typical set of 
hierarchically-related distinctive features (e.g. syl-

labic, sonorant, consonantal, labial, coronal, nasal, 

continuant, high, low, back, etc.) (Ladefoged 

1975).  In this hierarchical system, the presence of 
one feature presupposes the presence of those hier-

archically dominant features. For example, the 

presence of the feature [alveolar] requires the pres-

ence of the feature [coronal], and the presence of 
the feature [nasal] requires the presence of the fea-

ture [sonorant].  Significantly, the reverse of these 
relations is not true. As is explained later in the 

next section, this feature structure allows for a lin-

guistically-principled determination of feature sali-

ence in phonetic distance calculation. 

Corollary features are restricted to specifying 

those primary features that are judged to be most 

significant to cross-language phoneme comparison 

in an ASR environment.  Phoneme inventories de-

signed for ASR comprise both phonemes and sig-

nificant allophones, where a significant allophone 
is characteristically both acoustically distinct from 

the primary allophone and associated with a suffi-

ciently high count of occurrence in the associated 
speech database.  Thus American English ASR 

inventories regularly include an alveolar tap, a con-
textually-realized allophonic variant of both /t/ and 
/d/.  Furthermore, pronunciation transcriptions in 

ASR lexica are typically phonetic - within the con-
text of the phoneme-based inventory.  So, word-
final voice neutralization in German is overtly in-

dicated throughout the lexicon (e.g. hund : h U n t).  
A typical ASR phoneme then does not represent a 
true phoneme; rather it encompasses only that 

phonemic variation that is not explicitly captured 
by its existing significant allophones in the inven-
tory. 

Corollary features specify variance that is not  

usually overtly indicated in ASR inventories and 
lexica but that is important to cross-language pho-
neme comparison in an acoustic, ASR environ-

ment. Internal phoneme recognition experiments 
indicate that generally major class features (syl-
labic, sonorant, etc.), manner features (nasal, con-

tinuant, etc.) and laryngeal features (voice, spread 
glottis, etc.) are more robustly identified than place 
features (labial, coronal, etc.); accordingly, the set 

of corollary features, provided in Table 1, pre-
dominantly targets particular major class, manner, 
and laryngeal features. 

Table 1: Corollary features 

Corollary 

Feature 

Description 

syllabic-occ positive value marks the occasional 

realization of the phoneme as a syl-

labic consonant or glide 

voice-occ positive value marks the occasional 

voicing of phonemes 

labial-occ positive value marks the occasional 

rounding of vowels 

nasal-occ positive value marks the occasional 

nasalization of vowels and glides 

rhotic-occ positive value marks the occasional 

rhotization of liquids and vowels 

spread-occ positive value marks the occasional 

aspiration of obstruents 

 

It should be pointed out that allophones that ex-
press a place contrast or difference in continuance 
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with the primary realization of a phoneme are typi-
cally considered significant allophones in the ASR 

phoneme system and are therefore overtly repre-
sented.  

As an illustration of the usefulness of corollary 

features in cross-language phoneme comparison, 

consider Table 2 which includes a partial feature 
matrix for the phoneme /k/ associated with 17 lan-

guages and dialects: 

Table 2: Partial distinctive feature table 

Languages phoneme spread 

glottis 

spread 

-occ 

Arabic k 0 0 

Danish k 1 1 

German k 1 1 

British English k 1 1 

U.S. English k 1 1 

Lat. Spanish k 0 0 

Can. French k 0 0 

Parisian French k 0 0 

Italian k 0 0 

Japanese k 1 1 

Dutch k 0 0 

Brz. Portuguese k 0 0 

Eur. Portuguese k 0 0 

Swedish k 1 1 

Korean k 1 0 

Cantonese k 1 0 

Mandarin k 1 0 

 

Note that the realization of the phoneme /k/ differs 

across the seventeen languages and dialects in the 
two features provided: [spread glottis] and [spread-
occ].  The presence of the feature [spread glottis], 

marked by 1, and the non-presence of the corollary 

feature [spread-occ], marked by 0, indicates that 
the glottis is always open during the articulation of 

the phoneme; i.e. this phoneme is consistently as-
sociated with aspiration. The precise IPA transcrip-
tion of this segment is /kh/. A positive value for the 

corollary feature [spread-occ] means that the pho-
neme is only sometimes associated with aspiration. 

This phoneme has two principle phonetic realiza-

tions, marked [k] and [k
h
] in IPA notation. A 0 

value for the feature [spread glottis] and corollary 

feature [spread-occ] indicates that the segment is 

never aspirated. Thus this phoneme is most accu-
rately labeled /k/ in IPA labeling.  

Because this methodology incorporates pho-

neme feature contradiction, overall phonological 
similarity among languages and dialects is more 
precisely predicted:   

 

Table 3: Phoneme similarity across languages 

phoneme allophone(s) language lang. family 

Danish Germanic 

German Germanic 

Br. Eng. Germanic 

Amer. Eng. Germanic 

Japanese Altaic 

kh, k 

Swedish Germanic 

Korean Altaic 

Mandarin Sinitic kh 

Cantonese Sinitic 

Arabic Afro-Asiatic 

Lat. Span. Romance 

Parisian Fr. Romance 

Canadian Fr. Romance 

Italian Romance 

Dutch Germanic 

Brz. Port. Romance 

k 

k 

Eur. Port. Romance 

 

Table 3 reveals that Germanic languages tend to 

only occasionally aspirate /k/, Romance languages 

avoid aspirating /k/, and Sinitic languages typically 

aspirate /k/. Of course, closely related languages 
tend to be phonologically similar. 

3 Phonetic distance 

Most techniques for measuring phonetic distance 
between phonemes that do not assume speech data 
availability are based on articulatory features, 

though perceptual distance, judged (subjective) 

distance, and historical distance are also attested 
(Kessler 2005). We base our phonetic distance 

measurement on articulatory features because of 

their cross-linguistic consistency and general 
availability. 

As Kessler notes, standard phonological theory 

provides no guidance in comparing phonetic dis-
tance between phonemes across multiple features 

(Kessler 2005). In our experiments to date, we use 
the Manhattan distance where the distance between 

phonemes equals the sum of the absolute values of 

individual feature distances. This approach is fairly 

standard in the literature, though the Euclidean 

distance has also been reported to attain good re-

sults (Kessler 2005). 

Because features are known to differ in relative 

importance (Ladefoged 1969), some researchers 

apply weights or saliencies to the individual fea-
tures for distance calculation. Nerbonne and Heer-
inga (1997), for example, weighted each feature by 

information gain, or entropy reduction. Kondrak 

(2002) expressed weights as coefficients that could 
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be changed to any numeric value. He adjusted the 
coefficients until he achieved optimal performance 

on aligning cognate words. 
In our approach, weights are derived from the 

lexica of all the considered languages. Specifically, 

the value of a weight for a feature is derived from 

the frequency of the feature in the lexica. Each lan-
guage is treated equally in this approach; thus, the 

weights are not subject to the relative size of a lan-
guage’s lexicon.  

Because our phoneme specification method in-

corporates hierarchical relations between features, 
feature weights are necessarily interdependent. 
Hierarchically dominant features are more fre-

quently attested than their subordinate features and 
thus receive more weight. Further, hierarchically 

superior features tend to correspond to major pho-

netic categories (sonorant, consonantal, syllabic, 

etc.), which are expected to be more contrastive or 
distant to each other than sister subordinate catego-
ries. Thus, in a hierarchical feature system, lexical 

frequency of features is a reasonable indication of 

feature importance in phonetic contrast or distance. 

In the following two subsections the phonetic 

distance algorithm is described. 

Quantitative representation of phonemes 

A phoneme is denoted by )(ipl , where l (=1,…,L) 

represents the language that includes the phoneme, 

and i (=1,…,Il) represents the index of the pho-
neme in language l. Thus, the phoneme inventory 

of language l is 

(1) },,1|)({ ll Iiip K= . 

A phoneme )(ipl  is represented by a vector of J 

features  

(2)      T
lll

T
ll Jivjivivjivip )],(,),,(,),1,([)],([)]([ KK==f  

where each ),( jivl  is a binary feature, lIi ,,1L= , 

Jj ,,1L= , Ll ,,1L= , and the superscript T denotes 

vector transposition. 

Weighted phonetic distance 

As mentioned, the value of a weight for a feature 
in the present phonetic distance approach is de-

rived from the frequency of the feature in the 

lexica of all the considered languages. Let )]([ ipc ll  

denote the occurrence count of a phoneme )(ipl  in 

a lexicon of language l, then the frequency of each 

feature j contributed by the phoneme )(ipl  is 

),()]([ jivipc lll , and the frequency of each feature j 

contributed by all the phonemes in language l is 

∑ =
lI

i lll jivipc
1

),()]([ . The global weights derived from 

all the phonemes in all the languages are 

(3) )}(,),(,),1({)( Jwjwwdiagj LL=W   

where 

(4) 

∑
∑∑

∑
∑

=

= =

=

=
==

L

l
J

j

I

i
lll

I

i
lllL

l
l

l

l

jivipc

jivipc

L
jw

L
jw

1

1 1

1

1
),()]([

),()]([
1

)(
1

)(  Jj ,,1L=

       

where diag(vector) gives a diagonal matrix with 
elements of the vector as the diagonal entries. We 
define the phonetic distance between phonemes 

)(ipl  and )(kpt  in the form of a Manhattan dis-

tance, which is expressed as 
(5) 

∑
=

−=−=
J

j
tltllt jkvjivjwkpipjkid

1
1

),(),()()])([)]([)((),( ffW

where lIi ,,1L= , tIk ,,1L= , and the weights, given 

in a diagonal matrix )( jW , are dependent upon the 

feature identity j. 

4 Phonological distance metrics 

Although our phoneme specification approach is 
designed to account for allophonic variance, not all 

variation is captured.  Because of this, the effec-
tiveness of measuring phonetic distance as a stand-
alone strategy to predicting cross-language pho-

neme similarity is compromised.  Furthermore, 

phonetic distance does not determine relative pho-
neme similarity in the not atypical scenario where 

two or more phonemes share the same phonetic 
distance to some target phoneme.  In order to ad-
dress these problems, phonological distance met-

rics are used to bias cross-language phoneme 

similarity predictions toward languages that have 
similar phoneme inventories and phoneme fre-

quency distributions.  The general idea is that the 
more similar the phoneme inventory and relative 

importance of each corresponding phoneme be-

tween languages, the more likely it is that the cor-
responding phonemes will be more similar.   

Phonological distance consideration is espe-

cially desirable in an ASR environment because 
ultimately HMMs corresponding to those source-
language phonemes predicted to be most similar to 
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target-language phonemes must interact in a sys-
tem that is intended to reflect a single target lan-

guage. Use of phonological metrics then ensures 
that the overall model pool will have a bias toward 

a reduced set of phonologically similar languages, 

and it is reasonable to expect that similarity in lan-
guages of the model pool provides consistency in 

the target HMM system (see Schultz and Waibel 

2000). 

In this section, we define two distance metrics 
to characterize cross-language phonological simi-

larity. One is based on monophoneme inventories 
while the other is based on biphoneme inventories. 

4.1 Monophoneme distribution distance 

Monophoneme distribution distance characterizes 

the difference in lexical phoneme distribution be-
tween two languages. Specifically, the distribution, 

or normalized histogram, of the phonemes is ob-

tained from a large lexicon of a language, with the 
probability in the distribution corresponding to the 
frequency of a phoneme in the lexicon. We derive 

the distribution from a lexicon as we consider it 
more representative of a language’s phonology 

than a particular database. 

The monophoneme distribution metric is a ty-
pological comparison that is based on two princi-
pal classes of information: (1) types of sounds and 

(2) frequencies of these sounds in the lexicon. The 
former class is directly associated with phoneme 

inventory correspondence while the latter concerns 

relative phoneme importance. 

Because the phoneme inventories of the two 

languages to be compared may not be identical, we 

first need to define a combined inventory for them 

(6) 
},,1|)({},,1|)({},,1|)({ ttllltlt IkkpIiipImmp KKK =∪===

where )(mplt  is a phoneme in the combined inven-

tory where there are total ltI  phonemes. 

The frequency of the phoneme )(mplt  in lan-

guage l can be expressed as 

(7) 

∑
=

=
lI

i
ll

ltl
ltl

ipc

mpc
mp

1

)]([

)]([
)]([ρ , ltIm ,,1L=   

where )]([ mpc ltl  is the occurrence count of pho-

neme )(mplt  in a lexicon of language l. If a pho-

neme )(mplt  does not exist in the language, its 

frequency would be zero. The difference of pho-

neme frequencies between the two languages can 

be calculated as  

(8) )]([)]([)]([ mpmpmpd lttltlltlt ρρρ −=    ltIm ,,1L=  

Then the monophoneme distribution distance 
between the target language t and source language 

l is 

(9) ∑
=

=
ltI

m
ltltlt mpdD

1

)]([ρρ . 

The distance is calculated between the target lan-
guage and every one of the source languages. 

In view of the known differences in phonologi-
cal characteristics between vowels and consonants, 
we make separate calculations for the vowel and 

consonant categories. Thus Eq. (9) becomes 

(10) ∑
∈

=
gmp

ltlt
g
lt

lt

mpdD
)(

)]([ρρ   

where g=Vowels or Consonants. 

4.2 Biphoneme distribution distance 

The biphoneme distribution distance metric char-

acterizes the difference in lexical distribution of 

phoneme pairs, or biphonemes, between two lan-
guages. Similar to the monophoneme distribution 

distance, the distribution of biphonemes in a lan-
guage is obtained based on the frequency of bipho-
nemes in a large lexicon. 

The biphoneme metric indicates how phonemes 
can combine in a language and how important 
these combinations are. Though the phonotactics 

provided in this approach is limited to only a se-
quence of two, the overall biphoneme inventory 

and distribution provides important phonological 
information. For example, it indicates if and to 

what extent consonants can cluster. Some lan-
guages tend to disfavor consonant clustering, like 

the Romance languages, while others allow for 

broad clustering, like the Germanic languages. It 
also indicates if and to what extent vowels may co-
occur. Many languages require an onset consonant 

so vowels will never co-occur; other languages 
have no such restriction. 

The biphoneme metric then yields types of in-

formation that are distinct from the monophoneme 

metric. It explicitly provides a biphoneme inven-
tory, permissible phonotactic sequences, and pho-

notactic sequence importance. It also implicitly 

incorporates phoneme inventory and phonological 
complexity information. 

Similar to the monophoneme distribution dis-
tance, the distribution of biphonemes in a language 
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is obtained based on the frequency of a biphoneme 

in a large lexicon. The biphoneme inventory for 

the target language t is expressed as 

(11) },,1|)({ tt Ikkq ′= K  

while the biphoneme inventory for a source lan-
guage l is 

(12) },,1|)({ ll Iiiq ′= K  

Then the combined biphoneme inventory for the 
two languages to be compared is 

(13) 
},,1|)({},,1|)({},,1|)({ ttllltlt IkkqIiiqInnq ′=∪′==′= KKK

where )(nqlt  is a biphoneme in the combined in-

ventory where there are total ltI ′  biphonemes. For a 

phoneme at the beginning or end of a word, )(nqlt  

takes the format of “void+phoneme” or “pho-
neme+void”, respectively. 

The frequency of a biphoneme )(nqlt  in lan-

guage l can be expressed as 

(14) 

∑
′

=

=
lI

i
ll

ltl
ltl

iqc

nqc
nq

1

)]([

)]([
)]([γ , ltIn ′= ,,1L        

where )]([ nqc ltl  is the occurrence count of bipho-

neme )(nqlt  in a lexicon of language l. The differ-

ence of biphoneme frequencies between the two 

languages is 

(15) )]([)]([)]([ nqnqnqd lttltlltlt γγγ −=  ltIn ′= ,,1L  

Then the biphoneme distribution distance between 

the target language t and source language l is 

(16) ∑
′

=
=

ltI

n
ltltlt nqdD

1

)]([γγ . 

Similarly, the distance is better characterized 

within the categories of vowels and consonants 
separately. In our algorithm we count each bipho-
neme twice, the first time as a left-contact bipho-

neme and second time as a right-contact 
biphoneme. Thus 

(17) ∑∑
∈∈

+=
gnq

ltlt
gnq

ltlt
g
lt

ltlt

nqdnqdD
)( ofleft )( ofright 

)]([)]([ γγγ  

where g=Vowels or Consonants. 

4.3 CPP phoneme distance 

For phoneme similarity prediction, we unite the 

phonetic and phonological distance metrics to ar-
rive at the CPP phoneme distance measurement. 
Since the three distances are from different do-

mains and provide distinct types of information, 

normalization is necessary before combination. 

The normalization, aimed at extracting the relative 

ranking between source phonemes and languages, 
is a linear processing that scales the score range 

from each domain into the range [0 1]. 

We equate the overall importance of phonetics 
with that of phonology by providing a weight of 2 

to the phonetic score and 1 to each of the phono-
logical scores. By doing this, a source-language 

phoneme can have a greater phonetic distance to 

some target-language phoneme than other source-
language phonemes but a lower phonological dis-
tance and receive a lower overall phoneme dis-

tance score. It is because phonological distance is 
considered as important as phonetic distance that 
the overall constructed target-language model pool 

will tend to be restricted to a subset of phonologi-
cally similar languages. 

The feature-based phoneme distance metric is 

defined as 
(18)

N
g
ltN

g
ltNltd DDkidkiCPP ][][)],([),( γαραα γρ ⋅+⋅+⋅=   

where ),( kiCPP  represents the distance between 

phoneme )(ipl  from language l and phoneme )(kpt  

from language t, and both phonemes belong to the 

same phonological category g (vowels or conso-

nants). The weights dα , ρα , and γα  represent the 

relative importance of each quantity. As men-

tioned, ( dα , ρα , γα )=(2,1,1). The symbol [·]N de-

notes that the quantity inside is linearly scaled into 

the range [0 1]. For g
lt

Dρ  and g
lt

Dγ , the original 

range is determined by scores of all the source lan-
guages. Their scaling is done once for a target lan-

guage t. While for ),( kidlt , we found that it is better 

to do scaling once for each target phoneme )(kpt , 

and the original range is determined by scores of a 
group of candidate phonemes that includes at least 
one phoneme from any source language. 

5 Experiments 

To test our CPP approach to phoneme similarity 

prediction, we compared it to an acoustic distance 
approach in ASR experiments. Because native lan-

guage speech data is used in measuring model dis-
tance in the acoustic approach, it is expected to 

work better than the knowledge-based approach, 
which only estimates acoustic similarity indirectly 

through articulatory phonetic distance and overall 
phonological distance. 
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5.1 Model construction 

We employ the regular 3-state, left-right, mul-

timixture, continuous-Gaussian HMMs as the 
acoustic models and assume that the models from 

all the source and target languages have the same 

topology except that the number of mixtures in a 

state may vary. Once the top source phonemes are 
determined from our feature-based phoneme dis-
tance metric for each target phoneme, the target 

HMM is constructed by gathering all the mixtures 
for a corresponding state from the source candi-
dates. The original mean and variance values are 

maintained while the mixture weights are uni-
formly scaled down so that the new weights add up 

to one for each state. It is possible to weigh mix-

tures according to the relative importance of the 
candidates if the importance as reflected by the 
phoneme distance metric has a significantly large 

difference. The transition probabilities are adopted 

from the top one candidate model. 

5.2 CPP phoneme model construction 

We used the 17 languages and dialects provided in 

Table 2 in the experiments testing our CPP pho-
neme distance approach to phoneme HMM simi-

larity. For each language, a native monolingual 
model set had been built by training with native 
speech data. The acoustic features are 39 regular 
MFCC features including cepstral, delta, and delta-

delta. The individual ASR databases derive from a 

variety of projects and protocols, including, but not 
limited to, CallHome, EUROM, SpeechDat, Poly-

phone, and GlobalPhone.  In each of the following 

experiments, we select one language as the target 
language, and construct its acoustic models by us-

ing all the other languages as source languages. A 

phoneme distance score is calculated for each tar-
get phoneme and the top two candidate source-

language phonemes are chosen for HMM model 
construction. We conducted experiments with Ital-
ian, Latin American Spanish, European Portu-

guese, Japanese, and Danish as target languages. 

5.3 Acoustic model construction 

In the acoustics distance approach, models are built 

with the top two models chosen from source lan-
guages based on their acoustic distance from the 

corresponding native target model. For these ex-

periments, we adopt the widely used Bhat-
tacharyya metric for the distance measurement 

(Mak and Barnard 1996). It should be noted that 
the recognition performance of the acoustics-

constructed models is not a theoretically strict up-
per bound for HMM similarity because the meas-
urement in the acoustic space is probabilistic. 

5.4 Results 

Each recognition task includes about 3000 utter-
ances of digit strings, command words, and sen-
tences. The word accuracy results in Table 4 

include the native baseline performance, i.e. the 
performance of the native monolingual, context-
independent models from each target language, as 

well as the acoustics-based and feature-based per-
formances. These results show that the perform-
ance of models selected by the CPP phoneme 

distance approach is equivalent overall to that of 

models selected by acoustic distance.  

Table 4: Model performance 

Target 

Language 

Native 

Baseline 

Acoustic 

Distance 

CPP 

Distance 

Lat. Spanish 94.49 88.61 93.06 

Italian 98.42 98.27 98.52 

Japanese 95.36 76.72 78.76 

Danish 94.36 72.95 70.15 

Eur. Portuguese 96.31 77.91 72.74 

 

The performance of models selected by the CPP 

approach nearly matches the performance of the 
native models for Latin American Spanish and 

surpasses those for Italian. This approach performs 
better than the acoustic distance approach for Latin 

American Spanish, Italian, and Japanese and not as 

well for Danish and European Portuguese.  

6 Evaluation and conclusion 

We suggest four principal performance factors to 

explain the results provided in Table 4: (1) rare 

phonemes in the target-language inventory; (2) 

target-language inventory complexity; (3) degree 
of source-language phonological distance to the 

target language; (4) reliability of source-language 

models.  Because the CPP approach has only been 

tested on five languages, we consider this analysis 

preliminary.  

Regarding the first factor, rare phonemes in the 
target-language inventory, it is worth noting that 

neither Latin American Spanish nor Italian has 
phonemes whose exact feature specifications are 
unattested in phonemes from other languages in 
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our dataset. For these languages, all phonemes 
have exact source-language matches. In contrast, 

Japanese, Danish, and European Portuguese each 
contain phonemes with feature specifications 
unique to their language.  Based on this analysis, 

we propose that, all other factors being equal, the 
greater the overall phoneme correspondence be-
tween the target language and the source lan-

guages, the better the target-language HMM 

performance.  

In general, it appears that target languages as-

sociated with inventories that are greater in size 
than their least phonologically distant source lan-
guages perform worse than target languages asso-

ciated with smaller inventories relative to their 
closest source languages.  For example, the vowel 
systems of Danish, European Portuguese, and 

Japanese are the most complex of the five target 
languages, with Danish having 26 vowels, Euro-
pean Portuguese having 14 vowels, and Japanese 
having ten vowels. In sharp contrast, Latin Ameri-

can Spanish has only five vowels and Italian has 
seven.  Both Latin American Spanish and Italian 

are phonologically similar to other Romance lan-

guages in the dataset that have greater vowel con-
trasts: Brazilian Portuguese (13 vowels), European 

Portuguese (14 vowels), Parisian French (17 vow-

els) and Canadian French (19 vowels).   Here, we 
suggest that target languages that have a similar or 
lesser number of phoneme contrasts compared to 

the source languages are more likely to achieve 
higher recognition performances, all other factors 
being equal. 

Relative phonological distance of the source 
languages to the target language and reliability of 

source language models additionally impact target-

language ASR performance.  Consider Table 5 

where the difference in these factors for Italian and 

European Portuguese are given.  First, Italian and 

European Portuguese are both Romance languages 
and our dataset includes a total of six, presumably 

phonologically similar, Romance languages and 

dialects.  However, the recognition results of the 
models selected by both the feature-based and 

acoustics-based phoneme distance method are very 

different for the two languages.   
 

 

 

Table 5: Phonological distance and native baseline per-

formance factors in target-language recognition 

Target Language Italian Eur. Portuguese 

Top 3 least distant 

langs. 

(1) Lat. Spanish 

(2) Parisian Fr. 

(3) Brz. Port. 

(1) Brz. Port.  

(2) Lat. Spanish 

(3) Canadian Fr. 

Avg. phonolog. 

distance of top 3 

langs. 

0.7399 0.8945 

Avg. phonolog. 

distance of top 1 

lang. 

0.5757 0.8248 

Avg. native base-

line of top 3 langs. 
89 91.94 

Native baseline of 

top 1 lang. 
94.49 84.25 

 

If we compare the phonological distances between 

the least distant source languages to Italian and 

European Portuguese, we observe that Italian’s 

closest languages are less distant overall than 

European Portuguese’s closest languages. 
Because the phonologically least distant source 

languages contribute the majority of target-
language HMMs, it is reasonable to expect that 
lesser phonological distance to the target language 

by a greater number of source languages is likely 

to result in a better target-language HMM per-
formance, all other factors being equal. 

Finally, note the substantial discrepancy in na-
tive baseline performance between the phonologi-
cally least distant source languages for Italian and 

European Portuguese.  The majority of selected 

models for Italian derive from Latin American 

Spanish which is associated with a high native rec-

ognition baseline.  European Portuguese models, 
on the other hand, largely come from Brazilian 

Portuguese which has a much lower native base-

line.  This suggests that the most reliable source-
language HMMs, as judged from their native rec-
ognition performance, contribute to better target-
language recognition performance, all other fac-

tors being equal.   
In future work, we intend to test our CPP pho-

neme similarity approach on new target languages 

and expand the preliminary evaluation provided 

here.  In particular, we are interested to what extent 
this method can predict recognition performance 

for new target languages. 
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